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Due to their “inherent parallelism”, interaction nets have since their introduction been considered
as an attractive implementation mechanism for functional programming. We show that a simple
highly-concurrent implementation in Haskell can achieve promising speed-ups on multiple cores.

1 Introduction

The interaction nets introduced by Lafont [Laf90] can be considered as a variant of term graphs, and
therewith as a kind of graphs used as representation of terms. Interaction nets are equipped with an
“inherently parallel” local and confluent reduction mechanism that makes them an, at least conceptually,
attractive target for (functional) programming language implementation. However, to date there have
been only limited experiments with parallel implementations of interaction nets, and no easily-usable
parallel implementation is publicly available. In addition, the nature of the parallelism of interaction net
reduction is in general rather fine-grained, so that the question of distribution strategies arises naturally.

In this paper, we report on an experiment that bypasses the question of distribution strategies, and in-
stead investigates whether a fine-grained threading mechanism with parallel execution on shared-memory
multi-core systems, as provided by the run-time system of the Glasgow Haskell Compiler (GHC), can
already realise the potential of parallelisation offered by interaction nets. Our implementation is pub-
licly available (at http://www.cas.mcmaster.ca/~kahl/Haskell/HINet/) and accepts a slightly
restricted version of the Inets file format, enabling further experiments also by other interaction net re-
searchers. In the benchmarking section, we provide a lot of data, and also discuss the potential pitfalls
of benchmarking Haskell programs with large heap requirements, in order to aid potential users of our
system to avoid these pitfalls.

1.1 From Term Graphs via Jungles and Code Graphs to Interaction Nets

We now give an introduction to interaction nets that puts them into the context of different term graph
representations. We do this for two reasons: First, to make interaction nets more accessible for readers
interested in functional programming language implementation, who may already be familiar with graph
reduction, but might find the principal-port orientation of most of the interaction net literature rather
obscure, and second, to give a clear understanding of polarities, which have almost disappeared from the
interaction net literature.

Conventional term graphs (see e.g. [KKSV93]) are node-labelled directed graphs, where each node
has a sequence of outgoing edge the length of which is determined (or sometimes part of) the label.
Node labels of these term graphs correspond to function symbols in terms; variables do not need labels:
Different variable nodes (labelled “V ” below) represent different variables.

The “jungle” approach of Hoffmann and Plump [HP91] moves the function symbols into hyperedges,
with a sequence of “argument tentacles” (or “input tentacles”) extending to argument nodes, and (nor-
mally) exactly one “result tentacle” (or “output tentacle”) extending to the hyperedge’s result node (or
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output node). In both approaches, there is no restriction on the number of edges (resp. input tentacles)
incoming into each node; multiple incoming edges implement sharing (and zero incoming edges into a
non-root node implement (uncollected) “garbage”, where in term graph and jungle rewriting, garbage
collection is typically implicit).
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Term Graph Jungle Interaction Net

The drawing above shows a conventional term graph, a jungle, and an interaction net each representing
the term (2+ x)∗ x+(2+ x)∗ y with the same degree of sharing. In all three drawings, the sequence of
the outgoing or incoming edges, respectively tentacles, or ports, of each node or hyperedge is part of the
structure, but is, as customary, not made more explicit.

Interaction nets are different from jungles in several ways. First of all, a different terminology is
used: Instead of “hyperedge”, the terms “node” or “agent” are used, the nodes of jungles turn into
“connections” and the tentacle labels and directions turn into “ports”. In interaction nets, connections
must be incident with exactly one or two ports; those incident with only one port make up the interface of
the net. Because of this, sharing and garbage must be made explicit via duplicator (“∇”) and terminator
(“!”) nodes. Each interaction net node label determines one principal port for its nodes. We draw
principal ports as filled-in circles attached to the rectangular nodes, while auxiliary ports are hollow.
Interaction net rules only replace pairs of nodes connected via their principal ports.

The directions of edges in termgraphs, and of tentacles in jungles, are motivated by denotational
semantics; the corresponding directions of connections in interaction nets were introduced under the
name polarities by Lafont [Laf90], but are omitted in a large part of the interaction net literature, where
interaction nets are drawn with undirected connections. Instead, the operationally motivated direction
of nodes (“actors”) from auxiliary ports to the principal port is typically emphasised. We follow Lafont
[Laf90] to distinguish output ports (with positive polarity) and input ports (negative polarity), and draw
connections as directed arrows from output to input ports. Note that besides Lafont [Laf90], most of the
interaction net literature does not draw nets in a way that easily corresponds to a jungle reading.

Whereas jungle hyperedges have only one output tentacle, the duplicator (∇) nodes of the interaction
net above have two output ports — a feature that also occurs in the code graphs of [KAC06, AK09]. We
illustrate this with a second example; the term (2/x) ∗ y+(2%x) ∗ y represented with sharing as a term
graph has two variable nodes corresponding to x and y; represented as jungle these turn into two input
nodes.
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In code graphs, the sequence of these input nodes is explicitly visualised via triangular tags with arrows
towards the input nodes; code graphs also have a sequence of output nodes visualised via triangular tags
with arrows from the output nodes. Code graph hyperedges also have as interface a sequence of input
nodes (as in jungles) and a sequence of output nodes, which in contrast to jungles is not constrained to
contain exactly one element. For the sake of an example, we can therefore use a two-output operation
“divMod” to obtain a code graph that uses a single operation to produce the same result as the two
separate operations / and % in the term and jungle above. (The sequences of input and output nodes of
hyperedges are still indicated implicitly via the graphical arrangement.)
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Since code graphs allow multi-output nodes, duplicators (“∇”) do not need to be given any special status,
and interaction net languages can be understood as code graph languages without node-based sharing
(and without “garbage”), which allows us to replace the code graph nodes with their single incoming and
outgoing tentacles with simple connections. Input and output nodes of code graphs turn into input and
output ports of interaction nets — these are the ports of negative, respectively positive polarity that have
no connection attached to them. As for code graphs, we will assume the input and output ports to be
organised into two sequences, and tag them using the same triangles.

