
Future Generation Computer Systems 78 (2018) 257–271

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Dynamic energy-aware scheduling for parallel task-based application
in cloud computing
Fredy Juarez a,b, Jorge Ejarque a,∗, Rosa M. Badia a,c

a Barcelona Supercomputing Center (BSC), Workflows and Distributed Computing Group, Barcelona, 08034, Spain
b Instituto Tecnológico Superior de Álamo Temapache, Xoyotitla, Veracruz, 92730, Mexico
c Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC), Spain

h i g h l i g h t s

• Energy-aware run-time scheduler for task-based applications.
• Model for estimating the application Energy consumption.
• Methodology to automatically generate the required power consumption profile.
• Multi-heuristic resource allocation algorithm to get solutions in polynomial time.
• Energy saving/performance trade-off evaluation for different scenarios.

a r t i c l e i n f o

Article history:
Received 1 December 2015
Received in revised form
20 April 2016
Accepted 23 June 2016
Available online 5 July 2016

Keywords:
Distributed computing
Cloud computing
Green computing
Task-based applications
Energy-aware scheduling
Multi-heuristic resource allocation

a b s t r a c t

Green Computing is a recent trend in computer science, which tries to reduce the energy consumption
and carbon footprint produced by computers on distributed platforms such as clusters, grids, and clouds.
Traditional scheduling solutions attempt to minimize processing times without taking into account the
energetic cost. One of the methods for reducing energy consumption is providing scheduling policies
in order to allocate tasks on specific resources that impact over the processing times and energy
consumption. In this paper,we propose a real-timedynamic scheduling system to execute efficiently task-
based applications on distributed computing platforms in order to minimize the energy consumption.
Scheduling tasks on multiprocessors is a well known NP-hard problem and optimal solution of these
problems is not feasible,wepresent a polynomial-time algorithm that combines a set of heuristic rules and
a resource allocation technique in order to get good solutions on an affordable time scale. The proposed
algorithmminimizes a multi-objective function which combines the energy-consumption and execution
time according to the energy-performance importance factor provided by the resource provider or user,
also taking into account sequence-dependent setup times between tasks, setup times and down times for
virtual machines (VM) and energy profiles for different architectures. A prototype implementation of the
scheduler has been tested with different kinds of DAG generated at random as well as on real task-based
COMPSs applications. We have tested the system with different size instances and importance factors,
and we have evaluated which combination provides a better solution and energy savings. Moreover, we
have also evaluated the introduced overhead by measuring the time for getting the scheduling solutions
for a different number of tasks, kinds of DAG, and resources, concluding that our method is suitable for
run-time scheduling.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recent studies [1,2] have estimated that around 1.5%–2.0% of
the total energy consumption is consumedby data centers, and this

∗ Corresponding author.
E-mail address: jorge.ejarque@bsc.es (J. Ejarque).

http://dx.doi.org/10.1016/j.future.2016.06.029
0167-739X/© 2016 Elsevier B.V. All rights reserved.
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
energydemand is growing extremely fast due to thepopularization
of Internet services and distributed computing platforms such as
clusters, grids, and clouds. Regarding the efficiency of data centers,
studies have concluded that, in average, around 55% of the energy
consumed in a data center is consumed by the computing system
and the rest is consumed by the support system such as cooling,
uninterrupted power supply, etc. For that reason, green cloud

https://core.ac.uk/display/87662162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.future.2016.06.029
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.06.029&domain=pdf
mailto:jorge.ejarque@bsc.es
http://dx.doi.org/10.1016/j.future.2016.06.029

258 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
computing is essential for ensuring that the future growth of cloud
computing is sustainable [3].

There are several ways to reduce the energy consumed by an
application when executed on a distributed platform: It includes
the usage of low-power processor architectures or dynamic
voltage frequency scaling (DVFS) [4], re-design of algorithms
using energy-efficient patterns in compilers [5] or changing the
scheduling policies for task-based applications on the available
resources [6]. Traditionally, scheduling techniques have tried to
minimize the total execution time of an application(makespan—
Cmax) [7] without worrying about the energy consumed. However,
there is a trade-off between energy consumed and the execution
time, and sometimes increasing the performance for a faster
execution implies a higher energy consumption.

The aim of our work is to offer resource providers and end-
users more options for executing task-based applications in an
energy consciousmanner, giving the possibility of reducing energy
consumption without a significant increase in total execution
time or reducing the total execution time without a significant
increase in energy consumption. In this paper, we present an
energy-aware scheduling system for task-based applications. To
decide which is the best scheduling solution according to the
energy consumed, we propose a model for estimating the energy
consumed by the application for a given application and a resource
power consumption profile.

Since task allocation on distributed computing resources is
a well known NP-hard problem in the general form [8], due
to the time limitation required for run-time schedulers, the
implementation of large-time optimization algorithms is not
suitable. For a real time scheduler it is convenient to develop
heuristic techniques for sub-optimal solutions, in order to build
a scheduling algorithm that runs in polynomial-time without
performing exhaustive search. Therefore, we propose the use of
a multi-heuristic resource allocation (MHRA) that is essentially a
faster local search algorithm for partial solutions. The algorithm is
divided into two phases: the first phase combines a set of heuristic
rules for ranking an eligible group of parallel tasks for a given
Direct Acyclic Graph (DAG), based on the amount of data transfers,
number of task predecessors or successors and execution time.
The second phase combines a set of importance factors for the
resource allocation algorithm that are used to determine which is
the best position in the cloud for a specific task that minimizes
energy (Eflow) and makespan (Cmax). The algorithm provides good
real-time scheduling solutions in an affordable time scale.

The proposed scheduler has been designed to be applied to
the COMP Superscalar (COMPSs) framework [9,10]. It provides
an infrastructure-agnostic task-based programming model, which
facilitates the development of parallel applications in distributed
computing platforms. Developers can program their applications
in a sequential fashion and without caring about the details
of the underlying infrastructure. They just need to identify the
tasks, which are the methods of the applications, to be executed
in the distributed platform. At run-time, COMPSs detects data
dependencies between tasks creating a DAG. Once the DAG is
created, the COMPSs runtime will use the energy-aware scheduler
for allocating and executing the tasks on the available computing
resources in order to minimize energy or makespan.

The scheduler has been tested with different kinds of DAGs
generated at random as well as on real COMPSs applications:
embarrassingly parallel (EB), parallel reduction (PR), parallel
increase/reduction (PIR), matrix multiplication (MT). Using three
different size instances and importance factors.We have evaluated
which combination of MHRA provides a better solution and
energy savings and the execution time in each case, and the
effect on the cloud elasticity. Moreover, we have also evaluated
the introduced overhead by measuring the time for getting the
scheduling solutions for a different number of tasks, kinds of
DAG, and resources, concluding that it is suitable for run-time
scheduling.

The rest of the paper is organized as follows: First, Section 2
presents the related work in energy-aware scheduling and
Section 3 gives an overview of the COMPSs framework. Afterwards,
Section 4 formulates the energy-aware scheduling problem, and
the model used to estimate the application energy consumption,
the profiling methodology and the multi-heuristic resource
allocation algorithm are presented in Sections 5–7, respectively. In
Section 8, we present the experiments performed to evaluate the
proposed scheduler. Finally, Section 9 draws the conclusions and
proposes guidelines for future work.

2. Related work

Traditional task scheduling algorithms for distributed platforms
such as clusters, grids, and clouds, focus in minimizing the
execution time [11,12] without considering energy consumption.
Regarding specific work on energy-aware scheduling two main
trends can be found in the literature: (1) pure scheduling software
and (2) combined scheduling hardware/software. For combined
scheduling, a commonly used technique is taking profit of the
Dynamic Voltage Frequency Scaling (DVFS) feature which enables
processors to reduce the energy consumption. By using DVFS,
processors can run at different voltage, impacting on the frequency
and energy consumption.

In [13] the authors present a scheduling heuristic for reducing
power consumption of precedence-constrained parallel tasks in
a cluster with DVFS, the model is proposed for applications
that have slack time for non-critical jobs while they scale down
supply voltage for reducing energy consumption and extend
execution time of jobs. The model considers homogeneous nodes
as processing elements (PEs) with the same processing speed
and uses green SLA negotiation in order to accept a tolerable
performance loss. In our work, we take into account makespan
and energy consumption in a similar way, but in addition we take
into account the cloud environment and setup times for creating
and destroying VMs; in contrast for reduced energy consumption,
we do not use DVFS, because our model minimizes energy
consumption while striving to maintain application performance.

