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Self-similarity is the property of a system being similaratgart of itself. We posit that a special
class of behaviourally self-similar systems exhibits ardegf resilience to adversarial behaviour.
We formalise the notions of system, adversary and resigi@moperational terms, based on transition
systems and observations. While the general problem ofipga@ystems to be behaviourally self-
similar is undecidable, we show, by casting them in the fraork of well-structured transition
systems, that there is an interesting class of systems fichwtte problem is decidable. We illustrate
our prescriptive framework for resilience with some smalimples, e.g., systems robust to failures
in a fail-stop model, and those avoiding side-channel kstac
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1 Introduction

Building systems that are resilient to actions of adveas@mvironments is an important software engi-
neering concern. In this paper, we propose a class of sysidtose resilience arises from a notion of
self-similarity. An object is said to be “structurally self-similar” if it smilar to a proper part of itself.
An important quality of the class of self-similar structsiie that they arecale-invariant In analogy, we
consider a class of systems that betaviourally self-simila— the behaviour of the system as a whole
is “equivalent” to that of a part of the system — and developaakwork for showing how systems in
this class areesilient to adversarial actionsThe intuition behind our thesis is that if a part of a system
is sufficient to exhibit the behaviour of the system as a whiblen therest of the system providege-
dundancy which in turn may provide resilience against a hostile emuinent. The notion of resilience
is with respect to that of aadversary a general concept pervading computing science, i.e., @ayyolv
choosing inputs or an environment that can thwart a program fchieving its desired behaviour.

A trivial example of a behaviourally self-similar systemaisonstant signal. Its behaviour during
any intervalof time is equivalent to its behaviour during an initial (drdrily small) interval, which is
repeatedad infinitum The signal can be considered to be resilient to an advetisaryleterminesvhen
to sample the output value, in that it is able to map the advgsssampling interval to a more convenient
input (the initial interval) for which its behaviour has Imedefined. Such “delay-tolerance” may also be
seen in other time-independent functions.

The notion of behavioural self-similarity finds common ety in formal languages, in concurrency
theory, as well as in programming. In formal languages, weleready example of a construction
that supports behavioural self-similarity, namely thedfle star, age*)* ~ e*. Note that the construct
( )* is semantically idempotent, a property that is often assediwith fault-tolerance. The replication
operation in process calculi such as thealculus[15] is another example of self-similaritya 4! p||! p,
where~ denotes (behavioural/semantic) equivalence. Itis alsmbtent since p ~!p, for any process
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p. Indeed, in any recursive program scheme, we can find a gimpeat that behaves in a manner similar
to the entire system. Consider, e.g., a recursive equatienF [X], for some non-trivial contexF | ].
By construction X is a fortiori operationally equivalent to the expressiefX]. The semantics attached
to such recursive equations involves finding an appropfiaes point, usually the least fixed point,
preferably by a (finite) iterative process. Observe thatipfpany solution to this equation in the context
F[]is a (behaviourally) idempotent operation

From these examples, a naive idea arises linking systerotste, behavioural self-similarity and
resilience: If, assuming no adversarial action, a paof a systemp can behave as the whole system
does, then this part can be considered to provide the cotidmality of the system; the rest of the
system (the “contextC[ |, where p = C[q]) serves to neutralise adversarial actions or transform the
interactions of the adversarial environménivith the system into a form which this “corg’can digest,
and thereby make the system behave as though adversaiaal g were absent.

Resilience. We say that a system is resilient to an adversary A its observable behaviour in the
presence of adversarial action is equivalent to its belavio the absence of the adversamyo A ~

p, whereo represents coupling the systgmwith the adversarw@. A somewhat similar formulation
has been explored earlier by Liu, Joseph, Peled, Janowdkotrers [[14] 177, 11], but we believe our
formulation is more natural (discussed§h.d). Now, if p can be expressed I§[g] as above, and in
the absence of an adversaBjg] ~ g, we have, by transitivity, the desired resilience to theeasiaryA
arising from self-similarity. Resilience in this sense @ldonot be equated with a notion of correctness;
a system may be resilient even if it is not correct with resp@a given specification. Note thatf is a
congruenceC|Clq]] =~ C|[qg] =~ g, showing the expected idempotenceCdf in countering adversari.

Adversary model. An adversary can be viewed as a way of forcing the program d¢e &n un-
favourable environment. The class of adversaries may beessed in any of a variety of ways: as
processes in a language, as automata or transition syssrugical constraints on behaviour, etc. All
that our framework requires is that the program coupled Withadversary is a transition system on
which a reasonable notion of observational equality candfmed. We include in the class of adver-
saries a completely benign adversary, denotgdwho behaves as if there were no adversary present
when coupled with any system. If the adversarial model igifipd as a transition system, we require
that it bewell-structured with 15 < A for anyA in the class of adversaries.

We identify here some constraints on what an adversary cdrcamnot do. (i) Adversaries may
act in ways completely unrestricted by the system. (ii) Adagal moves, except for announcement of
error, are not directly observable. This is justifiable iattnost adversaries are sneaky, not bruiting their
actions, until and unless they wish to announce that they tefeated the system, i.e., a denouersent
(iif) An adversary cannot directly prevent the system froraking anyobservablemove by removing
an enabled action. (iv) An adversary can, however, interditt the system, and make joint moves.
These interactions too may not be directly observable, layt cause the system to (eventually) produce
different observable effects from its normal behaviour.

