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Self-similarity is the property of a system being similar toa part of itself. We posit that a special
class of behaviourally self-similar systems exhibits a degree of resilience to adversarial behaviour.
We formalise the notions of system, adversary and resilience in operational terms, based on transition
systems and observations. While the general problem of proving systems to be behaviourally self-
similar is undecidable, we show, by casting them in the framework of well-structured transition
systems, that there is an interesting class of systems for which the problem is decidable. We illustrate
our prescriptive framework for resilience with some small examples, e.g., systems robust to failures
in a fail-stop model, and those avoiding side-channel attacks.
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1 Introduction

Building systems that are resilient to actions of adversarial environments is an important software engi-
neering concern. In this paper, we propose a class of systemswhose resilience arises from a notion of
self-similarity. An object is said to be “structurally self-similar” if it issimilar to a proper part of itself.
An important quality of the class of self-similar structures is that they arescale-invariant. In analogy, we
consider a class of systems that arebehaviourally self-similar— the behaviour of the system as a whole
is “equivalent” to that of a part of the system — and develop a framework for showing how systems in
this class areresilient to adversarial actions. The intuition behind our thesis is that if a part of a system
is sufficient to exhibit the behaviour of the system as a whole, then therest of the system providesre-
dundancy, which in turn may provide resilience against a hostile environment. The notion of resilience
is with respect to that of anadversary, a general concept pervading computing science, i.e., any way of
choosing inputs or an environment that can thwart a program from achieving its desired behaviour.

A trivial example of a behaviourally self-similar system isa constant signal. Its behaviour during
any intervalof time is equivalent to its behaviour during an initial (arbitrarily small) interval, which is
repeatedad infinitum. The signal can be considered to be resilient to an adversarythat determineswhen
to sample the output value, in that it is able to map the adversary’s sampling interval to a more convenient
input (the initial interval) for which its behaviour has been defined. Such “delay-tolerance” may also be
seen in other time-independent functions.

The notion of behavioural self-similarity finds common currency in formal languages, in concurrency
theory, as well as in programming. In formal languages, we have a ready example of a construction
that supports behavioural self-similarity, namely the Kleene star, as(e∗)∗ ≈ e∗. Note that the construct
( )∗ is semantically idempotent, a property that is often associated with fault-tolerance. The replication
operation in process calculi such as theπ-calculus [15] is another example of self-similarity: !p≈!p‖!p,
where≈ denotes (behavioural/semantic) equivalence. It is also idempotent since !!p≈!p, for any process
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p. Indeed, in any recursive program scheme, we can find a syntactic part that behaves in a manner similar
to the entire system. Consider, e.g., a recursive equationX ≈ F [X], for some non-trivial contextF[ ].
By construction,X is a fortiori operationally equivalent to the expressionF[X]. The semantics attached
to such recursive equations involves finding an appropriatefixed point, usually the least fixed point,
preferably by a (finite) iterative process. Observe that placing any solution to this equation in the context
F[ ] is a (behaviourally) idempotent operation1.

From these examples, a naı̈ve idea arises linking system structure, behavioural self-similarity and
resilience: If, assuming no adversarial action, a partq of a systemp can behave as the whole system
does, then this part can be considered to provide the core functionality of the system; the rest of the
system (the “context”C[ ], where p ≡ C[q]) serves to neutralise adversarial actions or transform the
interactions of the adversarial environmentA with the system into a form which this “core”q can digest,
and thereby make the system behave as though adversarial action by A were absent.

Resilience. We say that a systemp is resilient to an adversary Aif its observable behaviour in the
presence of adversarial action is equivalent to its behaviour in the absence of the adversary:p◦A ≈
p, where◦ represents coupling the systemp with the adversaryA2. A somewhat similar formulation
has been explored earlier by Liu, Joseph, Peled, Janowski and others [14, 17, 11], but we believe our
formulation is more natural (discussed in§1.1). Now, if p can be expressed byC[q] as above, and in
the absence of an adversary,C[q] ≈ q, we have, by transitivity, the desired resilience to the adversaryA
arising from self-similarity. Resilience in this sense should not be equated with a notion of correctness;
a system may be resilient even if it is not correct with respect to a given specification. Note that if≈ is a
congruence,C[C[q]]≈C[q]≈ q, showing the expected idempotence ofC[ ] in countering adversaryA.

Adversary model. An adversary can be viewed as a way of forcing the program to face an un-
favourable environment. The class of adversaries may be expressed in any of a variety of ways: as
processes in a language, as automata or transition systems,as logical constraints on behaviour, etc. All
that our framework requires is that the program coupled withthe adversary is a transition system on
which a reasonable notion of observational equality can be defined. We include in the class of adver-
saries a completely benign adversary, denoted 1A, who behaves as if there were no adversary present
when coupled with any system. If the adversarial model is specified as a transition system, we require
that it bewell-structured, with 1A � A for anyA in the class of adversaries.

We identify here some constraints on what an adversary can and cannot do. (i) Adversaries may
act in ways completely unrestricted by the system. (ii) Adversarial moves, except for announcement of
error, are not directly observable. This is justifiable in that most adversaries are sneaky, not bruiting their
actions, until and unless they wish to announce that they have defeated the system, i.e., a denouementerr.
(iii) An adversary cannot directly prevent the system from making anyobservablemove by removing
an enabled action. (iv) An adversary can, however, interactwith the system, and make joint moves.
These interactions too may not be directly observable, but may cause the system to (eventually) produce
different observable effects from its normal behaviour.