1.2 Interaction Net Rules and Reduction

Application of rules is defined as subnet replacement, where the input and output ports of the rule sides
may map to arbitrary ports in the application net. Due to the constraints on the left-hand sides of rules,
the resulting reduction has no critical pairs; it is therefore confluent and has a deterministic normalisation
relation. Since left-hand sides match only to subnets induced by two nodes connected via their principal
ports, reduction exhibits extreme locality, and is frequently considered as “inherently parallel”.

Below, we show rules for addition and multiplication of natural numbers built up from the con-
structors for zero (“0”) and successor (“S”). The first multiplication rule, “mult 0 n = 0”, turns n into
“garbage” by attaching a terminator (“!”) node; the second multiplication rule “duplicates” n for use both
by the addition and by the recursive call.

add 0 n = n
add (S m) n = S (add m n)

mult 0 n = 0
mult (S m) n = add n (mult m n)
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The reader may notice that the multiplication rules provided above always perform a “superfluous” last
addition to zero if the first factor is non-zero. One might consider the following starting point instead:

mult 0 n = 0
mult (S 0) n = n
mult (S m) n = add n (mult m n)
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However, the “deep pattern matching” here cannot be implemented directly by conventional interaction
net reduction; the rules drawn above to the right are however allowed in the extension proposed by
Hassan et al. [HJS09] which translates them into conventional interaction net rules by adding an auxiliary
function:

mult 0 n = 0
mult (S m) n

= multAux m n
multAux 0 n = n
multAux (S m) n

= add n (multAux m n)
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Such encoding issues are not relevant to the current study, which considers interaction nets as an exe-
cution model, rather than as a programming language. Compilation to interaction net rules is a separate
topic, and has been studied for example by H. Cirstea and others [CFF+07] using the ρ-calculus as
intermediate language.

1.3 Related Work

Pedicini and Quaglia [PQ07] describe PELCR, a distributed parallel environment for optimal λ -calculus
reduction, which uses a specialised fixed interaction net language and implements sophisticated distribu-
tion strategies. (I found no trace of this being or having been publicly available.) Besides such specialised
systems, we are aware of only a small number of parallel implementations of interaction nets, in particu-
lar [BP97, Pin01, Jir14]. Of all these, only the last seems to be (still) available; it is an experimental GPU
implementation that requires new rules to be implemented manually in C/CUDA at a very low level.

A general interaction net implementation that is still available is part of the Inets project of Mackie
et al. [HMS09, HJ12]. This it is a compiler for the interaction net definition language Inets, which is
considered as a programming language; the compiler is implemented in Java, and compiles via C to
non-parallel executables. While Inets implements nets as pointer structures, the (apparently unavailable)
successor system “Light” [HMS10], as well as the systems of Pinto [Pin01] and Jiresch [Jir14] are based
on a term representation of interaction nets (based on the fact already pointed out by Lafont [Laf90] that
“well-behaved” fully reduced nets always can be represented via pairs of terms with common variables
and further constraints). Lippi’s implementation called “in2” [Lip02] was apparently close in spirit, but
not directly based on terms.

Other available implementations are geared more towards graphical interaction directly with interac-
tion nets (and also don’t support parallel execution), including de Falco’s “Interaction Nets Laboratory”
[Fal06], the “interaction net IDE” INblobs of Almeida et al. [APV08], and the graph rewriting system
IDE “PORGY” [AFK+11] which can also be used for interaction nets. By emphasising visualisation of
net transformations, these tools by design cannot target efficient parallel implementation.
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1.4 Contribution and Overview

We present a design for highly concurrent interaction net implementations that is at the same time sur-
prisingly simple and very close to the graph understanding of the interaction net definition. The parallel
implementation of concurrency in the Glasgow Haskell Compiler (GHC) is a good fit for this kind of
design; our implementation obtains satisfactory speed-ups even for simple examples.

While most current non-graphical implementations of interaction nets are based on a term-based
calculus, we explain our more direct approach in Sect. 2. The actual (literate) Haskell source code
of the kernel of our implementation is then presented in Sect. 3 — the full source code is available
on-line at http://www.cas.mcmaster.ca/~kahl/Haskell/HINet/. In Sect. 4 we summarise our
implementation of a language similar to that of Inets [HJ12]. Measurements and relevant observations
are in Sect. 5.

2 Implementation Design

Our implementation essentially follows the main ideas of Banach and Papadopoulos [BP97]:

• Two-way connections, which easily introduce opportunities for deadlock and race conditions, can
be avoided by using polarities to direct the connections between ports (which, in a large part of the
literature, are treated as undirected, and implemented as two-way connections).

• These directed connections hold mutable state.

• The connection with the principal port of a constructor does not need to be known to the constructor
node if the connection state refers to the node.

The following main decisions then determine most of our implementation details:

• Connections (drawn below as thick circles) are initially “empty”, and each node has references to
the connections attached to its auxiliary ports.

• Attaching the principal port of a constructor to a connection deposits a reference to the constructor
node in the connection (which is then “full”). (This reference is drawn below with a thick arrow
with a bullet tail.)

• Attaching the principal port of a function to a connection starts a concurrent thread that waits for
a constructor reference in that connection, and if/when it finds one, starts the corresponding rule
application. (This is drawn below with an even thicker arrow ending inside the connection.)

The following shows a net fragment first in the same style as the previous example, and to the right with
implementation details added.
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3 Implementation in Concurrent Haskell

We implement connections using the Concurrent Haskell synchronisation primitive MVar, which can
be created empty; putMVar waits for empty state to fill, and takeMVar waits for full state to empty
[PJGF96]. The GHC version of Concurrent Haskell has an extremely light-weight thread implementation
that makes it feasible to create millions of threads; we therefore directly create new threads for functions
as mentioned above, and even smaller threads for short-circuiting two interface ports that are directly
connected by rule applications: These threads only wait for a constructor on the originally negative port
of the LHS, and copy it to the positive side.