Structure of the paper. In the sequel, we develop this idea by formalising the natioha system’s
behaviour, adversarial action, resilience anchethodology for proving a system to be resilidnt fac-

1Finding the minimal fixed point context helps us avoid “nesdlredundancy”.
2Note thatA need not be specified in the syntax of the language in whiishexpressed, and that the notion of coupling of
the adversary to the system may be more general than thenatiai of parallel composition.
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toring a system into its “core” and fault-tolerant contekis is followed by a discussion of related work
(§1.1). Formalisation§2)) of both system and adversarial behaviour is done in thegemeral setting of
transition systemsWe employ a process calculus notation for expressing psase and the associated
structural operational semantics helps in relating stinecto behavioural self-similarity. In this paper, we
use suitable notions abservatiorandequivalencenamely, those dbarbsand bisimulation[[16], since
we consider systendosedwhen coupled with an adversary. While other behaviouraiveégnces may
be considered, we chose bisimulation since it is the fingsheional notion of equivalence of observable
behaviour. Proposition 1 expresses the soundness of quoged methodology.

In general, proving bisimilarity of transition systems,datonsequently showing a system to be
behaviourally self-similar, isindecidable However, we can show that this problem is decidable for
an interesting class of systems (Proposifion 2) by usingrrdmaework ofWell-Structured Transition
SystemgWSTS) [6]. The WSTS conditions required for establishiregidability seem to arise very
naturally from the constraints placed on the context and adversary.

We then illustrate our prescriptive framework for resiternwith small examplesj8), such as sys-
tems robust to failures in a fail-stop model, and defeatidg-shannel attacks. In the examples in this
paper, which progress from finite to finite-control to infin&tate systems, we do not propose any new
mechanisms for building resilient systems. We deploy theilfar armoury of devices — redundancy,
replication, retry, and repetition — for countering theearal at the adversary’s disposal. However,
our framework may be seen as providing a formal (methodocédpjustification of these constructions.
While fault-resistance has earlier been shown using rigoroathematical techniques, we believe that
our use of the WSTS framework provides the basis for autainaiehniques for proving resilience, es-
pecially in the case of infinite-state systems. We illusti@air approach by conveying only the intuition
for the different examples, and omit the tedious detaildhefgroofs. In§d, we conclude with a discus-
sion of our approach, its limitations, alternative framekgofor specifying and verifying resilience to
adversarial behaviour, as well as some directions for éutvork.

Methodology. Our proposed methodology is:

1. We identify a class of adversaries, witlheastadversary 1. Adversarial moves are not normally
observable, except perhaps for a final banb

2. We decompose the system procesmto a coreq which provides the basic functionality and
a (fault-resilient) contex€| |. Thusp =CJq]. In general, the context may be multi-holed. The
contextC[ ] should not alter the core functionality of In particular, it should satisfy the following
conditions:

(@) CJ ] should permiig to make any of its possible moves, i.@s— ¢ impliesC[g] — C[d]
andq |} oimpliesC[q] {} o;

(b) If C[] andqjointly make a move, then all afs possible barbs are preserved, i.eCiff] |} o
andC[q] — C'[d] thenC'[d] |} o;

(c) The contexC[ | (and its derivatives) should by itself contribute no obabte barbs, i.e.,
C[] ¥ ofor anyo;

(d) No transition arising purely due @] | disables the execution of the procegse., ifC[| —
C'[], then (i)gJ} oimpliesC’[q] |} o (sinceC|q] |} 0), and (ii)g — d impliesC'[g] — C'[d].

3. We then specify the couplinge A of a process and an adversary as a transition system. Fgrmall

we will require that this transition system be a WSTS. Inipafar, this composite transition
system should exhibit theépward simulation propertydefined ing2).
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4. To show resilience gb with respect to the adversafy we show thatjo 14 ~ po A. This problem
is decidable for WSTSs witbertain additional properties

We dub the conditions on the context and the adversary labesie theself-similarity constraints

Beyond finite-state systems. While our examples in this paper are small, our frameworkoisaon-
fined to dealing with finite (or finite-state) systems, for @hit may be easy to show the required bisim-
ilarity. Accordingly, we explore systems that provide stiéfint structural properties to ensure thisim-
ilarity is decidable We find that Well-Structured Transition Systems (WSTSkp[6vide a framework
in which we can formulate angerify resilience by virtue of self-similarity.

Consider first assimple versiorof the framework: Structural inclusion af in C[g] for a context
satisfying the self-similarity conditions is an obviousidalate when defining an ordering relatiaf{( <
C[q]||r)- A simple way to obtain the conditions on cont&f mentioned above is to constrain the hole(s)
[ ] in contextC| ] to appear only at “head” or “enabled” positions. This alld®g] to simulateq, and if
C[ ] has no observable actions, then every bartyisfa barb ofC[g] and vice versa.

Often the adversary itself can be formulated as a WSTS wittaat lelement sLrepresenting the
absence of an adversary. The composite transition systebtamed from those of the system and the
adversary, and pointwise combinationf the system and adversary orderings yields the desirediogd
relation for the WSTS. We say that the composition with aslagrA is monotonaf p — p’ implies
poA — p' oA andp | oimpliespoA |} 0. This is usually the case with parallel composition in most
process calculi.