Another approach for combining DVFS in scheduling is
proposed in [14]. In this case, the authors propose a scheduling
algorithm in order to reduce power consumption by applying
DVFS for enabling processors to run at low frequencies and low
voltages. It is only applicable for those applications in which
the performance is not important or can run under certain
threshold frequency. The algorithm complies with the Service
Level Agreement and obeys the SLA to assign resources for the
job given to the consumers. The algorithm takes into account the
maximum Job(Fmax) and minimum Job(Fmin) frequencies given for
each job and the multiple servers Si that are running at maximum
Si(Fmax) and minimum Si(Fmin) frequencies. For specific jobs, the
algorithm selects a server that runs between, (Fmin, Fmax) and
guarantees the execution performance of the job while ensuring
that the job does not overuse resources. In contrast, our algorithm
detects parallelism at run-time by analyzing the task dependencies
of a job (application) and allocates these tasks on specific VMs that
have impact on the total energy and makespan.

Beloglazov et al. [6] propose an energy-aware allocation
heuristic for client applications over the data center resources,
considering QoS expectations. The green Cloud architecture
proposed here, it is a power model that divides the energy level
consumption in an idle server and running a server with the
CPU utilization controlled by DVFS for different frequency and
voltage utilization. This model proposes VM allocation divided in

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 259
two parts: the first part performs VM provisioning and placing
the VMs on hosts like a bin packing problem with different bin
sizes and prices, and the second part performs the optimization
of the current VM allocation similarly to [15] the authors use a
modification of the Best Fit Decreasing (MBFD) algorithm [16]. To
optimize the current VM allocation first selects VMs that need to
be migrated, then the chosen VMs are placed on the hosts using
an MBFD algorithm. The idea is to migrate VMs according to upper
and lower utilization thresholds of the hosts in order to consolidate
resources.

In [17] the authors propose a cloud controller for performance-
base pricing; the cloud controller is in charge of determining
actions to allocate and manage the VMs, taking into account
CPU frequency scaling, pricing and geo-temporal inputs such
as real-time electricity prices [18] and temperature-dependent
cooling [19], the problem is balancing the trade-off between
energy savings and revenue loss for performing actions by scaling
CPU frequency, for creating and migrate, suspend or resume VMs
that have to pay a high cost in energy. The proposed controller
can determine the optimal CPU frequency between energy savings
and workload performance, and can reevaluate control actions at
run-timewhen considering geo-temporal inputs, electricity prices,
and temperatures. The difference with our work is that we do not
only take into account the allocation of the VMs, also we take into
account the energy consumption of these actions and of the data
transfer in task-based applications.

However the DVFS feature is not always available in comput-
ing systems, especially when nodes are shared by different appli-
cation users. In those cases,we can only use traditional software for
scheduling task on resources. For instance in [7], the authors pro-
pose an energy-constrained provisioning for scientific workflow
ensembles, focused on the provisioning of resources for scientific
workflow ensembles and address the problem of meeting energy
constraints along with either budget or deadline constraints. The
applicationmodel is focused onworkflow based applicationsmod-
eled as a DAG and do not take into account the time for data trans-
fers. The cloud resources assume that jobs do not run concurrently
on VMs and offer different VM instance types with CPU, memory,
and hard disk combinations, but only a single VM instance is used
for simplicity. As for ourwork, the problemconsidered take into ac-
count task-based applications with fine granularity, also take into
account the time and energy for data transfer, VM setup, VM shut-
down and our resource profiler can model VMs with different ar-
chitectures, different number of CPUs and memory.

Other examples of how to perform application scheduling with
multi-objective criteria can be found in [20]. The authors propose
a Bi-criteria workflow task allocation and scheduling in cloud
computing environments, in order to minimize the cost incurred
by using a set of resources and total execution time. The bi-
criteria function takes into account the time execution and data
transfer. They proposed three algorithms to schedule workflows.
The first algorithm focuses on the cost incurred in execution time
and transfer time of the workflow. The second algorithm aims
to minimize the total execution time by makespan criterion. The
third algorithm is based in the Pareto solution [21] of the first
and second approach. This work is similar to our work in the
use of a bi-criterion objective function, but our combination is
between energy consumption and total execution time and takes
into account the time and energy consumption for more elements
such as cores, VMs, and nodes.

A similar approach is proposed in [22], where the authors
present a cost-efficient task scheduling for executing large
programs in the cloud, using two heuristic strategies. The first
strategy dynamically maps tasks to the most cost-efficient VMs,
based on the concept of Pareto dominance. The second strategy,
a complement to the first strategy, reduces the monetary costs
of non-critical tasks. This algorithm shows that we can reduce
monetary costs while producing a good makespan like [17] does,
but without using the DVFS technique.

Finally, in [23] the authors propose criticality-aware dynamic
task scheduling on heterogeneous architectures with OmpSs
[24,25]. The paper proposes scheduling policies in order to reduce
the total execution time of a task represented by DAG. The
algorithm takes into account the critical path (CP) and task
prioritization, by keeping two ready queues, one for critical and
one for non-critical tasks respectively, and insert each task in the
corresponding queue according to its priority. To execute a task in
a heterogeneous platform, the critical tasks in the critical queue
are assigned to fast processors and non-critical tasks in the non-
critical queue are assigned to slowprocessors, in order tominimize
the total execution time. Compared with our work, both seek
to minimize the total execution time (Makespan), but our work
also takes into account the energy consumption plus the cloud
infrastructure.

3. COMP Superscalar overview

COMP Superscalar (COMPSs) is a framework that provides a
programming model for the development of task-based applica-
tions for distributed environments and a runtime to efficiently exe-
cute themon awide range of computational infrastructures such as
clusters, grids and clouds. The aim of COMPSs is to provide an easy
way to develop parallel applications, while keeping the program-
mers unaware of the execution environment and parallelization
details. The programmers do not require prior knowledge about
the underlying infrastructure, they are only required to create a se-
quential application and specify which methods of the application
code will be executed remotely. This selection is done by provid-
ing an annotated interface where these methods are declared with
some metadata about the directionality of their parameters.

3.1. Runtime

Once the application is developed with the COMPSs Program-
ming Model, developers can run their task-based applications on
the different distributed platforms without requiring to do any
change in the code. The COMPSs runtime, shown in Fig. 1, is in
charge of transparently detecting the inherent parallelism and of
executing the application exploiting the available resources in the
distributed computing platform. To achieve this, the COMPSs run-
time intercepts any method call defined as tasks and substitutes
them to calls to a Task Analyzer. The Task Analyzer creates a task-
dependency graph (DAG) by analyzing the data-dependencies be-
tween the different invoked tasks.

Once a task is free of dependencies, the Task Scheduler is
responsible of assigning a infrastructure resource to execute the
task taking into account data locality, task constraints and the
workload of each resource. The information required for the
scheduling is provided by the Data Info provider, which tracks the
locations of the different versions and replicas of the application
data, and the Resource Manager, which provides the information
of the available infrastructure resources and performs elasticity
actions to adjust the number of resources with the current
workload. When the number of tasks is higher than the available
cores, the resource manager takes into account the offers of the
cloud providers to determine the one that offers the resources
that better fit the requirements of the application with lower
economic cost. Symmetrically, when the runtime detects an excess
of resources, it powers off unused instances in a cost-efficient
way [26].

Finally, the Job Manager is in charge of submitting the task
execution in the selected resource and of monitoring it during

260 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
Fig. 1. COMPSs runtime architecture.
its execution life-cycle. As part of this task execution monitoring,
the COMPSs runtime keeps track of the duration of the different
tasks executions in the different resource.With this historical data,
the runtime can generate a regression model for each type of
task to estimate the duration of future executions in the available
resources. Once a task execution finishes, the tasks duration
model is updated with the duration of the new task, the DAG is
updated, possibly resulting in new dependency-free tasks that can
be scheduled.

4. Problem formulation

As explained in the previous section, COMPSs translates a
sequential program S into a directed acyclic graph (DAG) by
evaluating data and task dependencies between parts of code in
real time. The generated DAG, represented by G = (T ,D), contains
a set of vertexes T , which represents the task invocations, and
a set of edges D, which represents dependencies between task
invocations. For two tasks i, j ∈ T an edge of the form (i → j)
denotes a relation task dependency between tasks i, j, where the
task j should be executed after task i is completed. In this sense i is
called parent and j is called child. While a child j may have many
parents i, j is only ready when all parents i have been completed.

On the other hand, a Cloud platform can be described as a set
of nodes N = {n1, n2, . . . , nm}, where node m is represented
by nm. Each node nm is responsible for managing a set of virtual
machines (VM) Vm = {vm1, vm2, . . . , vmk}, where VM k of node
m is represented by vmk. Each VM vmk has a set of processing
cores Cmki = {cmk1, cmk2, . . . , cmki}, where each core i of VM vmk
is represented by cmki.

Finally, the scheduling problem consists on looking for a
task scheduling S, which represents the execution order of each
task j on the set of available resources. So, the scheduling for
cmki (represented by Smki) is given by the expression (1), which
represents the order that n task is executed on the ith core of the
kth VM of mth node (jn → cmki), and the complete scheduling
solution S can be represented by expression (2), as the set of
schedulings for all the resources of the Cloud.