The run-time implementation of nets, based on MVars, is introduced in Sect. 3.2. For the static rep-
resentation of rules, our implementation uses a non mutable datatype NetDescription to represent right-
hand sides (RHSs) of reduction rules; these are introduced in Sect. 3.3. At run-time, these NetDescriptions
are instantiated into new parts of the mutable run-time net, as fully defined in Sect. 3.4 following the prin-
ciples outlined in Sect. 2.

3.1 Polarity

Lafont [Laf90] and Banach and Papadopoulos [BP97] use typed connections in their interaction nets,
where the two ports incident in a connection have the same type, but different polarity. Since we design
our interaction net implementation as a run-time system, types are currently not important, and will be
assumed to have been taken care of before net generation. Polarity, however, drives several run-time
decisions; for the sake of readability, we define a special-purpose data-type for it (and let Haskell’s
“deriving” mechanism provide us with the default implementation of equality and ordering tests, and of
conversion to strings):

data Polarity = Neg | Pos
deriving (Eq,Ord,Show)

opposite :: Polarity→ Polarity
opposite Neg = Pos
opposite Pos = Neg

We will follow Lafont’s convention of letting “constructors” have positive polarity, and “functions” neg-
ative polarity.

3.2 Mutable Net Representation

A connection between two ports is implemented as a single MVar that is either empty, or contains the
constructor node for which the connection is at the principal port. (To allow different node label types to
be used, we use the type variable nLab throughout.)

type Conn nLab = MVar (Node nLab)

For an auxiliary port of a node, besides its connection we also record the port’s polarity to make it
available efficiently at run-time. (In Haskell, data constructors for simple record types habitually are
given the same name as the type constructor; the fields pol and conn here are declared strict using “!”,
and the “UNPACK” pragma declares an “unpacking” optimisation as desired to the compiler.)

data Port nLab = Port
{pol :: ! Polarity
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,conn :: {-# UNPACK #-} ! (Conn nLab)
}

We introduce the type synonym Ports to abbreviate the type of port arrays.

type Ports nLab = Vector (Port nLab)

Given a port p, the port at the other end of its connection is obtained as opPort p by flipping the polarity:

opPort :: Port nLab→ Port nLab
opPort p = p {pol = opposite $ pol p}

A node contains a label, and the array of its non-principal ports. We do not include the principal port in
ports since

• the principal port of a constructor is connected to the MVar pointing back to the constructor, and

• the principal port of a function is connected to the MVar the function’s thread is waiting on.

data Node nLab = Node
{ label :: nLab
,ports :: Ports nLab
}

3.3 Net Descriptions

Whereas in Sect. 3.2, we introduced types for nets considered as run-time states, here we introduce net
description for static representation of, in particular, rule right-hand sides.

The following types are dictated by our current choice of array implementation (Data.Vector from
the vector package, for efficiency), but aliased for readability:

type PI = Int -- “port index”
type NI = Int -- “node index”

The port index type PI will be used also in actual nets, while the node index type NI is needed only for
right-hand side nodes in descriptions and during creation. We arbitrarily call the two nodes engaged in
an interaction “source” and “target”; the “source” interface consists of the auxiliary ports of the node
with the “function” label with negative principal port, and the “target” interface consists of the auxiliary
ports of the “constructor” node with positive principal port. The following data type serves to identify
all ports in a rule’s right-hand side (the “!” specifies strict constructor argument positions for efficiency):

data PortTargetDescription
= SourcePort ! PI
| InternalPort ! NI ! PI -- node, port
| TargetPort ! PI deriving (Eq,Ord,Show)

Therefore, each RHS node is described by its label and by the connections of all its ports:

data NodeDescription nLab = NodeDescription
{nLab :: ! nLab
,portDescriptions :: {-# UNPACK #-} ! (Vector PortTargetDescription)
}
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A NetDescription is intended as description of the RHS of interaction rules:

data NetDescription nLab = NetDescription
{source :: {-# UNPACK #-} ! (Vector PortTargetDescription)
, target :: {-# UNPACK #-} ! (Vector PortTargetDescription)
,nodes :: {-# UNPACK #-} ! (Vector (NodeDescription nLab))
}

A language for interaction nets consists of a type of node labels together with arity and polarity informa-
tion defining all ports for each node label, and for any “function” node label f and any “constructor” node
label c that can occur as “argument” to f a rule, specified by a right-hand side ruleRHS f c, which needs
to be a net description having a source compatible with the auxiliary ports of f, and a target compatible
with the auxiliary ports of c.

data INetLang nLab = INetLang {polarity :: !(nLab→ Vector Polarity)
, ruleRHS :: !(nLab→ nLab→ NetDescription nLab)
}

3.4 Interaction Net Reduction

The main purpose of the function replaceNet is to implement the instantiation part of the rule application
step. It is a separate function because it also serves the secondary purpose of constructing the start net.

The function replaceNet takes as arguments a NetDescription (defined in Sect. 3.3) for the rule’s
RHS, and arrays src and trg containing the non-principal connections of the two nodes of the image of
rule’s LHS in the mutable net representation (Sect. 3.2) of the run-time state.

The mdo is a “recursive do” as introduced by [EL02], and the use here essentially corresponds to the
imperative programming pattern of allocating an array of uninitialised cells, and creating references to
the array cells possibly before initialising them. (Functions prefix with “V.” operate on Vectors.)

replaceNet :: forall nLab◦ INetLang nLab→ NetDescription nLab
→ Ports nLab→ Ports nLab→ IO ()

replaceNet lang descr src trg = mdo
nps← let mkNode (NodeDescription lab pds) = do

ps← V.zipWithM mkPort (polarity lang lab) pds
return (Node { label = lab,ports = V.tail ps}

,V.head ps
)

where mkPort Pos (InternalPort ) = fmap (Port Pos) newEmptyMVar
mkPort ptd = return (portTarget ptd)

in V.mapM mkNode (nodes descr)

The first step above creates descr image nodes, taking over interface ports from src and trg, creating
new internal connections at positive ports, and lazily connecting negative ports with internal connections
located via the function portTarget defined below.