The self-similarity constraints on the context and adwgrgaply the following properties:

e (Upward simulation)g — ¢ implies C[q — C[d]. For monotone compositions with adver-
saries, this further implie§[g] c A— C[(] 0 A.

e For an observable, g |} oif and only ifC[q] | o.
e if A— A’ then for anyp: poA — poA.

What remains is to place reasonable effectiveness comstran the WSTSs in order to ensure that
bisimilarity is decidable. We require that the states ofdhigtem and the class of adversariesraceir-
sive setaand that the orderingr is decidable. We also assume that the transition systemfinéedy-
branching In order to ensure decidability, we require that the tiamsisystems satisfy a technical
condition of having areffective pred-basjsand exhibit downward reflexive simulation (these defimisio
are recalled irj2).

1.1 Contributions and Related Work

We are unaware of any previous work where the notion of selitaxity has been wedded to that of
behavioural equivalence to formulate a notion of a systemgoresilient to actions by an adversarial
environment. Furthermore, we believe that the methodolegyenunciate — construing a system as
being constructed of a core behaviour and a context for haptthe actions of a formally defined ad-
versarial environment — is novel, as also casting them irfrdmaework of Well-Structured Transition
Systems|[[6]. The structural decomposition of the system a@otre and fault-absorbing context seems
natural and dovetails nicely with the WSTS conditions. A®asequence, the bisimulation proofs be-
come much easier. Moreover, the effectiveness conditiomgge decidability, and thus in principle at
least, support automated techniques for showing resdi¢gimat can work even for infinite-state systems.
We also believe that our third example, which deals with &iug block for converting communication
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over a non-FIFO channel with omission failures to a FIFOrctedh with omission failures, has not been
presented earlier in its essential form.

The idea of formulating fault tolerance in terms of behav@bw@quivalence is not new [14, 117,/11].
The idea of a fault preorder, capturing the relative seyesftfaults, can be found in the works of
Janowski, Krishnan and others [11, 12] 14]. Janowski, stgdies the problem of monotonicity of
fault tolerance — a system tolerant of faults higher in theopter should tolerate faults lower in the
preorder, but finds that this requirement does not squarkwithl the standard notion of bisimilarity.

A similar observation is made by Krishnén [12], where he @®rs replicated systems to model sys-
tems with synchronous majority voting. Accordingly, a natiof bisimilarity parameterised by the fault
model is proposed [11, 12]. In contrast, we believe that titeon of behaviour should beniformand
therefore formulate the notion of resilience to an advgrsamg astandardnotion of equivalence, e.g.,
weak (asynchronous) barbed bisimulation| [16, 2].

Another major difference with these approaches [10, 11has¢ they formulate the faulty versions
of the system by incorporating the anticipated faulty béahavinto definitions of the system. We see
this is as unsatisfactory in that the adversarial behavaisrto be expressed concretely and within the
syntax of the system (e.g., in the CCS formulation), theredyerely restricting the expressive power
given to the adversary. Itis also not a very satisfactory efasjpmposing adversaries. Janowski uses the
technique of incorporating the faulty version with the orad system by providing gedefinition of the
original systentaking a non-deterministic choice of the two behavioursis EBpproach does not work
well, e.g., with modelling a fail-stop model, because “met” processes become possible — a system
which is supposed to have failed, rises Lazarus-like anibéslsome active behaviour. In contrast, our
formulation uses a very general framework of transitiortesys, which may be specified and combined
in any convenient manner. Indeed, the syntactic formulatised for describing the example systems
is only a convenient way for specifying a transition systerd the constructive nature of fault-resilient
transformations.

There is also some similarity between our work and that of Daseph, Peled and others, in e.g.,
[14,[17], where they present frameworks in which faultdtafee is expressed by transforming a process
with respect to the specification of a fault modeglis a -tolerant implementation ob if p~ T(q, ¢),
for a transformatiorm (_, ). The juxtaposition of the recovery algorithm is viewed asaasformation
that makes a process fault-tolerant. The connections leetthese logic-based ideas and our preliminary
operational formulation deserves further study.

2 The Framework

2.1 Transition Systems

A transition systen?” = (S, —) consists of a set of stat&and a transition relatior—C Sx S. Afinite

trace o with respect ta7 is a sequence of stat€s,si,...,Sy) such thats — 51 forall 0 <i < n.

An infinite trace with respect t can be considered to be a function N — Ssuch that for ali € N:

o(i) — o(i+1). We write 0102 to denote the concatenation of traces, which in the casg béing an
infinite trace, results iw.

The successorsind predecessor®f a states € S are defined asSucgs) = {s | s— s} and
Pred(s) = {S | S — s} respectively. The notations—", —=, —* and —* are used for the
n-step iteration, reflexive closure, transitive closure egftexive-transitive closure of the transition re-
lation —. We use a similar notation for thestep iterations, and closures 8ficcandPred .7 is
finitely-branchingif Sucgs) is finite for eachs.
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Assuming a notion obbservable actionswe define earb as an observable action that a process
has the potential to perform, writtgn| o (whereo is observable) [16]. We will use “weak barbs” which
depict the potential of a process to perform an observaltieraafter making some “silent” transitions,
i.e.,pl oif for somep, p—* p' andp’ | o.

