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Abstract 
In order to address the explosive demand for high-capacity and omnipresent wireless 

access, modern cell-based wireless networks are slowly adopting two major solution 

roadmaps. The first is the employment of small-cell formations in order to increase the 

overall spectral efficiency, whereas the second is the employment of higher frequency 

bands, such as the mm-wave 60GHz band, that offers vast amounts of bandwidth. De-

pending on the specific application, the above solutions inevitably require the installa-

tion and operational management of large amounts of Base Stations (BSs) or Access 

Points (APs), which ultimately diminishes the overall cost-effectiveness of the archi-

tecture. In order to reduce the system cost, Radio over Fiber (RoF) technology has been 

put forward as an ideal candidate solution, due to the fact that it provides functionally 

simple antenna units, often termed as Remote Antenna Units (RAUs) that are intercon-

nected to a central managing entity, termed as the Central Office (CO), via an optical 

fiber. Although extensive research efforts have been dedicated to the development of 

the physical layer aspects regarding RoF technologies, such as CO/RAU physical layer 

design and radio signal transport techniques over fiber, very limited efforts have con-

centrated on upper layer and resource management issues. In this dissertation, we are 

concerned with access control and resource management of RoF-based mm-wave net-

work architectures targeting the exploitation of the dual medium and its centralized 

control properties in order to perform optimal optical/wireless/time resource allocation.  

We propose a Medium-Transparent MAC (MT-MAC) protocol that concurrently ad-

ministers the optical and wireless resources of a 60GHz RoF based network, seamlessly 

connecting the CO to the wireless terminals through minimal RAU intervention. In this 

way, the MT-MAC protocol forms extended reach 60GHz WLAN networks offering 

connectivity amongst wireless devices that are attached to the same or different RAUs 

under both Line of Sight (LOS) and non LOS conditions. The notion of medium-trans-

parency relies on two parallel contention periods, the first in the optical domain and the 



Abstract 

viii 

second in the wireless frequency and time domains, with nested dataframe structures. 

The MT-MAC operation is based on a proposed RAU design that allows for wavelength 

selectivity functions, thus being compatible with completely passive optical distribution 

network implementations that are predominately used by telecom operators today.  Two 

variants of the MT-MAC protocol are considered. The first offers dynamic wavelength 

allocation with fixed time windows, whereas the second targets fairness-sensitive ap-

plications by offering dynamic wavelength allocation with dynamic transmission op-

portunity window sizes, based on the number of active clients connected at each RAU. 

Both variants of the protocol are evaluated by both simulation and analytical means. 

For the latter part, this thesis introduces two analytical models for calculating saturation 

throughput and non-saturation packet delay for the converged MT-MAC protocol.  

Finally, this thesis presents an extensive study regarding the network planning and for-

mation of 60GHz Gigabit WLAN networks when the latter are deployed over existing 

Passive Optical Network (PON) infrastructures. Three possible architectures where 

studied: i) the RoF approach, ii) the Radio & Fiber approach and iii) the hybrid RoF-

plus-R&F approach that combines the properties of both the architectures. During the 

elaboration of this thesis, one major key conclusion has been extracted: there is a fun-

damental requirement for implementing new converged optical/wireless MAC proto-

cols, that have the complete overview of both available resources in order to effectively 

administer the hybrid Radio-over-Fiber networks.  

 

Keywords 
60 GHz wireless networks; 60GHz Local Access Network; Medium Access Control pro-

tocol; medium-transparent MAC; Passive Optical Network; Radio-over-Fiber net-

works 
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Resumen 
A fin de atender la demanda explosiva de alta capacidad y acceso inalámbrico omni-

presente, las redes inalámbricas basadas en celdas están poco a poco adoptando dos 

principales guías de solución. La primera es el empleo de formaciones de celdas peque-

ñas con el fin de aumentar la eficiencia espectral global, mientras que la segunda es el 

empleo de bandas de frecuencia superior, como la banda de 60GHz, la cual ofrece una 

gran cantidad de ancho de banda. Dependiendo de la aplicación en específico, las solu-

ciones anteriores inevitablemente requieren de una instalación y una gestión operativa 

de grandes cantidades de Estaciones Base o Puntos de Acceso, que en última instancia 

disminuye la rentabilidad de la arquitectura. Para reducir el coste, la tecnología radio-

eléctrica por fibra (RoF) se presenta como una solución ideal debido al hecho de que 

proporciona unidades de antenas de simple funcionamiento, a menudo denominadas 

Unidades de Antenas Remotas (RAUs), las cuales están interconectadas a una entidad 

central de gestión, denominada Oficina Central (CO), a través de la fibra óptica. A pesar 

de que se han dedicado muchos esfuerzos de investigación al desarrollo de varios as-

pectos de la capas física con respecto a las tecnologías RoF, muy pocos esfuerzos se 

han concentrado en la capa superior y cuestiones de gestión de recursos. En esta tesis, 

nos enfocando en el control de acceso y gestión de recursos de arquitecturas RoF y 

comunicaciones milimétricas, con el fin de aprovechar y explotar el medio dual y las 

propiedades para realizar una óptima asignación de los recursos ópticos, inalámbricos 

y temporales. 

Nosotros proponemos un protocolo Transparente al Medio MAC (MT-MAC) que si-

multáneamente administre los recursos ópticos e inalámbricos de una red RoF a 60GHz, 

conectando a la perfección el CO a los terminales inalámbricos a través de una mínima 

intervención RAU. El protocolo MT-MAC forma unas redes WLAN 60GHz de alcance 

extendido, ofreciendo así conectividad entre los dispositivos inalámbricos que están 

conectados al mismo o diferentes RAUs bajo con o sin Línea de Vista (condiciones 

LOS o NLOS) respectivamente. La noción de transparencia al medio se basa en dos 
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períodos de contención paralelos, el primero en el dominio óptico y el segundo en la 

frecuencia inalámbrica y dominio del tiempo, con estructuras de datos anidados. La 

operación MT-MAC se basa en proponer un diseño RAU que permita la selectividad 

de funciones de longitud de onda. Dos variantes del protocolo MT- MAC son conside-

rados; el primer ofrece asignación de longitud de onda dinámica con ventanas de tiempo 

fijo, mientras que la segunda tiene como objetivo entornos de aplicaciones sensibles 

ofreciendo asignación de longitud de onda con tamaño de ventana de oportunidad de 

transmisión dinámico, basado en el número de clientes conectados en cada RAU. Am-

bas variantes del protocolo están evaluadas tanto por medios analíticos como de simu-

lación. En la segunda parte, esta tesis introduce dos modelos analíticos para calcular el 

rendimiento de saturación y no saturación del retardo de paquetes para el protocolo 

MT-MAC convergente. Finalmente, esta tesis presenta un extenso estudio de la plani-

ficación de red y la formación de redes 60GHz Gigabit WLAN cuando esta se encuentra 

desplegada sobre las ya existente infraestructuras de Redes Ópticas Pasivas (PONs). 

Tres posibles arquitecturas han sido estudiadas: i) el enfoque RoF, ii) el enfoque Radio 

y Fibra, y iii) el enfoque híbrido, RoF más R&F el cual combina las propiedades de 

ambas arquitecturas anteriormente mencionadas. 

Durante la elaboración de esta tesis, se ha extraído una importante conclusión: hay un 

requerimiento fundamental para implementar nuevos protocolos ópticos/inalámbricos 

convergentes, que tengan una completa visión de ambos recursos disponibles para po-

der administrar efectivamente las redes de tecnología RoF. 

Palabras clave  
60 GHz redes inalámbricas; 60GHz Red de Acceso Local; Protocolo de control de 

Acceso al Medio; MAC transparente del medio; Red Óptica Pasiva; Radio por redes 

de fibra 
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 Introduction 
1.1 Consolidation of wired and wireless infrastructure 
In recent years we have witnessed the profound mobile data service proliferation and 

the ever-growing need for fast omnipresent wireless access caused by a major shift of 

consumer trends. The service demands of modern users have evolved around the “eve-

rything in the cloud” notion, which envisions an unhindered desktop-like experience 

while the consumers are on the move. Besides their staggering sales figures [1], smart 

mobile devices are increasingly becoming the main Internet access means for the ma-

jority of the users [2], and as such they are used for a plethora of demanding applications 

like video streaming and videoconference that require better network performance and 

guaranteed resources (Fig. 1-1) [3]. This paradigm shift constitutes the dawn of a new 

age in the telecommunications industry that has placed an unprecedented strain on the 

existing infrastructure, quickly highlighting its weaknesses regarding the offered ca-

pacity, the coverage area and the quality of the provided services. 

 

In order to respond to the mobile revolution, the industry has put forward two ap-

proaches. The first is the employment of small-cells, i.e., short range Base Stations 

 

Fig. 1-1 Evolution of mobile Internet traffic per application type (Figures in parentheses refer to 
2015 and 2020 traffic share.) Source: Cisco VNI Mobile, 2016 
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(BSs) that are densely deployed and can accommodate more users by enhancing the 

spectral efficiency and frequency reuse factors of the network. Hyper-dense deploy-

ment of small-cells is currently at the spotlight of research effort, since it is considered 

as a key enabling technique towards realizing the next generation ubiquitous, ultrahigh 

bandwidth communication system, known as 5G [4]-[8]. The second approach is the 

employment of the millimeter wave (mm-wave) frequency bands that offer immense 

bandwidth in both licensed and unlicensed spectra, given however at the cost of high 

propagation losses. The above solutions inevitably lead to complicated and costly de-

ployments since demanding functions such as signal processing, handover and fre-

quency allocation algorithms have to be carried out at the numerous antenna sites, ef-

fectively multiplying the amount of active equipment that has to be deployed. To this 

end, Radio-over-Fiber (RoF) technology has drawn significant attention as a highly ef-

fective paradigm for consolidating all required network intelligence in a central unit 

and thus alleviating the complexity, functionality and cost requirements away from the 

antenna equipment.  

A typical RoF network is comprised of two parts: i) the Central Office (CO), where all 

routing, Medium Access Control (MAC) and resource management functions are per-

formed, and ii) a large number of functionally simple and compact Remote Antenna 

Units (RAUs) that broadcast the wireless signal. The CO is connected to the RAUs 

through an optical fiber link, which can be in either bus, ring or tree topology. The 

deployment of an array of inexpensive RAUs results in vast and dense coverage wire-

less networks that optimally combine the mobility and ubiquity advantages of a wireless 

link with the high speed and long-distance service delivery credentials of fiber-based 

infrastructure [9],[10]. In summary, the most important characteristics of the RoF tech-

nology are [11]:  

• All intelligent system control functions, such as MAC and modulation/demod-

ulation schemes, are performed by the CO, thus simplifying the design of the 

RAU. The primary functions of the RAUs are optical/wireless conversion, Ra-

dio Frequency (RF) amplification, and wireless/optical conversion. 

• RoF’s centralized configuration allows sensitive equipment to be located in 

safer environments and enables the cost of expensive components to be shared 
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among several RAUs. Moreover, a centralized location makes upgrading pro-

cedures easier and therefore future proofs RoF installations. 

• Due to the very simple RAU structure, the hardware reliability is higher and the 

system maintenance becomes simpler.  

• In principle, optical fiber in RoF is transparent to radio interface format such as 

modulation, radio frequency, bitrate and protocol functions. Thus, multiple ser-

vices can be concurrently supported on a single fiber. 

• Fiber has very low loss properties and is immune to Electro-Magnetic Interfer-

ence (EMI), therefore making possible the transmission of RoF signals over 

long distances. 

• The vast capacity of the optical fiber enables the parallel co-habitation of RoF 

technologies with already deployed optical networks such as the Ethernet Pas-

sive Optical Networks (EPONs)[12] or Gigabit Passive Optical Networks 

(GPONs)[13] that are used nowadays to provide wireline broadband access to 

domestic and corporate users, therefore promoting the quick and non-disruptive 

adoption by the operators.  

Outside the scope of small-cells and RoF applications, mm-wave radio has been studied 

extensively for a plethora of short range bandwidth-demanding applications[14]-[17]. 

The industry’s conviction towards the adoption of the mm-wave spectrum can also be 

witnessed by the significant number of emerging or recently issued 60 GHz standards 

such as the 802.11ad[21], the 802.15.3c[22], the WirelessHD[23] and the 802.11ay[24] 

protocols. The high propagation losses, exhibited by mm-wave radio, inherently reduce 

the cell size, rendering mm-wave the ideal supporting technology to accommodate the 

notion of small-cell formation. To this end, the consolidation of RoF technologies with 

mm-wave bands has received considerable attention [25]-[32], since a converged mm-

wave/RoF system offers a great potential to support Very High Throughput (VHT) 

wireless applications in very dense environments and in a cost-effective manner. In 

such a system, the RF signals to and from the RAUs can either be mm-wave modulated 

optical signals (RF-over-fiber)[29],[31], or lower Intermediate Frequency (IF) subcar-

riers (IF-over-fiber) [27],[28]. Although transmitting mm-wave signals directly over 
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fiber carries the advantage of a simplified RAU design, it is susceptible to chromatic 

dispersion that can limit the transmission distance [33]. In contrast, IF signals’ trans-

mission is much less susceptible to chromatic dispersion effects, at the cost however of 

incorporating additional electronic hardware such as a mm-wave local oscillator (LO) 

for frequency up-and down-conversion operations.  

The combined mm-wave RoF research activities fueled by rapid developments in both 

photonic and mm-wave technologies suggest that RoF technologies will play a crucial 

role in the years to come. However, the physical layer technological progress has not 

been followed by respective advances towards enriching the functional properties of 

RoF applications with the traditional benefits of single medium networks, such as end 

to end resource management and dynamic allocation schemes. As a result, it is required 

to reconsider conventional resource management schemes in the context of RoF net-

works. 

1.2 Motivation and contribution 
As mentioned previously, in networks comprising a large number of small cells, two 

major challenges stand out:  i) the system must be very cost-effective in order to enable 

the coverage of large areas and ii) resource allocation should be fast and efficient in 

both wired and wireless domains.  

Regarding the first issue, the most promising candidate technology is a RoF based net-

work since the latter enables the employment of functionally simple and cost-effective 

antenna units in contrast to active Access Point (AP)/BS equipment utilized in conven-

tional wireless systems. However, the second issue remains a challenge and is difficult 

to realize as all conventional access schemes have been specifically designed for the 

medium that are destined to be deployed and are therefore incapable of administering 

dual-media resources, as is the case of RoF networks. To this day, two major schools 

of thought exist regarding resource allocation and access control in the Fiber/Wireless 

converged networks. The first approach, termed as Radio & Fiber(R&F), employs two 

distinct optical and wireless APs, each one running a distinct MAC protocol and ad-

ministering the respective portion of the network, with all intra-communication be-

tween the two networks taking place at the routers’ interfaces. This approach demands 

the installation of active communication equipment at all antenna sites, capable of run-
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ning the respective MAC, routing, buffering and flow control functionalities at the me-

dia interface. Considering the short range and high propagation losses of the mm-wave 

radio, a large number of antenna elements will be required to provide coverage in typ-

ical environments, therefore constituting this approach as prohibitively expensive and 

ultimately unsuitable for application in converged small-cell/mm-wave networks. The 

second approach is the direct implementation of currently existing wireless MAC pro-

tocols at the CO station. Considering that all wireless MAC protocols have been de-

signed for exclusive use over the wireless medium, they are completely unaware of the 

optical physical layer that lies between the RAU and the CO, and therefore demand the 

continuous existence of active optical links between the latter entities, in order to 

achieve valid operation. In this way, the static wavelength assignment leads to major 

resource and energy waste, since every RAU cell must maintain a persistently active 

connection to the CO, even when not in use.  

The aforementioned characteristics stress the need for revisiting various aspects of com-

munications, such as resource allocation, scheduling, channel access and performance 

modelling when addressing converged optical and wireless architectures. The work pre-

sented in this dissertation goes beyond the two previously mentioned approaches and 

proposes an entire new class of functionally converged RoF network architectures and 

protocols aimed at providing optimal and concurrent optical/wireless resource alloca-

tion by exploiting the intertwined architecture and centralized control capabilities of the 

RoF schemes. In particular, this dissertation concerns the formation, administration and 

evaluation of RoF-based WLAN networks operating at mm-wave bands in indoor en-

vironments. The case of mm-wave communication in indoor spaces presents a particu-

lar challenge since mm-wave signals are extremely attenuated by walls and other rela-

tively large obstacles due to the fact that their electromagnetic properties resemble more 

closely that of a particle and less that of a wave. As opposed to outdoor environments, 

where the lack of large obstacles promotes oxygen absorption as the dominant range-

limiting factor [15],[17], in indoor cases the signal is confined by walls and therefore 

the cell size is diminished to the dimensions of a typical room. In turn the very small 

cell sizes demand the deployment of an even larger number of antennas in order to 

cover a broad service area, therefore increasing the network dimensionality, resource 

allocation management and energy consumption overheads.  
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The work presented here aims at responding at all of the aforementioned challenges and 

proposes a fully converged centralized architecture and a dual access control scheme 

that unifies the currently distinct fiber and wireless technologies. Having a centralized 

access control scheme enables the optimal utilization of the available resources in a 

dynamic way, by assigning capacity slices only to currently active users whereas dis-

engaging them from unused cells. The simultaneous management of optical/wireless 

resources that stretch all the way to the end-user enables the creation of link models 

based on a vast number of combinations and in turn allows the direction of the full 

network’s capacity to specific micro-cells while also clustering complementary ser-

vices in other areas, thus ensuring uninterrupted connectivity and enhanced user per-

ceived quality of service. In this way, the functional consolidation of the fiber and wire-

less control plane will be fully capable to optimally exploit the unique properties of the 

dual media. By enabling the optical/wireless convergence in the network intelligence 

side while addressing the common resources in a holistic approach, our work attempts 

to synergize the strengths of both optical and wireless media in order to overcome the 

shortcomings of currently employed optical/wireless access control schemes. 

1.3 Structure of this thesis 
There are effectively three network aspects that have to be considered when designing 

a converged RoF multi-Gbps network: i) the hybrid architecture, ii) the control and 

network intelligence and iii) the physical device that will be able to support both. This 

thesis presents novel access control protocols that are capable of dynamically allocating 

capacity and resources both in the optical and wireless domains, accompanied by full 

schematics of a RAU unit, specifically designed to carry out the protocols’ functional-

ities. The proposed medium transparent access control protocols are measured for per-

formance in various bus and tree topologies under a plethora of network conditions, 

such as load, fiber lengths, number of users etc., while synergy with established Passive 

Optical Networks (PON) architectures is also investigated. This thesis goes beyond the 

currently established functional split between the RoF and R&F architectures and tests 

both against a proposed hybrid scheme consisting of converged RoF-plus-R&F net-

works, highlighting in each case the conditions where each architecture prevails. Fi-

nally, this thesis presents the first of their kind analytical models for mathematical der-

ivation of saturation throughput and non-saturation end-to-end packet delay for con-

verged RoF networks operating under medium transparent resource allocation schemes.  
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The remaining part of the thesis consists of 6 chapters, whereas the contents and the 

contributions of each chapter are described in detail as follows: 

• Chapter 2: The second chapter introduces the basic background regarding the 

main concepts employed in this thesis. Firstly, we briefly overview the basic 

types of RoF systems and explain the advantages that they offer. Secondly we 

present the existing RoF architectures and establish the difference of RoF versus 

R&F schemes. Finally, we introduce the state of the art regarding RoF mobility 

schemes and RoF-based MAC protocols that exist in the literature.  

• Chapter 3: The third chapter presents an agile and Medium-Transparent Me-

dium Access Control (MT-MAC) protocol for seamless and dynamic capacity 

allocation over both optical and wireless transmission media in 60GHz broad-

band Radio-Over-Fiber (RoF) networks. Medium transparency is achieved by 

means of parallelism between two simultaneously running contention periods 

and through nesting of wireless user-specific data frames within RAU-specific 

optical Superframes. The proposed MAC protocol is demonstrated to operate 

successfully both in RoF-over-bus as well as in RoF-over-PON architectures 

requiring only minor variations for getting adapted to the network topology. Its 

performance for both network topologies is evaluated through simulations for 

different number of end-users, different loads and network node densities and 

for bit-rates up to 3Gb/s, both for a Poisson and for a burst-mode traffic model. 

All examined cases confirm the MT-MAC’s ability to successfully provide 

highly efficient 60 GHz Wireless LAN functionality, offering connectivity also 

between wireless devices without Line-Of-Sight (LOS), while providing a suit-

able framework for wireless serving high-bandwidth latency-sensitive applica-

tions.  

The proposals discussed in this chapter have been published in two conference 

proceedings, cited next: 

– G. Kalfas, L. Alonso, Ch. Verikoukis, N. Pleros, "Medium Transparent 

MAC protocols for Fiber-Wireless mm-wave multi-Gbps WLANs", In-

ternational Wireless Symposium 2014, Xi’An, China, April 2014, 

Xi’An, China. 
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– G. Kalfas, N. Pleros, K. Tsagkaris, C. Verikoukis, "60GHz Radio-over-

Fiber networks: Optical-Wireless Convergence through Medium-Trans-

parent MAC protocols", Euro-NF International Workshop on Traffic 

and Congestion Control for the Future Internet, 31 March – 1 April 

2011, Volos, Greece. 

• Chapter 4: This chapter presents the Client-Weighted Medium-Transparent 

MAC (CW-MT-MAC) protocol that exhibits enhanced fairness service delivery 

properties in comparison to normal MT-MAC. This approach relies on incorpo-

rating a Client Weighted Algorithm (CWA) in the optical capacity allocation 

mechanism employed in the MT-MAC scheme, so as to distribute the available 

wavelengths to the different antenna units according to the total number of ac-

tive users served by each individual antenna. The protocol’s throughput and de-

lay fairness characteristics are evaluated and validated through extended simu-

lation-based performance analysis for non-saturated network conditions and for 

different end-user distributions, traffic loads and available optical wavelengths. 