Note that the prose explanations here are interspersed within the scope of the mdo above, since all
code before the definition of reduce below remains indented below the mdo.

let portTarget :: PortTargetDescription→ Port nLab
portTarget (SourcePort i) = atErr "portTarget: SourcePort S" src (pred i)
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portTarget (TargetPort i) = atErr "portTarget: TargetPort S" trg (pred i)
portTarget (InternalPort n i) = let e = "portTarget: InternalPort "

(n′,pp) = atErr e nps n
in opPort (if i≡ 0 then pp else atErr (e++ shows n " S") (ports n′) (pred i))

We traverse the newly created nodes and “connect” their principal ports.

let doNode (n@(Node lab prts),Port pl c) = case pl of
Neg→ forkIO (reduce lang (ruleRHS lang lab) c prts)>> return ()
Pos→ putMVar c n

in V.mapM doNode nps

For source and target ports, we only need to take care of short-circuits:

let doIfacePort (Port Pos c) ptd = return () -- will be done from the other side if necessary
doIfacePort (Port Neg c) ptd = let -- original port of the LHS node

Port pl′ c′ = portTarget ptd -- connecting port in image of RHS
in if c≡ c′ then return () -- empty cycle

else case ptd of
InternalPort n i′→ return () -- already dealt with

→ do forkIO (moveMVar c c′)
return ()

in do V.zipWithM doIfacePort src $ source descr
V.zipWithM doIfacePort trg $ target descr

Whenever a function node is created, i.e., a node with positive principal port, a reduce thread is started
(via forkIO). This thread waits on the connection (pconn) between the principal ports of the rule until this
contains the constructor node (the principal port of which has positive polarity). The array src contains
the auxiliary ports of the function node (the principal port of which has negative polarity).

reduce :: INetLang nLab→ (nLab→ NetDescription nLab)→ Conn nLab→ Ports nLab→ IO ()
reduce lang rules pconn src = do

Node clab trg← takeMVar pconn
replaceNet lang (rules clab) src trg

4 Reading .inet Files

The Inets project led by Ian Mackie has implemented the only publicly available general implementation
of interaction nets, the compiler [HJ12] for the interaction net programming language “Inets”. This
language was introduced by Mackie [Mac05], with the core of the Inets implementation described in
[HMS09].

We implemented a front-end to our interaction net reduction system for the core sublanguage of
Inets, leaving out in particular the extension of nested pattern matching described in [HMS10], and
generic rules and variadic agents.

Since our system depends on polarity for its directed implementation of connections, but Inets has no
concept of polarity, we adopted the convention that the first-mentioned agent of each rule has negative
principal port (that is, is considered as a function), and the second agent has positive principal port
(constructor). This convention is adopted in most of the Inets examples anyways; only two rules in
fibonacci.inet had been written the other way around. From this starting point we attempt to deduce
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the polarities of all other ports; for the examples accessible to us so far, we only needed to add a single
additional heuristic: A function for which all other ports except one are known to have negative polarity
is assumed to have positive polarity on the last port. (Unfortunately the λ -calculus evaluator yale.inet
[Mac98] is defined in a way that does not allow a consistent assignment of polarities.)

Inets supports “parameters”, that is, agent attributes of the primitive types int, bool, float, char,
and String. The description in [HMS09] suggests that only a single parameter is allowed per agent; our
implementation allows arbitrary numbers, but expects the number and types of attributes to be determined
by the agent label. We also interpret type int as Haskell’s arbitrary-precision Integer type. Our current
interpreting implementation uses a parameterised agent label type:

data NLab arg = NLab {nLabName :: Name,nLabAttrs :: [arg ]}

When reading a .inet file, the nets on the rule RHSs are translated into NetDescription (NLab Expression)
and stored in a finite map for lookup by the rule LHS agent label pair; in the run-time net, agent labels of
type NLab Value are used, and the variable bindings induced by the attributes of the interacting nodes are
used at the time of rule application to evaluate the expressions in the RHSs (and the condition expressions
for the conditional structure of Inets RHSs).

Inets modules can contain global variables, which are used in the examples to implement reduction
counts etc.; since in a parallel implementation such global variables would require synchronisation (and
thus would destroy the independence of parallel reduction), we did not implement any feature related to
global variables.

5 Benchmarks

For our first examples, we use a cascading recursion for calculating Fibonacci numbers, and the Ack-
ermann function, both computing with unary natural numbers constructed from zero Z and the unary
successor constructor S:

fib 0 = 0
fib (S n) = fibAux n
fibAux 0 = 1
fibAux (S n) = fib n+fibAux n

ack 0 n = S n
ack (S m) n = ackAux m n
ackAux m 0 = ack m 1
ackAux m (S n) = ack m (ack (S m) n)

These rules were directly encoded using NetDescriptions (see Sect. 3.3); we will refer to these imple-
mentations now as fibND and ackND.

We timed the actual code of Sect. 3 on a six-core 2.8GHz Phenom 2 with 16GB main memory;
our implementation achieved the timings in Table 1, where the GHC run-time system is instructed by
“−Nk” to use k cores for parallel processing. The user-space time of a Haskell process is divided into
“mutation” time and garbage collection time. The run-time system can be made to report these times
and further information; in Tables 1 and 3 we include, after the elapsed time for each process (which is
the “real” time as reported by “time” BASH built-in), the “allocation rate”, which measures how many
megabytes are allocated on the Haskell heap per second of mutation time, and the “productivity”, which
is the result of dividing the mutation time by the elapsed time. For example, a productivity of 240% for
a three-core (“-N3”) run means that each core spent on average 20% of its time on garbage collection,
since 240%+3×20% = 300%. The last column in each of the groups for “-N2” to “-N6” contains the
speedup over single-core execution.