Smki = {j1 → cmki, j2 → cmki, . . . , jn → cmki} (1)
S = {∀m,k,iSmki}. (2)

Finally, wewill also refer to task j, with j ∈ T , scheduled at core i
of VM k at nodemby the term taskjmki, and the set of tasks scheduled
at cmki as Tmki and the set of tasks scheduled at VM vmk as Tmk.

In our scheduling problem, the process of looking for the proper
task scheduling is driven by two goals:
1. To improve the energy efficiency by looking for the best
positions of tasks in resources which minimize the energy
consumed by the execution of the whole set of tasks T .

2. To improve the execution performance by searching for
resource allocations that minimize the total execution time.

However, there is a trade-off between the optimization of the
energy consumption and the total execution time. A solutionwhich
minimizes the execution time can be inefficientwith regards of the
energy consumption, and a solution which minimizes the energy
consumption may have larger execution times. The aim of our
scheduling strategy is to find a good trade-off for both problems.
To achieve this goal, we propose a bi-objective cost function
which combines the temporal efficiency, defined by the makespan
(Cmax), and the energy efficiency, defined by the total energy
flow (Eflow) with a normalized weight factor (α) that indicates
what is more important for the users and resource providers: the
energy-efficiency or the execution time. Therefore, the proposed
scheduling problem can be modeled as an optimization problem
which looks for a solution S that minimizes the bi-objective cost
function, as represented in Eq. (3).

minimize


α
Eflow(S)

Esf
+ (1 − α)

Cmax(S)
Csf


. (3)

The cost function is composed of two main terms Eflow(S) and
Cmax(S). Eflow(S) is the overall energy flow which estimates the
energy consumed by the execution of solution S, and Cmax(S) is the
makespan which is defined as the maximum completion time of
the latest task to leave the system [27].

To balance the bi-objective function, we apply the adaptive
weighted sum method [28], which introduces a weight factor α,
where 0 ≤ α ≤ 1, to indicate which term is more important for
the user. However, makespan and total energy flow have different
units. Makespan is calculated in milliseconds, and energy is
calculated in millijoules, hence, to make these metrics comparable
we have introduced two factors Esf and Csf to normalize the
energy consumption and execution time. As explained above, the
makespan (Cmax) is basically defined by the latest task (Cn) to
leave the system. However, the estimation of the Eflow term is not
easy. Next section provides more details about the model used to
estimate Eflow for a given scheduling S.

5. Energy model

The bi-objective cost function presented in the previous section
requires the calculation of the makespan (Cmax) and the overall

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 261
Fig. 2. Schedule times for all elements considered.
energy flow (Eflow) for a given a scheduling solution, such as the
one described in Fig. 2. From this scheduling solution, the energy-
aware scheduler can extract the following application timings to
estimate the total execution time and the energy consumption:

• Start and end time of tasks’ executions in each specific core.
• Start and end time of data transfers required by each task.
• Start and end time of VMs setup and VMs shutdown.
• Start and end time of overall running time for each VM.
• Start and end time of overall running time for each node.

Another key information to compute the application energy
estimation, is the power profile for the different infrastructure
resources. For each resource, we need to calculate the following
values. The procedure to build energy profiles is explained in
Section 6.

1. Pcmki is the proportional mean power consumed by using the
core i of VM k in node m.

2. Pupvmk
and Pdownvmk

are the mean power consumed by VMwhen
the hypervisor creates and destroys VM k in nodem.

3. Pidlenm is themean power consumed by a nodem in an idle state,
in other words, the power consumed when the hypervisor is
not handling VMs and only the operating system services are
running.

4. Pnetnm is the mean power needed for transferring data through
the cloud infrastructure.

5. PUE (Power Usage Effectiveness) is the proportional mean
power consumed by the support system (UPS, cooling, etc.).

With the application timings and the energy profiles we can
estimate the energy consumed by each element bymultiplying the
duration of the different events by the corresponding mean power
values. In the following paragraphs, we providemore details about
how to calculate the energy consumed by the different events. First
we show, how to calculate the energy consumed per task and how
they are accumulated per VM and node in order to calculate the
total energy flow (Eflow).

5.1. Energy consumption per task

To calculate the energy consumed by a task j allocated on core
i of VM k in node m (taskjmki), we have to calculate start time
(timeinit j), the setup time for transferring files (timesetupj), and the
end time (timeendj). The following paragraph describes how these
times and energy is calculated.

5.1.1. Task start time
Each task j has a set of l predecessor tasks (Tprej), which must

finish before starting task j. Therefore, the minimum starting point
for task j depending on the predecessors (timeprej) must be the
largest end time of the l predecessor tasks which is calculated as
indicated on Eq. (4), In case that task j does not have predecessors,
the timeprej time is zero.

timeprej = max

timeendl
l∈Tprej

 . (4)

In the case that a task j is the first task assigned into a core, the
start time will directly set to the end time determined by the task
predecessors (timeprej). However, if other tasks have already been
assigned to the same core, the start time will also depend on the
end time of those tasks denoted by timeendt . In this case, the task
start time will be determined by the maximum value between the
largest predecessors end time (timeprej) and the largest end time
of previously assigned tasks t at the same core cmki, expressed by
max(timeendt) where t ∈ Tmki. Finally, in the case that j is the first
assigned task to virtual machine k of node m (vmk), the tasks start
time will also depend on the time to setup of vmk. If this time is
larger than the largest end time of predecessor tasks, the tasks
start time (timeinit j) will be equal to setupvmk

. In summary, Eq. (5)
describes the way to calculate the start time of a task j.

timeinit j = max


timeprej ,max(timeendt

t∈Tmki

), setupvmk


. (5)

5.1.2. Task setup time
Before starting the task execution, the data required by a task

must be transferred to the resource which is going to execute the
task. We refer to this time as setup time, which is represented by
timesetupj . This time depends on the proposed scheduling solution

262 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
because the amount of data to transfer will depend on the resource
where predecessor tasks l have been assigned. Therefore, the setup
time for task j, described in Eq. (6), is given by the sum of all the
transfer times (timetransfervmk

(fl)) of those required datawhich is out
of the VM file system.

timesetupj =


l∈Tprej ,l∉vmk

timetransfervmk
(fl). (6)

5.1.3. Task end time
The time when a task is finished (timeendj) is easily calculated

as indicated on Eq. (7), by adding the task start time (timeinit j), the
task setup time between and the processing time of a task j carried
out on core i of VM k of node m (timeexeccmki

j
). This execution time

is estimated by the COMPSs runtime based on historical data as
introduced in Section 3.1.

timeendj = timeinit j + timesetupj + timeexeccmki
j

. (7)

5.1.4. Task energy consumption
The energy consumption by a task j, represented by (etaskjmki

),
is estimated by the addition of the energy consumed by data file
transfer and the energy consumed by the task processing. The
energy consumed by file transfers is estimated by multiplying the
time spent to transfer the required data by the mean power of
transferring data across the network infrastructure (Pnet), while the
energy consumed by task processing is estimated by multiplying
the processing time of the task j by the proportional mean power
of using the assigned core in the VM (Pcmki), as indicated on Eqs. (8)
and (9) respectively.

etransfer jmk
= timesetupj × Pnetnm (8)

etaskjmki
= etransfer jmk

+


timeexeccmki

j
× Pcmki


. (9)

5.2. Energy consumption per VMs

The second set of parameters that we have to calculate to get
the total energy flow is the energy consumed by each VM used
in the cloud (vmk). This overall energy amount consumed by the
virtualmachine, represented by evmk , can be calculated as indicated
on Eq. (10). It includes the energy consumption by setup and
down of the virtual machine k of node m, which are estimated
by multiplying the time spent for setup and down of the VM
(setupvmk

and downvmk) by the proportional mean power (Pupvmk
and Pdowmvmk

), and the energy consumption by the different tasks j
executed in the virtual machine vmk and it is calculated as shown
on Eq. (11).

evmk = setupmk × Pupvmk
+ etasksmk + downmk × Pdownvmk

(10)

etasksmk =


i∈Cmk,j∈Tmki

etaskjmki
. (11)

5.3. Energy consumption per node

The energy consumed by a node (enm) is basically composed by
two terms. The first term is the aggregated energy consumption by
the different VMs of a node, which can be calculated as indicated
on Eq. (12).

eVm =


vmk∈Vm

evmk . (12)
The other term is the energy spent by the background OS
services which can be estimated by a product of the time that a
node is running and themean power of a node in idle state(Pidlenm).
The calculation of the time that a node is running varies depending
on the features provided by the infrastructure for powering off
nodes. We have considered two scenarios:

Scenario 1: When the cloud infrastructure allows to power off
nodes, the running time is determined by the duration of virtual
machines running on node m. We can calculate the node running
time as indicated on Eq. (13), which is the difference between,
the maximum time of the last job to be assigned to any VMs of
a node (timeendj) plus the time to shutdown the corresponding VM
(downmk), and the minimum time of the first job to be assigned to
any VM of a node (timeinit j) minus the time to setup of correspond-
ing VM (setupmk).

runnm = max(max(timeendj
j∈vmk

) + downmk
k∈nodem

)

− min(min(timeinit j
j∈vmk

) − setupmk
k∈nodem

). (13)

Scenario 2: When the cloud infrastructure does not allow to
power off nodes, all nodes are running during the same time, and it
corresponds to the duration of the whole application, which is also
defined by the Makespan (Cmax). Therefore, the running time of a
node in this scenario can be described as in Eq. (14).

runnm = Cmax. (14)

Once the node running time is estimated, we can estimate the
total energy consumption per node as indicated by Eq. (15)

enm = runnm × Pidlenm + eVm . (15)

5.4. Makespan and energy flow

Once we have calculated the times and partial energy
consumptions for tasks, VMs and nodes, we are ready to calculate
the Makespan (Cmax) and the overall energy flow (Eflow). The
Makespan of the system can be calculated as shown in Eq. (16). It is
basically determined by the end time of the last task j executed in a
cloud and the down time of the VMwhere this last task is executed.