A weak barbed simulatioris a binary relatiorR on processes such that(ip;, p2) € R, then (1) if
p1 | othenp, || 0; and (2) whenevep; —* p] then there existg,, such thatp, —* p, and(p}, p,) €
R. Ris aweak barbed bisimulatioif both Rand its symmetric inverse ! are weak barbed simulations.
Processep; and p, are weakly barbed bisimilar, writtem =~y po, if they are related by some weak
barbed bisimulation. Weak barbed bisimulation is not fineugi to distinguish processes that differ
after the first communication (barb), when they interachwither processes, so the equivalence relation
usually desired is a refinement that is preserved underl@lacamposition.

pL~ p2if Vq: (p1f/a) ~p (p2//q)

However, for closed systems, it is reasonable to use weddetdrisimulation as the notion of equiva-
lence.

Process notation. In our examples, we employ a process calculus notation @k talue-passing
CCS. Letarepresent a channet,a variable, and/ a value drawn from some set of values. We assume
without further specification that the language includeymtagctic category of expressioms which
contains in particular variables and integer-valued esgo®s. In our examples, expressions may also
include tuples, and we assume a matching operation. Terths language of communicating processes,
typically p, p1, p2 are specified inductively by the following abstract syntax:

pi=0[aep|axps| plpz|(@)pr|pr+p2|[e1=6€lp|!p|P(e1,...€n)

The process 0 is inert. The prefge stands for the output of the value efon channela, whereas
ax p stands for input of a value over chanrelith the value bound ta in the continuationp. pi||p2
represents parallel composition whergas- p, stands for non-deterministic choice betwgmrand p;.
The notation(a) p; describes theestriction operation on channels, i.e., chaniagk local to scopep;.
Communication on restricted channelsict observable[e; = e p is a conditional matching operation.
I p represents the replication of procggsyielding as many copies gf as desired, running in parallel.
For convenience, we include parameterized (recursivedgsses of the forrR(ey, ... en).

In a distributed system, we associate processeslegtions written for instance a4 p||, where( is
a location constant. A contegt | is a process term with a hole in the place of a process term. We may
also have multi-hole contexts. We do not present here thedbrules for the operational semantics of
this language. Indeed, these constructs can be encodedir asynchronous calculus with replication
and choice restricted tguarded processesWe refer the reader to any standard presentation of such
asynchronous calculi [9] 2] for the encodings and the omeralt semantics rules.

2.2 Well-structured Transition Systems

We now summarise some results about WSTSs [6].

A quasi-orderor pre-order (S, <) consists of a séswith any reflexive and transitive relatiohC Sx S,
(S =) is well-ordered(henceforth avqg) if for any infinite sequencey, sy, . .. there exist indices and
j with i < j such thats <'sj. Consequently, a wgo has no infinite strictly decreasingisece, nor any
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infinite sequence of unrelated elements. It also followsitha wqo, any infinite sequeng, s1, ... has
aninfinite non-decreasing subsequenge$s, <s,... Whereig <i1 <ij....
In quasi-order(S, <), an upward-closed se$ any set C Ssuch thatifx € | andx <y, theny € |. Let
1T x={y| x=<y}, called the upward closed set inducedxbyA basisfor an upward closed se¢tis a set
Ip € I such thal = Uyg, (TX).
Higman's Lemmeastates that if(S, <) is a wqo, then any upward-closed $eftas afinite basis The
minimal elements of form a basis, and these must be finite, since otherwise, tloeydwnclude an
infinite sequence of unrelated elements. Further, any abiaupward-closed setg C1; C 1, C ...
stabilises, i.e., for somig |; = I for everyj > k.
A Well-Structured Transition SystefWSTS).7 = (S, —, <) consists of a transition syste(s, —)
equipped with a well-ordered quasi-ord& <) that satisfiesveak upward simulatianFor everys, s,
andt € S, if s— ¢ ands <t, then there existg € Ssuch that —*t’ ands <t’.
A WSTS exhibitsdownward reflexive simulatioif for eachs, if s— g andt <'s, then there existg
such that —=t’ andt’ < 5, i.e., eithert =t’ (0 steps) ot — t’ (1 step).
A WSTS 7 = (S —, <) has aneffective pred-basiff] if there exists an algorithm that, given any
states € S computephb(s), a finite basis of Pred(1 s), i.e., minimal elements of the upward-closed set
induced by the predecessors of states in the upward-cleseddsiced bys.
Backward reachability analysis involves computiiged (J) as the limit of a chaird;, whereJ; C J 1.
If J is upward-closed, then this process converges, Rmed’(J) is upward-closed. If a WSTS =
(S —, <) has areffective pred-basiand < is decidable, then if any upward-closéds given via its
finite basis, one can compute a finite basi®oéd" (J).
The covering problenis, given states andt, to decide whether there exist$’asuch thats —* t’ and
t <t’. The covering problem is decidable f6f = (S —, <) with aneffective pred-basiand decidable
<.
If 7 = (S —, =) exhibits downward reflexive simulation, and3ticcis computable anek decidable,
then one can compute for asa finite basis oft Succ(s).
The sub-coveringproblem is to decide, gives andt, whether there exists such thats —* t’ and
t’ <t. Subcoverings decidable for any WSTS which shows downward reflexive &tian, if Succis
computable anek decidable.