Structure of the paper. In the sequel, we develop this idea by formalising the notions of a system’s
behaviour, adversarial action, resilience anda methodology for proving a system to be resilient, by fac-

1Finding the minimal fixed point context helps us avoid “needless redundancy”.
2Note thatA need not be specified in the syntax of the language in whichp is expressed, and that the notion of coupling of

the adversary to the system may be more general than the usualnotion of parallel composition.
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toring a system into its “core” and fault-tolerant context.This is followed by a discussion of related work
(§1.1). Formalisation (§2) of both system and adversarial behaviour is done in the very general setting of
transition systems. We employ a process calculus notation for expressing processes, and the associated
structural operational semantics helps in relating structure to behavioural self-similarity. In this paper, we
use suitable notions ofobservationandequivalence, namely, those ofbarbsand bisimulation [16], since
we consider systemsclosedwhen coupled with an adversary. While other behavioural equivalences may
be considered, we chose bisimulation since it is the finest extensional notion of equivalence of observable
behaviour. Proposition 1 expresses the soundness of our proposed methodology.

In general, proving bisimilarity of transition systems, and consequently showing a system to be
behaviourally self-similar, isundecidable. However, we can show that this problem is decidable for
an interesting class of systems (Proposition 2) by using theframework ofWell-Structured Transition
Systems(WSTS) [6]. The WSTS conditions required for establishing decidability seem to arise very
naturally from the constraints placed on the context and adversary.

We then illustrate our prescriptive framework for resilience with small examples (§3), such as sys-
tems robust to failures in a fail-stop model, and defeating side-channel attacks. In the examples in this
paper, which progress from finite to finite-control to infinite state systems, we do not propose any new
mechanisms for building resilient systems. We deploy the familiar armoury of devices — redundancy,
replication, retry, and repetition — for countering the arsenal at the adversary’s disposal. However,
our framework may be seen as providing a formal (methodological) justification of these constructions.
While fault-resistance has earlier been shown using rigorous mathematical techniques, we believe that
our use of the WSTS framework provides the basis for automated techniques for proving resilience, es-
pecially in the case of infinite-state systems. We illustrate our approach by conveying only the intuition
for the different examples, and omit the tedious details of the proofs. In§4, we conclude with a discus-
sion of our approach, its limitations, alternative frameworks for specifying and verifying resilience to
adversarial behaviour, as well as some directions for future work.

Methodology. Our proposed methodology is:

1. We identify a class of adversaries, with aleastadversary 1A. Adversarial moves are not normally
observable, except perhaps for a final barberr.

2. We decompose the system processp into a coreq which provides the basic functionality and
a (fault-resilient) contextC[ ]. Thus p ≡ C[q]. In general, the context may be multi-holed. The
contextC[ ] should not alter the core functionality ofq. In particular, it should satisfy the following
conditions:

(a) C[ ] should permitq to make any of its possible moves, i.e.,q−→ q′ impliesC[q] −→C[q′]
andq⇓ o impliesC[q] ⇓ o;

(b) If C[ ] andq jointly make a move, then all ofq’s possible barbs are preserved, i.e., ifC[q] ⇓ o
andC[q]−→C′[q′] thenC′[q′] ⇓ o;

(c) The contextC[ ] (and its derivatives) should by itself contribute no observable barbs, i.e.,
C[ ] 6⇓ o for anyo;

(d) No transition arising purely due toC[ ] disables the execution of the processq, i.e., ifC[ ]−→
C′[ ], then (i)q⇓ o impliesC′[q] ⇓ o (sinceC[q] ⇓ o), and (ii)q−→ q′ impliesC′[q]−→C′[q′].

3. We then specify the couplingp◦A of a process and an adversary as a transition system. Formally,
we will require that this transition system be a WSTS. In particular, this composite transition
system should exhibit theupward simulation property(defined in§2).



S. Prasad & L. D. Zuck 33

4. To show resilience ofp with respect to the adversaryA, we show thatq◦1A ≈ p◦A. This problem
is decidable for WSTSs withcertain additional properties.

We dub the conditions on the context and the adversary listedabove theself-similarity constraints.

Beyond finite-state systems. While our examples in this paper are small, our framework is not con-
fined to dealing with finite (or finite-state) systems, for which it may be easy to show the required bisim-
ilarity. Accordingly, we explore systems that provide sufficient structural properties to ensure thatbisim-
ilarity is decidable. We find that Well-Structured Transition Systems (WSTSs) [6] provide a framework
in which we can formulate andverify resilience by virtue of self-similarity.

Consider first asimple versionof the framework: Structural inclusion ofq in C[q] for a context
satisfying the self-similarity conditions is an obvious candidate when defining an ordering relation (q‖r �
C[q]‖r). A simple way to obtain the conditions on contextC[ ] mentioned above is to constrain the hole(s)
[ ] in contextC[ ] to appear only at “head” or “enabled” positions. This allowsC[q] to simulateq, and if
C[ ] has no observable actions, then every barb ofq is a barb ofC[q] and vice versa.

Often the adversary itself can be formulated as a WSTS with a least element 1A representing the
absence of an adversary. The composite transition system isobtained from those of the system and the
adversary, and apointwise combinationof the system and adversary orderings yields the desired ordering
relation for the WSTS. We say that the composition with adversaryA is monotoneif p −→ p′ implies
p◦A −→ p′ ◦A, andp⇓ o implies p◦A ⇓ o. This is usually the case with parallel composition in most
process calculi.