Cmax = max(timeendj
j∈T

+downvmk). (16)

In the case of the overall energy flow (Eflow), it can be calculated as
indicated in Eq. (17) by aggregating the energy consumed by the
different used node, multiplied by the proportional part of energy
consumed by the data center infrastructure (cooling system, UPS,
. . .) which is given by the Power Usage Effectiveness (PUE).

Eflow = PUE ×


nm∈N

enm


. (17)

6. Power profiling

As explained in the previous section, a power profile of the
host used in the cloud is required to estimate the overall energy
flow. The process of profiling consist of extracting themean power
values for the possible events of an application. In this section, we
explain themethodology used to extract this power profile energy,
and the values obtained for our testbedwhich is composed by AMD
and INTEL architectures.

6.1. Power profiling procedure

The overall procedure to get the power profile is depicted in
Fig. 3. The energy provided to the cloud is manager by Power

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 263
Fig. 3. Profiling for getting power consumption by all elements.
Distribution Units (PDU) which are capable of providing the power
provided to the different nodes of the Cloud. The information
provided by the PDUs is aggregated by a monitoring system
(Ganglia and hsflow in our case) which already provides the
resource consumption (network, memory, CPU) per Node and VM.
With this system we can run a set of benchmarks which stress the
different parts of the system. When the benchmark process has
finalized, the power usage information is extracted from Ganglia
logs, and it is analyzed to make the power profiles. This power
profile is automated by a set of scripts and performed in a setup
phase.

The easier part of the power profile to be estimated is the mean
idle power Pidlenm . In this case, we measure the mean power of the
nodes when the node is only running the background OS service
(idle state), and there are no VMs and tasks or transfers running in
the node.

Then, the first benchmark we can perform is the creation of a
VM. In this case, for each VM template available in the system, we
run a VM creation andmeasure the time required to create this VM
setupvmk

and the mean power Psetupvmk
during the execution of this

operation. A similar benchmark is performed destroying a VM and
getting the downvmk time and the mean power Pdownvmk

.
A second benchmark is designed to stress cores of a VM. The

main idea is to run one process per each core of VMs at the same
time, starting with one process and finishing with n processes cor-
responding with the total number of cores distributed through the
VMs. Each process consumes 100% of a core. With this benchmark,
we can extract the increment of power per core used Pcmki .

Finally, the last benchmark profiles the powerwhenperforming
data transfers. For this benchmark, we create two VMs allocated
in different nodes with one process in each VM. These processes
exchange a large file between them. Measuring the mean power
during the time that a VM is sending or receiving the file, we can
extract the value for Pnetnm . The difference observed when sending
or receiving a file is also neglectable.

We have performed the same benchmark with different VM
configurations and directly to the bare metal of the host and we
have measured the mean power in the different cases. Analyzing
the results, we have observe different interesting facts. The first
fact is that the power increment by a VM at idle is neglectable.
Once the hypervisor finished with the VM creation process, the
VM and Host are in an idle state. The mean power measured
when running a VM at idle state is the same than the mean
power with the Host at idle state. For this reason, we do not
consider VM idle state in the energy model. The other important
fact was observed when running the CPU stress tests. In terms
of power consumption, the values obtained when running with
different VM configurations were almost the same. So, as expected
the power consumption depends basically on the real resource
usage performed by the processes running in the VMs are doing
in the physical host. Therefore, the extra power consumption
introduced by the hypervisormainly appearswhen a VM is created
and destroyed. At operation, the overhead is just observed when
Fig. 4. Power profile for getting energy consumption from AMD nodes.

Fig. 5. Power profile for getting energy consumption from Intel nodes.

measuring the time to execute a task, and it is already taken into
account when the COMPSs runtime monitors and estimates tasks
duration. It means that the hypervisor does not have an observable
overhead in terms mean power but it exists in terms of energy
which is mainly calculated by the mean power multiplied by the
execution time.

6.1.1. Testbed power profile
We have setup the profiling system and we have run the

benchmarks for the different type of hosts we have in the testbed.
Figs. 4 and 5 show the figures of the power usage for AMD and Intel
nodes respectively. These figures show the relationship between
the power and cores used over the time as well as the idle times.

In Fig. 4 we can see the power in the idle state, before and after
stressing cores, for an AMD host. The estimated mean power used
in this case is around 175.67 W. Afterwards, when the use of cores
starts, the incremental power usage is around of 9.73 W per core.
The same have been done for the Intel nodes (Fig. 5), where we can
observe a mean power of 115.30 W and an incremental power of
11.02 W per core used. These values have been estimated with a
linear regression as shown in Fig. 6.

Running the other benchmark, we can also estimate the power
usage per data transfer, the transfer rate is around of 42.03 MB/s
and the time and power usage for creating and destroying VMs in

264 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
Fig. 6. Linear regression to estimate the incremental power profiling.
Fig. 7. COMPSs scheduler.
Table 1
Estimatedmean power consumption for the different elements of a cloud platform.

Element AMD mean power INTEL mean power

Pcmki 9.73 W 11.02 W
Psetupvmk

9.49 W 18.24 W
Pdownvmk

9.49 W 18.24 W
Pidlenm 175.67 W 115.30 W
Pnetnm 30.04 W–42.03 MB/s 27.56 W–42.03 MB/s
PUE 1.2 1.2

the AMDand Intel nodes. The power profile obtained for both types
of nodes is summarized in Table 1. Finally, due to the fact that both
types of servers are located in the same data center the PUEwill be
the same.

7. Multi-heuristic resource allocation

In this section, we explain a multi-heuristic resource allocation
algorithm (MHRA), which generates scheduling solutions of good
quality in near real-time. It is essentially a fast local search
algorithm for partial solutions. MHRA builds the solution step
by step, taking one task at a time and determining which is the
next best location on the infrastructure. Fig. 7 shows an overview
of the MHRA policy. The MHRA receives as input a DAG that
contains the set of tasks to be carried out on the cloud. The
algorithm automatically analyzes the DAG and obtains a subset
of tasks free of dependencies that can be executed in parallel.
Then, for each subset, the algorithmprioritize the tasks thembased
on different heuristics rules and applies the resource allocation
process which seeks the best resource for each task thatminimizes
the bi-objective cost function according to the importance factors
specified by the user. This cycle between the resource allocation
and the objective function evaluation is repeated for each subset
of the DAG and heuristic rule. Finally, the scheduler selects the
scheduling sequence generated with the heuristic rule which
minimizes this cost function. This solution is sent to the COMPSs
runtime to get the tasks executed following this sequence. In
case that an unexpected event occurs (node failure, etc.) which
invalidates the current solution, the runtime updates the DAG and
resource configuration and recalculates the scheduling repeating
the same process.

The pseudo-code of MHRA algorithm is described in Algorithm
1. It can be divided into two phases:

1. The first phase applies a set of heuristic rules for ranking an
eligible subset of a parallel tasks for a given DAG, based on
the amount of data transfers, number of task predecessors or
successors and time execution.

2. The second phase determines which is the best position (time
and resource) in the cloud for each of the specific ranked tasks
that minimizes energy and makespan.

7.1. Ranking initial sequences

With the objective of starting from an initial sequence of the
tasks that can give a good initial solution, we first analyze the DAG
in search of those tasks that do not have precedence constraints or
whose tasks predecessors have already been executed. This subset
of the DAG tasks can run in parallel in the cloud resources.

For this subset T , we apply heuristic rules for ranking its tasks
taking into account the characteristics of the tasks. The list shown
below describe the used heuristics.