Putting the pieces together, we get the following methodpi@mving whether a putatively fault-
tolerant procesp = C[q] is indeed resilient (or not) to an adversaky whereC| | denotes the fault-
digesting context and its core functionality:

Proposition 1 A process p is resilient to adversary A while providing bebarq if p can be expressed
as dg] such that ¢ ] and A satisfy the self-similarity constraints, anj> A [} err.

Proof: ConsidelC[q] o A. We wish to showgo 1 ~ C[g] o A.

e Upward Simulation:The adversary does not directly restrict any action of treesy. Since 4
represents the non-existence of an adversprta — t impliest = ¢ o 14 for someq’. If g || o,
then clearlygo 14 |} 0 and alsoC[q] |} o. If composition with the adversary is monotone, then
C[gl oA | o. In general, this may not be the case (as will be seen in thendeexample ofi3). If
for a contextC| |, upward simulation is not satisfied, then that confals to provide resiliencéo
the adversanf.

3The above-mentioned second example satisfies the WSTSticonaiily for certain contexts amongst contexts that satisf
the other self-similarity conditions 2(a)-2(d).
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e Downward reflexive simulationThe adversary or its interaction with the system does noseau
anything that the core cannot do. Since the conBxtand the adversary do not contribute ob-
servables (except the “denouementg| o A || o implies eitherq | o or that the process isot
resilient to adversanA (if o is the barberr). (The first example i3 involves an adversary that
attempts to make observable the barh) Now consider the moves th@fg] o A can make. These
may be

1. a move due ta: C[g — C[d]. This is downward simulated by — ¢ (and hencego
In— q/ o 1A)-

2. amove due to onl€| |: C[gq] — C'[q]. This is downward simulated lymaking no move.
Moreover,C[q] |} oiff C'[q] | 0iff q o.

3. amove due té\:: C[gjoA — C[g]oA'. Since the adversary’s moves are unobservable, this
is downward simulated bgo 14 making no move, sinceal=<, A'.

4. amove involving botk[ ] andg: C[g) — C'[(]: this is simulated by — ¢/, andC'[d/] |} 0
iff d | o, sinceq < C’[d] andC'[ | does not contribute any observables and does not inhibit
any observables af .

5. A move involving the adversamnd the fault-handling contex@| |: C[gjc A — C/[g] o A'.
Again, since this move is unobservable, this is downwardukited byqgo 15 making no
move, sincegjo 1p < C'[g]o A’ for C'[],A'.

-
Thus, our prescriptive framework of crafting self-simifmocesses and formalising adversarial be-
haviour operationally yields the desired resilience. & ttvo systems are not barbed bisimilar, then the
process is not fault tolerant, and a counter-example maypiedf Another way of looking at the def-
inition of resilience is that adversarial moves keep the posite system within the same behavioural
equivalence class.

Dealing with infinite state systems. Since the state spaces may potentially be infinite, theremoay
be an effective method tprove thatC[g] o A andqo 14 are bisimilar. In order for this question to be
decidable, we place the restrictions mentioned earlienahathat the WSTS has an effective pred-basis,
that the successor relation is effectively computable,thatithe conditions on adversarial moves ensure
reflexive downward simulation. The “self-similar subterorderings are clearly decidable.

Proposition 2 The problem of deciding whether a process is resilient to dvessary is decidable if
in addition to satisfying the self-similarity constrainthe coupled transition system has an effective
pred-basis, and the successor relationship is effectivetyputable.

Proof: Supposejo1ls —t. We need to show that there ig’asuch thatC[gj o A —* t’ andt < t'.
This is an instance of theovering problenfor C[g] o A andt, which is decidable under the assumptions.
Proof techniquexComputeKy, the finite basis oPred'(1t), and check iC[g] o A €1 K.

Now supposeC[g] o A — t. We need to show that there ig’asuch thatg —* t’ andt’ <'t. This is

an instance of the sub-covering problem épandt, which is decidable when context/adversarial/joint
moves are simulated downwards in O steps, and success@femtevely computableProof technique:
ComputeKp, the finite basis foBucc¢(qo 14). Check ift €1 Kp. ]

3 Examples

In this section we put our proposed methodology to test blyampit in situations that demand resilience
of a system to an adversary. Our examples proceed from foiftaite-control to infinite state systems.
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In each case, we apply the methodology of identifying the ammputation that would have sufficed in
the absence of an adversary. We then identify an adversdrghaw how by constructing an absorptive
context satisfying the self-similarity conditions pretashearlier, one can defeat the adversary. The wqo
notion used is usually simple, though the later exampleghiing resilience in distributed systems,
motivate the need for more flexible notions than simple erdimggdof a process into a context. However,
they retain the essential semantic requirement that thiexiopreserves the ability of a process to perform
its actions, and that the context neither contributes asgable actions directly, nor does it take away
the observables of the core process. It can at best intefticother parts of the context and/or with the
adversary.