The results confirm that complete throughput and delay equalization can be 

achieved even for highly varying user population patterns when certain wave-

length availability conditions are satisfied. 

The proposals discussed in this chapter have been published in one journal and 

one conference proceedings, cited next:  

– G. Kalfas, P. Maniotis, S. Markou, D. Tsiokos, N. Pleros, L. Alonso, 

and C. Verikoukis, "Client-Weighted Medium-Transparent MAC Pro-

tocol for User-Centric Fairness in 60 GHz Radio-Over-Fiber WLANs", 

IEEE/OSA Journal of Optical Communications and Networking, vol.6, 

no.1, pp.33,44, January 2014. 

– P. Maniotis, G. Kalfas, L. Alonso, Ch. Verikoukis, N. Pleros, "Through-

put and Delay Fairness through an agile Medium-Transparent MAC pro-

tocol for 60GHz Fiber-Wireless LAN networks", IEEE WCNC 2012, 

Hybrid Optical-Wireless Access Networks Workshop, 1st April 2012, 

Paris, France. 
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• Chapter 5: The first part of this chapter demonstrates an analytical model for 

calculating the saturation throughput performance of the MT-MAC and CW-

MT-MAC protocols. The proposed models incorporate effectively the Medium-

Transparent MAC mechanism, assuming a finite number of terminals and ideal 

channel conditions, while taking into account contention both at the optical and 

wireless layer. This model enables extensive saturation throughput performance 

analysis for the MT-MAC protocol and has been applied to 60 GHz RoF net-

work scenarios considering variable numbers of available optical wavelengths, 

wireless nodes and serving antenna elements and for two different data rate val-

ues, namely 155 Mbps and 1 Gbps. The displayed comparison between the 

model-based throughput results and respective simulation-based outcomes re-

veals that the analytical model is extremely accurate in predicting the system 

throughput. The second part of this chapter presents an analytical model for 

computing the end to end packet delay of a converged Optical/Wireless 60GHz 

Radio-over-Fiber (RoF) network operating under the Medium-Transparent 

MAC (MT-MAC) protocol. For the calculation of the cycle times this model 

takes into account contention at both layers, thus enabling an extensive delay 

performance analysis of various performance aspects of hybrid RoF networks, 

such as various optical capacity availability scenarios, varying load conditions, 

optical network ranges, transmission window and data packet sizes. The theo-

retical results are found to be in excellent agreement with the respective simu-

lation-based findings. 

The proposals discussed in this chapter have been published in two conference 

proceedings, cited next:  

– G. Kalfas, J. Vardakas, L. Alonso, C. Verikoukis and N. Pleros, "Non-

saturation delay analysis of Medium Transparent MAC protocol for 

60GHz Fiber-Wireless networks", submitted in IEEE Journal of Light-

wave Technology. 

– G. Kalfas, N. Pleros, K. Tsagkaris, L. Alonso, C. Verikoukis, "Satura-

tion Throughput Performance Analysis of a Medium-Transparent MAC 
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protocol for 60GHz Radio-over-Fiber Networks", IEEE Journal of 

Lightwave Technology, vol.29, no.24, pp.3777 – 3785, December 2011. 

– G. Kalfas, N. Pleros, K. Tsagkaris, L. Alonso, C. Verikoukis, "Perfor-

mance Analysis of a Medium-Transparent MAC protocol for 60GHz 

Radio-over-Fiber Networks", IEEE Globecom, 5-9 December 2011, 

Houston, Texas. 

– G. Kalfas, N. Pleros, K. Tsagkaris, L. Alonso, C. Verikoukis, "Satura-

tion Throughput Performance Analysis of a Medium-Transparent MAC 

protocol for 60GHz Radio-over-Fiber Networks", IEEE Journal of 

Lightwave Technology, vol.29, no.24, pp.3777 – 3785, Dec.15, 2011. 

• Chapter 6: Chapter 6 presents our study concerning the network planning of 

60GHz Gigabit WLAN networks over existing PON infrastructures. Two con-

figurations for Gbit WLAN network formations are investigated: i) the R&F 

approach that considers several 802.11ad access points connected to conven-

tional GPON ONUs, termed as the GPON-plus-802.11ad approach, and ii) the 

RoF paradigm that employs several RAUs operating under the MT-MAC pro-

tocol, termed as the MT-MAC-over-PON approach. Simulation-based through-

put and delay results are presented for both network scenarios, revealing the 

dependence of the 60GHz enterprise network performance on several network 

planning parameters such as the load, the traffic shape, the number of optical 

wavelengths in the backhaul as well as the optical backhaul fiber length. The 

derived results suggest that: i) the GPON-plus-802.11ad approach is highly-ef-

ficient in intra-cell communication but at the cost of massive active AP equip-

ment making it highly impractical for network deployments beyond typical 

room sizes and ii) the MT-MAC-over-PON approach is inherently capable of 

relaying inter-cell traffic and form extended reach gigabit WLAN networks 

making it an excellent match for modern cloud applications but demanding high 

optical capacity for serving Long-Reach PONs (LR-PONs). Based on the above 

findings this chapter also presents our study of a hybrid multi-tier architecture 

termed as GPON-plus-MT-MAC approach that fuses the abilities of both the 

RoF and R&F architectures in order to optimally combine their properties and 

set a framework for next-generation 60Ghz Fiber-Wireless networks. 
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The proposals discussed in this chapter have been published in two conference 

proceedings, cited next:  

– G. Kalfas, N. Pleros, L. Alonso and C. Verikoukis, "Network planning 

for 802.11ad and MT-MAC 60 GHz fiber-wireless gigabit wireless local 

area networks over passive optical networks" in IEEE/OSA Journal of 

Optical Communications and Networking, vol. 8, no. 4, pp. 206-220, 

April 2016. 

– G. Kalfas, D. Tsiokos, N. Pleros, C. Verikoukis, M. Maier, "Towards 

medium transparent MAC protocols for cloud-RAN mm-wave commu-

nications over next-generation optical wireless networks", 15th IEEE 

ICTON, June 2013, Cartagena, Spain. 

– G. Kalfas, S. Markou, D. Tsiokos, Ch. Verikoukis, N. Pleros "Very 

High Throughput 60GHz wireless enterprise networks over GPON in-

frastructure", IEEE ICC, Optical-Wireless Workshop, June 2013, Buda-

pest, Hungary. 

• Chapter 7: This chapter concludes the dissertation by providing a summary of 

our major contributions, together with some potential lines for future investiga-

tion. 
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 Background 
By merging the immense optical fiber capacity with the mobility and pervasiveness of 

the wireless networks, the Fiber-Wireless (FiWi) architectures construct a versatile and 

powerful paradigm that can support demanding modern applications as well as create a 

new market for future services. As it has been defined in the respective literature, Fiber-

Wireless (FiWi) is an overarching term, denoting both the families of RoF and R&F 

networks[34][35]. In order to fully cover the necessary background material for this 

thesis, this chapter serves a twofold purpose. Initially it provides a brief introduction 

into the FiWi paradigm and reviews the key characteristics of both RoF and R&F tech-

nologies while highlighting challenges that arise when implementing mm-wave com-

munications in R&F environments. Secondly, it presents a detailed review of the state 

of the art in RoF physical layer architectures, protocols and systems, on which the main 

contributions of this thesis are based on. 

2.1 RoF and R&F architectures for mm-wave communications 
The FiWi (Fiber-Wireless) network paradigm defines two approaches for the integra-

tion of optical and wireless networks; Radio-over-Fiber (RoF) and Radio-and-Fiber 

(R&F).  

RoF technologies refer to the technique where Radio Frequency (RF) signals are trans-

mitted and propagated through an optical fiber in order to provide wireless communi-

cation services[18]-[20]. In a RoF system, communication is achieved by modulating 

RF signals that originate from wireless networks onto an optical carrier signal. Alt-

hough the technique of modulating RF signals onto optical carriers has been done in 

various applications, for example cable television, the term RoF is used in the literature 

strictly when referring to telecommunication systems. Fig. 2-1 presents a simple exam-

ple of a RoF architecture, where a signal from a central station, referred as Central 

Office (CO) is being propagated through an optical fiber to remote antennas that are 

termed Remote Antenna Units (RAUs), where it is demodulated and in turn broadcasted 
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towards the wireless terminals through the wireless channel. The reverse procedure 

takes place in the uplink direction, meaning that the RF signals broadcasted by wireless 

terminals are modulated onto the optical carrier by the RAU and are in turn transmitted 

back to the CO. From this basic schematic it becomes apparent that RoF architectures 

are a cost-effective manner to create micro/picocellular radio architectures, since the 

traditional costly active Base Stations (BSs) are being replaced by a single central in-

telligent terminal and many low-cost RAUs. The replacement of the BS with a CO 

requires minimum modification in the hardware level, since the RF signals will be 

transmitted in an “as is” manner to the RAUs after they pass all signal processing, cod-

ing and modulation stages. This also enables the construction of very simple and low-

cost RAU modules that minimize the overall capital costs while enabling the coverage 

of large areas, since the former do not need to perform baseband signal-processing and 

their small size makes their installation possible even in space-limited areas. 

On the other hand of the FiWi family stand the Radio-&-Fiber (R&F) architectures 

that have emerged as an alternative means to provide high-speed and omnipresent ac-

cess networks [34],[35]. R&F schemes consolidate existing optical and wireless infra-

structures by attaching wireless APs to the Optical Network Units(ONUs), whereas ac-

cess to the two distinct media is controlled separately by employing two different MAC 

protocols with protocol translation taking place at their interface. To this end, R&F 

 

Fig. 2-1 Simple RoF access scheme with point-to-point fiber links 
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architectures are essentially two distinct networks, one being optical and the other wire-

less, that operate independently but only serve traffic generated from and for wireless 

clients. Fig. 2-2 displays a R&F network where a PON network is interfaced with wire-

less APs through the ONUs. Optical/Wireless integration is a topic of major research 

interest and many approaches have been presented in the literature with the most pre-

dominant being EPON/GPON integration with WiMAX/LTE/DOCSIS[36]-[39] or 

802.11[40] and mesh networks[41],[42]. In that context, R&F approaches present the 

potential to provide high data transmission rates with minimal time delay since packets 

destined for intra-WLAN recipients remain in the WLAN territory whereas only inter-

WLAN traffic traverses the fiber-based network. However, R&F still requires the use 

of fully functioning intelligent APs at every ONU branch, therefore considerably in-

creasing the costs for WLAN mm-wave deployment.  

2.1.1 FiWi networks in mm-wave applications 

The nature of mm-wave communications sets a particular challenge when considering 

the formation of converged mm-wave/optical networks. As discussed earlier, under the 

RoF paradigm the role of the wireless AP is assumed by the Central Office (CO), which 

is attached through a fiber to a number of RAUs that in turn provide 60 GHz broadband 

connectivity to mobile users. The RAU modules perform the optical-to-RF and RF-to-

optical conversions, bringing in contact the wireless clients and the CO without em-

ploying any further intelligent operations, thus serving as “passive” gateways. There-

fore, compared to R&F, RoF schemes enable the replacement of two active equipment 

elements, the ONU terminal and the wireless AP, with one functionally simple RAU 

module. Together with the fact that mm-wave signals have high propagation losses and 

are extremely attenuated by walls, raises a strong argument against R&F mm-wave 

implementations, since the latter would require numerous arrays of active optical ter-

minals and wireless APs in order to cover an area equivalent to the one covered by 

traditional 2.4-5GHz WLANs. Therefore, the implementation of mm-wave access RoF 

networks enables the formation of extended reach 60GHz WLANs, coming forward as 

a solution that avoids the added costs of the active AP equipment deployment. 

In consideration of the above, R&F architectures do not come without advantages. The 

presence of active ONU and AP equipment in R&F systems means that intra-cell traffic 

(traffic that originates and terminates in the same AP) does not propagate towards the 
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optical network and thus avoids the fiber’s extra propagation delays that are compulsory 

in RoF architectures. This feature also alleviates all wireless MAC restrictions from the 

optical portion of the network that can inhibit several aspects of the design, such as the 

maximum fiber length. However, the range of mm-wave signals suggests that the phys-

ical presence of the partaking nodes must be within a very confined area (<10m as 

specified in 802.11ad) in order to make use of the above operation, therefore severely 

limiting the range of applications where the adoption of mm-wave R&F architectures 

derives a clear benefit.  

2.2 Basics of RoF systems 
RoF communications are essentially analog in nature, despite the fact that the wireless 

links that are propagated through the fiber carry digital data. To this end we define the 

analog optical links used in RoF as links where the laser is always on or links where 

the optical modulation depth is small enough that small signal analysis is possible. In 

contrast, digital optical links are the links where the modulation depth can approach 

100% or the laser is turned off and on depending on the data sequence. The main prin-

ciple behind RoF systems is to use the optical fiber’s ample bandwidth to provide 

broadband wireless access by reducing the distance that the wireless channel has to 

travel until it reaches the wireless terminals. 

Moreover, the optical fibers offer a tremendous bandwidth which allows the transmis-

sion of multi-GHz wide radio signals to far away destinations with little propagation 

 

Fig. 2-2 Fi-Wi access scheme with a fiber bus network 
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distortion thanks to their very low attenuation properties (up to 0.2dB/km). In contrast 

to electrical transmission in traditional wires, propagation loss in the optical fiber is a 

function of the optical wavelength and is not depended on the frequency of the radio 

signal being transported. Therefore, the fiber’s bandwidth abundance and frequency-

independent low-loss properties allow for multiple RF signals to be multiplexed and 

transmitted via a single optical fiber or a single wavelength as it is displayed in Fig. 

2-2. Because of the above, it becomes evident that RoF architectures can support multi-

provider operation through infrastructure sharing not only between mobile operators 

that can transmit different RF signals but also amongst wireline and mobile providers 

that can use distinct optical wavelengths.  

Fig. 2-3 shows the basic physical structure of a RoF system. As can be noted, the RoF 

system consists of an optical fiber link that is used for transmission and components for 

electrical-to-optical (E/O) and optical-to-electrical (O/E) conversions. RoF schemes 

have in general two major features in common: 

• Conservation of the waveform: the waveform of the radio signal is essentially 

passed unchanged through the fiber-optic transmission under ideal or close to 

ideal conditions. 

• Electromagnetic interference resistance: RoF signals traveling through the 

fiber are not affected by frequency interference from radio communication sig-

nals. 

 

Fig. 2-3 Basic concept of a RoF system 
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Since the RoF system is generally treated as an analogue transmission system, the over-

all signal-to-noise ratio and the overall dynamic range should be properly specified in 

order to maximize the potential of the two RoF features listed above. Digitized RoF (D-

RoF) technology is an alternative candidate for transmitting radio signals over fiber, 

especially in cases where distortion and poor sensitivity deteriorate the analogue trans-

mission under conditions of high noise and nonlinearity. D-RoF’s efficiency strongly 

depends on the performance of the Digital Signal Processing (DSP) function, which is 

in turn influenced by the performance of analogue-to-digital and digital-to-analogue 

converters (ADCs/DACs). However, the introduction of DSP functions inserts also 

quantization noise due to digitization, which itself causes distortion in the radio wave-

form. Furthermore, each time domain sample is digitized to many quantized bits for 

binary transmission in D-RoF, therefore bandwidth efficiency of D-RoF can be much 

lower than that of analogue RoF. Finally, D-RoF increases overall deployment costs 

since it requires added DSP hardware at the RAU side.  Digital interfaces for mobile 

base stations, such as the Common Public Radio Interface (CPRI) and Open Base Sta-

tion Architecture Initiative (OBSAI), make use of the concept of D-RoF technology.  

2.3 Radio-over-Fiber Physical Layer Architectures 
There are several system architectures based on the RoF concept. For the typical RoF 

systems, where a single CO is connected to several RAUs using a single fiber-optic 

link, two types of signal transmissions are considered: subcarrier signal transmission 

and baseband signal transmission. Note here that the RoF architectures shown in this 

section are the most predominant examples and that alternative approaches are conceiv-

able. 

2.3.1 Analogue RoF system 

a) Subcarrier signal transmission 
Fig. 2-4 depicts the most fundamental architectures for transmitting subcarrier signals, 

such as the RF-band subcarrier, the Intermediate-Frequency band (IF-band) subcarrier 

and reference frequency subcarrier signals. In Fig. 2-4, all equipment located on the left 
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side of the fiber link is considered to be located in the CO, whereas equipment on the 

right side is considered to be located at the RAU.  

In an RF-band RoF transmission scheme, such as the one shown in Fig. 2-4(a), the 

architecture comprises an RF-band modulator, an RF-band demodulator, two optical 

transceivers, the fiber link, and two RF-band filters. The latter are optional and can be 

used in order to comply to specific national radio regulations. In the downlink direction, 

payload data are being modulated onto the RF-band carrier using the RF-band modula-

tor located at the CO. In turn, the generated subcarrier signal modulates the optical 

carrier using an E/O converter in the optical transceiver. The generated optical signal 

travels over the fiber-optic link. At the RAU site, the received RoF signal is optically 

detected (by means of a photodiode) and is converted to electrical form by the O/E 

converter. At this point, the electrical signal carries the same data as the RF-band sub-

carrier signal at the CO side and is transmitted over the air, optionally passing through 

an RF-band filter beforehand. In the uplink direction, an uplink RF signal that was re-

ceived by the antenna modulates an optical carrier using another E/O converter in the 

optical transceiver. The generated analogue RoF signal is in turn transmitted over the 

optical fiber. At the CO, the received RoF signal is optically detected and modulated 

 

Fig. 2-4 Configuration examples for transmitting subcarrier signal(s): (a) RF-band; (b) only IF-
band signal; and (c) IF-band signal and reference frequency 
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upon an electrical carrier in the optical transceiver. Finally, the electrical signal is de-

modulated using the RF-band demodulator to recover the uplink payload data. 

In an IF-band RoF architecture, like the one shown in Fig. 2-4(b), the system comprises 

an IF-band modulator, an IF-band demodulator, two optical transceivers, a fiber-optic 

link, an IF-to-RF up-converter, an RF-to-IF down-converter, and a reference frequency 

generator. Since the intermediate frequency is generally a lot lower that the RF, this 

scheme offers a much higher bandwidth efficiency compared to the RF-band RoF 

scheme. In the downlink direction, payload data are being modulated onto the IF-band 

carrier using the IF-band modulator located at the CO. In turn, the generated subcarrier 

signal modulates the optical carrier using an E/O converter in the optical transceiver. 

The generated optical signal travels over the fiber-optic link. At the RAU site, the re-

ceived RoF signal is optically detected (by means of a photodiode) and is converted to 

electrical form by the O/E converter. At this point, the electrical signal, which carries 

the same data as the IF-band subcarrier signal at the CO side, is frequency up-converted 

by the IF-to-RF up-converter in a reference frequency in order to produce the desired 

downlink RF signal. In the uplink direction, the received uplink RF signal is down-

converted by the RF-to-IF down-converter to an IF-band subcarrier signal. In turn, the 

generated IF-band subcarrier signal modulates the optical carrier using the second op-

tical transceiver. The analogue RoF signal travels through the fiber-optic link. At the 

CO side, the received signal is optically detected at the optical transceiver and con-

verted to electrical form. The electrical signal is demodulated using the IF-band demod-

ulator and the uplink payload data is recovered. In an IF-band RoF and reference fre-

quency transmission scheme, such as the one displayed in Fig. 2-4(c), the system con-

figuration is the same as the one described in the IF-band RoF transmission scheme 

shown in Fig. 2-4(b), with the exception that the reference frequency is provided by the 

CO and is delivered to the RAU site. 

Because the main parts of the radio transceiver, like the modulators/demodulators, are 

being placed in the CO, the actual hardware of the RAU becomes simpler and therefore 

cheaper. In the architectures where the radio frequency does not change between the 

CO and the RAU, the mobile operators can readily adopt the RoF technologies, since 

there is no requirement for change in the antenna sites’ configurations. Also, since the 

main part of the radio transceivers is located at one central location, it becomes very 

easy to maintain, repair and upgrade the CO and therefore the level of service.  
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b) Equivalent baseband signal transmission 
Fig. 2-5 illustrates generic architectures for transmission of orthogonal equivalent low-

pass (equivalent baseband) signals, such as (non-binary) in-phase and quadrature-phase 

(I/Q) baseband signals. In all illustrations, the equipment that resides on the left side of 

the figure is considered to be located in the local office, whereas the equipment that is 

located on the right side is considered to be on the remote antenna.  

Fig. 2-5(a) depicts an I/Q baseband signals transmission scheme that consists of an I/Q 

modulator, an I/Q demodulator, a pair of optical transceivers, a fiber-optic link, an I/Q-

to-RF up-converter, an RF-to-I/Q down-converter, and a reference frequency generator. 

In the downlink direction the I/Q modulator generates the I/Q baseband signals from 

the downlink payload data that is received at the CO. The generated I/Q baseband signal 

modulates the optical carrier through the E/O converter of the optical transceiver. In 

turn, the produced downlink multi-level or analogue baseband signal, is transmitted 

over the fiber-optic link. At the RAU end, the received downlink optical signal is opti-

cally detected by means of the O/E converter in the optical transceiver. The generated 

electrical signal, is then frequency up-converted with the I/Q-to-RF up-converter and a 

reference frequency to the desired downlink RF signal. In the uplink direction, the re-

ceived I/Q baseband signal modulates an optical carrier using the E/O converter in the 

optical transceiver. The generated multi-level or analogue baseband signal is then prop-

agated towards the CO over the fiber-optic link. The CO receives the optical signal 

through a photodiode and in turn converts is to electrical through the use of the O/E 

 

Fig. 2-5 Configuration examples for transmitting equivalent low-pass signal(s): a) only I/Q base-
band signals; and b) I/Q baseband signals and reference frequency 
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converter in the optical transceiver. The electrical signal is demodulated at the I/Q de-

modulator and the uplink payload data is recovered. 