The self-similarity constraints on the context and adversary imply the following properties:

• (Upward simulation)q −→ q′ implies C[q] −→ C[q′]. For monotone compositions with adver-
saries, this further impliesC[q]◦A−→C[q′]◦A.

• For an observableo, q⇓ o if and only ifC[q] ⇓ o.

• if A−→ A′ then for anyp: p◦A−→ p◦A′.

What remains is to place reasonable effectiveness constraints on the WSTSs in order to ensure that
bisimilarity is decidable. We require that the states of thesystem and the class of adversaries arerecur-
sive setsand that the ordering� is decidable. We also assume that the transition systems arefinitely-
branching. In order to ensure decidability, we require that the transition systems satisfy a technical
condition of having aneffective pred-basis, and exhibit downward reflexive simulation (these definitions
are recalled in§2).

1.1 Contributions and Related Work

We are unaware of any previous work where the notion of self-similarity has been wedded to that of
behavioural equivalence to formulate a notion of a system being resilient to actions by an adversarial
environment. Furthermore, we believe that the methodologywe enunciate — construing a system as
being constructed of a core behaviour and a context for handling the actions of a formally defined ad-
versarial environment — is novel, as also casting them in theframework of Well-Structured Transition
Systems [6]. The structural decomposition of the system into core and fault-absorbing context seems
natural and dovetails nicely with the WSTS conditions. As a consequence, the bisimulation proofs be-
come much easier. Moreover, the effectiveness conditions provide decidability, and thus in principle at
least, support automated techniques for showing resilience that can work even for infinite-state systems.
We also believe that our third example, which deals with a building block for converting communication
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over a non-FIFO channel with omission failures to a FIFO-channel with omission failures, has not been
presented earlier in its essential form.

The idea of formulating fault tolerance in terms of behavioural equivalence is not new [14, 17, 11].
The idea of a fault preorder, capturing the relative severity of faults, can be found in the works of
Janowski, Krishnan and others [11, 12, 14]. Janowski, e.g.,studies the problem of monotonicity of
fault tolerance — a system tolerant of faults higher in the preorder should tolerate faults lower in the
preorder, but finds that this requirement does not square well with the standard notion of bisimilarity.
A similar observation is made by Krishnan [12], where he considers replicated systems to model sys-
tems with synchronous majority voting. Accordingly, a notion of bisimilarity parameterised by the fault
model is proposed [11, 12]. In contrast, we believe that the notion of behaviour should beuniformand
therefore formulate the notion of resilience to an adversary using astandardnotion of equivalence, e.g.,
weak (asynchronous) barbed bisimulation [16, 2].

Another major difference with these approaches [10, 11] is that they formulate the faulty versions
of the system by incorporating the anticipated faulty behaviour into definitions of the system. We see
this is as unsatisfactory in that the adversarial behaviourhas to be expressed concretely and within the
syntax of the system (e.g., in the CCS formulation), therebyseverely restricting the expressive power
given to the adversary. It is also not a very satisfactory wayof composing adversaries. Janowski uses the
technique of incorporating the faulty version with the original system by providing aredefinition of the
original systemtaking a non-deterministic choice of the two behaviours. This approach does not work
well, e.g., with modelling a fail-stop model, because “revenant” processes become possible — a system
which is supposed to have failed, rises Lazarus-like and exhibits some active behaviour. In contrast, our
formulation uses a very general framework of transition systems, which may be specified and combined
in any convenient manner. Indeed, the syntactic formulation used for describing the example systems
is only a convenient way for specifying a transition system and the constructive nature of fault-resilient
transformations.

There is also some similarity between our work and that of Liu, Joseph, Peled and others, in e.g.,
[14, 17], where they present frameworks in which fault-tolerance is expressed by transforming a process
with respect to the specification of a fault model:q is aψ-tolerant implementation ofp if p≈ T(q,ψ),
for a transformationT( , ). The juxtaposition of the recovery algorithm is viewed as a transformation
that makes a process fault-tolerant. The connections between these logic-based ideas and our preliminary
operational formulation deserves further study.

2 The Framework

2.1 Transition Systems

A transition systemT = 〈S,−→〉 consists of a set of statesSand a transition relation−→⊆S×S. A finite
trace σ with respect toT is a sequence of states〈s0,s1, . . . ,sn〉 such thatsi −→ si+1 for all 0≤ i < n.
An infinite trace with respect toT can be considered to be a functionσ : N→ Ssuch that for alli ∈ N:
σ(i)−→ σ(i+1). We writeσ1σ2 to denote the concatenation of traces, which in the case ofσ1 being an
infinite trace, results inσ1.

The successorsand predecessorsof a states ∈ S, are defined asSucc(s) = {s′ | s −→ s′} and
Pred(s) = {s′ | s′ −→ s} respectively. The notations−→n, −→=, −→+ and−→∗ are used for the
n-step iteration, reflexive closure, transitive closure andreflexive-transitive closure of the transition re-
lation −→. We use a similar notation for then-step iterations, and closures ofSuccandPred. T is
finitely-branchingif Succ(s) is finite for eachs.
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Assuming a notion ofobservable actions, we define abarb as an observable action that a process
has the potential to perform, writtenp ↓ o (whereo is observable) [16]. We will use “weak barbs” which
depict the potential of a process to perform an observable action after making some “silent” transitions,
i.e., p⇓ o if for somep′, p−→∗ p′ andp′ ↓ o.