1. LPT (Longest Process Time). This rule provides greater priority
to the tasks whose processing time is greater.

2. SPT (Shortest Processing Time). Selects the tasks whose
processing time is smaller.

3. LNS (Longest Number of Successors). Selects the tasks that have
a large number of successors.

4. LSTF (Longest Setup Times First). Selects the tasks that have a
longer sequence setup time.

In Algorithm1, lines 2 and 3 show that for each heuristic used, it
applies a different energy factor of importance, lines 5 and 6 show
that for each subset T of tasks of the DAG that can run in parallel, a
ranking based on each heuristics selected is used.

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 265
Fig. 8. Initial ranking and resource allocation.

7.2. Task resource allocation

After getting an initial set of sequences by applying the rules
described above, we proceed to determine which is the best
resource for each task. To achieve this, the resource allocation
process is applied as shown in Fig. 8. It inspects the available
resources and selects the best position by evaluating the objective
function. The metrics used to evaluate the objective function have
been described in Section 5. The Algorithm 1 shows, in line 7, after
ranking the subset T , how it finds the best resource for each task
j that will run in parallel which minimizes the objective function
based on the selected heuristics k. The cycle of line 9 tries to find a
VM for the current taskwhich improves the objective function. Line
10 builds a new solution S ′ assigning to the current task a new VM
and line 11 evaluates the objective function for the new solution.

Algorithm 1Multi-heuristic Resource Allocation algorithm
1: function MHRA(DAG, Eprofile, Rcloud,Hheuristic , Fvalues)

2: for (each k ∈ Hheuristic) do
3: for (each α ∈ Fvalues) do
4: S = {}

5: for (each T ∈ parallel(DAG)) do
6: Srank = Rank(k, T)

7: for (each taskj ∈ Srank) do
8: S+ = (first(coremki ∈ Rcloud), taskj)
9: for (each coremki ∈ Rcloud) do
10: S ′

= S + (coremki, taskj)
11: f (S ′) = α

Eflow (S′)

sf 1
+ (1 − α) Cmax(S′)

sf 2
12: S ′

= VM_Down(S, Rcloud)

13: if (f (S ′) < f (S)) then
14: if (VM of coremki is Down) then
15: S = (VMSetupmk, timeinitj) + S ′

16: end if
17: S = S ′

18: end if
19: end for
20: end for
21: end for
22: Sfactorαk = S
23: end for
24: Sheuristick = Best(Sfactorαk), with α ∈ Fvalues
25: end for
26: Sbest = Best(Sbestk), with k ∈ Hheuristic
27: return (Sbest)
28: end function

Another important aspect estimated by the algorithm is when
a new VM must be created or destroyed, and the effect on time
and energy consumption. In line 12 the function VM_Dowm() call
to algorithm 2, to determine if there are VMs that require to be
switched off. The algorithm looks in all the VMs, calculating for
each VM, if its downtime is greater than the time required to
turn it off and turn it on, if so, it inserts into the solution S, the
VM identifier and the time in which the VM must be switched
off. In contrast, when a resource is selected for running a task,
the algorithm, in line 14, determines if a new VM is required and
inserts the VM and the time in which the VMmust be set up.

Algorithm 2 Stop virtual machines
1: function VM_Down(S, Rcloud)

2: Cmax = Cmax(S)
3: for (each VMmk ∈ Rcloud) do
4: VMidlemk = Cmax − Cmax(VMmk)

5: if (VMidlemk > downmk + setupmk) then
6: S+ = (VMdownmk, Cmax(VMmk))

7: end if
8: end for
9: return (S)
10: end function

Finally, in lines 22–26, the best solution S for a given initial
heuristics k and α importance factor is assigned to Sfactorαk . When all
heuristics and the factors are evaluated, the solution that produces
the best objective function is selected.

8. Experimental evaluation

This section presents the experiments carried out to evaluate
the proposed energy-aware scheduler. The first part of the section
describes the configuration used for the evaluation including the
machine used to run the scheduling and the cloud infrastructure,
the benchmark applications and the heuristic used by the
scheduler. The second part presents the results of running the
energy-aware scheduling for the different benchmarks, showing
the effect of the different factors and heuristics in the consumed
energy, makespan, the use of resources and the cloud elasticity.
The section is finalized with a set of experiments to evaluate the
performance of the scheduling algorithm evaluating how the time
to get the scheduling solution grows with the number of tasks and
resources.

8.1. Experiments

To carry out the experiments, we have implemented a
prototype of the proposed energy-aware scheduler and we have
installed it in a DELL Notebookwith Intel i7-2760QMCPU 2.40 GHz
with 8 cores and 8 GB of memory. We have implemented several
benchmarking applications with the COMPSs programming model
and we have extracted the DAG generated by the runtime which
is the input for the scheduler evaluation. We have simulated the
scheduling solutions proposed by the energy-aware scheduler for
running the applications in an private cloud infrastructure at the
Barcelona Supercomputing Center (BSC).

8.1.1. Cloud infrastructure
The private cloud hosted by the BSC consist of two types of

computingnodes, AMDand Intel,which are summarized in Table 2.
Each node AMD contains 8 cores, a physicalmemory of 32 GB and a
storage capacity of 800GB,while each Intel node contains 12 cores,
a physical memory of 32 GB and a storage capacity of 800 GB. For
both nodes is considered a VM representative integrated of four
cores, 4 GB of memory and 200 MB.

In each node AMD we can create up to 2 VMs without having a
significant performance degradation. The time required to set-up
the VM in these nodes is 175 s and three seconds to turn it off. For
the Intel nodes we can create up to three VMs. The time required
to set-up the VM is 85 s and two seconds to turn it off. The energy
profile for these two types of nodes has been already presented in
Section 6. For the first experiments wherewe evaluate the effect of
the different factors, we have reserved four nodes (2 AMD, 2 Intel)
of this private cloud, resulting in a maximum of 10 VMs and a total
of 40 cores. For the performance experiments, we have considered

266 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
Table 2
Simulation cloud infrastructure.

Element AMD node Intel node

Nodes 2–32 2–32
Physical, Memory, Storage 8, 32 GB, 800 GB 12, 32 GB, 800 GB

VMs 2 3
Cores, Memory, Storage 4, 4 GB, 200 MB 4, 4 GB, 200 MB

Setup, Down 175 s, 03 s 85 s, 02 s

Table 3
DAG size instances.

DAG size Tasks number

Small 10, 20, 30, 40, 50,60, 70, 80, 90
Medium 100, 200, 300, 400, 500, 600, 700, 800, 900
Large 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000

Table 4
Range of values for task duration and resource consumption.

Element Range values

Process time (ms) (85000, 1 000000)
Number of cores (1, 4)
Physical storage (MB) (100, 1000)
Physical memory (MB) (100, 1000)

Fig. 9. DAG types MT, GT and SG of 800 tasks.

64 nodes (32 AMD, 32 Intel), resulting in a maximum of 160 VMs
and a total of 640 cores.

8.1.2. Benchmark applications
As introducedbefore,wehave implemented four benchmarking

applications with the COMPSs programming model. We have
executed them in the cluster and the runtime has detected the data
dependencies and generated for each application a DAG of tasks.
The four types of generated DAGs are enumerated below and Fig. 9
depicts an example of how the different type of DAG looks like.

1. EP—Embarrassingly Parallel. Composed by n independent
parallel tasks.

2. MT—Matrix multiplication. Composed by n tasks in parallel
with a chain of dependencies.

3. GT—Gather. Composed by n tasks that perform a reductionwith
different predecessors and successors.

4. SG—Scatter–Gather. Composed by n tasks that perform an
expansion and a reduction with different predecessors and
successors.

For each type of DAG, we have generated three different sizes
(small, mediumand large)with different number of tasks as shown
in Table 3. Moreover, each task has different duration, consumes
a set of different resources, and has a different amount of data
dependencies. Table 4 shows the range of duration and resource
consumption for the different DAG tasks.
8.1.3. Scheduler configuration
To generate the scheduling solutions the importance factor has

to be selected, to indicate the importance of the energy versus
performance and vice versa, and the heuristic rules to rank the
priority of a task. The importance factor (α) can take any value
between [0, 1]. For the evaluation experiments, we have selected
different importance factors from 0 to 1 with intervals of 0.1.
Table 5 shows the relationship between the makespan (Cmax) and
energy flow (Eflow), for different importance factors.

Regarding the heuristic rules, four heuristics have been selected
to classify the initial order of how the scheduler is going to allocate
the tasks.

1. The LPT rule selects those tasks with longer processing time
when we have a subset of parallel tasks ready to be executed.
This rule tends to balance their workloads, because it is often
advantageous to delay tasks with shorter processing, because
these tasks will be useful at the end to balance the machines
workload.

2. The SPT rule is opposite to LPT rule. It first selects those tasks
with shorter process time, in order to prioritize the maximum
number of executed tasks.

3. The LNS rule selects those tasks with longer number of
successors. This rule is useful when the tasks are subjected to
precedence constraints, aimed at ensuring that the end of the
current task will fire a maximum number of parallel tasks.