Regarding the I/Q baseband signals and reference frequency transmission scheme de-

picted Fig. 2-5(b), the system formation is the same as that of the I/Q baseband RoF 

signal transmission scheme depicted in Fig. 2-5(a), except that the reference frequency 

is provided by the CO and is delivered to the RAU site. 

2.3.2 Digital RoF system 

a) Digital radio signal(s) transmission 

Fig. 2-6 depicts a digital RoF architecture for transmitting digital radio signals, such as 

RF-band pulses. In Fig. 2-6 the equipment that resides on the left side of the figure is 

considered to be located in the CO, whereas the equipment that is located on the right 

side is considered to be on the remote antenna. 

A digital RoF system consists of an RF-band pulse generator, a RF-band pulse detector, 

two optical transceivers, the fiber-optic link, and two RF-band filters. The latter are 

optional and can be used in order to comply to specific national radio regulations. In 

the downlink direction, the RF-band pulse generator located at the CO generates an RF-

band pulse containing downlink payload data. The pulse modulates an optical carrier 

by means of an E/O converter located in the optical transceiver side. The newly formed 

downlink digital RoF signal is in turn transmitted over the optical fiber. Note here that 

although the optical link is treated as being digital, the nature of the signal transmission 

could be closer to analogue form. This is due to the fact that the produced/received 

signal’s intensity may carry an analogue form, like a monocycle pulse, doublet pulse 

etc. At the RAU end, the received downlink optical signal is optically detected by 

means of the O/E converter in the optical transceiver. The derived electrical signal has 

the same form as the modulating RF-band pulse. In the uplink direction, an uplink RF-

band pulse, modulates an optical wavelength using an E/O converter in the optical 

 

Fig. 2-6 Configuration examples for transmitting digital signal(s): RF-band pulse 
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transceiver. The generated uplink digital RoF signal is then propagated towards the CO 

over the fiber-optic link. The CO receives the optical signal through a photodiode and 

in turn converts is to electrical through the use of the O/E converter in the optical trans-

ceiver. The electrical signal, which is exactly the same as the uplink RF-band pulse, is 

demodulated by means of a RF-band pulse detector and the uplink payload data is re-

covered. 

b) Digitized radio signal(s) transmission 
Fig. 2-7 presents a general schematic for transmitting digitized radio signals, such as 

digitized RF-band subcarrier, digitized IF-band subcarrier, and digitized I/Q baseband 

signals. In Fig. 2-7, the equipment that resides on the left side of the figure is considered 

to be located in the CO, whereas the equipment that is located on the right side is con-

sidered to be on the remote antenna. 

Fig. 2-7(a) displays an RF-band RoF transmission scheme comprising a digital RF-

band modulator, a digital RF-band demodulator, a pair of optical transceivers, a fiber-

optic link, a D/A Converter, an A/D Converter, and two RF-band filters. The latter are 

optional and can be used in order to comply to specific national radio regulations. Re-

garding the downlink direction, a digitized RF-band subcarrier is digitally generated 

containing data by employment of a digital RF-band modulator located at the CO. The 

digitized RF-band subcarrier signal modulates an optical carrier by means of an E/O 

converter located in the optical transceiver side. The newly formed downlink RF-band 

D-RoF signal is in turn transmitted via the optical fiber towards the RAU. At the RAU 

side, the received signal is converted to electrical form by means of an O/E converter 

in the optical transceiver. The generated electrical signal that, in this stage is equivalent 

to the digitized RF-band subcarrier signal produced in the CO, is converted to analogue 

form in order to recover the desired downlink RF signal. In the uplink direction, a re-

ceived uplink RF signal is converted from analogue form to digital by means of the 

D/A converter. In turn this signal modulates an optical carrier using the other E/O con-

verter in the optical transceiver. The generated signal is propagated over the fiber-optic 

link. At the CO side, the received D-RoF signal is optically detected by means of an 
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O/E converter in the optical transceiver. The detected electrical signal, which is equiv-

alent to the digitized RF-band subcarrier signal, is digitally demodulated with the digital 

RF-band demodulator to extract the data payload.  

Fig. 2-7(b) displays the equivalent digitized RoF systems with the use of IF bands. The 

only difference to the previous scenario is that the modulators are designed to modulate 

to and from the IF band and that at the receiver a reference frequency generator is em-

ployed to provide the mean for the up-conversion. The choice of the reference fre-

quency should be made such that it complies to the frequency stability specifications 

regarding the downlink RF signal.  

Fig. 2-7(c) displays a digitized I/Q baseband signals RoF transmission scheme. In such 

a system a digital I/Q modulator/demodulator is used instead of the RF and IF modula-

tors described in the cases above. In both directions, the digital I/Q modulators generate 

digitized I/Q baseband signals from the downlink and uplink payloads received at the 

CO and RAU ends. In turn the generated downlink digitized I/Q baseband signals mod-

ulate an optical carrier using an E/O converter and are transmitted to the other end. 

 

Fig. 2-7 Configuration examples for transmitting digitized signal(s): a) digitized RF-band sig-
nal(s); b) digitized IF-band signal(s) and c) digitized I/Q baseband signal(s) 
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Again as with the previous cases the digitized radio signal(s) (D-RoF) transmissions 

require DACs and ADCs at the RAU end to be converted to analogue form. 

2.3.3 RoF for Millimeter Wave RF transmission 

The modern communication patterns of home and enterprise mobile users, such as E-

health/Telemedicine[43], High-Definition (HD) real-time multimedia streaming and re-

mote wireless display applications[23] require the exchange of unprecedented amounts 

of data, resulting in the placement of excessive load strain on the existing wireless in-

frastructure. This has forced governments, mobile operators and hardware manufactur-

ers to gradually expand their activities from GSM/WiFi-centric networks, that currently 

employ frequencies up to 5 GHz, to higher portions of the wireless spectrum such as 

the millimeter-wave band, where several GHz of bandwidth is available. However, 

mm-wave signals suffer from high free-space propagation losses. According to Friis’ 

equation, free-space power loss of a wireless signal is proportional to the square of its 

carrier frequency 𝑓𝑓𝑐𝑐: 

𝑝𝑝𝑝𝑝𝑝𝑝ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �
4𝜋𝜋𝜋𝜋𝑓𝑓𝑐𝑐
𝑐𝑐

�
𝛾𝛾

 

where 𝑐𝑐 is the speed of light, 𝛾𝛾 is the path-loss exponent (𝛾𝛾 = 2 in free-space), and 𝜋𝜋 is 

the distance between the base station and the mobile user. However, γ can vary from 

1.5 to 6 depending on the environmental conditions. According to Friis’ formula in free 

space, the loss at 60 GHz will be 5184 times, or 37 dB higher than the loss at 1 GHz. If 

the path-loss exponent is higher, for example 4, this loss would be 25 million times 

higher or 74 dB. In addition, the millimeter-wave bands have some other peculiar char-

acteristics such as very high losses through obstacles and are greatly affected by water 

molecules in the air. 60 GHz signals in particular have an added property that is known 

as oxygen attenuation, meaning that 60 GHz signals react with the oxygen molecules 

in the air and as a consequence loose a part of their energy. This loss is considered to 

be around 12–16 dB/km, which is relatively high and is therefore the main reason that 

60 GHz links fail to cover excessively large distances. To this end RoF technologies 

are a perfect match to be used in conjunction with 60 GHz signals since they can alle-

viate the distance barrier and can feed 60 GHz access points located several km away 

from the CO. Moreover, innovative and efficient microwave photonic techniques that 

allow the generation and processing of mm-wave signals natively in the RoF domain 
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have recently been presented[44], bringing an added incentive towards implementing 

practical converged RoF/mm-wave networks.  

Recent advances in Microwave Photonics (MWP) have made possible the generation, 

transmission and processing of microwave signals and offer various advantages com-

pared to other electrical approaches, such as high bandwidth, low losses, freedom from 

electromagnetic interference, fast tunability and reconfigurability [45]. These tech-

niques have opened up many new possibilities since it is now possible to generate very 

stable and clean microwave signals by optical heterodyning or by frequency multiply-

ing/dividing techniques. When these radio signals travel through fiber, they can be am-

plified through erbium-doped fibers or through Semiconductor Optical Amplifiers 

(SOAs). In Wavelength Division Multiplexed (WDM) networks, the use of various fil-

ters, such as Bragg gratings, have been demonstrated to demultiplex wavelengths along 

with RF subcarriers[46]. RF signals can be very easily up or down-converted using 

optical nonlinearities, which in turn enables the transmission of the signals in low fre-

quencies over the fibers and only upconvert them at the RAU module. Singe-Side Band 

(SSB) modulation, a refinement of amplitude modulation which uses transmitter power 

and bandwidth more efficiently, can be generated at the millimeter-wave scale using 

MWP techniques. Fig. 2-8 shows the spectrum of a double sided subcarrier-modulated 

(DSB) signal. We can note that each subcarrier is separated from the main carrier signal 

by its radio frequency 𝑓𝑓1, 𝑓𝑓2, respectively. Fig. 2-9 displays how DSB signals can be 

optically demultiplexed using ultra-narrow bandpass filters.  

 

Fig. 2-8 Subcarrier-multiplexed ROF signal 
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2.4 Mobility in RoF networks 

2.4.1 Moving Cell  

High velocity moving terminals, like the case of train passengers, suffer from fre-

quent handovers when hopping from one BS to another in the common cellular net-

works. Frequent handovers may cause numerous data losses and intolerable degrada-

tion of the end-user experience, resulting in a significantly decreased network through-

put. A modern approach towards the solution of this problem is the employment of a 

RoF network installed along the rail tracks in combination with the higher level moving 

cell concept[47]. Fig. 2-10 illustrates the moving cell-based RoF network architecture 

 

Fig. 2-9 Ultra-narrow microwave photonic filters can be used to demultiplex subcarrier-multi-
plexed RF signals 

 

Fig. 2-10 Moving cell-based RoF network architecture for train passengers 
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for a rail example. An optical WDM ring connects the RAUs with the CO who acts as 

a central hub and performs all the necessary processing. Each RAU uses an Optical 

Add-Drop Multiplexer (OADM) fixed tuned to a separate optical wavelength. At the 

CO, a WDM laser generates the set of the available and currently desired optical wave-

lengths, which are passively switched and introduced into an array of RF modulators, 

one for each RAU. The now modulated wavelengths are multiplexed onto the optical 

fiber which follows a ring formation and are received by the corresponding RAUs on 

their respective assigned wavelength. The RAU modules retrieve the RF signal and 

transmit it into the air which is consequently received by the antennas of a passing train. 

Following the upstream direction, the RAUs receive all RF signals from the air and 

modulate them into a CO transmitted optical wavelength which travels back to the CO 

for processing. By processing the received RF signals, the CO is able to keep track of 

the current train positioning by identifying the RAU closest to the moving clients. Con-

sequently, it assigns downstream RF signals to the corresponding RAU such that the 

train and moving cells move along in a synchronous fashion.  

2.4.2 Moving Extended Cell 

The Moving Extended Cell[48] is essentially an upgraded version of the Moving 

Cell. This scheme guarantees zero packet loss and speedy handovers by providing con-

nectivity in any possible direction. A hybrid Frequency-Division Multiplexing 

FDM/WDM network architecture was used in order to support the deliverance of mul-

tiple RF channels in the 60 GHz spectral band travelling over the same wavelength. As 

it is depicted in Fig. 2-11, the extended cell is essentially a cell comprising the current 

user’s cell and the surrounding cells, ensuring continued connectivity in any possible 

random direction. The extended cell scheme adaptively adapts and relocates the center 

 

Fig. 2-11 Moving cell-based RoF network architecture for train passengers 
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of the extended cell when the user moves into a new cell. It was shown experimentally 

that the proposed concept can provide zero packet loss and call dropping probability in 

high-rate wireless services for a great range of mobile speeds of up to 40 m/s independ-

ent of fiber link distances.  

It must be noted here that concepts revolving around the spatial extension of RoF 

cells in order to cope with mobility problems, by unifying existing picocells face new 

challenges since the introduction of high speed trains, capable of achieving speeds up 

to 80 m/s, is becoming a reality throughout the globe, and therefore stricter mobility 

configurations should be tested.   

2.4.3 The Chessboard protocol 

The Chessboard protocol[49] is a MAC protocol designed to provide handover 

functionalities in a RoF based WLAN operating at 60 GHz. This protocol is based on 

the employment of Frequency Switching (FS) codes. Adjacent cells employ orthogonal 

FS codes to avoid possible co-channel interference. This mechanism allows a mobile 

host (MH) to stay tuned to its frequency during handover. 

The simple structure of the BS and 60-GHz wave characteristics leads to a central-

ized network architecture with many picocells, where most of the BS functions of con-

ventional WLANs are shifted to the CS. By subdividing the total system bandwidth, 

2M (frequency) channels are obtained, where M channels (𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑀𝑀) are used for 

down-link transmission and the other M channels (𝑓𝑓𝑀𝑀+1,𝑓𝑓𝑀𝑀+2, … ,𝑓𝑓2𝑀𝑀) for up-link 

transmission. In addition, the time axis is also subdivided into time slots of equal length 

and M time slots are grouped into a frame. The reason for having the same number of 

time slots and frequency bands is to formulate a square array that resembles a chess 

board, which consequently will be used as the basis of the FS codes. The MS is assigned 

a pair of channels (𝑓𝑓𝑖𝑖,𝑓𝑓𝑀𝑀+𝑖𝑖) 𝑖𝑖 =  1, 2, …𝑀𝑀 and a pair of time slots 

(𝑝𝑝𝑘𝑘 𝑚𝑚𝑙𝑙𝜋𝜋 𝑀𝑀, 𝑝𝑝𝑘𝑘+1 𝑚𝑚𝑙𝑙𝜋𝜋 𝑀𝑀) 𝑘𝑘 =  1, 2, …  for down- and up-link communication, respec-

tively. Only after having received a permit from the down-link channel 𝑓𝑓𝑖𝑖 during the 

time slot 𝑝𝑝𝑘𝑘 𝑚𝑚𝑙𝑙𝜋𝜋 𝑀𝑀, the MS may transmit up-link packets over the up-link channel 𝑓𝑓𝑀𝑀+𝑖𝑖 

during the next time slot 𝑝𝑝𝑘𝑘+1 𝑚𝑚𝑙𝑙𝜋𝜋 𝑀𝑀. Every BS supports all channels, but each of them 
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is used in the proper time slot. Fig. 2-12 shows an example FS patterns for down- and 

up-link, respectively, when 𝑀𝑀 is five. During every frame time, each of the 𝑀𝑀 time slots 

and 𝑀𝑀 channels is utilized once and only once. Adjacent picocells must not use identical 

FS patterns to avoid possible co-channel interference. 

2.5 Multiservice Access Networks 
One of the major advantages of the RoF architectures is that they can be deployed 

alongside other services by exploiting the immense bandwidth of the optical fiber thus 

setting themselves as the future of multiservice access networks. In order to achieve 

that however, it is important to integrate RoF systems with existing optical access net-

works. [50] presents a novel approach for simultaneous modulation and transmission 

of both RoF RF and Fiber-To-The-Home (FTTH) baseband signals using a single ex-

ternal integrated modulator, as shown in Fig. 2-13.  This external integrated modulator 

is comprised of three distinct Mach-Zehnder Modulators (MZMs) 1, 2, and 3. RF and 

FTTH baseband signals independently modulate the optical carrier generated by a com-

mon laser diode by using either one of the first two MZMs respectively. Subsequently, 

the optical wireless RF and wireline baseband signals are combined at the third MZM. 

After propagation of the aggregated signal over an SMF downlink, an optical filter (e.g., 

 

Fig. 2-12 Example of Chessboard protocol operation. The FS patterns here correspond to 5 chan-
nels. Each room(picocells) has its own BS and BSs are connected to the control station (CS) using 

optical fiber. Adjacent picocells have different FS patterns to avoid interference[49]. 
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fiber grating) is used to split the two signals and route them to the wireless and FTTH 

module respectively. It has been experimentally demonstrated that a 1.25 Gb/s base-

band signal and a 20 GHz 622 Mb/s RF signal can be simultaneously modulated and 

transmitted over 50 km standard SMF with acceptable performance penalties. 

 In [51]  the transmission of a wireless IF over a WDM PON architecture was ex-

perimentally investigated. The proposed network configuration was designed to pro-

vide service for third-generation cellular and WiMAX subscribers, as well as wired 

optical subscribers. In [51] a single wavelength for the downstream direction and mul-

tiple wavelengths for the upstream direction were considered. The displayed results 

prove that a WDM PON with 8 orthogonal FDM (OFDM) channels is able to support 

32 ONUs with a 3 dB power penalty.  

2.6 MAC Protocols in RoF systems 
Under this section we provide a summarization of the published work considering MAC 

protocols established on top of RoF infrastructures.  

2.6.1 Performance Impairments of existing protocols over RoF 

Below we present various published studies that have been carried out in terms of 

adapting existing wireless protocols to underlying RoF infrastructures and the problems 

that arise due to the medium’s duality. [52]-[54] offer extensive analytical and experi-

mental implementations of IEEE 802.11 over RoF, specifically focusing on the impact 

of the introduced fiber delay which is nonexistent in traditional WLAN links. As it has 

been shown, data throughput decreases as fiber length increases although the perfor-

mance degradation is being kept below 15% in most cases. What is noteworthy though 

is that when fiber length exceeds a certain point, a total network failure was observed. 

 

Fig. 2-13 Simultaneous modulation and transmission of FTTH baseband signal and RoF RF sig-
nal using an external integrated modulator consisting of three Mach- Zehnder Modulators [35] 
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This is due to the time constraint nature of 802.11, which dictates the use of certain 

Inter Frame Spacing (IFS) limits on which the protocol’s synchronization depends. 

802.11 works in two modes. In the first one, which we refer to as “Basic Access 

Method” or “Two Way Handshake”, the receiving station acknowledges a successful 

reception by transmitting an ACK packet after a certain short interframe time interval 

called SIFS. The transmitting station waits for the ACK packet for a time duration spec-

ified as the ACK_Timeout parameter, at the end of which if no ACK has been received 

the transmission is considered lost and the station prepares for retransmission. When 

the fiber delay associated with each optical link exceeds the ACK_Timeout value, the 

network’s performance degrades rapidly. In the second mode of operation, where the 

RTS/CTS mechanism is employed, each station tries to “capture the floor” by transmit-

ting a Ready To Send (RTS) or Clear To Send (CTS) message, depending on the 

whether it is the source or destination station. After the transmission of the RTS frame 

the source station starts a countdown timer (CTS_Timeout), which leaves enough time 

for the reception of the CTS frame. If the expected response is not received within the 

CTS_Timeout window, the source station assumes that the frame is lost and hence pre-

pares itself for retransmitting the RTS frame. The problematic behavior here multiplies 

due to the fact that other stations in the vicinity hearing either an RTS or a CTS or both, 

defer their transmission by adjusting their Network Allocation Vector (NAV), a timer, 

to the duration field value of the RTS/CTS frame, which essentially leads quicker to a 

complete network failure. The maximum supported fiber lengths where found to be 

13.2 km for the Basic Access scheme and 8.1 km when the RTS/CTS mechanism was 

employed. Fig. 2-14 depicts the experimental results derived from [53].  

The above studies depict clearly the pros and cons regarding the adaption of exist-

ing protocols onto RoF architectures. Although it is proven that under certain conditions 

802.11 is able to be straightly utilized, we argue that the “as is” basis fails to fully 

comprehend and exploit the possibilities of RoF technologies, since the optical based 

infrastructure is strictly considered as a passive medium destined only to propagate 

wireless signals. This creates an inflexible network where restrictions apply not only 

on the maximum fiber length, but also on the maximum number of the serviced RAUs, 

since each one requires a dedicated optical wavelength. The latter increases RoF de-

ployment costs since more CO units will be required for coverage of large area, due to 

the finite number of supported optical wavelengths by the optical fibers, whereas with 
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the use of a flexible and dynamically allocated optical medium it is possible to service 

significantly larger areas by the same residential gateway. In addition, the above fail to 

provide a provisional discussion over the adoption of the high bandwidth, future proof, 

mm-wave bands that would clearly tip the scale over cost issues.  

2.6.2 MAC protocols for Wireless Sensor Networks over RoF 

Wireless Sensor Networks (WSNs) are networks whose main purpose is to auton-

omously interconnect small functionally simple and usually battery operated Sensor 

Nodes (SNs) and cooperatively pass information to one or more BSs, that in turn prop-

agate the traffic to extra-WSN destinations. Their main target is to monitor physical or 

environmental conditions, such as temperature, sound, pressure etc., and they are cur-

rently used in a variety of versatile applications such as area monitoring, health care 

monitoring, pollution monitoring, forest fire detection, battlefield reconnaissance and 

emergency rescue operations. The convergence of WSNs networks with RoF architec-

tures has received notable attention, since RoF links can provide for low delay and 

increased reliability when compared to traditional WSN connectivity [55]. In addition, 

RoF-enabled WSN networks can significantly decrease the cost of WSN deployment 

in areas with underutilized fibers since it alleviates the need to install several new BSs. 

Several protocols have been proposed for use in RoF-based WSNs.  

The SPP-MAC protocol[56][57] combines polling and prioritization queueing al-

lowing the designation of different amount of slots to each sensor node, depending on 

 

Fig. 2-14 Experimental result of an 11 Mbps TCP Basic and TCP RTS 802.11 system. Note, the 
ACK Timeout is greater than the CTS Timeout [53].   
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the importance this node plays in the network’s function. For energy saving purposes 

which is a crucial factor in WSNs, the SSP-MAC turns transceivers on only when the 

SNs need to transmit frames. When an SN has outstanding data to transmit it activates 

its transceivers and waits the reception of a polling frame from the BS. When such a 

frame is received, the node transmits its stored date. In turn the BS checks if the SN has 

requested an acknowledgment and, if so, it sends back an ACK frame to the SN before 

transmitting a polling frame to the next node on the polling list. In order to avoid over-

hearing, the SPP-MAC also facilitates header scanning operations, where an SN will 

examine the destination address of a MAC frame as soon as the latter arrives at the SN, 

and if found to be destined to another node the SN transceiver is automatically turned 

off, thus avoiding reception of the whole frame. 