A weak barbed simulationis a binary relationR on processes such that if(p1, p2) ∈ R, then (1) if
p1 ⇓ o thenp2 ⇓ o; and (2) wheneverp1 −→

∗ p′1 then there existsp′2 such thatp2 −→
∗ p′2 and(p′1, p

′
2) ∈

R. R is aweak barbed bisimulationif both Rand its symmetric inverseR−1 are weak barbed simulations.
Processesp1 and p2 are weakly barbed bisimilar, writtenp1 ≈b p2, if they are related by some weak
barbed bisimulation. Weak barbed bisimulation is not fine enough to distinguish processes that differ
after the first communication (barb), when they interact with other processes, so the equivalence relation
usually desired is a refinement that is preserved under parallel composition.

p1 ≈ p2 if ∀ q : (p1‖q)≈b (p2‖q)

However, for closed systems, it is reasonable to use weak barbed bisimulation as the notion of equiva-
lence.

Process notation. In our examples, we employ a process calculus notation akin to a value-passing
CCS. Leta represent a channel,x a variable, andv a value drawn from some set of values. We assume
without further specification that the language includes a syntactic category of expressionse, which
contains in particular variables and integer-valued expressions. In our examples, expressions may also
include tuples, and we assume a matching operation. Terms inthe language of communicating processes,
typically p, p1, p2 are specified inductively by the following abstract syntax:

p ::= 0 | ae.p | ax.p1 | p1‖p2 | (a)p1 | p1+ p2 | [e1 = e2]p | !p | P(e1, . . .en)

The process 0 is inert. The prefixae stands for the output of the value ofe on channela, whereas
ax.p stands for input of a value over channela with the value bound tox in the continuationp. p1‖p2

represents parallel composition whereasp1+ p2 stands for non-deterministic choice betweenp1 andp2.
The notation(a)p1 describes therestriction operation on channels, i.e., channela is local to scopep1.
Communication on restricted channels isnot observable.[e1 = e2]p is a conditional matching operation.
!p represents the replication of processp, yielding as many copies ofp as desired, running in parallel.
For convenience, we include parameterized (recursive) processes of the formP(e1, . . .en).

In a distributed system, we associate processes withlocations, written for instance asℓ[|p|], whereℓ is
a location constant. A contextC[ ] is a process term with a hole[ ] in the place of a process term. We may
also have multi-hole contexts. We do not present here the formal rules for the operational semantics of
this language. Indeed, these constructs can be encoded in a core asynchronous calculus with replication
and choice restricted toguarded processes. We refer the reader to any standard presentation of such
asynchronous calculi [9, 2] for the encodings and the operational semantics rules.

2.2 Well-structured Transition Systems

We now summarise some results about WSTSs [6].
A quasi-orderor pre-order〈S,�〉 consists of a setSwith any reflexive and transitive relation�⊆ S×S.
〈S,�〉 is well-ordered(henceforth awqo) if for any infinite sequences0,s1, . . . there exist indicesi and
j with i < j such thatsi � sj . Consequently, a wqo has no infinite strictly decreasing sequence, nor any
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infinite sequence of unrelated elements. It also follows that in a wqo, any infinite sequences0,s1, . . . has
an infinite non-decreasing subsequence si0 � si1 � si2 . . . wherei0 < i1 < i2 . . ..
In quasi-order〈S,�〉, an upward-closed setis any setI ⊆ Ssuch that ifx∈ I andx� y, theny∈ I . Let
↑ x= {y | x� y}, called the upward closed set induced byx. A basisfor an upward closed setI is a set
Ib ⊆ I such thatI =

⋃
x∈Ib(↑ x).

Higman’s Lemmastates that if〈S,�〉 is a wqo, then any upward-closed setI has afinite basis. The
minimal elements ofI form a basis, and these must be finite, since otherwise, they would include an
infinite sequence of unrelated elements. Further, any chainof upward-closed setsI0 ⊆ I1 ⊆ I2 ⊆ . . .

stabilises, i.e., for somek, I j = Ik for every j ≥ k.
A Well-Structured Transition System(WSTS)T = 〈S,−→,�〉 consists of a transition system〈S,−→〉
equipped with a well-ordered quasi-order〈S,�〉 that satisfiesweak upward simulation: For everys, s′,
andt ∈ S, if s−→ s′ ands� t, then there existst ′ ∈ Ssuch thatt −→∗ t ′ ands′ � t ′.
A WSTS exhibitsdownward reflexive simulationif for eachs, if s−→ s′ andt � s, then there existst ′

such thatt −→= t ′ andt ′ � s′, i.e., eithert ≡ t ′ (0 steps) ort −→ t ′ (1 step).
A WSTS T = 〈S,−→,�〉 has aneffective pred-basis[6] if there exists an algorithm that, given any
states∈ S, computespb(s), a finite basis of↑ Pred(↑ s), i.e., minimal elements of the upward-closed set
induced by the predecessors of states in the upward-closed set induced bys.
Backward reachability analysis involves computingPred∗(J) as the limit of a chainJi , whereJi ⊆ Ji+1.
If J is upward-closed, then this process converges, andPred∗(J) is upward-closed. If a WSTST =
〈S,−→,�〉 has aneffective pred-basisand� is decidable, then if any upward-closedJ is given via its
finite basis, one can compute a finite basis ofPred∗(J).
Thecovering problemis, given statess andt, to decide whether there exists at ′ such thats−→∗ t ′ and
t � t ′. The covering problem is decidable forT = 〈S,−→,�〉 with aneffective pred-basisand decidable
�.
If T = 〈S,−→,�〉 exhibits downward reflexive simulation, and ifSuccis computable and� decidable,
then one can compute for anysa finite basis of↑ Succ∗(s).
The sub-coveringproblem is to decide, givens and t, whether there existst ′ such thats−→∗ t ′ and
t ′ � t. Subcoveringis decidable for any WSTS which shows downward reflexive simulation, if Succis
computable and� decidable.