4. The LSTF rule selects the task with longer sequence setup time.
This rule allows to prioritize tasks that require a longer setup
time for data transfer. This situation occurs when we have a
large number of predecessor tasks,where each predecessor task
needs to transfer to the successor tasks its input data.

8.1.4. Experiments size
In order to take into account the size of the experimentation,

the total combinations are summarized in 11 energy factors, four
heuristic rules, four types of DAGs with nine small and medium
runs and ten large runs as shown in Table 3, resulting a total of
4928 executions.

8.2. Impact of the importance factor in the energy/makespan trade-off

The first topic we have studied in the experimentation is the
trade-off between energy and time established by the variation
of the importance factor. An example of this trade-off is depicted
in Fig. 10. In that figure, we can see the estimated makespan and
energy consumption for the solutions provided by the scheduler
for a matrix multiplication (MT) DAG of 800 tasks with different
importance factor and applying two different heuristic rules LSTF
and LPT. For a factor 1.0 of energy, which corresponds to a factor
0.0 in makespan, we are obtaining the minimum values of energy
consumption and the maximum values of the makespan for both
heuristics. Subsequently, when the energy importance tends to
0.0, and the makespan factor tends to 1.0, we observe that for
both the heuristic rules, the energy consumption is growing to the
maximum values and themakespan is decreasing to the minimum
values of the makespan.

Table 6 shows the energy consumption and makespan for all
combinations of importance factors α and the four heuristic rules
for a run of MT DAG. Despite the behavior of the importance factor
is similar for all of the heuristics, the values are different and
depending on the DAG and resource configuration an heuristic
could provide us a better solution. Moreover, we can note that the
improvement in the makespan or the energy saving is associated
with the heuristic used and the importance factor. So, a final user
or a infrastructure provider could set the importance factor to
1 or 0 depending if it only wants to consider performance or

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 267
Table 5
Energy/time importance factor—α.

Func Importance factor—α

Eflow 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cmax 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Table 6
Energy consumption—Makespan per importance factor (α) and heuristic rule.

α SPT LPT LNS LSTF
Wh Cmax Wh Cmax Wh Cmax Wh Cmax

1.0 3140.3 37,834.4 3113.6 37,138.0 3128.5 37,527.4 3125.9 37,458.8
0.9 3140.3 37,834.4 3120.6 31,744.2 3128.5 37,527.4 3125.9 37,458.8
0.8 3140.3 37,834.4 3140.5 26,598.5 3181.7 24,208.1 3177.7 36,675.3
0.7 3195.7 32,390.9 3122.6 19,039.0 3133.5 23,325.6 3165.0 37,440.2
0.6 3153.1 35,640.5 3289.7 17,666.9 3132.8 19,013.9 3163.0 19,215.1
0.5 3183.3 19,607.3 3616.1 13,990.5 3578.9 14,469.8 3338.6 17,842.1
0.4 3375.4 18,399.9 3683.6 13,633.8 3755.8 13,067.8 3764.6 13,319.0
0.3 3282.1 18,753.7 3869.9 11,629.1 3837.1 11,659.3 3954.4 12,198.3
0.2 3827.4 13,701.0 3837.4 11,482.8 3811.0 11,651.2 3917.0 12,124.5
0.1 3985.7 12,349.4 3834.1 11,458.0 3848.8 11,569.1 3895.8 12,101.6
0.0 4024.8 12,521.1 3833.6 11,425.6 3838.8 11,453.3 3958.7 12,076.5
Table 7
Energy savings—Makespan degradation relationship per importance factor (α) and heuristic rule.

α SPT LPT LNS LSTF AVG
Wh% Cmax Wh% Cmax Wh% Cmax Wh% Cmax Wh% Cmax

1.0 −21.9 +231.1 −22.6 +225.0 −22.2 +228.4 −22.3 +227.8 −22.3 +228.1
0.9 −21.9 +231.1 −22.4 177.8 −22.2 +228.4 −22.3 +227.8 −22.2 +216.3
0.7 −20.6 +183.5 −22.4 +66.6 −22.1 +104.1 −21.3 +227.6 −21.6 +145.4
0.5 −20.9 +71.6 −10.1 +22.4 −11.0 +26.6 −17.0 +56.1 −14.8 +44.2
0.3 −18.4 +64.1 −3.8 +1.7 −4.6 +2.0 −1.7 +6.7 −7.1 +18.6
0.1 −0.9 +8.0 −4.7 +0.2 −4.3 +1.2 −3.2 +5.9 −3.3 +3.8
0.0 −0.00 +9.5 −4.7 +0.0 −4.6 +0.2 −1.6 +5.7 −2.7 +3.8
energy (degrading considerably the other term) or select one of the
intermediate values, where he can achieve energy savingwithin an
acceptable makespan degradation.

To illustrate it, Table 7 shows the energy savings and the
makespan degradation for the different importance factor—
heuristic combination. If we decide to save the maximum amount
of energy in range 0.7 ≤ α ≤ 1.0, the scheduler can provide
energy savings between−21% up to−22%, but paying amakespan
increases between+145% up to+228%. If we decide by an average
factor in range 0.3 ≤ α ≤ 0.7, the energy savings average is
between −7% up to −21% with a smaller makespan increment
(+18%). Finally, if we decide to not save energy in range 0.0 ≤ α ≤

0.3, we could also get a small energy savings average is between
−2%up to−7%by the selection of the correct rule,with a negligible
makespan increment.

8.3. Impact of the heuristic rule on the energy savings

Table 8 shows the best energy savings obtained for several runs
of the different DAG types (EP, MT, GT and SG) and the heuristic
which has provided the best result. For instance the scheduling for
a runof the EPDAGwith 500 tasks achieves a reduction of−20.61%.
The values of maximum and minimum energy consumption are
2357.54 and 1871.78 Wh and the LPT rule provides a better value
than SPT, LNS, and LSTF. The energy saving is calculated as the
difference between the solutions when applying the importance
factor 0.0 and 1.0.

In that table, we can also observe that heuristic rules are
associated to instance type to solve, thus, for instances type EP and
MT,weobserved that the heuristic rulewhich gives better results is
LPT. For instances type GT is LNS rule, and for instances type DG is a
combination between SPT rule and LNS rule.With this observation,
we could improve the performance of our algorithm by reducing
the search space by just evaluating the adequate heuristic rule
according to the DAG characteristics.

8.4. Importance factor and resource usage

Another observation we want to highlight is the relationship
between the importance factor and the use of resources which is
shown in Fig. 11. The figure shows the number of VMs and which
type of node is used for different important factors. When we have
configured the scheduler without energy importance (α = 0.0),
it tends to use the maximum number of resources. In the case of
the figure, the scheduler uses all the nodes estimating an energy
consumption of Eflow = 3853.56 Wh (equivalent to 13,800,802 J)
and a makespan of Cmax = 11, 425 s. When we increase the
energy importance, the scheduler tends to prioritize the efficient
nodes. In the case of α = 0.7, the scheduler only uses the Intel
nodes, estimating an energy consumption of Eflow = 3122.61 Wh
(equivalent to 11,241,380 J) and a makespan of Cmax = 19, 039 s.
Finally, when the energy factor is the only priority (α = 1.0), the
trend is to use the minimum number of nodes with the lowest
power consumption. In the case of the figure, the scheduler only
uses one of the Intel nodes, estimating an energy consumption of
Eflow = 3113, 55 Wh in Cmax = 37, 137 s which is equivalent to
11,208,794 J.

This is due to the energy cost of keeping the nodes running
with low load. The idle power consumption of the node is very
important (it can consume up to half of the total energy), and
having an unused node produces an important waste of energy.
Fig. 12 shows the power consumption of the AMD and Intel nodes
in an idle state and the power consumption when we use the
different cores of the node. As you can see, in the figure the Intel

268 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
Table 8
Energy savings results per DAG type and heuristic rule.