By default, the GHC run-time system starts execution with a small heap and grows it by relatively
small increments on demand; we indicate use of this this default setting by “dft.” in the third column
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(“heap”). Where a size is specified in this column, this size was given to the run-time system as fixed
heaps size (with options -H and -M).

time (s) | allocation rate (MB per mutation second) | productivity (% of elapsed) | speedup
expr. result heap -N1 -N2 -N3 -N4 -N5 -N6

ackND 3 6 509 dft. 1.078 1699 48 0.630 1189 118 1.71 0.483 952 192 2.23 0.431 779 264 2.50 0.427 611 340 2.52 0.426 506 411 2.53

ackND 3 6 509 2M 1.004 1716 51 0.633 1188 118 1.59 0.489 960 189 2.05 0.452 738 266 2.22 0.411 647 334 2.44 0.421 516 409 2.38

ackND 3 6 509 3M 0.800 1693 65 0.568 1196 130 1.41 0.478 960 193 1.67 0.445 741 269 1.80 0.409 652 333 1.96 0.429 509 405 1.86

ackND 3 6 509 4M 0.694 1678 76 0.504 1202 146 1.38 0.444 942 212 1.56 0.433 747 274 1.60 0.405 646 339 1.71 0.425 512 407 1.63

ackND 3 6 509 5M 0.652 1652 82 0.475 1194 156 1.37 0.415 948 225 1.57 0.404 751 293 1.61 0.385 652 354 1.69 0.422 510 413 1.55

ackND 3 6 509 6M 0.647 1604 85.3 0.462 1181 163 1.40 0.400 945 235 1.62 0.387 745 308 1.67 0.375 647 366 1.73 0.395 522 431 1.64

ackND 3 6 509 7M 0.644 1575 87 0.459 1159 167 1.40 0.389 943 242 1.66 0.382 739 315 1.69 0.361 652 377 1.78 0.395 521 431 1.63

ackND 3 6 509 8M 0.659 1521 88 0.472 1108 170 1.40 0.396 918 244 1.66 0.384 727 319 1.72 0.363 640 383 1.81 0.388 511 447 1.69

ackND 3 6 509 9M 0.675 1469 89 0.482 1070 172 1.40 0.411 873 248 1.64 0.393 705 321 1.72 0.374 615 386 1.80 0.392 501 452 1.72

ackND 3 6 509 10M 0.686 1437 90 0.485 1061 172 1.41 0.420 846 250 1.63 0.404 678 324 1.70 0.379 600 391 1.81 0.399 489 456 1.72

ackND 3 6 509 0.1G 0.749 1305 92 0.522 982 175 1.43 0.445 796 253 1.68 0.430 635 329 1.74 0.416 544 397 1.80 0.435 452 458 1.72

ackND 3 7 1021 dft. 5.866 1676 36 3.177 1185 94 1.85 2.287 982 158 2.56 1.990 802 223 2.95 1.845 642 300 3.18 1.771 547 367 3.31

ackND 3 7 1021 6M 3.335 1585 67 2.288 1181 131 1.46 1.877 979 193 1.78 1.815 764 256 1.84 1.661 681 314 2.01 1.728 542 380 1.93

ackND 3 7 1021 8M 3.024 1514 78 2.115 1133 148 1.43 1.723 953 217 1.76 1.666 759 281 1.82 1.521 683 342 1.99 1.591 551 406 1.90

ackND 3 7 1021 9M 3.000 1474 80 2.076 1122 152 1.45 1.715 930 223 1.75 1.651 743 290 1.82 1.496 670 355 2.01 1.545 547 422 1.94

ackND 3 7 1021 10M 3.010 1438 82 2.107 1078 156 1.43 1.735 902 227 1.74 1.638 729 298 1.84 1.520 649 361 1.98 1.579 531 424 1.90

ackND 3 7 1021 20M 2.932 1377 88 2.022 1035 170 1.45 1.712 848 245 1.71 1.637 682 319 1.79 1.539 592 390 1.91 1.579 490 460 1.86

ackND 3 7 1021 1G 3.508 1187 91 2.472 881 171 1.41 2.085 727 246 1.68 1.971 590 319 1.78 1.835 527 384 1.91 1.840 448 449 1.90

ackND 3 8 2045 dft. 30.034 1557 30 16.857 1138 74 1.78 11.412 956 131 2.63 9.640 791 187 3.12 8.597 646 256 3.49 8.061 550 322 3.73

ackND 3 8 2045 10M 17.000 1423 59 11.116 1065 120 1.53 8.802 899 180 1.93 8.195 727 239 2.07 7.320 657 296 2.32 7.306 540 361 2.33

ackND 3 8 2045 40M 13.089 1248 87 9.171 929 167 1.43 7.450 789 243 1.76 7.079 633 318 1.85 6.503 564 389 2.01 6.539 473 461 2.00

ackND 3 8 2045 60M 13.057 1228 89 9.019 923 171 1.45 7.373 778 248 1.77 6.929 634 324 1.88 6.372 565 396 2.05 6.375 475 471 2.05

ackND 3 8 2045 80M 13.110 1212 90 8.989 920 173 1.46 7.292 781 250 1.80 6.904 630 328 1.90 6.353 562 399 2.06 6.364 478 469 2.06

ackND 3 8 2045 100M 13.043 1215 90 9.042 913 173 1.44 7.345 772 251 1.76 6.917 628 328 1.88 6.372 559 400 2.05 6.376 475 470 2.05

ackND 3 8 2045 1G 13.849 1154 90 9.588 869 173 1.44 7.824 737 250 1.77 7.288 606 326 1.90 6.665 547 395 2.08 6.627 472 460 2.09

ackND 3 8 2045 8G 15.521 1043 91 11.200 819 169 1.39 9.204 703 239 1.69 8.686 573 309 1.79 7.947 523 370 1.95 7.822 453 432 1.98

ackND 3 9 4093 dft. 141.662 1415 28 85.999 1041 64 1.65 60.032 904 105 2.36 49.941 755 151 2.84 42.996 625 212 3.29 38.546 547 271 3.68

ackND 3 9 4093 8G 62.920 1016 91 41.032 815 174 1.53 32.717 708 251 1.92 30.653 577 328 2.05 27.727 526 398 2.27 27.087 459 466 2.32

ackND 3 10 8189 8G 300.687 837 91 184.245 716 174 1.63 141.858 643 252 2.12 128.381 546 328 2.34 115.164 501 398 2.61 110.754 447 464 2.71

fibND 20 6765 1G 0.513 667 94 0.339 558 168 1.51 0.283 444 232 1.81 0.251 440 294 2.04 0.232 404 338 2.21 0.225 358 403 2.28

fibND 25 75025 4G 6.651 621 85 4.354 527 153 1.53 3.437 410 212 1.93 3.097 410 276 2.15 2.883 370 327 2.31 2.634 332 387 2.53

fibND 28 317811 8G 32.24 732 64 21.92 619 112 1.47 16.34 544 172 1.97 14.85 454 226 2.17 13.41 412 278 2.40 12.85 375 317 2.51

fibND 30 832040 8G 139.617 762 38 101.619 647 62 1.37 62.626 557 116 2.23 56.072 438 158 2.49 49.494 423 193 2.82 44.478 371 247 3.14