Putting the pieces together, we get the following method forproving whether a putatively fault-
tolerant processp ≡ C[q] is indeed resilient (or not) to an adversaryA, whereC[ ] denotes the fault-
digesting context andq its core functionality:

Proposition 1 A process p is resilient to adversary A while providing behaviour q if p can be expressed
as C[q] such that C[ ] and A satisfy the self-similarity constraints, and C[q]◦A 6⇓ err.

Proof: ConsiderC[q]◦A. We wish to showq◦1A ≈C[q]◦A.

• Upward Simulation:The adversary does not directly restrict any action of the system. Since 1A
represents the non-existence of an adversary,q◦1A −→ t impliest ≡ q′ ◦1A for someq′. If q⇓ o,
then clearlyq◦ 1A ⇓ o and alsoC[q] ⇓ o. If composition with the adversary is monotone, then
C[q]◦A⇓ o. In general, this may not be the case (as will be seen in the second example of§3). If
for a contextC[ ], upward simulation is not satisfied, then that contextfails to provide resilienceto
the adversaryA3.

3The above-mentioned second example satisfies the WSTS condition only for certain contexts amongst contexts that satisfy
the other self-similarity conditions 2(a)-2(d).
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• Downward reflexive simulation:The adversary or its interaction with the system does not cause
anything that the core cannot do. Since the contextC[ ] and the adversary do not contribute ob-
servables (except the “denouement”),C[q] ◦A ⇓ o implies eitherq ⇓ o or that the process isnot
resilient to adversaryA (if o is the barberr). (The first example in§3 involves an adversary that
attempts to make observable the barberr.) Now consider the moves thatC[q]◦A can make. These
may be

1. a move due toq: C[q] −→ C[q′]. This is downward simulated byq −→ q′ (and henceq◦
1A −→ q′ ◦1A).

2. a move due to onlyC[ ]: C[q] −→C′[q]. This is downward simulated byq making no move.
Moreover,C[q] ⇓ o iff C′[q] ⇓ o iff q⇓ o.

3. a move due toA: C[q] ◦A−→C[q] ◦A′. Since the adversary’s moves are unobservable, this
is downward simulated byq◦1A making no move, since 1A �2 A′.

4. a move involving bothC[ ] andq: C[q]−→C′[q′]: this is simulated byq−→ q′, andC′[q′] ⇓ o
iff q′ ⇓ o, sinceq′ �C′[q′] andC′[ ] does not contribute any observables and does not inhibit
any observables ofq′.

5. A move involving the adversaryand the fault-handling contextC[ ]: C[q] ◦A −→C′[q] ◦A′.
Again, since this move is unobservable, this is downward simulated byq◦ 1A making no
move, sinceq◦1A �C′[q]◦A′ for C′[ ],A′.

⊡

Thus, our prescriptive framework of crafting self-similarprocesses and formalising adversarial be-
haviour operationally yields the desired resilience. If the two systems are not barbed bisimilar, then the
process is not fault tolerant, and a counter-example may be found. Another way of looking at the def-
inition of resilience is that adversarial moves keep the composite system within the same behavioural
equivalence class.

Dealing with infinite state systems. Since the state spaces may potentially be infinite, there maynot
be an effective method toprove thatC[q] ◦A andq◦ 1A are bisimilar. In order for this question to be
decidable, we place the restrictions mentioned earlier, namely that the WSTS has an effective pred-basis,
that the successor relation is effectively computable, andthat the conditions on adversarial moves ensure
reflexive downward simulation. The “self-similar subterm”orderings are clearly decidable.

Proposition 2 The problem of deciding whether a process is resilient to an adversary is decidable if
in addition to satisfying the self-similarity constraints, the coupled transition system has an effective
pred-basis, and the successor relationship is effectivelycomputable.

Proof: Supposeq◦1A −→ t. We need to show that there is at ′ such thatC[q] ◦A −→∗ t ′ andt � t ′.
This is an instance of thecovering problemfor C[q]◦A andt, which is decidable under the assumptions.
Proof technique:ComputeKb, the finite basis ofPred∗(↑ t), and check ifC[q]◦A∈↑ Kb.
Now supposeC[q] ◦A −→ t. We need to show that there is at ′ such thatq −→∗ t ′ andt ′ � t. This is
an instance of the sub-covering problem forq andt, which is decidable when context/adversarial/joint
moves are simulated downwards in 0 steps, and successors areeffectively computable.Proof technique:
ComputeKb, the finite basis forSucc∗(q◦1A). Check ift ∈↑ Kb. ⊡

3 Examples

In this section we put our proposed methodology to test by applying it in situations that demand resilience
of a system to an adversary. Our examples proceed from finite to finite-control to infinite state systems.
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In each case, we apply the methodology of identifying the core computation that would have sufficed in
the absence of an adversary. We then identify an adversary and show how by constructing an absorptive
context satisfying the self-similarity conditions presented earlier, one can defeat the adversary. The wqo
notion used is usually simple, though the later examples, involving resilience in distributed systems,
motivate the need for more flexible notions than simple embedding of a process into a context. However,
they retain the essential semantic requirement that the context preserves the ability of a process to perform
its actions, and that the context neither contributes any observable actions directly, nor does it take away
the observables of the core process. It can at best interact with other parts of the context and/or with the
adversary.