The HMARS protocol[58][59] uses a combination of Time Division Multiple Ac-

cess (TDMA) and Carrier Sense Medium Access (CSMA) mechanisms. The first ap-

proach is used to ensure a collision-free optical channel while the second is used in the 

wireless domain to avoid a collision. In HMARS it is considered that the SNs that are 

within the coverage area of a single RAU form a cluster. All clusters transmit data to 

the same CO. In the optical medium that employs TDMA operation, time is divided 

into frames and each frame is divided further into slots. HMARS assigns a static and 

unique slot to each cluster during which this cluster has the exclusive right to transmit. 

A direct consequence of that is that transmissions originating from SNs belonging to 

different clusters do not collide. In the wireless domain where CSMA is employed, a 

SN having outstanding packet transmissions senses the wireless channel, and in case it 

finds it busy, it postpones its transmission for a later time. In case the channel is found 

idle then it waits a random time interval and transmits the frame. In this way HMARS 

avoids RTS/CTS exchange and instead utilizes random back off timers in order to re-

duce overhead and collisions.  

The authors in [56] have recently introduced the D-HMARS protocol, which stands 

for Dynamic-HMARS and differs from HMARS by incorporating a dynamic conten-

tion period. The D-HMARS protocol defines an extra type of frame, termed as the bea-

con frame, which is employed by the BS in order to transmit the scheduling configura-

tions of the Superframe. The latter defines the transmission intervals and the number of 

data packets used in all data transmissions. Each transmission round is comprised of 

two phases: the setup and the execution phase. During the setup phase, the BS and the 
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SNs synchronize their clocks, the Superframe is devised and transmitted via the beacon 

frames. In the execution phase, all data packets are transmitted by both the BS and the 

SNs using the dynamic and non-persistent CSMA/CA mechanism. 

All of the aforementioned protocols are designed to be used specifically in RoF 

enabled WSNs and as such lack some necessary qualities for being deployed in general 

purpose mm-wave communications. First of all, WSN communications are extremely 

low-bandwidth. Most WSNs assume a transmission rate of around 250kb/s [56]-[61] 

which means that several hundred SNs can transmit simultaneously without overbur-

dening the fiber capacity. In mm-wave connections however, each node is assumed to 

operate at the Gbps range therefore necessitating an optical arbitration scheme that 

schedules and prioritizes transmission windows in order to cope with incoming traffic. 

Secondly SNs employ a frequency of sub-1GHz[56]-[61] and therefore can employ 

mechanisms such as CSMA which is unsuitable in the mm-wave band due to directional 

transmission. In addition, all the above protocols assume that the SNs are un-movable 

and always connected to the same RAU, a principle that does not apply to general pur-

pose terminals which can go in and out of range of the RAUs as the users constantly 

move. Finally, the large transmission range offered by the sub-1GHz bands means that 

only few RAUs are necessary in order to provide WSNs with large areas of coverage 

and therefore the small number of RAUs is assumed to always have an active connec-

tion. In the mm-wave environment however, the large number of RAUs necessitates a 

multi-wavelength source and wavelength assignment/de-assignment, as constant con-

nectivity with a huge number of limited range RAUs that are not continuously used 

would be extremely bandwidth demanding and inefficient. 

2.6.3 Mm-wave based adaptations of existing protocols over RoF 

RoF advantages become increasingly important as the unprecedented escalation in 

wireless bandwidth demand drives the need for employment of wireless frequencies 

capable of delivering enhanced data rates but with the downside of exhibiting range 

crippling propagation losses. A noteworthy example is the license exempt 60GHz band 

which has by now been adopted by the industry as the prevailing candidate region for 

broadband wireless data transfer and has already been enforced in a significant number 

of emerging standards. Since the high loss nature of the mm-wave radio constitutes a 

significant constraint in terms of effective range coverage, 60GHz functionalities are 
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still inevitably bound to PAN applications. [62] offers a study of both the IEEE 802.11 

and ETSI HiperLAN/2 protocols adapted on a mm-wave backhaul RoF architecture. 

The presented results show that when radio operates in the mm-wave band 802.11 per-

formance degrades significantly due to synchronization problems, issued by the mm-

wave medium, which consequently deems the protocol’s performance as unsatisfactory 

and unacceptable. Specifically, the main reason for this behavior is the peculiarity of 

the mm-wave radio which exhibits extreme propagation losses. An immediate conse-

quence of this configuration is that mobile stations in one radio cell are completely 

hidden to mobile stations in other cells. Hence it is logical to consider that the radio 

cells are independent to each other. As a result, several wireless terminals in different 

cells can decide that the medium is idle and start sending their packets at the same time. 

Collision will thus occur at the CO when these signals are collected. In accordance to 

the previous, [62] also displays the argument that a centralized protocol like the Hiper-

LAN/2 is more suitable for RoF applications since it suffers less from hidden terminal 

phenomena, although is actually not immune to them. In HiperLAN/2 all mobile sta-

tions have to use the so called Random Access (RA) phase to transmit Resource Re-

quest (RR) messages to the CO. As a result, HiperLAN/2 networks employing RoF also 

suffer from the hidden-terminal problem, since the high propagation loss nature of the 

radio prohibits the formation of fully connected networks. However, once a wireless 

terminal has successfully reserved the resource, it enters the contention-free phase in 

which resource is explicitly reserved for that Mobile Station (MS). As a result, the hid-

den-terminal problem does not affect the contention-free phases in HiperLAN/2 MAC 

frames. Moreover, since the number of active connections in a radio cell/room in the 

indoor environment is normally small, in an H/2 network the probability of two or more 

packets transmitted at the same time is much less than the probability of collision 

caused by packets transmission in an 802.11 network. 

2.7 Practical demonstrations of RoF technology 
The first major applications that set RoF research in motion started in the early 1990s 

with a goal to provide fast and uninterrupted wireless access to subway stations. Until 

recently, the installation of RoF systems had mostly been considered as suitable for 

special areas like tunnels, underground stations and mines, where the traditional BSs 

could not provide service. Later on, RoF systems were proposed as cost effective solu-

tions for other types of scenarios such as very crowded areas like airport, malls, city 
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centers etc. [63]. The first real and large scale testbed for ROF-based FiWi solutions 

took place in the Sydney Olympics of 2000. The organizing committee selected RoF as 

the technology of choice in order to set up a microcellular network for all venues and 

stadiums with more than 500 indoor and outdoor microcells. The available optical band-

width was used by three distinct mobile providers, each one operating at a dedicated 

licensed radio frequency. The concurrent transmission of all three spectral bands was 

realized by employment of the subcarrier multiplexing technique. Each RAU module 

provided coverage for a 0.8 × 1.8 km2 area, with the network capacity being dynami-

cally reallocated through the day as the crowds moved from venue to venue. This suc-

cessful demonstration of the potency of RoF technology has been the major incentive 

for adopting RoF systems in mainstream wireless networks with even more large-scale 

projects taking place after 2000. 

Other notable projects that have been recognized as milestones in the development of 

novel RoF architectures are China’s Telecom 3G project named FUTURE[64], Korean 

Telecom’s 3G broadband project WiBro[65], and the EU Framework 7 project 

codenamed FUTON[66]. In lab-based testbeds researchers have demonstrated various 

RoF FiWi systems capable of transmitting at rates above 3 Gbit/s[67]. In [68] the au-

thors present a full duplex 10-Gbit/s, 60 GHz RoF Orthogonal Frequency-Division 

Multiplexing (OFDM) system transmitting over a 50-km single-mode fiber (SMF) op-

tical network and in turn feeding the wireless signal in a mm-wave antenna capable of 

establishing wireless links at 4m. [69] exhibits a 48-Gbit/s FiWi systems operating over 

a 400-km fiber link using coherent RoF. 

2.8 Conclusions 
The introduction of the mm-wave carrier nowadays seems both required and prob-

lematic in nature. The 60GHz band is inherently more suitable for PAN applications, 

but RoF seems to be the prevailing candidate solution for breaking the range barrier 

and deployment of Gbps rate future proof networks in vast areas. On the other hand, 

currently established WLAN protocols that can operate (under conditions) over RoF, 

are incapable of handling the mm-wave radio idiosyncrasies, due to hidden terminal 

problems, lack of central entity and the employment of Random Access schemes that 

are totally unfit for the 60GHz radio. On top of that as it has been mentioned before, all 

proposed and studied architectures neglect the powerful capabilities of the underlying 
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optical infrastructure which is solemnly used as a passive medium. To this end we argue 

that a complete change of mind should occur that would eventually lead to the design 

of a new generation of RoF oriented protocols that will be able to unify the now distinct 

operative portfolio of the dual medium and unleash the new architecture’s full potential.  
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 The Medium Transpar-
ent MAC protocol (MT-MAC) 
In this chapter we present our proposed Medium-Transparent MAC (MT-MAC) 

protocol that is capable of dynamically allocating capacity and resources both in the 

optical and wireless domains, effectively enabling 60GHz RoF WLAN functionality. 

Medium Transparency stems from the fact that capacity and resource allocation is ne-

gotiated directly between the wireless users and the CO and is performed within two 

contention periods running in parallel: the first contention process decides on the optical 

capacity per RAU distribution, whereas the second contention period is responsible for 

traffic arbitration between wireless clients located in the same RAU cell. Dynamic 

wavelength allocation (DWA) is achieved by means of a Broadcast-and-Select archi-

tecture where all wavelengths are broadcasted into the network and a wavelength-tun-

able RAU unit selects its specifically assigned data wavelength. Remote uplink (UL) 

and downlink (DL) channel generation is employed and an optical control signal carried 

at a separate control wavelength is responsible for collecting traffic requests of RAUs 

and for assigning wavelengths and optical SuperFrames (SF) to each RAU. Each optical 

SF incorporates a set of time-division multiplexed wireless contention slots that rely on 

a simple POLL-ACK handshaking procedure, completing in this way the assignment 

of traffic to every individual end-user. The performance of the proposed MAC protocol 

is evaluated through simulations for two different network types: a bus topology being 

suitable for indoor RoF deployment in office environments and a PON topology cur-

rently comprising the mainstream architecture for broadband home connections. In both 

network scenarios, high-throughput and low-delay values are obtained in non-saturated 

network load conditions even for Gb/s burst-mode traffic. To this end, the MT-MAC 

scheme allows for high-rate 60GHz WLAN-over-RoF connections with small number 

of available optical resources and even between 60GHz wireless devices with non-Line-

Of-Sight (LOS) conditions, yielding extended reach 60GHz WLAN areas capable of 

supporting bandwidth- and latency-sensitive applications like HD video streaming. 
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3.1 The Medium-Transparent MAC protocol concept 
The 60GHz RoF network infrastructure enforces some special requirements and 

characteristics to WLAN MAC protocol design, especially when Dynamic Wavelength 

Allocation (DWA) mechanisms are also employed in the fiber-based network part. First 

of all, the network’s economic viability necessitates the use of cost-effective RAUs that 

can perform optical-to-RF and RF-to-optical signal conversion without requiring 

60GHz-to-baseband and baseband-to-60GHz down- and up-conversion hardware, re-

spectively[70]-[78]. This implies that no useful processing functionality can be offered 

at the RAU, so that all MAC protocol processes have to be carried out at the CO with 

frames travelling over a hybrid optical-wireless end-to-end-link, resulting also to sig-

nificantly increased propagation delays with respect to conventional WLAN MAC 

schemes [52]-[54]. 

Moreover, the LOS requirement for 60GHz communications renders connectivity 

susceptible to the Hidden Node Terminal (HNT) problem. Even if LOS is established 

between the RAU and each individual wireless terminal, the wireless nodes might not 

satisfy the LOS requirement between each other. For example, a 60GHz RAU can be 

placed at the ceiling of a room so that node-to-RAU LOS is ensured, whilst all wireless 

nodes are located at the office’s height, so that possible obstacles at the same height 

impede LOS between them. This scenario makes the use of Carrier Sense Multiple Ac-

cess (CSMA)-based protocol designs ineffective, necessitating the intervention of the 

RAU unit for definitely ensuring the wireless medium availability[79]. 

The employment of optical DWA mechanisms for optical capacity and resource 

sharing purposes introduces an additional important MAC protocol design factor. Op-

tical DWA suggests that the optical channel will be not always present at a RAU, re-

sulting in an end-to-end-channel link between the wireless users and the CO that is not 

continuously available. This situation is unique for conventional wireless LANs, where 

contention can be resolved at every AP and the wireless medium is always present at 

least in non-energy saving normal operating conditions. To this end, DWA allows only 

for short time availability for carrying out any wireless capacity arbitration, whilst ren-

dering bandwidth utilization a vital factor for the communication effectiveness. 
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3.1.1 Physical layer architectural aspects 

Fig. 3-1 depicts a generic layout of a 60GHz Radio-over-Fiber network showing 

that a single CO serves a number of wireless clients distributed among different RAUs. 

Traffic exchange between the CO and the clients is performed over both the optical and 

wireless media with the data packets being in the optical domain for the fiber-based CO 

to RAU network part and in the 60GHz wireless domain for the RAU to end-user link. 

The RAU modules are responsible for the optical-to-wireless signal conversion func-

tionalities without employing any advanced signal processing schemes, leaving the en-

tire network intelligence located at the CO. This indicates that LAN capabilities can be 

offered both to the end-users served by the same RAU as well as between all clients 

distributed among the different RAUs, utilizing 60GHz wireless capacity sharing or 

both optical and wireless capacity sharing techniques, respectively. As such, capacity 

is negotiated directly between the wireless users and the CO without any decisive in-

tervention of the RAU units, yielding an extended reach WLAN network between all 

users served by the same CO, even when no LOS between the users is present. 

All UL and DL channels are generated at the CO and are broadcasted into the net-

work. These are considered to form 𝑤𝑤 wavelength pairs, namely 

{𝜆𝜆1, 𝜆𝜆1′ }, {𝜆𝜆2, 𝜆𝜆2′ }, … , {𝜆𝜆𝑤𝑤,𝜆𝜆𝑤𝑤′ }, following the spectral arrangement shown in Fig. 3-2(a). 

Each wavelength pair 𝜆𝜆𝑘𝑘 carries single-side-band (SSB) DL traffic at a 60GHz subcar-

rier from the CO to the RAU, while 𝜆𝜆𝑘𝑘′  carries UL traffic (also SSB) back to the CO. 

An additional wavelength pair {𝜆𝜆𝑐𝑐,𝜆𝜆𝑐𝑐′ } is used for bandwidth control operations: 𝜆𝜆𝑐𝑐 

 

Fig. 3-1 The concept of RoF-enabled 60GHz LAN functionality within each individual RAU cell 
and among all RAUs served by a single Central Office. 
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serves both for signaling purposes carrying a sub-carrier modulated beacon pulse, as 

well as for wavelength assignment purposes informing each RAU about its allocated 

wavelength 𝜆𝜆𝑘𝑘 through a proper control code pulse sequence. At the same time, 𝜆𝜆𝑐𝑐′  car-

ries the wireless nodes’ response pulses and updates the CO about each RAU’s traffic 

request. 

The control code pulse sequence dictating the wavelength assignments to the RAU 

units comprises log2 𝑤𝑤 + 1 bits, with each binary sequence designating one of the 𝑤𝑤 

different data DL/UL wavelength pairs. The code sequence that contains only “0”s is 

not considered as a valid control code. To this end, the downlink control signal structure 

within each beacon period 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏 is as follows: One optical beacon pulse followed by 

 

Fig. 3-2: (a) The data/control signal spectral arrangement, (b) an example of the DL control 
channel content within a beacon period for the case of a network with 10 RAUs and 3 available 

wavelengths, and (c) the RAU design. 
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a number of time slots equal to the number of RAUs in the network, with each time slot 

employing a baseband control code. The optical beacon pulse is modulated at a RF sub-

carrier different than 60GHz, i.e. 59.8GHz, and its role is to periodically trigger the 

wireless nodes after being opto-electronically converted, providing at the same time a 

synchronization signal for all RAUs. The time slots following the beacon pulse contain 

the control codes for each RAU unit, with the i-th time slot corresponding to the i-th 

RAU module. When no data wavelength pair is assigned to a RAU, the corresponding 

time slot of the control signal for this RAU will be empty. Fig. 3-2(b) illustrates the 

control signal structure between two successive beacon pulses in an example of a net-

work with 10 RAUs and 3 available wavelengths. According to this signal structure, 

RAU#2 will be assigned the DL data wavelength pair #1, RAU#5 will be assigned the 

DL data wavelength pair #3, RAU#10 will be assigned the DL data wavelength pair #2, 

and all remaining RAUs will have no assigned channels. The pulse shape of both the 

beacon and the control code pulses can be Non-Return-to-Zero (NRZ) with their pulse 

duration being fully determined by the beacon period, the total number of available 

RAUs and the control code sequence length log2 𝑤𝑤 + 1 bits. It should be noted that the 

relatively small number of bits required at the control channel could in principle also 

allow for Time-Division Multiplexing (TDM) techniques between the control and data 

channels at the same 60GHz band, relaxing the need for the additional 59.8GHz fre-

quency band. 

Dynamic capacity allocation is performed by utilizing wavelength-selective RAU 

units and a Broadcast-and-Select architecture: all wavelengths are generated at the CO 

and launched into the entire network, whereas each RAU unit tunes to its respective 

data wavelength pair that has been dictated by the control channel information. Fig. 3-2 

(c) shows the architecture of a RAU unit so as to enable wavelength-tunability and 

subsequently dynamic optical capacity allocation. An optical coupler arrangement al-

lows the entire CO traffic including all the data DL/UL as well as the control wave-

lengths to enter each RAU. The low-rate control channel information at 𝜆𝜆𝑐𝑐 is then fil-

tered in an Optical Bandpass Filter (OBF) and converted to an electronic form by means 

of a photodiode. The subcarrier modulated beacon pulse is subsequently transmitted 

into the air via a microwave antenna at a small frequency band slightly detuned with 

respect to the 60GHz wireless data signal, in our case considered to be a 59.8GHz RF 
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carrier. The baseband control code sequence becomes decoded in a low-rate Integrated 

Circuit (IC) microcontroller. The decoded 𝜆𝜆𝑐𝑐 content informs the RAU about its as-

signed data wavelength pair and the RAU-specific wavelengths λ𝑘𝑘 and 𝜆𝜆𝑘𝑘′  are selected 

by two respective optical tunable filters [80] controlled by the IC circuit. To this end, 

only this DL/UL data wavelength pair enters the RAU unit. At the same time, 𝜆𝜆𝑐𝑐′  is 

filtered in a separate OBF, becomes modulated with the wireless nodes’ response pulses 

and is fed back into the network for informing the CO about the RAU’s traffic requests. 

It should be noted that the data wavelength selection could be also performed by means 

of a programmable or electronically controllable Wavelength Selective switch, replac-

ing the optical coupler and tunable optical filtering stages of the RAU and allowing for 

more compact and lower insertion loss RAU configurations. 

Data at 𝜆𝜆𝑘𝑘 is then launched into a second photodiode prior entering the microwave 

antenna that feeds the 60GHz wireless signal into the air. Channel at 𝜆𝜆𝑘𝑘′  travels back to 

the CO after being modulated by RAU’s UL traffic. All wireless nodes are considered 

to be equipped with two transceivers; one utilized for the main data exchange at 60GHz 

(Data Channel), and one operating at a narrow bandwidth channel utilized exclusively 

for control signaling (Control Channel). However, both transceiver units can share the 

same 60GHz antenna and broadband RF amplification modules taking advantage of 

their broadband operational bandwidth, discriminating data and control information by 

means of simple microwave bandpass filtering elements. 

3.1.2 The Medium Access Control protocol 

Medium transparency of the MAC protocol relies on enabling capacity negotiation 

between the wireless nodes and the CO directly without the intervention of the RAU 

module. This can be achieved by considering contention broken down in two discrete 

periods, referred to as the 1st and the 2nd Contention Period. The 1st Contention Period 

is responsible for allocating the optical capacity to a group of wireless nodes clustered 

within the same RAU cell, whereas the 2nd Contention Period undertakes the finer dis-

tribution of the already per user-cluster assigned optical capacity to each individual 

wireless node being present in this RAU cell.  

During the 1st Contention Period the CO emits a short optical beacon pulse in the 

Control Channel that is in turn broadcasted into the air through every RAU. When the 



Chapter 3: The Medium Transparent MAC protocol (MT-MAC)  

73 

 

node or nodes present within the range of the RAU detect the pulse, they respond im-

mediately by emitting a short pulse of the same duration in order to notify of its pres-

ence and its desire to transmit data. Nodes that detect the pulse but have no outstanding 

packets waiting for transmission remain silent in this phase. These pulses are received 

by the respective RAU and modulate its allocated timeslots in the 𝜆𝜆𝑐𝑐′  channel, which 

subsequently propagates towards the CO. This procedure is illustrated for an example 

of four different RAUs served by the CO in Fig. 3-3 , revealing also the need for having 

clearly time-discriminated RAU response pulses in order to avoid overlapping between 

their replies. This can be easily achieved by considering the presence of differential 

fiber delays between the RAUs due to their location at different distances from the CO. 