Table 1: Benchmarks for directly-programmed NetDescriptions

In general, as long as the heap is small in comparison with the space requirements of the current
run, the run-time system spends a much higher part of its time performing garbage collection — this
manifests itself in low “productivity” entries in the tables below in the rows with small fixed heap sizes
and with “dft.”. (The amount of space that is allocated on the heap by any given task varies only
minimally with different heap and parallelism settings.) Not limiting the heap size (with (“-Msize”) on
longer-running tasks may lead the run-time system to use a heap that is larger than the available physical
memory, leading to drastic performance loss dues to swapping of memory pages to peripheral storage.
For tasks that actually do use large heap space, not fixing the start heap size (with (“-Hsize”) lets the
run-time system adopt the default behaviour at the start of the program, leading to slow-down of actually
acquiring the needed large heap. Therefore, optimal time is typically obtained using a fixed heap size,
that is, with both -H and -M set to the same size, which is what we adopted for our benchmarking.
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(The GHC run-time system also provides finer control over the initial heap size, and over the size of the
increments; we did not experiment with these here.)

Over its whole run-time, ackND 3 6 allocates 880MB on the heap, and ackND 3 7 allocates 3.5GB. If
such small tasks are given large heaps, this leads to significant slow-down. As can be seen for ackND 3 8,
which allocates 14GB, giving larger processes a generous fixed heap produces a performance that is
closer to the optimum than using the default settings.

On an 8-core 16-hyperthread 2.4GHz Xeon 8870, each of the examples we tried so far has a maxi-
mum number of cores beyond which adding cores slows down reduction, see Table 2. This is an example

time (s) speedup factor over -N1
expr. -N1 -N2 -N5 -N8 -N9 -N10 -N11 -N12 -N2 -N5 -N8 -N9 -N10 -N11 -N12
fib 28 63.581 40.173 22.495 19.389 16.572 17.640 16.618 17.234 1.58 2.83 3.28 3.84 3.60 3.83 3.69
fib 30 223.291 68.377 63.488 58.204 60.160 62.559 3.27 3.52 3.84 3.71 3.57
ack 3 7 5.900 4.177 3.234 3.889 3.786 4.042 4.033 4.170 1.41 1.82 1.52 1.56 1.46 1.46 1.41

Table 2: 16-core Benchmarks for directly-programmed NetDescriptions

of the effect of diminishing gains of adding processors to a parallel workload that does not split into a
sufficient number of sufficiently large independent pieces: The overhead of synchronisation in such a
context makes it unfeasible to profit from the computing power of added cores beyond a task-dependent
threshold.

Table 3 contains timings for running our RunInets interpreter on a collection of Inets programs
mostly derived from programs in [HJ12] by replacing the main nets with larger examples. The last two
columns contain timings for running the compiled programs using the Inets compiler of [HJ12], and the
quotient of our “-N1” time with this run-time.

Ackerman.inet from [HJ12] uses a (totalised) predecessor function; Ack.inet is a direct translation
of the rules in ackND. The counts reported by the Inets implementation indicate that Ackerman.inet
requires almost exactly 1.5 times the number of rule applications of Ack.inet; Inets-compiled executables
and our RunInets take roughly 1.6 times the time.

fib.inet is a direct translation of our fibND implementation into Inets, and works, like both Ackerman
functions, on unary natural numbers constructed from S and Z. We found that fib.inet performs roughly
20% more allocation than fibND, which will be due to the overhead of transforming an Expression-
based NetDescription into Value-based for each rule application (even though there are no expressions
to evaluate in this example that does not use attributes). However, it appears that the difference in run
times is, as for Ack.inet versus ackND, much less — this should be due to the fact that the overhead is
not slowed down by concurrency synchronisation.

fibonacci.inet from [HJ12] carries arguments and results in node attributes, and uses implementation-
provided addition of integer attributes instead of recursing over predecessors like fibND. It therefore has
significantly less work to do than fibND.

sort.inet from Inets is an implementation of bubble sort on lists; it uses an int-valued agent attribute to
carry the list elements, so element comparisons are performed as part of choosing the RHS of conditional
rules. The counter results of the Inets runs show that this performs exactly (n/2+1) ·(n+1) interactions
for a randomly generated start list with even length n. This pattern fits some of the RunInets times in
Table 3 exactly, while other RunInets times appear to exhibit a worse asymptotic behaviour; I suggest
that this is due to the fact that I used the same heap sizes for different sort argument sizes instead of
trying to identify respective optimal heap sizes.

On the whole, on a single core, RunInets typically takes about 10 to 20 times the time of the Inets-
compiled executables, which is to be expected for an interpreted implementation.
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time (s), allocation rate (MB/MUT-s), productivity (% of elapsed), speedup Inets

expr. result heap -N1 -N2 -N3 -N4 -N5 -N6 time sp
ee

du
p

ov
er

-N
1

Ackerman 3 6 509 dft. 2.150 2100 38 1.191 1440 100 1.80 0.850 1214 166 2.53 0.770 932 238 2.79 0.722 758 312 2.98 0.716 624 382 3.00 0.125 17.2

Ackerman 3 6 509 20M 1.204 1597 89 0.861 1163 171 1.40 0.744 920 251 1.62 0.711 745 323 1.69 0.700 618 396 1.72 0.740 497 466 1.63 9.63

Ackerman 3 6 509 8G 2.163 1083 88 1.536 850 156 1.41 1.323 712 216 1.63 1.236 608 268 1.75 1.189 528 318 1.82 1.209 437 374 1.79 17.3