3.1 White Noise to defeat Side-channel Attacks

Let c be a deterministic finite computation which generates an observable resultm in n steps:c−→n c′ ↓
m. Normally, observers cannot see the number of steps taken byc. Let us now consider an adversary that
can see in addition to this outcome, the “side property” of how many steps were taken to termination4.
If it observes thatc terminates withinn steps, it flagserr. A class of step-counting adversaries can be
coded asA(i,k) for k≥ 0, with the behaviour of the composite transition systemc◦A(i,n) given by the
following rules:

p−→ p′

p◦A(i,n) −→ p′ ◦A(i +1,n)
p ↓ m

p◦A(i,n) ↓ m
p ↓ m

p◦A(i,n) ↓ err
(i ≤ n)

Note that the adversary does not suppress any observable ofp, and makes no observable moves except
signallingerr. In the absence of an adversary monitoring the side-channel, we havec◦1A ⇓ m, but in the
presence of such an adversary,c◦A(0,n) ⇓ err as well. Thus ifc1 is a program behaviourally equivalent
to c but which takes more thann steps to terminate, this adversary can distinguish betweenc andc1 as
c1 ◦A(0,n) 6⇓ err.

We now justify the correctness of the method of interleavinga computation with an indeterminate
number of NOPs to defeat such side-channel attacks. LetWhiteNoisebe a computation that consumes
cycles, but doesnot generate any observables, e.g.,WhiteNoise−→ WhiteNoise. WhiteNoisedoes not
suppress or alter any normal observables of computations running in parallel/interleaved with it. Con-
sider the contextC[ ] = WhiteNoise‖ f [ ], and suppose‖ f is a weakly fair (nondeterministic5) interleaved
implementation of parallel composition that executes at least one step ofWhiteNoise. Now note that
while C[c]◦A(0,n) ⇓ m, it is no longer the case thatC[c]◦A(0,n) ⇓ err. ThusA(0,n) cannot distinguish
betweenC[c] andC[c1].

It is straightforward to show thatC[ ] andA(0,n) satisfy the self-similarity conditions. We cast the
composite system as a WSTS, using the “self-similar subterm” ordering on processes. In particular, we
consider as minimal elements (which form a finite basis) all processesc′ such thatc−→∗ c′. Theeffective
pred-basisis then easy to compute. It is therefore easy to prove thatC[c] ◦A(0,n) ≈ c. Note also that
this contextC[ ] is idempotent; reiterating it, as inC[C[c]], does not provide further security against this
side-channel attack.

4Other side properties such as heat generated, or power consumed could also be monitored.
5If the interleaving performs a deterministic number ofWhitenoisesteps, then by a small extension to the adversary class,

one can mount a side-channel attack.
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3.2 Replicated server

The next example involves finite-control, and justifies the use of repetition to address multiplicity of
requests and spatial replication to counter failure. Consider a one-time provider of a filev: OTP= av,
wherea is the channel on whichv is sent. Similarly, a basic client is rendered asBCi = ax.dix, which
receives some filex on the channela, and delivers it to the client’s application layer, writtenasdix. The
single-request client-provider system is written asSys1 = (a)(BC1‖OTP). The only observable barb of
Sys1 is the unrestricted send actiond1v.

If the file provider has to deal with more than one client, or ifthe client repeatedly requests the file,
we need an ever-obligingresponsiveserver, represented as a process that canrepeatedlysend filev on
the channela.

Server= ℓ1[|! [av]|].

Typically, the server is located at some siteℓ1, written in a distributed calculus (e.g., [18]) asℓ1[|. . .|],
which may be different from the client’s site. For simplicity we have theServerlocated atℓ1 repeatedly
sending the file overa to whoever wishes to receive it6. In the distributed setting, note thatp −→ p′

impliesℓ1[|p|]−→ ℓ1[|p′|], andp ↓ o implies ℓ1[|p|] ↓ o only when siteℓ1 is “up” (locations do not figure
in the observable barbs). Observe that the context in whichOTP is placed contributes no barbs, and has
a hole in a position that is enabled. Consider the new system:

Sys2 = (a)(BC1‖ . . .BCn‖Server)

The observable barbs arediv, for i ∈ {1, . . . ,n}. Sincea is restricted, the send actions ona do not
contribute any observable barb. This construction also handles the case when the clients repeatedly
request a value, i.e., whenBCi = !(ax.dix).

Now consider an adversaryA that can cause locationℓ1 to fail, taking the server down permanently in
the fail-stop model (see e.g., [3, 18]) after which no clientcan receive any file from theServer. Observe
that the requirement thatℓ1 needs to be “up” for a barb to be observable means that the coupling with
the adversary isnot monotone. The adversary can be modelled as a transition system with states that
represent the set of locations that are “up” and the transition {ℓ1} −→ {} to model the failure ofℓ1. It is
now possible to have trace suffixes in whichSys2◦A 6⇓ div whereasSys2◦1A ⇓ div, for some value(s) of
i. Thus,Sys2 is not resilient to an adversary that can cause a single location to fail.

We build a server resilient to asingle node failureby replicating the responsive file provision on two
sites,ℓ1 andℓ2. Fault tolerance is provided by using the two hole context

Crep[ ] = ℓ1[|![ ]1|] ‖ ℓ2[|![ ]2|]

that places a process in two holes both at head positions, andsatisfying all the requisite self-similarity
conditions for the context, yielding areplicated responsive server:

RepServer=Crep[OTP] ≡ ℓ1[|!av|]‖ℓ2[|!av|].