To this end, when 𝛥𝛥𝛥𝛥𝑖𝑖 is the differential fiber path between the two closer located RAUs 

with respect to their distance from the CO, the available response time window for 

ensuring time-isolated replies has to be 𝛥𝛥𝑝𝑝𝑖𝑖 = 2𝛥𝛥𝛥𝛥𝑖𝑖 𝑟𝑟 𝑐𝑐⁄ , with 𝑟𝑟 denoting the fiber re-

fractive index and 𝑐𝑐 the speed of light in vacuum. The maximum response pulse width 

has to be below the minimum of these 𝛥𝛥𝑝𝑝𝑖𝑖 time intervals, which is easily fulfilled for 

realistic pulse duration values taking into account that even 1m of differential fiber path 

between two RAUs allows for a time interval of 10nsec. 

The synchronized reception of the control channel response pulses informs the CO 

about the RAUs having active clients and requesting capacity. After reception of the 

𝜆𝜆𝑐𝑐′ , the CO assigns a data transmission wavelength pair {𝜆𝜆𝑘𝑘, 𝜆𝜆𝑘𝑘′ } to each RAU by trans-

mitting a short optical bit sequence that uniquely identifies the wavelength where the 

 

Fig. 3-3: Traffic requests collection procedure during the 1st Contention Period in the case of ac-
tive clients located within RAUs 1, 2 and 4. 



Chapter 3: The Medium Transparent MAC protocol (MT-MAC) 

74 

RAU’s tunable filter should tune into, ergo ending the 1st Contention Period. In high 

load conditions, where the number of RAUs containing active clients exceeds the num-

ber of available wavelength pairs, the CO assigns the wavelengths in a Round-Robin 

fashion fairly distributing the available bandwidth amongst all RAUs.  

The 2nd Contention Period takes place entirely in the Data Channel. All traffic is 

contained within Superframes (SF), with each SF comprising of either Resource Re-

questing Frames (RRF) or Data Frames (DF), as shown in Fig. 3-4 , both being of equal 

duration. The sum of RRFs and DFs is always constant and equal to 𝑃𝑃. The role of 

RRFs is the identification of the active nodes residing within the RAU cell so as to 

increase bandwidth utilization by allowing only active nodes’ participation in the sub-

sequent DFs, which in turn carry out the actual data exchange procedure on the basis 

of a polling-based scheme. RRFs are further divided into 𝑚𝑚 slots, with each slot com-

prising of POLL, ID and ACK packets, whereas DFs contain DATA packets instead of 

ID packets. At the beginning of each RRF, all the active clients randomly choose an 

integer value 𝑦𝑦 in the interval [0,𝑚𝑚), where 𝑦𝑦 corresponds to the number of POLL 

packets that have to be received by the terminal before responding with an ID packet. 

During a slot, the CO transmits a general POLL packet with no receiving node specified 

in its body. Upon correct ID packet reception, the CO responds with an ACK packet, 

notifying the corresponding node that it has been correctly identified. This node will 

not participate in a subsequent RRF (if any) within the current SF. Should, however, 

two nodes choose the same 𝑦𝑦 value at the beginning of the RRF, they will both transmit 

 

Fig. 3-4 Example of the 2nd Contention Period of an MT-MAC network with 2 wavelengths 
and 4 RAUs 
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an ID packet during the same slot. The collision will render both ID packets unreadable 

and the CO will not respond with an ACK forcing the nodes to participate in the next 

RRF, after choosing a new 𝑦𝑦 value. The CO continues transmitting RRFs until zero 

collisions occur and all nodes are successfully identified, ending in this way the 2nd 

Contention Period. Having full knowledge of the nodes that are active within a RAU, 

the CO initiates the transmission of a series of DFs. If 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 RRFs were needed for the 

2nd Contention Period to be resolved, then (𝑃𝑃 − 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅) DFs will be broadcasted until 

the end of the SF is reached, polling the wireless nodes in a Round-Robin fashion. A 

node is considered to be no longer active and is removed from the polling sequence if 

it remains silent for a number of data frames. If all nodes within a RAU are inactive or 

if the SF has exceeded its maximum allowed duration while other RAUs await for 

wavelength assignment, the CO de-assigns the wavelength pair from that RAU. As long 

as none of the above applies, the CO extends the SFs’ duration by continuing DF trans-

mission. In parallel to the data exchange, the CO periodically reruns the 1st Contention 

Process in the control channel so as to update the list of RAUs requesting traffic. If no 

known active clients exist within a newly wavelength allocated RAU, the 2nd Conten-

tion Process is repeated.  

3.2 60GHz LAN in RoF-over-Bus Network Topology 
This section presents the performance evaluation analysis of the MT-MAC protocol 

when applied to a 60GHz RoF network configured in a bus topology. The bus topology 

is consisted of the CO office that is connected through a single optical fiber to the 

RAUs, as shown in Fig. 3-5. This architecture is compatible with network deployment 

in office environments, where a common CO is considered to serve multiple floors and 

rooms over a single fiber bus providing a discrete RAU connectivity point to every 

 

Fig. 3-5 Representation of an MT-MAC Radio-over-Fiber bus architecture. 
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room. The distribution of RAUs along the common fiber bus facilitates the synchroni-

zation of the control channel optical response pulses received by the CO, since the dif-

ferential fiber paths and subsequently the differential time intervals 𝛥𝛥𝑝𝑝𝑖𝑖 apply in a serial 

way to the extending RAU modules. 

TABLE 3-1: SIMULATION PARAMETERS WITH POISSON TRAFFIC MODEL 
MEDIUM-TRANSPARENT MAC 802.11 DCF 

Fiber Prop. Delay 1μs= 200m Fiber Prop. Delay 1μs= 200m 

Slots in RRF 10 Slot_Time 20 μs 

Air Prop. Delay 0.16μs Air Prop. Delay 1 μs 

Data Bitrate 155Mbps Data rate 11 Mbps 

Frames in SF 10 SIFS (Short Inter-frame Space) 10 μs 

ACK Size (bytes) 8 DIFS = (2.σ+SIFS) 50 μs 

DATA Size (bytes) 1288 RTS 20 bytes 

ID Size (bytes) 64 CTS or ACK 14 bytes 

POLL Size (bytes) 64 min Content. Window 32 

 max Content. Window 1024 

ACK_Timeout or CTS_Timeout (314 + 2δ) μs 

 

Fig. 3-6 presents simulation results carried out in a bus topology containing the CO 

and 10 RAU units with a total bus length of 950m, considering a typical 60GHz RAU 

coverage of 50m radius and a distance between the CO and the closest RAU equal to 

500m. The simulation program was developed in Java and the parameters used are sum-

marized in Table 3-1. 

Fig. 3-6(a) and Fig. 3-6(b) depict throughput and delay results obtained for load 

values ranging from 10% up to 100% of the maximum theoretical network capacity, 

and for three different #Wavelength Pairs/#Rau Units ratios (WR), namely 30%, 50% 

and 80%. Throughput was measured as the packets that were correctly delivered per 

time slot, with a time slot being equal to the time required for a data packet to be trans-

mitted. Delay was measured as the average time interval between a packet’s arrival at 

the buffer and its delivery to the end user. The proposed MAC protocol succeeds in 

utilizing almost all of the available bandwidth, since throughput increases almost line-

arly with the offered load as long as load resides within the WR ratio. When load ex-

ceeds the WR value, throughput arrives at its natural saturation point reaching an almost 
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constant value. At the same time, delay values remain in the μsec range when load is 

below the WR value and increase rapidly when load approaches WR. After the offered 

load has exceeded the WR value, delay follows a slowly increasing course, however 

always being below 100msec. Fig. 3-6(c) illustrates the respective delay versus 

throughput graph for these 3 different WR ratios. It can be seen that for 80% WR the 

average delay increases logarithmically with the network throughput, meaning that de-

lay increases more slowly to infinity than throughput thus confirming that the network 

operates efficiently and remains constantly in stable state. On the other hand, regarding 

the 30% and 50% WR, delay increases exponentially as throughput approaches satura-

tion, denoting that the number of wavelengths does not suffice to serve incoming traffic 

and the network enters an unstable condition where small throughput increments result 

in disproportionately large delay penalties. The protocol’s scalability performance for 

growing number of wireless nodes per RAU is addressed in Fig. 3-6(d), which depicts 

throughput and delay results as the number of per RAU users increases and for two 

different network load conditions (50% and 100%) with a constant WR ratio of 50%. It 

should be noticed that only 10% throughput reduction is obtained when the number of 

 

Fig. 3-6 Performance results for RoF bus network topology with 10 RAUs (a) Throughput vs. 
Load for 30%, 50% and 80% WR, (b) End to end packet delay vs. Load for 30%, 50% and 

80% WR, (c) End to end packet delay vs. Throughput for 30%, 50% and 80% WR, (d) 
Throughput and Packet Delay vs. Number of RAUs in the network. 

WR
WR
WR

WR
WR
WR

WR
WR
WR



Chapter 3: The Medium Transparent MAC protocol (MT-MAC) 

78 

users increases by a factor of 1000% from 2 to 20, mainly due to the enhanced wireless 

arbitration processes. 

The scalability analysis of the proposed protocol is completed by addressing its 

performance also for increased number of interconnected RAUs.  Fig. 3-7(a)-(d) show 

respective throughput and delay results obtained for enhanced network dimensions, 

where traffic from a large number of RAUs and wireless clients has to be regulated. 

Fig. 3-7(a) and Fig. 3-7(b) display throughput and end-to-end packet delay vs load, 

respectively, for a network comprising of 128 RAUs with a total bus length of 6.5km 

and for three different WR ratios, namely 30%, 50% and 80%. Both throughput and 

delay follow a similar behavior as in the case of the network employing only 10 RAUs, 

confirming a smooth scaling of the protocol’s performance with only minor throughput 

and delay degradation. Fig. 3-7(c) illustrates the respective delay vs. throughput curves 

which again follow the same curvature as the respective Fig. 3-6(c) indicating that for 

80% WR the network remains in stable condition, whereas for 30% an 50% WR the 

network becomes unstable as throughput enters its saturation regime. Fig. 3-7(d) pro-

vides a more detailed insight into the protocol’s performance as RAUs are gradually 

added in the network, again for three different load conditions (30%, 50% and 80%) 

 

Fig. 3-7 Performance results for RoF bus network topology with 128 RAUs (a) Throughput 
vs. Load for 30%, 50% and 80% WR, (b) End to end packet delay vs. Load for 30%, 50% 

and 80% WR, (c) End to end packet delay vs. Throughput for 30%, 50% and 80% WR, (d) 
Throughput and Packet Delay vs. Number of RAUs in the network.  
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and for a constant WR ratio of 50%. As can be easily observed, only a slight perfor-

mance degradation is obtained, primarily being the result of the additional fiber propa-

gation delay emerging due to the considerably longer bus lengths. However, even when 

the number of RAUs increases from 10 to 128 by a factor of approximately 1000%, 

throughput is decreased by only 3% and only a small delay increment of 5% is experi-

enced, confirming the highly scalable aspects of the proposed protocol and its tolerance 

to large number of RAUs. 

3.3 60GHz LAN in RoF-over-PON Network Topology 
As PON architectures are undoubtedly dominating the field of optical access net-

work architectures providing broadband Fiber-To-The-Home (FTTH) services, 60GHz 

RoF-over-PON implementations can be envisaged as a viable solution towards equip-

ping residential end-users with broadband wireless service delivery. To this end, this 

section presents performance evaluation results of the proposed MT-MAC protocol in 

a RoF-over-PON network scenario with the aim to yield wireless LAN functionality in 

home environments.  

Fig. 3-8 depicts the network layout when a 1:64 PON splitting ratio is used imply-

ing that a total number of 64 RAUs are connected to the passive fiber-based network 

part. Given that our MAC protocol requires wavelength-selectivity only at the antenna 

site in order to fully support its dynamic capacity allocation procedures, the proposed 

MAC scheme is fully compatible with the passive nature of PON network necessitating 

only the deployment of wavelength-tunable RAUs at the end-user site. 

 

Fig. 3-8: 60GHz RoF over PON network layout. 
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The main difference of this RoF-over-PON MAC protocol compared to its already 

presented version for bus network topology lies in the synchronization of the control 

channel response pulses that inform the CO about the traffic-requesting RAUs. As 

RAUs in this PON network layout are now connected to different pieces of fiber lengths 

after the passive optical splitting stage, the differential path delays between RAUs do 

not follow a uniform and serial distribution like in the case of a bus topology. In that 

case, the time intervals considered necessary for ensuring the time-discriminated arrival 

of response pulses will follow a non-uniform arrangement, as already discussed in 

Chapter 3.1.1, with the maximum pulse duration being dictated by the minimum of the 

differential fiber length between two successive RAUs. 

Fig. 3-9 presents simulation results carried out for a RoF-over-PON network topol-

ogy comprising the CO and 64 RAU units with each RAU serving a number of 5 wire-

less clients. The RAU modules have been considered to be located at randomly chosen 

different distances from the CO following a uniform distribution between 7km and 

13km distance values. The remaining simulation parameters have been the same as in 

the bus network performance analysis summarized in Table 3-1. Throughput and delay 

are here again defined as described in Chapter 3.2. 

Fig. 3-9(a) and Fig. 3-9(b) display throughput and delay results obtained for load 

values ranging from 10% up to 100% of the maximum theoretical network capacity, 

and for three different WR ratio values, namely 30%, 50% and 80%. As can be noticed 

by the respective behavior of throughput and delay graphs in these two figures, the 

application of the proposed MAC protocol to a RoF-over-PON architecture yields a 

network performance similar to the case of the bus architecture, confirming the strongly 

adaptive character of our MAC scheme to various network topologies. Both throughput 

and delay follow a pattern similar to the respective curves obtained for the bus topology 

for a certain WR ratio value, forming again two discrete and different operational re-

gions around a load value close to the available WR ratio. While load remains lower 
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than the WR ratio, throughput increases almost linearly with increasing load whilst de-

lay remains in the μsec range. When the offered load approaches the WR ratio value, 

throughput begins to saturate whereas delay increases rapidly. Once load exceeds the 

available WR ratio, throughput remains to a constant saturation value forming a plateau. 

At the same time, delay continues a slowly increasing course, being always constrained 

within boundaries below 130msec. 

The respective delay versus throughput graph for these 3 different WR ratios is 

illustrated in Fig. 3-9(c), whereas the protocol’s scalability properties for growing num-

ber of wireless users per RAU are addressed in Fig. 3-9(d). This figure depicts again 

only marginally impacted throughput and delay values as the number of users per RAU 

ranges from 5 to 20 for two different network load conditions (50% and 100%), with 

WR value being in all cases equal to 50%. Compared to the respective results obtained 

for the case of the RoF-over-bus network with 128 RAUs, the PON-adapted protocol 

yields only a 1.8% decrease in throughput and a 4% increase in delay for almost all 

three WR values. This performance degradation is again mainly experienced as the re-

sult of the significantly larger PON network dimensions compared to the fiber lengths 

 

Fig. 3-9: Performance results for a PON network with 64 RAUs (a) Throughput vs. Load for 
30%, 50% and 80% WR, (b) End to end packet delay vs. Load for 30%, 50% and 80% WR, (c) 

End to end packet delay vs. Throughput for 30%, 50% and 80% WR, (d) Throughput and 
Packet Delay vs. Number of RAUs in the network. 
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employed in the bus network topology of Chapter 3.2. However, the marginal through-

put and delay deterioration indicate the protocol’s capabilities to tolerate enhanced fiber 

propagation delays, whilst confirming its agile character that allows effective adapta-

tion to both bus and PON topologies. 

Fig. 3-10 presents the respective MAC protocol performance analysis for more re-

alistic network conditions, considering different load values and different number of 

wireless clients at every RAU. Fig. 3-10(a) and Fig. 3-10(b) depict throughput and de-

lay results obtained for different load conditions with load mean values ranging from 

10% up to 100% of the maximum theoretical network capacity, for variable number of 

wireless clients per RAU with a mean value of 5, and for four different WR ratio values, 

namely 30%, 50%, 80% and 100%. The respective delay versus throughput graph is 

shown in Fig. 3-10(c). Despite the versatility in load and end-user numbers per RAU, 

throughput and delay performance is similar to the case of RAUs with equal network 

usage requirements. A minor reduction in throughput and a small increment in delay of 

1.5% and 2.8%, respectively, emerge due to the enhanced wireless arbitration proce-

dures at RAUs having an increased number of clients and heavier traffic requests. 

The origin of having only a minor performance impairment when only the number 

of users per RAU is altered without modifying the number of RAUs lies in the absence 

of any additional optical capacity contentions. This can be verified by the graphs cor-

responding to the case of 100% WR ratios, where the number of wavelengths equals 

the number of RAUs so that a complete wavelength is statically assigned to one RAU. 

To this end, wavelength assignments to the RAU units are carried out only once during 

the network start-up, whereas for the rest of the network operation only the 2nd Conten-

tion Period is actively running. This implies that only the MAC performance in the 
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wireless domain affects the total throughput and delay values. As can be noted by Fig. 

3-10(a) and Fig. 3-10(b), the absence of any optical capacity contending periods under 

these “ideal” optical medium conditions yields an almost linear throughput increment 

proving the low-impact of the wireless traffic arbitration processes. Delay values re-

main also stably in the μsec range as long as load resides below the available WR ratio 

value. 

Major changes in both the throughput and delay curves are experienced only when 

the offered load approaches the available WR value for all cases of WR ratios of 30%, 

50%, 80% and 100%, showing that wavelength assignment is a higher impact perfor-

mance factor compared to the wireless capacity arbitration. More specifically, conten-

tion in the optical domain has a multiplication effect on the delay experienced by the 

wireless arbitration tasks, since the complete delay experienced in the wireless domain 

is in that case transferred also to the next wavelength assignment cycle. The maximum 

delay value experienced in the 100% WR case in Fig. 3-10(b) is 9 msec, identical to the 

case of a network with a single RAU, a single available wavelength and 5 wireless 

users, which is shown in Fig. 3-11. 

 

Fig. 3-10: Performance results in a PON network with 64 RAUs with variable number of users 
per RAU and variable load per RAU conditions: (a) Throughput vs. Load, (b) End to end packet 
delay vs. Load, (c) End to end packet delay vs. Throughput. All results are shown for 30%, 50%, 

80% and 100% WR. 
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In the case of 30% WR or 50%WR values, where the available capacity does not 

suffice for saturated network conditions, delay reaches an upper limit close to 220msec 

and 100msec, respectively, being several times larger than the single wireless arbitra-

tion delay. This is simply the result of the additional wavelength assignment cycles 

required for fulfilling the capacity requests, indicating that each cycle acts as a multi-

plication factor to the wireless contention delay. To this end, a possible acceleration of 

the 1st Contention Period functions through appropriate RAU and wavelength clustering 

employing different degrees of wavelength dedication per each RAU cluster could cer-

tainly lead to improved network performance.  

The scenario of a single RAU-single wavelength network with 5 wireless end-users 

and 500m CO-RAU distance depicted by Fig. 3-11 provides also an insight into the 

performance of the combined RRF/DF polling-based approach employed for the wire-

less traffic arbitration, comparing throughput and delay metrics with respective values 

obtained for an identical network when a typical 802.11 DCF MAC protocol is used. 

As can be identified, 802.11 yields slightly decreased throughput and higher delay val-

ues when no RTS/CTS mechanism and no HNTs are employed. However, the delay 

performance is severely degraded compared to the MT-MAC protocol when RTS/CTS 

is used, as would be certainly required for ensuring HNT-released network operation 

[52]-[54] especially when shifting to the 60GHz frequency band. Given that the DWA 

process has a multiplied effect on the delay induced solely by the wireless capacity 

sharing procedures, the enhanced delay enforced by the Distributed Coordination Func-

tion (DCF) of the 802.11 with RTS/CTS appears to be prohibitive for a 60GHz RoF 

LAN capable of serving latency-sensitive applications. The network parameters used 

for the 802.11 simulation-based analysis are summarized in Table 3-1. 

 

Fig. 3-11: (a) Throughput and (b) Delay results for a single RAU – single wavelength network for 
the medium transparent MAC and the 802.11 protocol with and without RTS/CTS. Delay is 

measured as number of data slots allowing for direct comparison between different bit-rate MT-
MAC and 802.11 DCF. 
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3.4 Performance Analysis for Gb/s Burst-Mode Traffic Applications 
The turn towards 60GHz wireless communications has been mainly driven by mod-

ern high-bandwidth applications in combination with the high bandwidth availability 

in the 60GHz RF spectral band that extends up to 5GHz. 60GHz technology seems to 

be currently the mainstream solution for providing Gb/s wireless connections in order 

to cope with the bandwidth demands of recently introduced high speed applications like 

HD Audio/Video streaming (real time/on demand) or HDTV. This can be also con-

firmed by the variety of 60GHz standardization efforts like the 802.11ad[21], the 

802.15 TG3c[22] and the WirelessHD[23] standards, all of them utilizing 60GHz tech-

nology either for WPAN or WLAN high-speed connectivity. Following this rationale, 

successful operation of the 60GHz RoF MT-MAC protocol even with this type of ap-

plications that have extremely low latency requirements is certainly a prerequisite for 

considering it as a promising approach. 

TABLE 3-2: SIMULATION PARAMETERS UNDER BURSTY TRAFFIC MODEL 

Slots in RRF 10 Frames in SF 10 

Air Prop. Delay 0.16μs 

Packet Size (bytes) 

ACK 8 

Fiber Prop. Delay 1μs= 200m DATA 1500 

Average Burst Length 
15kbytes or 
13.5kbytes 

ID 64 

Data Bitrate 3Gbps POLL 64 

The previous sections have presented the MT-MAC’s performance assuming Pois-

son traffic, which is the classic model used to estimate data packet arrivals and has been 

shown to be very accurate to model arrivals of TELNET, mobile telephony and FTP 

sessions[81]. However, Poisson traffic is not realistic for video traffic modelling since 

it lacks correlation properties between packet arrivals[82]. To this end, this section pre-

sents performance evaluation results of the proposed MT-MAC protocol for generic 

traffic characteristics that are present in HD audio or video streaming applications such 

as the bursty traffic mode. Network traffic at 3Gb/s bit-rates has been provided by using 

a burst-mode traffic generation model based on a Markov On-Off distribution process 

with burst sizes exceeding the packet size. The protocol’s performance in high-speed 

burst-mode traffic conditions has been tested for both the bus and the PON network 
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configurations using the same network parameters that have been already employed 

and described in Chapters 3.2 and 3.3 for the bus and the PON topology, respectively. 