Ackerman 3 7 1021 dft. 11.432 2022 30 6.251 1415 77 1.83 4.158 1226 134 1.75 3.668 936 200 3.12 3.249 779 271 3.52 3.080 655 339 3.71 0.511 22.37

Ackerman 3 7 1021 40M 5.211 1498 88 3.601 1127 169 1.48 3.036 915 247 1.72 2.799 759 322 1.86 2.738 632 396 1.90 2.843 516 467 1.83 10.2

Ackerman 3 7 1021 8G 8.359 1034 92 5.678 827 169 1.47 4.741 701 238 1.76 4.291 609 302 1.95 4.051 535 362 2.06 4.023 457 423 2.08 16.4

Ackerman 3 8 2045 dft. 55.740 1899 26 32.567 1329 63 1.71 21.601 1173 108 2.58 18.430 915 163 3.02 15.819 772 225 3.52 14.883 652 283 3.75 2.050 27.2

Ackerman 3 8 2045 60M 22.716 1408 86 15.671 1062 165 1.45 12.997 878 241 1.75 11.922 732 314 1.91 11.419 620 389 1.99 11.258 536 455 2.02 11.1

Ackerman 3 8 2045 8G 25.963 1230 90 18.016 938 170 1.44 14.724 803 242 1.76 13.623 673 312 1.90 12.904 585 379 2.01 13.042 490 446 1.99 12.7

Ackerman 3 9 4093 dft. 274.154 1583 25 161.029 1207 57 1.70 114.140 1072 90 2.42 98.409 842 133 2.79 82.098 725 185 3.34 72.683 638 237 3.77 7.167 38.3

Ackerman 3 9 4093 100M 107.704 1215 84 68.144 1018 158 1.58 54.532 872 231 1.98 49.224 741 301 2.19 47.475 618 375 2.27 47.038 525 445 2.29 15.03

Ackerman 3 9 4093 8G 116.946 1055 90 73.624 883 172 1.59 59.421 756 248 1.97 52.597 658 322 2.22 49.011 579 392 2.39 47.341 513 458 2.47 16.3

Ackerman 3 10 8189 8G 501.817 971 91 326.369 774 175 1.54 254.119 686 253 1.97 222.919 606 327 2.25 201.495 550 398 2.49 191.309 500 461 2.62 28.677 17.5

Ack 3 6 509 dft. 1.161 2201 42 0.686 1456 109 1.70 0.526 1189 174 2.21 0.475 934 245 2.44 0.439 780 317 2.64 0.443 642 383 2.62 0.078 14.9

Ack 3 6 509 20M 0.710 1691 90 0.524 1196 174 1.35 0.463 926 254 1.53 0.433 774 325 1.64 0.428 645 394 1.66 0.502 575 377 1.41 9.10

Ack 3 7 1021 dft. 6.412 2117 32 3.552 1427 85 1.81 2.473 1224 143 2.59 2.187 956 207 2.93 1.933 815 275 3.32 1.835 686 344 3.49 0.310 20.7

Ack 3 7 1021 40M 3.023 1612 89 2.180 1157 172 1.39 1.909 908 250 1.58 1.709 782 325 1.77 1.698 646 395 1.78 1.896 590 388 1.59 9.75

Ack 3 8 2045 dft. 31.762 2039 27 18.775 1357 68 1.69 12.488 1206 115 2.54 10.555 954 172 3.01 9.132 810 235 3.48 8.543 695 292 3.72 1.109 28.64

Ack 3 8 2045 60M 13.675 1445 88 9.743 1053 169 1.40 8.044 875 247 1.70 7.291 742 321 1.88 6.914 637 394 1.98 7.027 529 467 1.95 12.3

fib 20 6765 1G 0.587 714 94 0.390 602 169 1.50 0.325 527 234 1.80 0.291 470 293 2.02 0.266 428 353 2.21 0.260 401 385 2.26 0.030 19.6

fib 25 75025 1G 8.832 838 56 5.531 674 112 1.60 4.250 576 171 2.08 3.754 515 216 2.35 3.373 456 272 2.62 3.141 413 323 2.81 0.513 17.2

fib 25 75025 2G 7.096 797 74 4.603 637 144 1.54 3.685 562 205 1.93 3.398 473 264 2.09 3.082 446 310 2.30 2.958 402 359 2.40 13.8

fib 25 75025 4G 7.321 677 85 4.709 568 160 1.55 3.910 486 228 1.87 3.445 432 291 2.13 3.226 404 333 2.27 2.958 365 406 2.47 14.3

fib 25 75025 8G 7.538 667 86 4.907 563 157 1.54 4.026 501 217 1.87 3.667 442 271 2.06 3.318 401 331 2.27 3.329 359 372 2.26 14.7

fib 25 75025 12G 7.589 684 84 5.023 580 151 1.51 4.218 502 209 1.80 3.804 443 264 2.00 3.428 409 318 2.21 3.226 382 362 2.35 14.8

fib 28 317811 2G 89.117 834 25 54.464 682 51 1.64 54.409 532 63 1.64 48.101 493 79 1.85 35.036 452 115 2.54 44.302 406 101 2.011 SegFault

fib 28 317811 4G 42.922 826 52 25.890 649 109 1.66 21.034 567 141 2.04 19.416 501 189 2.21 16.953 425 256 2.53 16.310 411 283 2.63

fib 28 317811 8G 35.092 777 68 22.117 627 133 1.59 18.213 541 189 1.93 16.366 482 236 2.144 14.749 444 290 2.38 14.093 397 335 2.49

fib 28 317811 12G 34.283 750 72 22.027 613 138 1.56 17.603 551 193 1.95 16.007 465 253 2.14 14.546 430 301 2.36 13.759 386 355 2.49

fib 30 832040 12G 116.444 804 53 76.595 624 104 1.52 62.474 559 142 1.86 55.308 495 182 2.11 49.664 454 222 2.34 45.192 406 273 2.58 SegFault

fibonacci 20 6765 1G 0.269 759 91 0.185 619 163 1.45 0.154 551 223 1.75 0.141 486 275 1.91 0.130 456 320 2.07 0.125 417 366 2.15 0.018 14.9