The server process located atℓi can execute only if that location has not failed (fail-stop model of failure)
— it provides the valuev on channela while its site is up. Let

Sys3 = (a)(BC1‖ . . .BCn‖RepServer)

6Typically this is coded (in aπ-calculus) as a client sending a request to a server, sendinga private channel over which it
wishes to receive the file.
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Client BCi can read a value on channela either from the server atℓ1 or ℓ2, whichever is up; if both are
up, it obtains the value from either one (the location of the server is not observable). So if either or both
ℓi are up, then. . .BCi . . .‖RepServer⇓ div.

The adversaryA, which is able to causeat most one nodeto fail, can be modelled by a finite state
machine, whichmaymake a transition from a state in which both{ℓ1, ℓ2} are up, to states whereℓ1

(respectivelyℓ2) is down, and then remains in that state (modelling fail-stop of at most one of the two
sites). The benign adversary 1A can be modelled as a single-state FSM (with a self-loop). It is easy to
formulate the composite system as a WSTS, by using the self-similar subterm ordering on processes,
and the obvious trivial ordering on the adversary FSMs. It isalso easy to exhibit the minimal elements
and the effectiveness conditions for this system. Thus we can prove thatSys3 ◦A ≈ Sys2 ◦ 1A. This
being a finite-control system, the proof is quite easy. Our WSTS-based framework is also able to handle
extensions to the system to permit persistent clients, which repeatedly request the file and deliver itad
nauseum.

ReplicatingRepServeragain by placing it inCrep[ ] serves no purpose with respect to an adversary
that can cause only one of theℓi to fail7. However, if the adversary can causek > 1, to fail, then a
replication context should place the server at leastk+1 locations.

3.3 Reliable transmission

We now address resilience to adversaries that make communication channels unreliable. Instead of
presenting yet another verification of the ABP protocol [4] and its bisimulation proofs, which have been
published several times before (e.g., [13]), we describe a small protocol for communication between a
client R and a serverSr over a channelc that may arbitrarily reorder messages and omit messages. This
protocol can be used as a basic building block within a largerprotocol that builds a FIFO channel over
a non-FIFO layer [1]. To our knowledge, this construction has not been earlier presented in as simple a
formulation. Its core is similar to the “probe” construct ofAfek and Gafni [7].

The server is extremely simple: it receives a request on channel b, and sends a message on channel
c. At any point of time, it may segue to sending another valuev′.

Sr(v) = (b.cv.Sr(v))+Sr(v′),

wherev′ 6= v andv,v′ ∈D, some set of values (which we assume for convenience is of cardinality k). The
server is representable as a (parameterised) non-deterministic finite-control machine.

A simple clientRs can be expressed as:Rs = b.cx.dx.Rs, whereRs sends requests onb and, on
receiving a value on channelc, delivers it over channeld and repeats. If channelc does not omit or
reorder values,Rs will produce all the values sent by the server in FIFO order. If, however,b,c arelossy
channels, then some requests (or responses) may be lost in transmission.Rs may therefore get stuck
waiting for messages. We make the client more persistent, modifying Rs to Ro,

Ro =![b]1 ‖ [cx]2.[dx]3.Ro

which decouples the (repeated) request sending onb from the receipt of messages onc. Since it works
with lossy channels,Ro may omit delivering some messages, but all delivered messages appear in the
order in which they were sent. Note that we have placed the three communication actions in three distinct
“holes” ([ ]1, [ ]2, [ ]3 ).

7This is true even when the language permits nested sublocations.
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If, however, the channelc can reorder messages, it is possible to confuse messages corresponding
to earlier requests with those for later requests. While this problem can be addressed by placing serial
numbers on the messages, an interesting question is whetherit can be solved without that mechanism.
Accordingly, we modify the client:

Rro(p,n1, . . . ,nk) = [b]1.Rro(p+1,n1, . . . ,nk)
+R′(p,n1, . . . ,nk)

R′(p,n1, . . . ,nk) = [cx]2.casex of
...
vi : if (ni > 0) then

Rro(p−1,n1, . . . ,ni −1, . . . ,nk)

else[dx]3.Rro(0, p−1, . . . , p−1)
...

The client initiates aroundof the protocol by sending a request to the server on channelb. Since the
responses from the server may be reordered or dropped by the response channelc, the client has no way
of knowing whether a response it receives is acknowledging its current request (a “fresh” message), or
whether it is a response to a previous request. However, by pigeon-holing, if it receives more responses
than pending unanswered requests from the past, it knows that the server has acknowledged its most
recent request. For this it keeps a variablep, which is the number of requests sent in this round, and
bounds the number of responses it requires for each value so that when it receives a response onc, it
can determine that it has got enough responses to safely conclude that the value is a fresh one. Note
that in our soution,the server remains unchanged, and in the client, all the parameters takenon-negative
integral values.

Let Aro be an adversary that may reorder and omit messages (the interesting ability of the adversary
lies in its being able to reorder responses on channelc), and letAo be an adversary that may only omit
messages on channelc. The equivalence to be established is:

(b)(c)(Sr‖Rro(0,0, . . . ,0))◦Aro ≈ (b)(c)(Sr‖Ro)◦Ao

One may notice that the processRo is not exactly syntactically embedded within a context inRro.
However, the essence of the self-similarity constraints ismet as every communication action comes into
an enabled position at exactly corresponding points markedby the holes[ ]1, [ ]2, [ ]3. Thus, the resulting
ordering on processes� would (while still being decidable) be more complex, but nonetheless adheres
to the self-similarity requirements and those of being a WSTS. In defining the states of the coupled
transition system we consider the states of the serverSr, and that of the clientRo andRro. In identifying
the latter, we demarcate as significant the three marked holes as points where to pin control. The start
of a “round” is a significant point where the control of theRo process is matched with that of theRro

process. We take into account the parameters of theRro process in framing the� relation. Finally, we
consider the channel states, adapting the subword orderingthat has been used for lossy channels in order
to deal with lossy-reordering channels. The details are omitted here, but WSTS technique provides a
novel way of provingoperationallythe correctness of a protocol that has an unbounded state space.