T DAG type EP DAG type MT DAG type GT DAG type SG
Max
Wh

Min
Wh

Saving Rule Min
Wh

Max
Wh

Saving Rule Min
Wh

Max
Wh

Saving Rule Min
Wh

Max
Wh

Saving Rule

100 566.98 386.71 −31.80% LPT 386.71 1054.20 −51.54% LNS 1054.20 510.85 −40.02% LNS 510.85 829.77 −46.81% SPT
200 1022.77 752.57 −26.42% LPT 752.57 1861.35 −55.27% SPT 1861.35 832.61 −34.12% SPT 832.61 1369.37 −40.44% LNS
300 1446.04 1120.09 −22.54% LPT 1120.09 2056.81 −40.88% SPT 2056.81 1215.91 −30.80% LNS 1215.91 1837.24 −34.19% SPT
400 1966.65 1511.62 −23.14% LPT 1511.62 2432.36 −35.49% SPT 2432.36 1569.23 −26.21% SPT 1569.23 2336.27 −30.97% SPT
500 2357.54 1871.68 −20.61% LPT 1871.68 2886.17 −32.09% LNS 2886.17 1959.92 −25.55% LNS 1959.92 2827.19 −29.89% LNS
600 2821.23 2242.54 −20.51% LPT 2242.54 3164.18 −25.65% LNS 3164.18 2352.46 −24.69% LNS 2352.46 3334.45 −29.35% SPT
700 3284.60 2614.56 −20.40% LPT 2614.56 3632.46 −24.76% LPT 3632.46 2732.92 −23.90% LNS 2732.92 3821.87 −26.30% LSTF
800 3785.64 3014.62 −20.37% LPT 3014.62 4024.85 −22.64% LPT 4024.85 3113.55 −22.73% LNS 3113.55 4261.20 −26.21% SPT
900 4183.82 3383.89 −19.12% LPT 3383.89 4502.43 −21.98% LPT 4502.43 3512.95 −21.47% LNS 3512.95 4750.86 −26.02% SPT

1000 4708.49 3791.76 −19.47% LPT 3791.76 4955.27 −21.36% LPT 4955.27 3897.05 −21.33% LSTF 3897.05 5284.20 −24.88% LNS
Fig. 10. Trade-off between energy and makespan.
nodes has less power usage, so this is the reasonwhy the scheduler
has prioritized the Intel nodes.

A similar behavior is observed with the VM elasticity. In this
case, each VM has a cost in time (setup and down time) and
its corresponding energy consumption. The MHRA algorithm will
decide to use an additional VM depending on how important is
the VM management cost (in time and energy) according to the
objective function. To illustrate the VM, we use a SG DAG because
in the scatter phase the number of parallel tasks increases, in the
gather phase the number of parallel tasks is reduced.

Fig. 13 shows when the scheduler decides to create and destroy
aVM for the SGDAGof 800 tasks for different importance factors. In
the first case (α = 0.0) the energy consumption is not considered
and the scheduler algorithm is looking for resource allocation to
execute tasks in any VM of any node. Therefore, while the number
of tasks grows, the MHRA algorithm of the scheduler starts to
select new nodes and create new VMs in increasing order, using
all available resources on the cloud in order to minimize the
makespan. In the second case, when looking for a balance between
time and energy (α = 0.7), the scheduler is less aggressive in
the VM creation deciding to create few VMs and use it more time.
This is because using less VMs, reduce the energy consumed by
the hypervisor in the VMmanagement. Moreover, using less nodes
during more lime reduces the idle time, and using less resources
increase the data locality and reduces the number of transfers.
Finally, in the latest case (α = 1.0). it only creates 3 VMs in the
most energy-efficient node and uses them during all the time.

8.5. Performance and overhead

To finalize the experimentation, we have analyzed the perfor-
mance of the proposed scheduling system by measuring the time
spent by the scheduler to get the scheduling solution (Scheduling
Time) for a selected importance factor depending on the number
of tasks and resources. Fig. 14 show the results of these time mea-
surements. The first part of the figure shows how the time to get
the scheduling solution is growing when we increase the number
of tasks. In the second part of the figure, we have kept the num-
ber of tasks fixed in a relatively big amount of tasks (8000 tasks)
and we havemeasured the scheduling time increasing the number
resources to consider in the scheduling problem (10–160 VMs).

To illustrate how important is this scheduling overhead, we
have compare this scheduling time with application execution
time (makespan). For instance, with the largest measured schedul-
ing time (2717 ms.) for 8000 Tasks and 160 VMs, we can compare
to the execution time of an EP DAG of this number of tasks with
10 s duration tasks which is around 130 s. It gives an overhead of
2%. Note that we have consider the time to get the best scheduling
solution for the overhead evaluation. It includes the evaluate the
whole graph for the different heuristics. However, the scheduling
solution calculation could run in background in the runtime thread
during the tasks are running. When all resource are full, the run-
time remains at idle state until the end of the running tasks and
can use this time to improve the solution by using backtracking
techniques.

9. Conclusion and future work

In this paper, we have presented an energy-aware scheduling
system for task-based applications. The scheduler aims atminimiz-
ing a normalized bi-objective function which combines the energy
consumption and themakespan (total execution time). Thosemet-
rics are combined by an importance factorwhich enables users and
service providers to indicatewhich ismore important for their pur-
poses: save energy or performance.

We have proposed amodel for estimating the energy consumed
by the execution of a given application in a set of resources.
This model estimates the application energy consumption by

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 269
(a) Importance factor α = 0.0.

(b) Importance factor α = 0.7.

(c) Importance factor α = 1.0.

Fig. 11. Resource usage distribution for MT DAG (800 tasks).

aggregating the consumption of the different elements of the
application tasks execution, data transfers, VM management and
the node background services. In addition to this model, we have
proposed a methodology to automatically extract the resource
power profile required to calculate the energy estimations.

The scheduler has been designed to be part of the COMP Super-
scalar (COMPSs) runtime scheduler. Due to this constraint, we have
proposed a Multi-heuristic Resource Allocation (MHRA) algorithm
to get the best scheduling solution in polynomial time. Applica-
tions in COMPSs are represented as Directed-Acyclic-Graph (DAG)
of tasks dependencies which will be the input of the MHRA algo-
rithm. For the different tasks graph are ranked by a set of heuristic
(a) Importance factor α = 0.0.

(b) Importance factor α = 0.7.

(c) Importance factor α = 1.0.

Fig. 13. VM elasticity for the SG DAG (800 tasks) with different importance factors.

rules (such as SPT, LPT, LNS and LSTF) which decides the order in
which the resource allocation algorithm is going to schedule them
by selecting the resource which minimize the cost function.
Fig. 12. Energy spend distribution AMD and Intel nodes.

270 F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271
600

500

400

300

200

100

0

T
im

e
(m

se
c)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Tasks

(a) Scheduling time vs number of tasks (fixed VMs).

T
im

e
(m

se
cs

)

3000

2500

2000

1500

1000

500

0
10 20 40 80 160

Virtual Machines

(b) Scheduling time vs number of resources (fixed tasks).

Fig. 14. Scheduling performance depending on the number of tasks and resources
considered in the scheduling problem.

We have implemented a prototype of this scheduler and we
have evaluated with different types of DAGs such as EP, MT, ST and
GT. We have seen how the scheduler behaves depending on the
selected importance factor and its relationship with the makespan
and energy consumption. The outcomes of the algorithm show
that a considerable energy amount can be saved, depending on
the size of the instance and type of DAG. For instance in the
case of an energy importance configuration, it allows to save an
average of −22.44%, −33.17%, −27.08% and −31.50% for EP, MT
andWP, SG respectively, with respect to themakespan importance
configuration.

With regards the resource usage, when amakespan importance
configuration is set, the scheduler decides to use the maximum
number of VMs that the infrastructure can provide, having an
aggressive VM creation response. In contrast, when a high energy
importance factor is set, the algorithm tries to use the least number
of nodes as possible, and a maximum number of VMs per node in
order to save energy which leads to increasing execution times.

Future work associated with the integration of the energetic
model proposed with COMPSs, also the addition of formulation to
calculate the monetary cost associated with the use of VMs and
delivery times, with the aim of increasing the rates of return and
profits for service providers.

Acknowledgments

This work has been supported by the Spanish Govern-
ment (contracts TIN2015-65316-P, TIN2012-34557, CSD2007-
00050, CAC2007-00052 and SEV-2011-00067), by Generalitat de
Catalunya (contract 2014-SGR-1051), by the European Commis-
sion (Euroserver project, contract 610456) andbyConsejoNacional
de Ciencia y Tecnología of Mexico (special program for postdoc-
toral position BSC-CNS-CONACYT contract 290790, grant number
265937).
References

[1] J. Koomey, Growth in data center electricity use 2005 to 2010, A report by
Analytical Press, completed at the request of The New York Times, 2011,
p. 9.

[2] C. Pettey, Gartner estimates ict industry accounts for 2% of global co2
emissions, 14, 2007, p. 2013. Dostupno na: https://www.gartner.com/
newsroom/id/503867.

[3] R. Buyya, A. Beloglazov, J. Abawajy, Energy-efficient management of data
center resources for cloud computing: a vision, architectural elements, and
open challenges, 2010. arXiv preprint arXiv:1006.0308.

[4] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, R. Rajkumar,
Critical power slope: understanding the runtime effects of frequency scaling,
in: Proceedings of the 16th International Conference on Supercomputing,
ACM, 2002, pp. 35–44.

[5] V. Tiwari, S. Malik, A. Wolfe, Compilation techniques for low energy: An
overview, in: Low Power Electronics, Digest of Technical Papers., IEEE
Symposium, IEEE, 1994, pp. 38–39.

[6] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing,
Future Gener. Comput. Syst. 28 (2012) 755–768.

[7] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, R. Sakellariou,
Energy-constrained provisioning for scientific workflow ensembles, in: Third
International Conference on Cloud and Green Computing (CGC), IEEE, 2013,
pp. 34–41.