A summary of the simulation parameters used for the protocol’s evaluation with the 

bursty traffic model is provided in Table 3-2. 

Fig. 3-12 and Fig. 3-13 show the results obtained in the case of a bus and a PON 

network architecture, respectively, for two different Average Burst Lengths (ABLs), 

i.e. 13.5 Kbytes and 15 Kbytes. The two ABL values have been selected so as to eval-

uate the protocol for both cases of having bursts with a total average duration lower and 

higher, respectively, than the total duration of the packets included within a single Su-

perFrame. The 13.5 Kbytes ABL value corresponds to 9 data packets marginally fitting 

within a single SuperFrame, whereas the 15kbyte ABL value corresponds to 10 data 

packets, occupying a complete SuperFrame and still requiring an additional packet 

frame. It should be noted that one frame out of the 10 packet frames employed within 

a SF serves as the contention frame, so that 9 data packets is the maximum number of 

usable bandwidth within a single SF. 

 

Fig. 3-12: Performance results in a Bus network with 128 RAUs: (a) Throughput vs. Load, (b) 
End to end packet delay vs. Load, (c) End to end packet delay vs. Throughput Curves with black-
filled symbols present the case where the Average Burst Length (ABL) is lower than the Super-
Frame Size, whereas curves with white-filled symbols present the case where the ABL exceeds 

the SuperFrame Size.  
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Fig. 3-12(a), (b) and (c) display throughput versus load, delay versus load and delay 

versus throughput, respectively, obtained for a bus RoF network. Fig. 3-13(a), (b) and 

(c) illustrate the respective graphs for the case of a RoF-over-PON architecture. In both 

figures, the performance is shown load values ranging from 10% up to 100% of the 

maximum theoretical network capacity, and for three different WR values, namely 

30%, 50% and 80%. The curves formed by the black symbols correspond to the case of 

13.5 Kbytes ABL value and the curves formed by the white symbols correspond to the 

case of 15 Kbyte ABL value. 

In both bus and PON network configurations and for both ABL values, the network 

performs similar to the respective RoF topologies with Poisson traffic, with the WR 

value comprising the decisive performance factor. Once again, throughput and delay 

graphs are logically divided into two discrete performance regions: as long as the of-

fered load is lower than the WR value, throughput increases almost linearly and delay 

remains low. For loads close to the WR value, throughput starts to saturate to a plateau 

close to the WR and a jump in delay to values greater than 10msec is observed. 

 

Fig. 3-13: Throughput and delay results in a PON network with 64 RAUs: (a) Throughput vs. 
Load, (b) End to end packet delay vs. Load, (c) End to end packet delay vs. Throughput Curves 
with black-filled symbols present the case where the Average Burst Length (ABL) is lower than 
the SuperFrame Size, whereas curves with white-filled symbols present the case where the ABL 

exceeds the SuperFrame Size. 
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However, it is interesting to note that the delay remains constantly below 1msec for 

a great range of load values lower than the WR value. This is extremely important for 

latency-sensitive applications like HD video streaming, where strict latency constraints 

of 2-5 msec have to be satisfied in order to ensure high quality service delivery. Taking 

into account that this low latency performance is achieved without considering any 

Quality-of-Service (QoS) guarantee mechanisms in the proposed MAC protocol, im-

proved performance should be expected by employing appropriate optimization pro-

cesses. 

Moreover, delay is significantly lower in the Load<WR region compared to the 

case of Poisson traffic, whereas it increases more rapidly saturating at a slightly higher 

level when Load≥WR. Lower delay in the Load<WR region mainly owes to the uneven 

distribution of traffic among RAUs and wireless nodes in the case of burst-mode oper-

ation, since a data burst commences and continues to be provided from the same client 

until it reaches its end. This results in fewer assignments and de-assignments of wave-

lengths by the CO and therefore to lower delay values. On the contrary, data generated 

by a memoryless Poisson model is spread more uniformly across the whole network 

necessitating more frequent wavelength reallocation procedures. Reversely, in a high 

load network state, where almost all participating nodes produce traffic with high prob-

ability, the situation is completely different and higher delay values are obtained when 

burst-mode traffic is used compared to Poisson. In burst-mode operation, the high load 

network conditions yield a bulk production of packets in individual nodes without hav-

ing the required optical capacity to serve them. To this end, the round-robin polling 

fashion during the second contention period of the proposed scheme results to higher 

stays in the buffer. Finally, it should be mentioned that slightly different results are 

obtained for the two different ABL values. Improved MAC protocol performance with 

respect to throughput and delay measurements is achieved in the case of 13.5 Kbytes 

ABL, since in that case the burst size is lower than a SuperFrame and a single wave-

length assignment is sufficient for a whole burst delivery. 

3.5 Discussion on the benefits of the MT-MAC protocol 
The simulation-based performance analysis of the 60GHz RoF-enabled MT-MAC 

protocol reveals that this scheme is capable of supporting high-bandwidth applications 

like HD video streaming forming extended reach 60GHz WLAN areas and connecting 
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even non-LOS wireless devices. High-bandwidth connectivity is ensured in our ap-

proach by the RoF technologies that are inherently broadband with proven potential to 

carry bit-rates up to several Gb/s over several km of optical fiber. Moreover, this MAC 

protocol enables 60GHz RoF communication directly between the individual end-users 

and the CO, utilizing the RAU modules just for optical-to-wireless and vice versa con-

version purposes. This means that besides forming WLAN networks around each 

60GHz Access Point, as targeted within the 802.11ad standard, the proposed scheme 

yields an Extended WLAN network that incorporates all wireless clients connected to 

the same CO, even when located at different RAU cells and without direct LOS. LOS 

is required only between wireless users and at least one RAU in order to successfully 

yield LAN connectivity. To this end, the 60GHz RoF MT-MAC protocol solution over-

comes the bottleneck of 60GHz technology to connect non-LOS wireless devices, al-

lowing for Gb/s 60GHz networks beyond the 10-meter piconet range of the 802.15 

TG3c[22] and the WirelessHD[23] standards. A typical example where the MT-MAC 

protocol can yield significant benefits is the case of a large office building or of a uni-

versity campus where multiple users in different rooms will certainly require high-

speed WLAN connectivity. In that case, a CO can serve as the common network man-

agement point utilizing individual 60GHz RAUs in each individual office room or mul-

tiple 60GHz RAUs in larger areas, enabling high-speed LAN communication between 

all wireless clients. 

Moreover, the proposed RoF-compatible protocol supports a rather cost-effective 

60GHz coverage extension compared to currently considered 802.11ad WLAN proto-

col solutions. In our scheme, 60GHz RAU units are not required to incorporate any 

advanced processing functionalities, since all the capacity negotiation and capacity al-

location decisions are met at the CO leaving for the 60GHz RAUs the role of simply 

tuning to the appropriate wavelength and converting the signal into the optical or wire-

less domain, respectively. As such, even an area larger than the 10-meter range of con-

ventional 60GHz technology currently employed in 802.15 TG3c and WirelessHD 

piconets can be covered by using multiple 60GHz RAU modules, each one backhauled 

to the same RoF network. If this scenario had to be accommodated with the 802.11ad 

protocol[21], then each one of the multiple 60GHz APs would form a separate WLAN 

so that only clusters of users would belong in the same LAN. At the same time, the cost 
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of the 60GHz APs would be certainly greater than in the 60GHz RoF case, since each 

AP would require expensive 60GHz-to-baseband and baseband-to-60GHz down- and 

up-conversion electronic hardware for enabling the “intelligent” WLAN processing 

functionalities. On the other hand, the 802.11ad protocol allows for successful WLAN 

connectivity even in larger areas offering up to 100m wireless range but with Gb/s con-

nectivity provided only for the first 10 meters, beyond which the protocol switches to 

classic 802.11-compatible 600 Mb/s bitrates[83]. An overview of established 

WLAN/WPAN MAC protocols compared to the proposed MT-MAC design is pro-

vided in Table 3-3. 

 

3.6 Conclusive remarks 
In this chapter we have introduced the concept of medium transparency in MAC 

protocols for 60GHz RoF networks demonstrating a MT-MAC protocol that is capable 

of dynamically allocating both optical and wireless capacity and resources. Medium-

transparency relies on two parallel running contention periods with nested dataframe 

structures requiring wavelength selectivity functions only at the RAU site, allowing in 

this way for compatibility with completely passive network implementations and for 

telecom operator transparent fiber-network infrastructures. We have presented exten-

sive performance evaluation results for bus and PON architectures of RoF network to-

pologies, both for Poisson and for burst-mode traffic at bit-rates up to 3Gb/s, confirm-

ing in all cases the enhanced potential of our protocol to easily adapt to the network 

topology whilst providing broadband 60GHz LAN functionality. Finally, our protocol’s 

scalability and its sensitivity to fiber propagation delay have been addressed by evalu-

ating its performance for bus networks with up to 128 RAUs and for PON networks 

TABLE 3-3: WLAN/WPAN MAC PROTOCOL OVERVIEW 

 Medium-
Trans.MAC 802.11a/b/g  WirelessHD 802.15TG3c 

medium type hybrid optical-
wireless wireless wireless wireless 

wireless frequency 60GHz 2.4 or 5 GHz 60GHz 60GHz 
network type WLAN WLAN WVAN WPAN 

Bitrate 3 Gbps 11 or 54 Mbps 4 Gbps 2-3 Gbps 
Continuous Link 

Availability No Yes Yes Yes 

Media Access 
Mechanism 

Contention-
based RRFs / 
polling DFs 

PCF /DCF 
PSMA/CA Ac-

cess / TDMA Ch. 
Allocation 

CSMA/CA Access / 
TDMA Ch. Alloca-

tion 
RoF compatible Yes Yes No Not shown 
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with up to 64 RAUs and for different numbers of end-users and load conditions. The 

successful protocol’s performance even with Gb/s burst-mode traffic allows for the for-

mation of extended reach 60GHz LAN networks offering LAN connectivity also be-

tween wireless devices without LOS, whilst rendering it suitable for high-bandwidth 

latency-sensitive LAN applications like HD video streaming.  
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 The Client-Weighted 
MT-MAC protocol 
Chapter 3 introduced the first available 60GHz RoF WLAN network architecture 

that employs dynamically reconfigurable bandwidth mechanisms alongside a fully 

functioning MAC protocol both in the optical and the wireless network parts. The MT-

MAC concept demonstrated the successful connectivity between wireless end-users 

who are served even by different 60GHz RAUs, effectively expanding Gbps-scale mm-

wave communication into an extended WLAN area when exploiting the seamless in-

terplay between optical and wireless capacity arbitration processes. More recently, a 

multi-channel resource allocation scheme relying on the MT-MAC mechanism has 

been presented towards enriching the mm-wave WLAN environment with handover 

capability[84]. However, both the MT-MAC protocol mechanism as well as its associ-

ated network architecture yield certainly a sub-optimal performance when it comes to 

more practical network scenarios: it employs a simple Round-Robin algorithm for dis-

tributing the optical capacity among the different RAU elements, negating in this way 

user fairness in the case of uneven user population distributions per RAU. Towards 

coping with user fairness in 60GHz RoF-based WLANs, we introduce here the Client-

Weighted MT-MAC (CW-MT-MAC) protocol mechanism that is specifically designed 

to provide enhanced user fairness conditions under various network loads. 

In this chapter we present an extensive performance evaluation of the CW-MT-

MAC protocol, showing that the latter can balance out end-user throughput and delay 

inequalities, while significantly decreasing and equating the user-perceived packet de-

lay variance even in highly deviating population distributions amongst the network’s 
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RAUs, significantly outperforming the MT-MAC protocol with respect to end user fair-

ness.  

4.1 The Client Weighted MT-MAC (CW-MT-MAC) 
The CW-MT-MAC’s enhanced user throughput and consequent delay fairness proper-

ties originate from the wavelength distribution algorithm implemented at the CO, taking 

advantage of the RoF’s centralized network architecture that allows the latter to have 

full knowledge of the active clients residing in every RAU. Instead of the Round Robin 

Algorithm (RRA) employed so far in the MT-MAC approach of Chapter 3, the pro-

posed CW-MT-MAC pursues a client-based approach to the wavelength-to-RAU dis-

tribution when the number of requesting RAUs 𝑅𝑅 exceeds the number of available 

wavelengths 𝑤𝑤. The CW-MT-MAC mechanism is designed to distribute capacity based 

on the projected demand, which is considered analogous to the number of clients re-

questing traffic. As opposed to the static SF sizes employed by MT-MAT, CW-MT-

MAC deploys SFs with variable durations, by assigning a transmission opportunity 

window (TX_OP) for every user demanding traffic at the specific point in time. For the 

purpose of choosing the next serviced RAU, CW-MT-MAC utilizes matrix 𝐴𝐴. Matrix 

𝐴𝐴 is always sorted in descending order regarding the number of the contained clients 

per RAU. In each row, a Utilization Counter (𝑈𝑈𝐶𝐶𝑞𝑞) indicates the total amount of serving 

 
Fig. 4-1: CW-MT-MAC’s flowchart. 
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time granted to RAU 𝑞𝑞. The higher the UCq, the lowest the priority that RAU 𝑞𝑞 has in 

the selection process. CW-MT-MAC’s flowchart is depicted in Fig. 4-1. When a wave-

length becomes available, usually at the end of a SF, the CO checks by means of the 1st 

Contention Period whether a RAU not present in A has requested a wavelength alloca-

tion (i.e. at least one end-user residing in RAU’s range has pending data). If so, the CO 

resets all 𝑈𝑈𝐶𝐶 counters before inserting the RAU in 𝐴𝐴, but preserves their respective 

differences. For example, if the 𝑈𝑈𝐶𝐶 values for RAUs 1, 2 and 3 are (9, 9, 7), with the 

addition of RAU 4 they become (2, 2, 0) and 𝑈𝑈𝐶𝐶4 initializes at 0. The latter aims in 

providing the newly inserted RAU with the maximum priority, enabling the CO to be-

come rapidly acquainted with its properties (i.e. number of active/total nodes) and 

maintain 𝐴𝐴 correctly updated. To commence the next SF, the CO chooses the RAU with 

the lowest 𝑈𝑈𝐶𝐶 value and, in case of a tie, the RAU with the highest number of active 

nodes, as the one to be served by the available wavelength. In the case of a second tie, 

the RAU is chosen in random. The length of the assigned SF in terms of frames is 

defined as 𝛼𝛼𝑞𝑞 ∙ 𝑇𝑇𝑋𝑋_𝑂𝑂𝑃𝑃, where 𝛼𝛼𝑞𝑞 is the number of active nodes that are participating in 

the current SF, and 𝑇𝑇𝑋𝑋_𝑂𝑂𝑃𝑃 is the length of the per user transmission opportunity win-

dow measured in polling frames. When the SF ends, 𝑈𝑈𝐶𝐶𝑞𝑞 is increased by 𝛼𝛼𝑞𝑞/𝑛𝑛𝑞𝑞, where 

𝑛𝑛𝑞𝑞 is the total number of nodes residing in RAU 𝑞𝑞. The value 𝑛𝑛𝑞𝑞 is accumulatively 

calculated and updated as time progresses and different users become active within 

 
Fig. 4-2: CW-MT-MACs operation example compared to MT-MAC. Utilization Counter (UC) 
refers only to the Client Weighted scenario. Different colors correspond to packets originating 

from different RAUs. 
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RAU 𝑞𝑞. In case 𝛼𝛼𝑞𝑞 equals zero, meaning that the chosen RAU 𝑞𝑞 had no active clients, 

𝑈𝑈𝐶𝐶𝑞𝑞 is increased by 1, denoting that all users where served. If RAU 𝑞𝑞 remains with no 

requesting clients for some time, then it is removed from 𝐴𝐴. It is essential to note here 

that, due to constraints applied by the Physical Layer, CW-MT-MAC is facing an upper 

barrier in certain extreme cases regarding the maximum achievable equalization of 

bandwidth. Even though densely populated RAUs can in theory be granted a larger 

portion of the available optical capacity, no more than one wavelength can be assigned 

to a single RAU, thus forming a maximum allocation limit. This limit effectively cor-

responds to the maximum number of users that can be served by a single RAU before 

overcoming CW-MT-MAC’s operational capacity and is denoted as 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑧𝑧 𝑤𝑤⁄  , 

where 𝑧𝑧 is the total number of active clients served by the CO. When the number of 

active nodes residing in a RAU surpasses 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀, CW-MT-MAC chooses to grant a ded-

icated wavelength to this RAU element for as long as the above condition applies. In 

this case, the CW-MT-MAC subtracts the dedicated wavelength and the number of us-

ers served by it and functions recursively for the remaining wavelengths and nodes. 

Fig. 4-2 illustrates an execution example for 3 available wavelengths, 5 RAUs and a 

total of 16 users that are unevenly distributed amongst the RAUs as shown in matrix A. 

The figure depicts the wavelength-over-time allocation of CW-MT-MAC versus the 

corresponding MT-MAC operation presented in Chapter 3. As can be noted, the MT-

MAC equips each RAU with static 5-Data-Frame-long capacity “chunks” for the entire 

25-Data-Frame-long running time, irrespective of the number of users served by each 

RAU. On the contrary, the CW-MT-MAC clearly differentiates and promotes the 

densely populated RAUs by reserving the wavelengths on a balanced user centric basis 

TABLE 4-1: SIMULATION PARAMETERS 

Fiber Prop. Delay 1 μs/200m Air Prop. Delay 0.16 μs 

Slots in RRF 10 ACK Size 8 bytes 

DATA Size  1288 bytes ID, POLL Size 64 bytes 

Data Bitrate  1 Gbps Buffer Size 80 pack. 

Mean Burst Length 1.5 Kbytes Burst Length Std. Deviation 1,42 Kbytes 

CWA TX_OP Size 30 packets RRA SF Size 150 pack. 
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for the same period so as to provide fairness amongst the users, when the later occupy 

unevenly burdened RAUs.  

4.2 Performance Evaluation 
This section presents the performance of the client-weighted algorithm when applied 

on the MT-MAC protocol for a RoF-over-bus topology. The test configuration follows 

the same topology as the one tested in Chapter 3, comprising 10 RAUs in a bus topology 

with the distance between the first RAU and the CO equal to 500m and 50m fiber in-

tervals amongst the RAU modules, producing a total network length of 950m. This 

architecture is compatible with network deployments in indoor domestic or small en-

terprise environments, where a common CO is considered to serve multiple rooms over 

a single fiber bus providing a discrete RAU connectivity point to every room. An event-

driven simulator was implemented in Java with the full simulation parameters em-

ployed being summarized in Table 4-1. The total number of users located in the system 

equals to 50, distributed using an approximation of the normal distribution properly 

adjusted to produce discrete values that provides “bell-shaped” populations with mean 

value 𝑛𝑛 = 5 users per RAU. We tested five different user distribution patterns, starting 

from the least dispersed (uniform) distribution with standard deviation 𝜎𝜎 = 0 and grad-

ually migrating to the most dispersed distribution with standard deviation 𝜎𝜎 = 4.5, as 

depicted in Fig. 4-3.  In order to stress test the algorithm’s functionalities for the whole 

network length, the users’ distributions always abide by the rule of having at least one 

user per RAU. Furthermore, the channel is considered to operate under ideal conditions 

and all users are equipped with buffers in order to accommodate generated traffic. Each 

RAU module is considered to have 3m effective radius. Since the presented framework 

implies a dynamic capacity allocation scheme, a shortage of wavelengths towards the 

 

Fig. 4-3 Node population distributions for five different standard deviations 

 



Chapter 4: The Client-Weighted MT-MAC protocol 

98 

number of existing RAUs in the network is always taken into consideration and denoted 

henceforth as the wavelength availability factor WR. This shortage is imposed by the 

mm-wave nature of the wireless medium which generally presumes a large amount of 

very short ranged RAUs serviced by a lesser number of wavelengths either due to scale 

or due to energy efficiency reasons. In order to better simulate IP traffic, the employed 

packet generator is based on a bursty traffic model exhibiting long-tail properties, 

meaning generated traffic is characterized by high deviation from the distribution’s 

mean value of burst length. As presented in detail in Table 4-1, for the current experi-

mental set we considered a mean burst length of 1.5kB, with the employed traffic gen-

eration algorithm producing a standard deviation of 1,42kB. Due to this high deviation, 

the per user 𝑇𝑇𝑋𝑋_𝑂𝑂𝑃𝑃 window was chosen to be 30 frames long (~4kB), so as to be certain 

that the majority of the generated bursts would fit into a single SF. In accordance, the 

RRA SF size was set to 150 frames long, a value that was inferred by multiplying the 

corresponding CW-MT-MAC transmission opportunity window with the users’ distri-

bution mean 𝜇𝜇 = 5.  