3.1 White Noise to defeat Side-channel Attacks

Let c be a deterministic finite computation which generates aemable resulmin nsteps:c —"c |
m. Normally, observers cannot see the number of steps takenli®t us now consider an adversary that
can see in addition to this outcome, the “side property” off lmany steps were taken to terminaﬁon
If it observes that terminates withim steps, it flagerr. A class of step-counting adversaries can be
coded ad\(i,k) for k > 0, with the behaviour of the composite transition systeni\(i,n) given by the
following rules:

p—p pim pim i<n)
poA(i,n) — P oA(i+1,n) poA(i,n),m poA(i,n)ler * —

Note that the adversary does not suppress any observapleaotl makes no observable moves except
signallingerr. In the absence of an adversary monitoring the side-chaweghaveco 14 |} m, but in the
presence of such an adversaryA(0,n) |} err as well. Thus ifc; is a program behaviourally equivalent
to ¢ but which takes more thamsteps to terminate, this adversary can distinguish betwesmic, as
c10A(0,n) {err.

We now justify the correctness of the method of interleavangomputation with an indeterminate
number of NOPs to defeat such side-channel attacksWlhéteNoisebe a computation that consumes
cycles, but doesot generate any observables, e\WhiteNoise— WhiteNoise WhiteNoisedoes not
suppress or alter any normal observables of computationsgng in parallel/interleaved with it. Con-
sider the context| ] = WhiteNoisé¢[ |, and supposé; is a weakly fair (nondeterminisE interleaved
implementation of parallel composition that executes asti@ne step ofWhiteNoise Now note that
while C[c] o A(O,n) |} m, it is no longer the case th&{c| o A(O,n) | err. ThusA(0,n) cannot distinguish
betweerC|c| andC|c,].

It is straightforward to show th&[ | and A(0O,n) satisfy the self-similarity conditions. We cast the
composite system as a WSTS, using the “self-similar suliterdering on processes. In particular, we
consider as minimal elements (which form a finite basis)raitpsses’ such that —* ¢’. Theeffective
pred-basisis then easy to compute. It is therefore easy to prove@hadib A(O,n) =~ c. Note also that
this contex(C| | is idempotent; reiterating it, as ©[C]c]|], does not provide further security against this
side-channel attack.

40ther side properties such as heat generated, or powerrnedstould also be monitored.
5|f the interleaving performs a deterministic numbeMghitenoisesteps, then by a small extension to the adversary class,
one can mount a side-channel attack.
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3.2 Replicated server

The next example involves finite-control, and justifies tise of repetition to address multiplicity of
requests and spatial replication to counter failure. Gigrsa one-time provider of afie OTP=av,
wherea is the channel on whick is sent. Similarly, a basic client is renderedB = axd;x, which
receives some fil& on the channed, and delivers it to the client’s application layer, writtasd;x. The
single-request client-provider system is writtenS3s = (a)(BC1||OTP). The only observable barb of
Sys is the unrestricted send actioqv.

If the file provider has to deal with more than one client, ahi client repeatedly requests the file,
we need an ever-obligingesponsiveserver, represented as a process thatrepeatedlysend filev on
the channeé.

Server=/4]! [aV].

Typically, the server is located at some ife written in a distributed calculus (e.g., 118]) ag...],
which may be different from the client’s site. For simplcive have theServerlocated at; repeatedly
sending the file ovea to whoever wishes to receivélit In the distributed setting, note that— p’
implies 1| p]] — ¢1[ P[], andp | o implies /1] p] | o only when site/; is “up” (locations do not figure

in the observable barbs). Observe that the context in witRis placed contributes no barbs, and has
a hole in a position that is enabled. Consider the new system:

Sys = (a)(BC1||...BGy|Serve)

The observable barbs adgy, for i € {1,...,n}. Sincea is restricted, the send actions ando not
contribute any observable barb. This construction alsalleanthe case when the clients repeatedly
request a value, i.e., whdBC; = !(axdx).

Now consider an adversafythat can cause locatidh to fail, taking the server down permanently in
the fail-stop model (see e.d./[3./18]) after which no cliean receive any file from th&erver Observe
that the requirement thd§ needs to be “up” for a barb to be observable means that thdiogupith
the adversary imot monotone. The adversary can be modelled as a transitioansysith states that
represent the set of locations that are “up” and the trams{tf1} — {} to model the failure of;. Itis
now possible to have trace suffixes in whiits o A Y djv whereasSys o 1 |} div, for some value(s) of
i. Thus,Sys is not resilient to an adversary that can cause a singleidoct fail.

We build a server resilient tosingle node failurdy replicatingthe responsive file provision on two
sites,/; and/,. Fault tolerance is provided by using the two hole context

Crepl ] = Ca['[1a[ [ 2['[12]

that places a process in two holes both at head positionssatigdying all the requisite self-similarity
conditions for the context, yieldingraplicated responsive server

RepServer= Cep[OTP = /1]!av]||l2]'av].

The server process located/atan execute only if that location has not failed (fail-stopdal of failure)
— it provides the value on channebl while its site is up. Let

Sys = (a)(BCq]| ... BCy||RepServer

5Typically this is coded (in ar-calculus) as a client sending a request to a server, seadimyate channel over which it
wishes to receive the file.
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Client BG; can read a value on chanreekither from the server d or ¢,, whichever is up; if both are
up, it obtains the value from either one (the location of thever is not observable). So if either or both
¢; are up, then..BG...||RepServet] dv.