By orienting this protocol in both directions, one can, at the price of counters (for the pending and
new messages) obtain an implementation of a FIFO channel over a lossy reordering communication
channel. The only way we know to avoid the counters is using sequence numbers on data items, as



42 Self-Similarity Breeds Resilience

in [19], but this implies an infinite message alphabet. For practical purposes, one usually assumes that
sequence numbers can be recycled (in a “sliding window” fashion) under the belief that the channel does
not deliver an “ancient” message. On similar lines, if one assumes a bound on the number of messages the
channel may delay, then our counters can be limited by that bound. This may be a reasonable assumption
since, as shown in [1], in any implementation of a FIFO channel over a lossy reordering one with a finite
message alphabet, the more the messages that the channel delays, the more the messages that need be
transmitted.

4 Conclusion

The question of whether a specified program behaviour can be achieved versus an arbitrary adversary
is, of course, undecidable in general, with several famous impossibility results. Even the question of
whether a given program is resilient to some particular adversary is in general not decidable.

What we have sought to do is to formalise an intuitive connection between resilience to an adversary
and the self-similarity in the structure and behaviour of a program. It is a prescriptive framework, and
we recognise that there are several other ways of correctly constructing fault-tolerant systems that do
not fit this methodology. The program is constructed in termsof its core functionality (that generates
the observables) and an absorptive context that soaks up theadversarial actions, but otherwise neither
contributes nor detracts from the observable behaviour of aprogram8. While in our framework, we
require that the adversary’s moves are not directly observable (except in a denouement), the interaction
between the adversary and the program may result in different observables from the normal execution.
However, a fault-resilient program exhibits no difference.

Another way of thinking about the framework we have proposedis in terms ofabstractionsthat
operate as follows: consider the traces of the system by itself, and also those of the system composed
with the adversary. Consider the equivalence relation thatarises from an abstraction function which has
the property of “stuttering” over moves by the adversary. A system may be considered tolerant of an
adversary if every adversarial transition is within an induced equivalence class. While there is a certain
simplicity to such an account, our proposed framework is richer in at least some respects: First, it is able
to account for moves made in conjunction between the adversary and the system (the interactive moves).
Second, it is able to relate the structure of the system with its behavioural self-similarity, and capture the
intuition that the seemingly redundant parts of a program provide resilience against adversaries.

We are unaware of any published work on relating self-similarity with resilience. While there has
been a body of work in which adversaries have been classified according to a partial order based on
the severity of their disruptive capabilities, and relativising the notion of behavioural equivalence based
on the adversary model, we believe this is less elegant or compelling than an account where astan-
dard notion of behavioural equivalence is used. While we have used barbed bisimulation, other notions
of equivalence may be appropriate in certain settings, and may provide easier methods for proving re-
silience. Another shortcoming of the previous approaches is that the adversarial model was incorporated
into the syntax of the processes, whereas our approach supports more eclectic styles of specifying the
transition system of processes in the context of an adversary.

Further, while the previous approaches seem to be confined tofinite (or at best finite state processes)
– where it is possible to find appropriate bisimulation relations, we are able to deal with a class of infinite-
state systems by couching the problem in a WSTS framework. Although there has been substantial work
on WSTSs, our use in proving systems to be fault-resilient seems to be novel. We believe that one can

8This factoring of a program into core and context cannot in general be automated.
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in this framework also deal with composite adversarial models by combining the fault-resilient contexts
in novel ways (e.g., embedding one kind of resilient contextinside another), although this is beyond the
scope of the current paper.

As we have presented very simple examples and introduced no new mechanisms for resilience, it
may seem that the results are unsurprising. However, it is satisfying to not only confirm the correctness
of intuitive constructions and folklore but also find an effective basis for demonstrating their correctness.
It would be interesting to study whether our framework also provides a way of discoveringminimal
constructions for resilience against particular adversaries.

Of course, our proposed methodology should be put to furthertests. For instance, it would be inter-
esting to see whether techniques for building resilience instorage systems such as RAID [5] would be
amenable to these techniques. A major area which needs addressing concerns cryptographic protocols
and resilience in the face of cryptanalytic adversaries. The challenge there is to find the right notion of
structural orderings, and recognising the contexts that provide resilience. Another domain that deserves
greater study is coding theory and the use of redundant bits to provide error-correction. It is not obvious
in such techniques whether convergence (reaching fixed-points) can be obtained.

In the future, we would also like to explore conditions underwhich, given a specification of the op-
erational behaviour of the adversary, and the core functionality, it may be possible (if at all) tosynthesise
the fault-resilient context. We would like to develop a framework analogous to those of Liu, Joseph et
al. where fault-tolerant versions of systems are developedusing a stepwise refinement methodology, and
transformations dealing with combined fault models.

In the current paper, we have used an operational framework;in the future, we would like to explore
a logic-based formulation, using e.g., knowledge-based analysis techniques to reason about resilience in
the same way that correctness of distributed systems/protocols has been studied [8].
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