Fig. 4-4 depicts the protocol’s non-saturation performance versus various optical avail-

ability factors designated by the WR ratio (Fig. 4-4(a) and Fig. 4-4(b)) , ranging from 

0.1 and up to 0.9 as well as versus various traffic loads(Fig. 4-4(c) and Fig. 4-4(d)), 

ranging from 10% up to 100% of the maxi mum theoretical network capacity. Both 

CW-MT-MAC and MT-MAC were tested for the most extreme user distribution de-

picted in Fig. 4-3 with standard deviation σ=4.5. As demonstrated by the respective 

legends all results in Fig. 4-4(a) and Fig. 4-4(b) can be logically classified into groups 

depending on the offered load. Accordingly results in Fig. 4-4(c) and Fig. 4-4(d) are 

clustered based on the respective WR ratio. As can be noted in the 30% load case de-

picted in Fig. 4-4(a), throughput follows a linear path until it reaches its maximum value 

when the WR ratio exceeds the offered load, effectively meaning that all traffic is ac-

commodated due to the optical wavelength abundance. The same applies in the curves 

group depicting the 80% load scenario, with the difference being that linear properties 

continue for higher loads until again the point where the WR ratio exceeds the offered 

load. Regarding the MT-MAC/CW-MT-MAC comparison we notice a borderline su-

periority of the second over first one. Specifically, CW-MT-MAC exhibits a marginal 
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throughput gain in the 30% load scenario, whereas the gain increases and reaches its 

highest value of 5% in the 80% load scenario. This performance boost is the result of 

the proportional wavelength assignment mechanism which administers optical capacity 

not statically but in accordance to the received bandwidth claims. In this way, possible 

idle times in less crowded RAUs are avoided while the much needed service time is 

extended in the densely populated areas. This performance agreement is also evident in 

Fig. 4-4(b) which depicts the mean packet delay. As can be noted, delay outcomes start 

at very high values while the offered load exceeds the available optical capacity ratio 

due to the traffic being many times greater than the maximum theoretical capacity 

achievable by the available wavelengths. However, as the wavelength availability rises, 

delay follows a decreasing slope, with the curves corresponding to 30% load dropping 

at higher rates than the high-load 80% scenario. The latter is due to the fact that when 

increasing the optical capacity, the added number of available slots can serve the small 

number of generated packets produced in low load conditions in a single SF faster than 

the high load conditions where a further optical capacity increment is necessary to 

achieve the same. By comparison it becomes clear that, when population distribution is 

uneven, CW-MT-MAC manages to attain higher metrics, especially while the WR ratio 

 
Fig. 4-4: a) Throughput vs. WR b) Delay vs. WR c) Throughput vs. load d) Delay vs. Load 
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remains lower than the offered load, confirming that service balancing can indeed lead 

to better overall system level performance. 

Fig. 4-4(c) and Fig. 4-4(d) illustrate the protocol’s behavior versus various traffic loads, 

ranging from 10% up to 100% for the most extreme user distribution deviation. Perfor-

mance was tested for two different wavelength availability factors WR, namely 0.3 and 

0.8. Fig. 4-4(c) presents the total system throughput versus various load conditions, 

revealing the linear exploit of the dual-medium while the offered load remains well 

under the corresponding WR ratio. As load increases beyond the WR point though, 

throughput stagnates around its saturation plateau, since all traffic beyond that point 

exceeds the optical capacity available in the system. For instance, at 40% normalized 

load and 1 Gbps bitrate each RAU receives 400 Mbps aggregated traffic from the wire-

less nodes. However, with 10 RAUs in the system and 3 available optical wavelengths 

(30% WR) the optical network has a total capacity of 3 Gbps which is insufficient to 

serve the aggregated traffic of 10 ∗ 400 Mbps =  4 Gbps produced by the wireless 

nodes. This is the reason that in 30% WR throughput saturates around 30% normalized 

load. Delay outcomes presented in Fig. 4-4(d) remain minimal while load is below WR 

and increase rapidly when load approaches the later. After the offered load has ex-

ceeded WR, delay follows an increasing course before saturating at its maximum value. 

This delay saturation behavior appears as a direct consequence of the limited buffer 

space, since at loads higher than the WR ratio multiple packets are dropped and there-

fore do not contribute to delay metrics, whereas the number of packets that do gain 

buffer access are constant and produce a constant delay. Regarding the two competing 

schemes we notice again a marginal performance gain in favor of CW-MT-MAC. This 

performance thrust highlights that when faced with uneven populations, traffic provi-

sion and service distinction are necessary to achieve optimum operation. 

Fig. 4-5 offers a more detailed observation of the protocol’s performance as the latter 

is perceived from the user’s perspective. In addition, it provides insight on how this 

performance fluctuates when gradually transitioning from uniform to uneven distribu-

tion of the network’s nodes. The displayed results show the protocol’s performance for 

both CW-MT-MAC and classic MT-MAC at the user level versus the user distribu-

tion’s standard deviation 𝜎𝜎. The σ-values utilized correspond to the distribution patterns 
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displayed in Fig. 4-3 and the results are shown for WR=0.5 and 50% traffic load con-

ditions. Fig. 4-5(a) and Fig. 4-5(b) illustrate the mean user throughput and its respective 

standard deviation for both protocols. As can be noted, not only does CW-MT-MAC 

achieve higher and more consistent throughput output, but its main advantage lies in 

the latter’s standard deviation, where it exhibits significantly lower deviations com-

pared to the MT-MAC. In agreement to the respective saturation outcomes, MT-MAC’s 

σ-value (Fig. 4-5(a)) approaches zero only for the uniform user distribution pattern, 

whereas CW-MT-MAC’s σ-value (Fig. 4-5(b)) succeeds in remaining zero for the first 

four user distribution patterns where the number of clients 𝑛𝑛 is always lower than 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀. 

When overcoming this point, CW-MT-MAC dedicates a wavelength to all RAUs hav-

ing 𝑛𝑛 > 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 clients, which produces inequalities and therefore deviation of through-

put. However, CW-MT-MAC clearly retains the edge over MT-MAC by offering the 

minimum possible deviation and therefore fairer throughput delivery. The above are 

also reflected and are the reason for the curvature shown in the respective mean user 

packet delay results displayed in Fig. 4-5(c) and Fig. 4-5(d). In the above it is clear that 

the CW-MT-MAC’s superiority in throughput equalization also drives the advantage 

of significantly lower delay and their respective σ-values, ergo confirming the proposed 

 
Fig. 4-5: a-b) MT-MAC protocol User Throughput and Mean User Delay Performance with their 

respective Standard Deviations vs. the User’s Distribution Standard Dev. c-d) CW-MT-MAC 
protocol User Throughput and Mean User Delay Performance with their respective Standard De-

viations vs. the User’s Distribution Standard Dev. 
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scheme’s increased fairness capabilities. Over all user distributions CW-MT-MAC 

achieves 69% reduction in the average exhibited throughput standard deviations as op-

posed to the corresponding MT-MAC values (2.8 vs. 8.9 Mbps) and 72% reduction in 

the per user packet delay (0.7 vs. 2.5 ms). 

A more comprehensive look on CW-MT-MAC’s fairness properties internals can be 

derived by means of Fig. 4-6, which presents the above mentioned metrics for each of 

the 50 participating users in the bus topology network for the case of σ=2.05, WR=0.5 

and 50% traffic load. Fig. 4-6(a) presents the achieved user’s throughput where it is 

clearly evident that MT-MAC exhibits great disproportion regarding capacity alloca-

tion and remains heavily depended on the user’s distribution. On the contrary CW-MT-

MAC manages to level out all service deliverance irrespective of the inequalities in-

serted into the network from the uneven client distribution. Specifically, the MT-MAC 

protocol displays an average of 85.3 Mbps per user with σ-value equal to 8.3 Mbps 

whereas the CW-MT-MAC scheme achieves an average of 88.9 Mbps with σ-value as 

 

Fig. 4-6 a) User throughput vs. User Id b) User mean packet delay and its standard deviation 
for each of the 50 users of the network 
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low as 0.8 Mbps, thus accounting for ~90% reduction in the user perceived throughput 

deviation. Fig. 4-6(b) displays the per user mean packet delay and their respective intra-

packet delay variation metrics. As can be noted, not only does CW-MT-MAC offer an 

almost constant delay amongst the participating nodes of the network regardless of the 

grade of population’s dissimilarity but also CW-MT-MAC’s observed delay is subject 

to smaller, strictly uniform and consistent delay variations. Specifically, the MT-

MAC’s average delay performance is 5.4ms with 3.15ms average standard deviation. 

On the other hand, CW-MT-MAC manages an average packet delay of 5.3ms with 

2.1ms average deviation, thus achieving 32% reduction in the PDV. This fact highlights 

that CW-MT-MAC is a better fit towards supporting real-time applications, e.g., VoIP, 

since PDV can be a serious issue affecting delay-restricted applications. 

4.3 Conclusive Remarks 
We have presented a new user fairness-enabling MT-MAC protocol for the realization 

of efficient and fair Gbps-range 60 GHz RoF WLAN networks. Fairness is achieved by 

equipping the protocol with the user-centric Client Weighted Algorithm for the optical 

capacity arbitration procedures. Rapid improvement on user throughput and delay 

equalization is demonstrated for various network conditions through simulation perfor-

mance analysis for different user distribution patterns and loads under specific wave-

length availability constraints. Specifically, the CW-MT-MAC scheme has demon-

strated almost zero standard deviation for 4 out of the 5 studied user deviations achiev-

ing an overall 68% reduction in throughput and 72% reduction in delay standard devi-

ation as the latter is perceived amongst the network’s users, thus proving its enhanced 

user-fairness properties. In addition, CW-MT-MAC achieved 32% reduction in the ex-

hibited intra packet standard deviation performance, highlighting its ability to serve 

modern delay-restricted applications where PDV remains a major issue. 
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 Mathematical Analysis 
In this chapter, we demonstrate an analytical model followed by a detailed saturation 

throughput performance analysis for the MT-MAC protocol described in Chapter 3, 

assuming ideal channel conditions. The introduced model relies on a two-dimensional 

(2D) Markov chain approach for calculating the end-user transmission probabilities, 

taking into account contention for both the optical and the wireless layer resources. An 

analytic formula for throughput computation is derived and the respective results for 

different optical resource availability factors and for data rates up to 1 Gbps are found 

to be in close agreement with simulation-based findings, confirming the validity of the 

MT-MAC model. Our analysis reveals that the proposed MT-MAC is capable of re-

solving contention within a limited time frame, concluding with the optimized duration 

of consecutive data transmitting frames for maximizing network throughput. This first 

successful MT-MAC modeling approach indicates that the functional interfacing of the 

optical and the wireless connection links can yield new and efficient capacity utilization 

concepts in 60 GHz RoF networks. 

5.1 MT-MAC Saturation Throughput analysis 
We declare 𝑆𝑆 to be the normalized system throughput, i.e. the ratio depicting the amount 

of time that the system transmits payload bits to the total amount of communication 

time. Considering the protocol rules, the above translates directly to the time portion 

that the system exhibits engaged SF activity, and more specifically to the time portion 

that the system is located in the DATA_TX period of the latter.  

Therefore, S can be defined as: 

𝑆𝑆 =
𝛱𝛱𝛵𝛵𝛵𝛵𝛵𝛵𝐷𝐷𝑅𝑅

𝛱𝛱𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛱𝛱𝛵𝛵𝛵𝛵𝛵𝛵𝐷𝐷𝑅𝑅
(𝛱𝛱𝛵𝛵𝛵𝛵 + 𝛱𝛱𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝜌𝜌𝐷𝐷𝑅𝑅 

where 𝛱𝛱𝐶𝐶𝑀𝑀 is the Steady State Probability (SSP) of the system being in the DATA_TX 

mode, 𝛱𝛱𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is the SSP of the system being in the 2nd Cont. Period, 𝑇𝑇𝐷𝐷𝑅𝑅 and 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 are 
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the durations of the DF and the RRF respectively, and 𝐵𝐵 is the payload information 

percentage contained in a DF. The latter is typically defined as 𝐵𝐵 =

 𝛥𝛥𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 (𝛥𝛥𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝛥𝛥𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 + 𝛥𝛥𝑀𝑀𝐶𝐶𝐴𝐴)⁄  where 𝛥𝛥𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀, 𝛥𝛥𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 and 𝛥𝛥𝑀𝑀𝐶𝐶𝐴𝐴 are the size in bytes of 

the DATA, POLL and ACK packets respectively.  

To calculate 𝛱𝛱𝐶𝐶𝑀𝑀 and 𝛱𝛱𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 we have deployed a two-dimensional (2-D) Markov chain 

model, depicted in Fig. 5-1, which demonstrates the scheme's operation from the scope 

of a single RAU. The above model operates under the assumption of ideal channel con-

ditions. In addition, we consider that each RAU contains a constant and finite number 

of 𝑛𝑛 stations in its radius. Traffic generation follows the saturation model, meaning that 

each of the 𝑛𝑛 terminals always possesses a packet ready for transmission immediately 

after transmitting the previous one. Finally, no hidden or exposed terminals phenomena 

are taken into account, since they are negated by our protocol's centralized topology as 

it has been mentioned in Chapter 3. 

In the following analysis, we consider a fixed number of RAUs 𝑅𝑅, with each RAU 

servicing an identical and constant number of wireless nodes. Moreover, we define the 

total number of available downlink and uplink data wavelength pairs as 𝑤𝑤. The model’s 

 

Fig. 5-1: Markov Model from the perspective of a single Remote Access Unit. 
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nomenclature follows the 𝑆𝑆𝑖𝑖,𝑘𝑘 symbolism, where 𝑖𝑖 stands for the i-th frame of the cur-

rent SF and 𝑘𝑘 is the number of nodes that are yet to be resolved through means described 

in the 2nd Cont. Period. It should be noted here that the first state of the Markov chain 

model, referred as WAIT, represents the optical waiting period, i.e. the state where the 

RAU does not have an assigned pair of wavelengths yet and is waiting for optical ca-

pacity assignment. Each SF contains a number of frames between (𝑖𝑖𝑀𝑀𝑀𝑀𝐶𝐶, 𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀), the val-

ues of which are immutable and known to the network. These bounds denote the mini-

mum and maximum time duration of the non-interrupted wavelength assignment to 

every RAU respectively. More specifically, the 𝑖𝑖𝑀𝑀𝑀𝑀𝐶𝐶 and 𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 values reflect the logical 

restriction that each consecutive wavelength assignment period must be long enough to 

allow for adequate data transmission without exceeding, however, a certain upper limit, 

so as to prevent unaffordable delays and inequalities amongst the RAUs. 

Contention in the optical domain is resolved by means of a simple round robin algo-

rithm using a step of one RAU at the end of each time quantum, i.e. each RAU holds 

the same wavelength pair for the amount of time equal to the 𝑤𝑤/𝑅𝑅 percentage of the 

total time. The w/R percentage, meaning the ratio of the number of wavelength pairs 

available in the system to the number of RAUs serviced by the CO will henceforth be 

referred as WR, as it has been also referred in the previous chapters. In real non-satu-

rated mode of operation, a phase shift in wavelength re-assignment is not performed 

unless there are outstanding claims for allocating optical capacity to other non-serviced 

RAUs. However, in network saturation conditions, as considered in our analysis, the 

CO acquires a constant demand for optical capacity from all RAUs, implying the exer-

cise of the round robin algorithm in a strictly time-sharing fashion. 

The Markov chain model diagram can be logically divided into two areas. The first area 

is comprised of the state WAIT, whereas the second area is comprised of all the rest 

states. State WAIT, being representative of the waiting period caused by the assign-

ment/de-assignment of the optical wavelength, effectively controls the length of time 

that the current RAU lies in idle state. This signifies that its respective SSP is: 

𝛱𝛱𝑊𝑊𝑀𝑀𝑀𝑀𝐶𝐶 = 1 − 𝑤𝑤
𝑅𝑅�                              (1) 

and by considering the normalizing condition ∑𝛱𝛱 = 1 the sum of the rest SSPs is: 
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∑ ∑ 𝛱𝛱𝑖𝑖,𝑘𝑘𝑘𝑘 + 𝛱𝛱1,𝑏𝑏𝑖𝑖 = 𝑤𝑤
𝑅𝑅�     for 𝑖𝑖 ∈ [2,𝑛𝑛],𝑘𝑘 ∈ [0,𝑛𝑛]\{1}            (2) 

where 𝛱𝛱1,𝑏𝑏 is the SSP of the 𝑆𝑆1,𝑏𝑏 state and accordingly 𝛱𝛱𝑖𝑖,𝑘𝑘 represents the SSP of the 

𝑆𝑆𝑖𝑖,𝑘𝑘 state. Once being in the WAIT state the only possible actions are: to remain sta-

tionary with probability 𝑝𝑝𝑤𝑤 while awaiting for wavelength assignment, or to enter the 

𝑆𝑆1,𝑏𝑏 state with probability 𝑝𝑝𝑤𝑤���� once a wavelength has been assigned. Following this, the 

wireless nodes served by this RAU enter the 2nd Cont. Period according to the rules of 

the MT-MAC. All the wireless activity is depicted in the second logical area of the 

Markov model, which can be further divided into distinct rows and columns: each in-

dividual row corresponds to a single frame in the SF, while each column represents the 

number of nodes that are yet to be resolved in the 2nd Cont. Period. As such, the far-left 

column signifies the maximum number of unresolved nodes 𝑛𝑛 and the far-right repre-

sents the situation where all nodes have been resolved, i.e. the number of unresolved 

nodes has reached zero. It should be noted that 𝑆𝑆𝑖𝑖,1 type of states are not present in the 

Markov state diagram, given that node collision can only occur when at least two nodes 

are available for picking the same slot number in the random selection process. 

Every state in this second logical area of the Markov model is accessible from all the 

states of its preceding frame (or previous row) that lie exactly above and on its left. This 

carries the physical meaning that the number of unresolved nodes can either remain the 

same or decrease when moving to the next frame. The transition probability from state 

𝑆𝑆𝑖𝑖,𝑘𝑘 to state 𝑆𝑆𝑖𝑖+1,𝑘𝑘−𝑥𝑥 equals to the probability of having 𝑥𝑥 out of a current total of 𝑘𝑘 

unresolved nodes making a unique number choice and consequently getting resolved. 

This probability is provided by the relation [85]: 

𝑝𝑝𝑘𝑘(𝑥𝑥) =
(−1)𝑥𝑥𝑚𝑚!𝑘𝑘!

𝑥𝑥!
�

(−1)𝑏𝑏(𝑚𝑚− 𝑝𝑝)𝑘𝑘−𝑏𝑏

(𝑝𝑝 − 𝑥𝑥)! (𝑚𝑚 − 𝑝𝑝)! (𝑘𝑘 − 𝑝𝑝)!
                  (3)

𝑘𝑘

𝑏𝑏=𝑥𝑥

 

where 𝑚𝑚 is the number of slots the nodes are choosing from i.e. the slots contained in 

a single RRF, and 𝑘𝑘 ∈ [2,𝑛𝑛], 𝑥𝑥 ∈ [0,𝑘𝑘]\{𝑘𝑘 − 1}.  

A complete summary of all the non-null one-step transition probabilities is provided 

below: 
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�
𝑝𝑝{1,𝑛𝑛|0,𝑛𝑛} = 𝑝𝑝𝑤𝑤����                   
𝑝𝑝{𝑖𝑖 + 1,𝑘𝑘 − 𝑥𝑥|𝑖𝑖, 𝑘𝑘} = 𝑝𝑝𝑘𝑘(𝑥𝑥)
𝑝𝑝{𝑖𝑖 + 1,0|𝑖𝑖, 0} = 1                  

                                (4) 

for 𝑖𝑖 ∈ [1, 𝑖𝑖𝑚𝑚𝑏𝑏𝑥𝑥),𝑘𝑘 ∈ [0,𝑛𝑛]\{1}, 𝑥𝑥 ∈ [0,𝑘𝑘]\{𝑘𝑘 − 1}. 

The “0, n” notation in the first part of (4) represents the WAIT state. The third part of 

(4) denotes that, once reaching a state where all nodes have been resolved, the 2nd Cont. 

Period is over and the CO initiates the transmission of sequential DFs until the end of 

the SF. To this end, the states of the form 𝑆𝑆𝑖𝑖,0 correspond to effective packet transmis-

sion, so that the aggregate probability 𝛱𝛱𝐶𝐶𝑀𝑀 of the system residing in DATA_TX is: 

𝛱𝛱𝛵𝛵𝛵𝛵 = � 𝛱𝛱𝑖𝑖,0

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 

𝑖𝑖=2

                                                      (5) 

Accordingly, all the rest states of the form 𝑆𝑆𝑖𝑖,𝑘𝑘 for 𝑘𝑘 ≥ 2 correspond to the 2nd Cont. 

Period and therefore: 

𝛱𝛱𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � �𝛱𝛱𝑖𝑖,𝑘𝑘

𝑏𝑏

𝑘𝑘=2

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖=1

                                             (6)  

All 𝛱𝛱𝑖𝑖,𝑘𝑘 probabilities including 𝛱𝛱𝑖𝑖,0 can be calculated by exploiting the single-step 

transitions from all possible states in the preceding 𝑖𝑖 − 1 row. Every SSP is derived 

by the sum of all the states that reside in the previous frame and on the left, multiplied 

by the corresponding transition probabilities. To this end, the SSPs for all 𝑆𝑆𝑖𝑖,𝑘𝑘 states 

can be expressed as: 

𝛱𝛱𝑖𝑖,𝑘𝑘 = �(𝛱𝛱𝑖𝑖−1,𝑏𝑏 ∙ 𝑝𝑝𝑏𝑏(𝑝𝑝 − 𝑘𝑘))                                   (7)
𝑏𝑏

𝑏𝑏=𝑘𝑘

 

for 𝑖𝑖 ∈ [2, 𝑖𝑖𝑚𝑚𝑏𝑏𝑥𝑥],𝑘𝑘 ∈ [0, 𝑛𝑛]\{1}. 

For 𝑖𝑖 = 1, the respective expression describing the transition from the WAIT state to 

the 𝑆𝑆1,𝑏𝑏 is given by: 

𝛱𝛱1,𝑏𝑏 = 𝛱𝛱𝑊𝑊𝑀𝑀𝑀𝑀𝐶𝐶 ∙ 𝑝𝑝𝑤𝑤����                                       (8) 

By utilizing the fact that each of the 𝑖𝑖 frames, independently of its type, is of equal 

duration we derive that: 
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𝛱𝛱1,𝑏𝑏 = �𝛱𝛱2,𝜅𝜅
𝑘𝑘

= �𝛱𝛱3,𝜅𝜅
𝑘𝑘

= ⋯ = �𝛱𝛱𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘
𝑘𝑘

= 𝜆𝜆
(𝑖𝑖𝑅𝑅)�                 (9) 

Using (1), (7) and (8), 𝑝𝑝𝑤𝑤���� is found to be: 

𝑝𝑝𝑤𝑤���� =
𝜆𝜆

𝑖𝑖 ∙ (𝑅𝑅 − 𝜆𝜆)
                                               (10) 

By utilizing (2), (3), (4), (8) and (10), equation (7) can be recursively solved yielding 

all required 𝛱𝛱𝑖𝑖,0 values, which can be then used in (5) to enable the calculation of 𝛱𝛱𝐶𝐶𝑀𝑀. 