The adversanA, which is able to causat most one nodw fail, can be modelled by a finite state
machine, whichmay make a transition from a state in which bdfy,¢,} are up, to states wherg
(respectively?,) is down, and then remains in that state (modelling faipstbat most one of the two
sites). The benign adversary tan be modelled as a single-state FSM (with a self-loop)s #aisy to
formulate the composite system as a WSTS, by using the iggilas subterm ordering on processes,
and the obvious trivial ordering on the adversary FSMs. #$® easy to exhibit the minimal elements
and the effectiveness conditions for this system. Thus weptave thatSys o A ~ Sys o 1a. This
being a finite-control system, the proof is quite easy. OumM@&-®ased framework is also able to handle
extensions to the system to permit persistent clients, wteépeatedly request the file and delivead
nauseum

ReplicatingRepServergain by placing it irCiep[ | serves no purpose with respect to an adversary
that can cause only one of tigto faill. However, if the adversary can cause- 1, to fail, then a
replication context should place the server at l&astl locations.

3.3 Reliable transmission

We now address resilience to adversaries that make comatiamicchannels unreliable. Instead of
presenting yet another verification of the ABP protocol [ddl s bisimulation proofs, which have been
published several times before (e.g.,/[13]), we describmalgrotocol for communication between a
client Rand a serveBr over a channet that may arbitrarily reorder messages and omit messagés. Th
protocol can be used as a basic building block within a lapgetocol that builds a FIFO channel over
a non-FIFO layer1]. To our knowledge, this constructiols hat been earlier presented in as simple a
formulation. Its core is similar to the “probe” constructAfiek and Gafnil[7].

The server is extremely simple: it receives a request onreidm and sends a message on channel
c. At any point of time, it may segue to sending another value

Sr(v) = (b.tv.Sr(v)) + Sr(V),

whereV # vandy,V € D, some set of values (which we assume for convenience is dihadity k). The
server is representable as a (parameterised) non-deistimfimite-control machine.

A simple clientRs can be expressed afs = b.cxdxRs, where Rs sends requests dmand, on
receiving a value on channe| delivers it over channall and repeats. If channeldoes not omit or
reorder valuedRs will produce all the values sent by the server in FIFO ordehdwever,b, c arelossy
channels, then some requests (or responses) may be loansmission.Rs may therefore get stuck
waiting for messages. We make the client more persisterdjfymag Rs to R,

Ro =![blx [| [X2.[dX3.Ro

which decouples the (repeated) request sendinig foom the receipt of messages onSince it works
with lossy channelsiR, may omit delivering some messages, but all delivered messagpear in the
order in which they were sent. Note that we have placed tleettmmmunication actions in three distinct

“holes” ([]1,[]2,]13)-

"This is true even when the language permits nested subbosati
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If, however, the channeal can reorder messages, it is possible to confuse messagespm ding
to earlier requests with those for later requests. Whilg pinoblem can be addressed by placing serial
numbers on the messages, an interesting question is whietaer be solved without that mechanism.
Accordingly, we modify the client:

Ro(P,Nt,...sMk) = [BJ1.Ro(p+1m,..., 1)
+R(p7n1>"'7nk)

R(p,n1,...,nx) = [cx],.casex of
Vi if (n > 0) then

Rfo(p__17nl7"'ani _17"-ank)
else[dX3.Ro(0,p—1,...,p—1)

The client initiates aound of the protocol by sending a request to the server on chdmr&hce the
responses from the server may be reordered or dropped bggpense channe| the client has no way
of knowing whether a response it receives is acknowledgmgurrent request (a “fresh” message), or
whether it is a response to a previous request. However,dsoptholing, if it receives more responses
than pending unanswered requests from the past, it knowshbaerver has acknowledged its most
recent request. For this it keeps a variapjewhich is the number of requests sent in this round, and
bounds the number of responses it requires for each valugasaevhen it receives a response @rit
can determine that it has got enough responses to safelyudenthat the value is a fresh one. Note
that in our soutionthe server remains unchangeghd in the client, all the parameters tal@n-negative
integral values.

Let A, be an adversary that may reorder and omit messages (thesitigr ability of the adversary
lies in its being able to reorder responses on chagnelnd letA, be an adversary that may only omit
messages on chanrelThe equivalence to be established is:

(b)(€)(Sr[|R0(0,0,...,0)) 0 Ao = (b)(c)(St[|Ro) © A

One may notice that the proceRs is not exactly syntactically embedded within a contexRjg.
However, the essence of the self-similarity constraintee$ as every communication action comes into
an enabled position at exactly corresponding points mabetie holeq |1, [ ]2, [ |3 Thus, the resulting
ordering on processes would (while still being decidable) be more complex, but ethreless adheres
to the self-similarity requirements and those of being a \WSIh defining the states of the coupled
transition system we consider the states of the s&yeand that of the clien®, andR,. In identifying
the latter, we demarcate as significant the three marked lasl@oints where to pin control. The start
of a “round” is a significant point where the control of tRg process is matched with that of tiRg,
process. We take into account the parameters oRfh@rocess in framing the relation. Finally, we
consider the channel states, adapting the subword ordixdtifpas been used for lossy channels in order
to deal with lossy-reordering channels. The details ardtethhere, but WSTS technique provides a
novel way of provingoperationallythe correctness of a protocol that has an unbounded state.spa