fibonacci 25 75025 2G 2.740 742 95 1.841 590 178 1.49 1.459 526 255 1.88 1.324 451 327 2.07 1.172 404 400 2.34 1.134 377 461 2.42 0.172 15.9

fibonacci 28 317811 8G 11.752 724 90 7.926 583 167 1.48 5.928 508 258 1.98 5.460 446 321 2.15 4.934 404 395 2.38 4.519 374 469 2.60 0.721 16.3

fibonacci 30 832040 8G 47.947 1048 45 30.137 707 96 1.59 23.071 608 144 2.08 17.589 513 222 2.73 15.243 464 282 3.15 16.191 422 292 2.96 1.858 25.8

sort200 dft. 0.123 2226 46 0.092 1443 94 1.34 0.085 1171 126 1.45 0.080 925 168 1.54 0.080 766 204 1.54 0.080 662 236 1.54 0.012 10.3

sort300 dft. 0.255 2114 44 0.191 1341 93 1.34 0.155 1115 138 1.65 0.152 874 180 1.68 0.159 695 217 1.60 0.145 626 264 1.76 0.023 11.1

sort400 dft. 0.466 2039 41 0.328 1291 92 1.42 0.254 1084 142 1.83 0.243 851 190 1.92 0.223 741 237 2.09 0.218 622 289 2.13 0.037 12.6

sort500 dft. 0.802 1924 38 0.543 1233 87 1.48 0.400 1057 137 2.01 0.376 826 187 2.13 0.345 709 238 2.32 0.332 619 283 2.41 0.060 13.4

sortC600 50M 0.570 1504 91 0.439 1054 169 1.30 0.367 875 243 1.55 0.349 714 313 1.63 0.335 607 384 1.70 0.326 534 449 1.75 0.071 8.03

sortC700 50M 0.765 1495 91 0.586 1044 170 1.31 0.492 862 246 1.55 0.460 708 319 1.66 0.430 627 387 1.78 0.429 530 458 1.78 0.095 8.05

sortC800 50M 1.002 1474 91 0.756 1039 170 1.31 0.625 869 246 1.55 0.586 714 320 1.66 0.558 613 391 1.78 0.557 526 458 1.78 0.121 8.05

sortC900 50M 1.274 1451 90 0.955 1032 170 1.33 0.798 850 248 1.60 0.741 707 320 1.72 0.698 620 393 1.83 0.688 530 460 1.85 0.155 8.22

sortC1000 dft. 3.810 1741 31 2.307 1158 77 1.65 1.602 995 128 2.38 1.404 790 184 2.71 1.215 682 247 3.14 1.105 600 309 3.45 0.196 19.4

sortC1000 100M 1.599 1410 91 1.196 997 173 1.34 0.999 827 249 1.60 0.902 700 326 1.77 0.853 605 399 1.87 0.845 520 469 1.89 0.196 8.16

sortC2000 100M 6.805 1292 90 4.915 936 172 1.38 3.939 800 251 1.73 3.599 671 328 1.89 3.323 592 404 2.05 3.239 510 480 2.10 StackOverflow

sortC3000 100M 16.932 1174 88 11.656 892 169 1.45 9.261 768 248 1.83 8.344 654 323 2.03 7.674 579 397 2.21 7.430 503 472 2.28 StackOverflow

sortC4000 100M 32.337 1108 87 21.991 854 166 1.47 17.454 737 242 1.85 15.580 634 315 2.08 14.112 567 390 2.29 13.638 497 460 2.37 StackOverflow

sortC5000 100M 54.673 1037 85 36.384 830 161 1.50 28.286 722 238 1.93 25.387 620 308 2.15 22.902 558 380 2.38 21.701 492 455 2.52 StackOverflow

sortC10000 1G 247.709 839 93 165.529 650 180 1.50 131.459 554 265 1.88 110.329 506 346 2.25 97.315 472 420 2.55 89.930s 424 506 2.75 StackOverflow

Table 3: Benchmarks for Inets programs

Just adding cores to a RunInets run without any heap settings (see the “dft.” rows) appears to
produce relatively nice speed-ups for fine-grained parallelism, but one has to be aware that the single-
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core execution in that case typically was spending a far larger portion of its time in garbage collection
than the multi-core versions. (This applies also for “relatively small” fixed heaps.)

It appears to be more honest to consider the speed-ups compared to single-core executions with a
“good” fixed heap setting; the fastest runs on our six-core machine with our parallel interpreter all use
five or six cores, and tend to take only about five to six times as long as the compiled Inets runs on a
single core.

(For reasons I have not investigated, the Inets-compiled executables crashed for the larger fib.inet runs after
producing partial output; on a modified version (fibNat.inet) that converts results from unary representation to int

attributes, all Inets runs crashed. For sort.inet, the Inets version was originally changed only by adding longer
argument lists to the start net; beyond 500 elements, this lead to stack overflow errors in the javacc-generated
parser. Changing the start net definition to a sequence of equations each adding a smaller chunk to the list allowed
us to make some progress, but beyond 1000 elements, a different stack overflow occurred.)

6 Conclusion

Interaction nets as an “inherently parallel” execution model promise large speed-ups via parallelisation,
but accessible platforms for experimentation are still missing.

Using Concurrent Haskell to implement interaction nets understood as an execution mechanism, we
achieved a simple and easily understandable implementation, the entire core of which could be presented
in just a bit more than three pages of literate code. By having added support for the Inets file format,
we enable experimentation with interaction net definitions in the shape used by most of the current
interaction net literature — with the restriction that a consistent polarity assignment must be possible
(which is also one of the conditions of Lafont [Laf90] for deadlock safety).

Keeping in mind that, in our straight-forward ultrafine-grained implementation, the concurrent inter-
action net rules reduce a heavily shared structure, and given that we made no effort to enable coarse-grain
parallelism, the speed-ups achieved on the usual microbenchmarks are actually surprisingly good, and
we expect even better behaviour on rules with larger right-hand sides that give rise to more sparsely
connected nets.
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