[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of np-Completeness, Freeman, San Francisco, LA, 1979.

[9] E. Tejedor, R.M. Badia, Comp superscalar: Bringing grid superscalar and gcm
together, in: 8th IEEE International Symposium on Cluster Computing and the
Grid, IEEE, 2008, pp. 185–193.

[10] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo, D. Lezzi,
R. Sirvent, D. Talia, R.M. Badia, Servicess: An interoperable programming
framework for the cloud, J. Grid Comput. 12 (2014) 67–91.

[11] W. Chen, R.F. da Silva, E. Deelman, R. Sakellariou, Using imbalance metrics
to optimize task clustering in scientific workflow executions, Future Gener.
Comput. Syst. 46 (2015) 69–84.

[12] F. Zhang, J. Cao, K. Li, S.U. Khan, K. Hwang, Multi-objective scheduling of many
tasks in cloud platforms, Future Gener. Comput. Syst. 37 (2014) 309–320.

[13] L.Wang, G. Von Laszewski, J. Dayal, F.Wang, Towards energy aware scheduling
for precedence constrained parallel tasks in a cluster with dvfs, in: 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid), IEEE, 2010, pp. 368–377.

[14] C.-M. Wu, R.-S. Chang, H.-Y. Chan, A green energy-efficient scheduling
algorithm using the dvfs technique for cloud datacenters, Future Gener.
Comput. Syst. 37 (2014) 141–147.

[15] A. Beloglazov, R. Buyya, Energy efficient allocation of virtualmachines in cloud
data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing (CCGrid), IEEE, 2010, pp. 577–578.

[16] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility, Future Gener. Comput. Syst. 25 (2009) 599–616.

[17] D. Lucanin, I. Pietri, I. Brandic, R. Sakellariou, A cloud controller for
performance-based pricing, in: IEEE 8th International Conference on Cloud
Computing (CLOUD), IEEE, 2015, pp. 155–162.

[18] R. Weron, Modeling and Forecasting Electricity Loads and Prices: A Statistical
Approach, Vol. 403, John Wiley & Sons, 2007.

[19] H. Xu, C. Feng, B. Li, Temperature aware workload management in geo-
distributed datacenters, in: ACMSIGMETRICS Performance Evaluation Review,
Vol. 41(1), ACM, 2013, pp. 373–374.

[20] K. Bessai, S. Youcef, A. Oulamara, C. Godart, S. Nurcan, Bi-criteria workflow
tasks allocation and scheduling in cloud computing environments, in: IEEE
5th International Conference on Cloud Computing (CLOUD), IEEE, 2012,
pp. 638–645.

[21] M. Voorneveld, Characterization of pareto dominance, Oper. Res. Lett. 31
(2003) 7–11.

[22] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, J. Wang, Cost-efficient task
scheduling for executing large programs in the cloud, Parallel Comput. 39
(2013) 177–188.

[23] K. Chronaki, A. Rico, R.M. Badia, E. Ayguadé, J. Labarta, M. Valero, Criticality-
aware dynamic task scheduling for heterogeneous architectures, in: Proceed-
ings of the 29th ACM on International Conference on Supercomputing, ACM,
New York, NY, USA, 2015, pp. 329–338.

[24] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta, L. Martinell, X. Martorell, J. Planas,
Ompss: a proposal for programming heterogeneous multi-core architectures,
Parallel Process. Lett. 21 (2011) 173–193.

[25] E. Ayguadé, R.M. Badia, P. Bellens, D. Cabrera, A. Duran, R. Ferrer, M. González,
F. Igual, D. Jiménez-González, J. Labarta, et al., Extending openmp to survive
the heterogeneous multi-core era, Int. J. Parallel Program. 38 (2010) 440–459.

[26] D. Lezzi, F. Lordan, R. Rafanell, R.M. Badia, Execution of scientific workflows on
federated multi-cloud infrastructures, in: Euro-Par 2013: Parallel Processing
Workshops, Springer, 2013, pp. 136–145.

[27] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer Science &
Business Media, 2012.

[28] I.Y. Kim, O. De Weck, Adaptive weighted-sum method for bi-objective
optimization: Pareto front generation, Struct. Multidiscip. Optim. 29 (2005)
149–158.

https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867
https://www.gartner.com/newsroom/id/503867
http://arxiv.org/1006.0308
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref4
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref5
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref6
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref7
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref8
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref9
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref10
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref11
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref12
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref13
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref14
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref15
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref16
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref17
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref18
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref19
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref20
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref21
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref22
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref23
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref24
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref25
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref26
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref27
http://refhub.elsevier.com/S0167-739X(16)30214-X/sbref28

F. Juarez et al. / Future Generation Computer Systems 78 (2018) 257–271 271
Fredy Juarez has an engineering degree on Computing
Systems at the Technical Institute of Ciudad Maduro
(ITCM) a M.Sc. in Distributed Systems at Centro Nacional
de Investigación y Desarrollo Tecnológico (CENIDET)
and a Ph.D. in combinatorial optimization for resource
allocation by the Universidad Autónoma del Estado
de Morelos (UAEM). He worked in the Oil industry
and Instituto de Investigaciones eléctricas deploying
HPC clusters and Grids and he has been an part-time
professor at Universidad Autónoma del Estado de Morelos
and Universidad Politécnica Metropolitana de Hidalgo.

Currently, he has a postdoc position at Barcelona Supercomputing Center in the
Workflows and Distributed Computing group.

Jorge Ejarque has an engineering degree on Telecommu-
nications (2005) and a M.Sc. on Computer Architecture
Network and System (2009) at theUPC. In 2005, heworked
as IT consultant in Better Consulting, and at the endof 2005
he joined the Grid Computing group at BSC. During his ca-
reer at the BSC, he has contributed in the design and de-
velopment of different tools and programming models for
HPC in distributed platforms. He has been involved in sev-
eral National and International R&D projects (CoreGRID,
BREIN, NUBA and OPTIMIS) and he was a member of the
experts’ board of the Spanish National Grid Initiative and

he has been a reviewer of several journals and part of the program committee
in different conferences. His current research interests are focused on three ar-
eas: semantic interoperability of distributed computing platforms, which is his cur-
rent Ph.D. topic; parallel programming models for easydevelopment in distributed
platforms; and energy-efficient execution of distributed applications. Regarding
this topic, it is currentlyworking on two EU funded project ASCETIC and Euroserver.

Rosa M. Badia holds a Ph.D. on Computer Science (1994)
from the Technical University of Catalonia (UPC). She
is a Scientific Researcher from the Consejo Superior de
Investigaciones Científicas (CSIC) and team leader of the
Workflows and Distributed Computing research group
at the Barcelona Supercomputing Center (BSC). She was
involved in teaching and research activities at the UPC
from 1989 to 2008, where shewas an Associated Professor
since year 1997. From 1999 to 2005 she was involved
in research and development activities at the European
Center of Parallelism of Barcelona (CEPBA). Her current

research interest is programming models for complex platforms (from multicore,
GPUs to Grid/Cloud). The group lead by Dr. Badia has been developing StarSs
programming model for more than 10 years, with a high success in adoption by
application developers. Currently the group focuses its efforts in two instances of
StarSs: OmpSs for heterogeneous platforms and COMPSs/PyCOMPSs for distributed
computing including Cloud. For this last case, the group has been doing efforts
on interoperability through standards, for example using OCCI to enable COMPSs
to interact with several Cloud providers at a time. Dr. Badia has published more
than 150 papers in international conferences and journals in the topics of her
research. She has participated in several European projects, for example BEinGRID,
Brein, CoreGRID, OGF-Europe, SIENA, TEXT and VENUS-C, and currently she is
participating in the project Severo Ochoa (at Spanish level), ASCETIC, Euroserver,
The Human Brain Project, EU-Brazil CloudConnect, the BioExcel CoE, NEXTGenIO,
and trasnPLANT and is a member of HiPEAC2 NoE.

	Dynamic energy-aware scheduling for parallel task-based application in cloud computing
	Introduction
	Related work
	COMP Superscalar overview
	Runtime

	Problem formulation
	Energy model
	Energy consumption per task
	Task start time
	Task setup time
	Task end time
	Task energy consumption

	Energy consumption per VMs
	Energy consumption per node
	Makespan and energy flow

	Power profiling
	Power profiling procedure
	Testbed power profile

	Multi-heuristic resource allocation
	Ranking initial sequences
	Task resource allocation

	Experimental evaluation
	Experiments
	Cloud infrastructure
	Benchmark applications
	Scheduler configuration
	Experiments size

	Impact of the importance factor in the energy/makespan trade-off
	Impact of the heuristic rule on the energy savings
	Importance factor and resource usage
	Performance and overhead

	Conclusion and future work
	Acknowledgments
	References