By orienting this protocol in both directions, one can, a firice of counters (for the pending and
new messages) obtain an implementation of a FIFO channelaol@ssy reordering communication
channel. The only way we know to avoid the counters is usimgegce numbers on data items, as
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in [19], but this implies an infinite message alphabet. Facpcal purposes, one usually assumes that
sequence numbers can be recycled (in a “sliding window’iéeghunder the belief that the channel does
not deliver an “ancient” message. On similar lines, if orsuases a bound on the number of messages the
channel may delay, then our counters can be limited by thatdhoThis may be a reasonable assumption
since, as shown in[1], in any implementation of a FIFO ch&ower a lossy reordering one with a finite
message alphabet, the more the messages that the chamysl, deé more the messages that need be
transmitted.

4 Conclusion

The question of whether a specified program behaviour carchieved versus an arbitrary adversary
is, of course, undecidable in general, with several famoysossibility results. Even the question of
whether a given program is resilient to some particular eghrg is in general not decidable.

What we have sought to do is to formalise an intuitive corinpadbetween resilience to an adversary
and the self-similarity in the structure and behaviour of@gpam. It is a prescriptive framework, and
we recognise that there are several other ways of correotigtructing fault-tolerant systems that do
not fit this methodology. The program is constructed in teahis core functionality (that generates
the observables) and an absorptive context that soaks wgdthesarial actions, but otherwise neither
contributes nor detracts from the observable behaviour lm‘fograrﬁ. While in our framework, we
require that the adversary’s moves are not directly obbéav@xcept in a denouement), the interaction
between the adversary and the program may result in ditfeleservables from the normal execution.
However, a fault-resilient program exhibits no difference

Another way of thinking about the framework we have propomseth terms ofabstractionsthat
operate as follows: consider the traces of the system bl, itsed also those of the system composed
with the adversary. Consider the equivalence relationdhaés from an abstraction function which has
the property of “stuttering” over moves by the adversary. y&tsm may be considered tolerant of an
adversary if every adversarial transition is within an ioeld equivalence class. While there is a certain
simplicity to such an account, our proposed framework isaidn at least some respects: First, it is able
to account for moves made in conjunction between the adyeasal the system (the interactive moves).
Second, itis able to relate the structure of the system wdthaéhavioural self-similarity, and capture the
intuition that the seemingly redundant parts of a prograavige resilience against adversaries.

We are unaware of any published work on relating self-shitylavith resilience. While there has
been a body of work in which adversaries have been classitiedrding to a partial order based on
the severity of their disruptive capabilities, and religiivg the notion of behavioural equivalence based
on the adversary model, we believe this is less elegant opelimy than an account wheressan-
dard notion of behavioural equivalence is used. While we have bsebed bisimulation, other notions
of equivalence may be appropriate in certain settings, aayl pnovide easier methods for proving re-
silience. Another shortcoming of the previous approactésat the adversarial model was incorporated
into the syntax of the processes, whereas our approach issippore eclectic styles of specifying the
transition system of processes in the context of an adwersar

Further, while the previous approaches seem to be confinfgdt®(or at best finite state processes)
—where itis possible to find appropriate bisimulation lielzd, we are able to deal with a class of infinite-
state systems by couching the problem in a WSTS framewotkoAgh there has been substantial work
on WSTSs, our use in proving systems to be fault-resilieatnseto be novel. We believe that one can

8This factoring of a program into core and context cannot imegal be automated.
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in this framework also deal with composite adversarial n®bdg combining the fault-resilient contexts
in novel ways (e.g., embedding one kind of resilient conteside another), although this is beyond the
scope of the current paper.

As we have presented very simple examples and introducedwamechanisms for resilience, it
may seem that the results are unsurprising. However, itishgag to not only confirm the correctness
of intuitive constructions and folklore but also find an effee basis for demonstrating their correctness.
It would be interesting to study whether our framework alsovjgles a way of discoveringninimal
constructions for resilience against particular advéssar

Of course, our proposed methodology should be put to futdss. For instance, it would be inter-
esting to see whether techniques for building resiliencgtanage systems such as RAID [5] would be
amenable to these techniques. A major area which needssaddyeconcerns cryptographic protocols
and resilience in the face of cryptanalytic adversaries ditallenge there is to find the right notion of
structural orderings, and recognising the contexts thatige resilience. Another domain that deserves
greater study is coding theory and the use of redundantdjisolvide error-correction. It is not obvious
in such techniques whether convergence (reaching fixaug)aian be obtained.

In the future, we would also like to explore conditions undgich, given a specification of the op-
erational behaviour of the adversary, and the core funalignit may be possible (if at all) tsynthesise
the fault-resilient context. We would like to develop a fework analogous to those of Liu, Joseph et
al. where fault-tolerant versions of systems are develogaty a stepwise refinement methodology, and
transformations dealing with combined fault models.

In the current paper, we have used an operational framewotke future, we would like to explore
a logic-based formulation, using e.g., knowledge-basedyais techniques to reason about resilience in
the same way that correctness of distributed systemsfmistbas been studied [8].
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