Finally, in order to calculate 𝑆𝑆 we also need to specify the 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑇𝑇𝐷𝐷𝑅𝑅 values. Ac-

cording to the protocol rules 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 is defined as: 

𝛵𝛵𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑚𝑚(3𝛿𝛿𝑓𝑓𝑖𝑖𝑏𝑏𝑏𝑏𝑓𝑓 + 3𝛿𝛿𝑏𝑏𝑖𝑖𝑓𝑓 + 𝐷𝐷𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝐷𝐷𝑀𝑀𝐷𝐷 + 𝐷𝐷𝑀𝑀𝐶𝐶𝐴𝐴)                (11) 

where 𝛿𝛿𝑏𝑏𝑖𝑖𝑓𝑓 is the propagation delay in the wireless medium and 𝐷𝐷𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃, 𝐷𝐷𝑀𝑀𝐷𝐷 and 𝐷𝐷𝑀𝑀𝐶𝐶𝐴𝐴 

are the transmission delays of the POLL, ID and ACK packets respectively. Corre-

spondingly 𝑇𝑇𝐷𝐷𝑅𝑅 is defined as: 

       𝛵𝛵𝐷𝐷𝑅𝑅 = 3𝛿𝛿𝑓𝑓𝑖𝑖𝑏𝑏𝑏𝑏𝑓𝑓 + 3𝛿𝛿𝑏𝑏𝑖𝑖𝑓𝑓 + 𝐷𝐷𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 + 𝐷𝐷𝑀𝑀𝐶𝐶𝐴𝐴                   (12) 

where 𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 is the transmission delay of the DATA packet. Eq.(11) and (12) corre-

spond to the time duration of the RRF and DF frames in the general scenario where no 

packet rescheduling is taking place. In the latter case though, (11) and (12) become: 

𝛵𝛵𝑅𝑅𝑅𝑅𝑅𝑅 = 3𝛿𝛿𝑓𝑓𝑖𝑖𝑏𝑏𝑏𝑏𝑓𝑓 + 𝑚𝑚(3𝛿𝛿𝑏𝑏𝑖𝑖𝑓𝑓 + 𝐷𝐷𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝐷𝐷𝐶𝐶𝐼𝐼𝐼𝐼 + 𝐷𝐷𝑀𝑀𝐶𝐶𝐴𝐴)                  (13) 

And 

𝛵𝛵𝐷𝐷𝑅𝑅 =
2𝛿𝛿𝑓𝑓𝑖𝑖𝑏𝑏𝑏𝑏𝑓𝑓 + 3𝛿𝛿𝑏𝑏𝑖𝑖𝑓𝑓 + 𝛱𝛱𝐶𝐶𝑀𝑀 ∙ 𝑖𝑖𝑚𝑚𝑏𝑏𝑥𝑥(𝐷𝐷𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝐷𝐷𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 + 𝐷𝐷𝑀𝑀𝐶𝐶𝐴𝐴)

𝛱𝛱𝐶𝐶𝑀𝑀 ∙ 𝑖𝑖𝑚𝑚𝑏𝑏𝑥𝑥
          (14) 

respectively, where 𝛱𝛱𝐶𝐶𝑀𝑀 ∙ 𝑖𝑖𝑚𝑚𝑏𝑏𝑥𝑥 corresponds to the number of DFs in the SF. Notably, if 

the appropriate values are chosen so that 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝐷𝐷𝑅𝑅 then 𝑆𝑆 = 𝛱𝛱𝛵𝛵𝛵𝛵 ∙ 𝐵𝐵. 

5.2 Performance Evaluation 
To evaluate the validity of our proposed model, we have produced and compared both 

analytical and simulation results using our custom made event-driven simulation tool 
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written in Java. The employed network configuration comprises 10 RAUs in a bus to-

pology, with each RAU servicing 5 end-users under saturation load conditions, as it is 

schematically depicted in Fig. 3-5. Table 5-1 summarizes the full specification param-

eters of the simulation run and of the respective analytical model where applicable. 

Fig. 5-2 depicts the saturation throughput results obtained by both the analytical model 

and the respective simulation tool, for different optical capacity availability factors de-

noted by the WR ratio and ranging from 10% to 90%. Throughput is displayed both in 

its normalized form as well as in bits per second, taking into account that the maximum 

possible throughput value corresponds to the case where all employed RAUs can sim-

ultaneously transmit data packets at line-rate. 

TABLE 5-1: SIMULATION PARAMETERS WITH SATURATION TRAFFIC MODEL 

Fiber Prop. Delay 1μs per 200m Air Prop. Delay 0.16 μs 

Slots in RRF 10 ACK Size 8 bytes 

DATA Size  1288 bytes ID, POLL Size 64 bytes 

Data Bitrate  155 Mbps 1 Gbps 1 Gbps 

Frames in SF 500 3200 

 

 
Fig. 5-2: a) Throughput vs. WR ratio performance results for wireless bit-rate of 155 Mbps 5b) 
Throughput vs. WR ratio performance results for wireless bit-rate of 1 Gbps with standard and 

extended SuperFrame size. 
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Fig. 5-2(a) displays throughput for 155 Mbps bit-rate that has been already shown ex-

perimentally to allow for successful multi-user connectivity in 60 GHz RoF net-

works[86]. As it can be noted throughput increases almost linearly and in total accord-

ance to the WR ratio growth. In addition, the theoretically obtained results practically 

coincide with the simulation-based outcomes experiencing only negligible differences 

up to a maximum of 1%. The good agreement between theory and simulation confirms 

the validity of our model, revealing also the almost linear dependency between through-

put and WR, which indicates the nearly optimum capacity exploitation offered by the 

proposed MT-MAC in this dual medium platform. Fig. 5-2(b) displays the correspond-

ing results for the same configuration but at 1 Gbps wireless data rate. As can be noted, 

the transition to a higher bit rate yields a slightly deteriorated throughput performance 

of up to 2% when all other network and traffic parameters remain unchanged. This owes 

mainly to the combined effect of the reduced packet durations obtained as the bit-rate 

increases and of the fiber propagation delay that remains constant. The RRF duration, 

as defined in (13), becomes almost independent of the bit-rate since the transmission 

delays of the relatively small-size POLL, ID and ACK packets are negligible with re-

spect to the fiber propagation delay 𝛿𝛿𝑅𝑅𝑀𝑀𝐹𝐹𝐹𝐹𝑅𝑅. This means that the total time required for 

transmitting all RRFs and completing the 2nd Cont. Period will be almost constant and 

bit-rate independent, primarily determined by 𝛿𝛿𝑅𝑅𝑀𝑀𝐹𝐹𝐹𝐹𝑅𝑅 since 𝛿𝛿𝑀𝑀𝑀𝑀𝑅𝑅 corresponds only to 

small cell radii. However, this will not be the case for the DFs that have a greater size 

than the RRFs so that their duration will still depend upon the bit-rate, as can be seen 

by (14). Having the RRF duration constant and down-limited by the 𝛿𝛿𝑅𝑅𝑀𝑀𝐹𝐹𝐹𝐹𝑅𝑅 quantity 

and the DF duration decreasing as the bit-rate increases to 1 Gbps, the ratio of DFs 

duration within a certain SF will decrease leading to slightly lower throughput values. 

This can be, however, compensated by increasing the number of DFs incorporated in a 

SF and this case is also depicted in Fig. 5-2(b). The parallel extension of the SF to a 

size analogous to the bit-rate increase (i.e. from 500 to 3200 for the 155 Mbps to 1 Gbps 

transition) renders the RRF induced delays again negligible, owing to the enhanced 
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number of DFs being transmitted without rerunning the 2nd Cont. Period. In this way, 

throughput performance recovers to its original metrics. 

Fig. 5-3(a) and Fig. 5-3(b) illustrate the protocol’s scalability performance for a grow-

ing number of nodes per RAU and a rising number of participating RAUs in the net-

work, respectively. Each curve represents one of three distinct WR ratio configurations 

that were investigated, namely 30%, 50% and 80%. Fig. 5-3(a) elaborates that through-

put values remain practically immutable as the number of nodes grows from 2 to 20, 

displaying only a slight performance degradation of less than 1%. Since the only alter-

nating factor is the number of users, the good scaling performance can only be attributed 

to the high efficiency of the random choice wireless arbitration process. In order to 

verify this claim, we carry out additional trials that are depicted later on in Fig. 5-4. Fig. 

5-3(b) depicts the throughput performance as the number of RAUs employed in the 

network increases from 10 up to 128, illustrating the protocol’s behavior as the optical 

round-trip delay multiplies, affecting in principle the RAUs located the farthest from 

the CO. The RAU modules are considered equally spaced with 50 m inter-RAU fiber 

intervals, producing a total fiber length between 0.5 and 6.4 km depending on the num-

ber of RAUs involved. As can be noted, only a small performance degradation of up to 

0.5% appears in the simulation-based curve for a number of RAUs equal to 128, while 

 
Fig. 5-3: a) Throughput vs. number of users per RAU for 30%, 50% and 80% WR ratio respec-
tively. b) Throughput vs. number of RAUs in the network for 30%, 50% and 80% WR ratio re-

spectively. 



Chapter 5: Mathematical Analysis 

114 

the respective curve originating from the mathematical analysis remains constant irre-

spective of the antennae elements incorporated. This small difference between analysis 

and simulation owes mainly to the additional fiber propagation delay emerging due to 

the considerably longer bus lengths as the number of RAUs increases, which is not 

taken into account in our mathematical model. It is important to note that throughput 

deliverance remains essentially unscathed even when the number of RAUs escalates by 

a factor of 1000%, confirming the increased scalability characteristics of the protocol 

and the optimum exploitation of the underlying infrastructure properties. 

The validity of our model allows for its use towards acquiring a more detailed insight 

into the role of specific MT-MAC protocol parameters and their performance impact. 

 
Fig. 5-4: a) Analytical probability results of resolve vs. number of RRFs for different Users/Slots 
ratios. b) Throughput vs. number of frames in a SF, for different WR ratios at 155 Mbps wireless 
bit-rate. c) Throughput vs. number of frames in a SF, for different WR ratios at 1 Gbps wireless 

bit-rate. 



Chapter 5: Mathematical Analysis 

115 

 

Fig. 5-4(a) illustrates the effectiveness of the random slot number choice scheme em-

ployed in the 2nd Cont. Period; the probability of achieving “resolve” for ranging RRF 

sequence lengths is computed, assuming 10 slots per RRF and different amount of com-

peting nodes scaling from 3 to 15 (i.e. from 30% up to 150% node/slot ratios). In order 

to calculate the respective probabilities of 2nd Cont. Period resolutions we employ the 

2D Markov chain depicted in Fig. 5-1 in conjunction with Eq.(7). As can be noted by 

the analytical results, “resolve” probability tends to be 1 at an early stage, essentially 

meaning that all wireless nodes are effectively resolved after a small number of RRFs. 

For example, in the case of 3 active nodes and 10 slots/RRF, resolve probability reaches 

0.98 after only two RRFs, whereas for 5 active nodes the resolve probability becomes 

0.99 after 4 RRFs. The same is true even in the extreme case where the number of nodes 

greatly exceeds the number of available slots, such as the case of 15 active nodes to 10 

slots/RRF, where it can be noted that resolve probability becomes 0.99 after 8 RRFs. 

The above results indicate that no matter the number of active nodes, the 2nd Cont. 

Period’s duration is always in the scope of single-digit amount of RRFs, thus leading 

to a quick resolve and in turn benefiting the throughput-producing data exchange pe-

riod.  

Fig. 5-4(b) presents both simulation and analytical results displaying throughput vs. the 

number of frames per SF for three different WR ratios, namely 30%, 50% and 80%. 

The produced results correspond to SF durations ranging from 10 to 1000 and a static 

number of 5 wireless nodes served by each RAU at 155 Mbps bit-rate. As expected, 

throughput performance increases with i, since the fraction of the 2nd Cont. Period du-

ration becomes relatively insignificant as 𝑖𝑖 rises, so that a greater part of the SF is de-

voted to the DATA_TX mode and as such to actual data transmission. This can be easily 

explained by taking into account the fact that the quantity of RRFs required for resolv-

ing all wireless nodes is in fact independent of 𝑖𝑖 and as proved above remains minimal. 

Moreover, throughput tends to reach a saturation point after a certain number of frames, 

rendering a negligible gain in performance for greater SF sizes. This can be verified by 

its mere increment of only 0.3% for a frame number enhancement from 500 to 1000, 

allowing us to establish the number of 𝑖𝑖 = 500 frames as a close to optimal SF size 

with respect to highest throughput performance. Fig. 5-4(c) illustrates the same evalu-

ation for 1 Gbps wireless bit-rate. As it can be observed, throughput follows the same 
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behavioral pattern as in Fig. 5-4(b), with the only difference being that at 1 Gbps bit-

rate the throughput values are lower when the SF is very small in size compared to the 

respective throughput yields in 155 Mbps. The reason for the latter is again the com-

bined effect of a) the reduced packet durations obtained at the high bit-rate and b) the 

fact that the fiber propagation delay that remains constant as the SF size increases. As 

noted before, the RRF duration is almost independent of the bit-rate since the short 

POLL, ID and ACK packets have negligible transmission delay compared to the fiber 

propagation delay. This means that the total time required for transmitting all RRFs and 

completing the 2nd Cont. Period will be almost constant regardless the SF size. How-

ever, this is not the case for the DFs since in the latter the majority of time is spent in 

the Data packet transmission and as such the DFs are heavily depended on the bit-rate. 

Having the RRF duration constant and down-limited by the fiber propagation time and 

the DF duration decreasing as the bit-rate increases to 1 Gbps, the ratio of DFs duration 

within a certain SF will decrease leading to lower throughput values. The latter is con-

firmed by the extended SF metrics presented in Fig. 5-4(b) where the enhanced DF 

number compensates the throughput losses. Finally, it can be noted that the analytical 

results are once again in excellent agreement with the respective simulation-based find-

ings. 

The successful MT-MAC protocol modeling provides a number of significant ad-

vantages towards turning MT-MAC schemes into reliable and viable approaches for 

high-bandwidth 60 GHz wireless over fiber network applications. It confirms the pro-

tocol’s capability of almost optimally handling capacity offered by the two different 

media, extracting at the same time the optimal network and traffic parameterization 

conditions. Even more important, it draws the roadmap for effectively merging optical 

and wireless capacity arbitration algorithms within a single mathematical framework, 

offering the possibility to alter the complete protocol performance by modifying only 

the optical or only the wireless arbitration process. By combining this with the central-

ized topology of the proposed 60 GHz RoF network that consolidates the complete 

knowledge of all network and end-user parameters into the CO, one can reach highly 

agile network configurations without requiring any intervention to the hardware infra-

structure.  

The enhanced agility unleashed by our analytic MT-MAC model can be highlighted in 

a simple example of different bandwidth sharing strategies. The scheme demonstrated 
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in Chapter 3 relies on the Round-Robin allocation algorithm in the optical domain, is-

suing a fairness policy that works on a per RAU basis so that each RAU element enjoys 

the same amount of throughput. However, as it has been demonstrated in Chapter 4 this 

can produce important variations on the per node throughput values in case the distri-

bution of wireless nodes among the RAUs experiences severe inequalities. The analyt-

ical model presented here can easily reveal how the fairness policy could be shifted 

with minor modifications to a user-centric mode of operation, where not every RAU 

but every single user within the entire network should perceive the same level of band-

width. This kind of policy would demand the transition to an optical arbitration algo-

rithm that allocates wavelengths for time windows directly proportional to the number 

of active nodes currently residing in each RAU, such as the CW-MT-MAC scheme.  

Within the same frame, the same principle could be applied solely in the wireless por-

tion of the network as well towards supporting a more guaranteed service in modern 

high bandwidth applications with stringent delay requirements, like High Definition 

video streaming. In that case, the time bandwidth allocation in the wireless arbitration 

process would not be distributed in equal time portions amongst active nodes, but could 

be in principle reserved according to specific prioritization criteria depending on the 

type of traffic requested. As such, requests for real time data would be ranked as higher 

priority traffic in the polling sequence so as to allocate continuous fractions of band-

width. This indicates that the MT-MAC protocol can incorporate a plethora of Quality 

of Service (QoS) schemes following established techniques used in a variety of wireless 

protocols.  

Finally, the centralized knowledge of the entire network configuration can spur new 

energy reduction concepts for given 60 GHz network performance metrics. As the num-

ber of end-users and traffic requests changes, the CO can update its parameter database 

and determine the minimum number of wavelengths required for sustaining the same 

level of performance. To this end, it can decide to switch off certain transceiver ele-

ments at the CO, enabling constant and high-quality performance while preserving al-

ways the minimum possible power consumption levels. 
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5.3 Saturation Model extension for the CW-MT-MAC protocol 
This paragraph presents an enhanced version of the saturation model that was described 

in the previous section. This version has been properly altered in order to abide by the 

CW-MT-MAC operational rules. Note that in this paragraph we present only the fea-

tures that differ from the previous analysis, and as such all the aforementioned equa-

tions and the 2D Markov model are still valid unless dictated otherwise. 

In the following analysis, we consider again 𝑅𝑅 RAUs sharing 𝑤𝑤 available wavelengths. 

Each RAU contains 𝑛𝑛 wireless users with 𝑧𝑧 being the total number of users residing in 

the whole system. The model’s nomenclature again follows the 𝑆𝑆𝑖𝑖,𝑘𝑘 symbolism, where 

𝑖𝑖 stands for the 𝑖𝑖-th frame of the current SF and 𝑘𝑘 is the number of nodes that are yet to 

be resolved through means of the 2nd Contention Period. It should be noted that the 

WAIT state represents the optical waiting period, i.e. the state where the RAU does not 

have an assigned wavelength yet. The Markov chain model diagram depicted in Fig. 

5-1 can be logically divided into two areas. The first area is comprised of the state 

WAIT, whereas the second area is comprised of all the rest states. WAIT, being repre-

sentative of the waiting period caused by the assignment/de-assignment of the optical 

wavelength, effectively controls the length of time that the current RAU lies in idle 

state. This signifies that its respective SSP is: 

𝛱𝛱𝑊𝑊𝑀𝑀𝑀𝑀𝐶𝐶 = 1 − 𝑓𝑓𝑤𝑤                                                          (1) 

where 𝑓𝑓 is the function determining the allocation of the optical wavelengths. Under 

MT-MAC operation the 𝑤𝑤 wavelengths are equally distributed among the 𝑅𝑅 RAUs, 

whereas under CW-MT-MAC operation each RAU receives optical capacity directly 

proportional to the percentage of the total number of users it holds and therefore 𝑓𝑓 be-

comes: 

𝑓𝑓 = �
1
𝑅𝑅�  (MT-MAC operation)                                          

𝑛𝑛 𝑧𝑧⁄   (CW-MT-MAC operation)                            (2)
  

 Regarding CW mode, we derive that 𝑛𝑛 ≤ 𝑧𝑧/𝑤𝑤 since 𝑓𝑓 ∙ 𝑤𝑤 ≤ 1. The latter denotes the 

upper barrier or maximum number of users 𝑛𝑛𝑚𝑚𝑏𝑏𝑥𝑥 = 𝑧𝑧 𝑤𝑤⁄  per RAU, above which CW-

MT-MAC assigns a dedicated wavelength. Once being in the WAIT state the only pos-

sible actions are: to remain stationary with probability 𝑝𝑝𝑤𝑤 while waiting for wavelength 
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assignment, or to enter the 𝑆𝑆1,𝑏𝑏 state with probability 𝑝𝑝𝑤𝑤���� once a wavelength has been 

assigned. Following this, the wireless nodes enter the 2nd CP according to the CW-MT-

MAC rules. All the wireless activity is depicted in the second logical area of the Markov 

model, which can be further divided into distinct rows and columns: each row corre-

sponds to a single frame in the SF, while each column represents the number of nodes 

that are yet to be resolved in the 2nd CP. As such, the far-left column signifies the max-

imum number of unresolved nodes 𝑛𝑛 and the far-right represents the situation where all 

nodes have been resolved, i.e. the number of unresolved nodes has reached zero. The 

expression describing the transition from state WAIT to state 𝑆𝑆1,𝑏𝑏  is: 

𝛱𝛱1,𝑏𝑏 = 𝛱𝛱𝑊𝑊𝑀𝑀𝑀𝑀𝐶𝐶 ∙ 𝑝𝑝𝑤𝑤����                                            (3) 

By (3) and the fact that each of the i frames, independently of its type, is of equal dura-

tion we derive that: 

𝛱𝛱1,𝑏𝑏 = �𝛱𝛱2,𝜅𝜅
𝑘𝑘

= �𝛱𝛱3,𝜅𝜅
𝑘𝑘

= ⋯ = �𝛱𝛱𝑖𝑖,𝑘𝑘
𝑘𝑘

= 𝑓𝑓 ∙ 𝑤𝑤
𝑖𝑖�                    (4) 

Using (1), (3) and (4), 𝑝𝑝𝑤𝑤���� is found to be: 

𝑝𝑝𝑤𝑤���� =
𝑓𝑓 ∙ 𝑤𝑤

𝑖𝑖 ∙ (1 − 𝑓𝑓 ∙ 𝑤𝑤)
                                                (5) 

In the case of CW-MT-MAC employment (5) translates to: 

𝑝𝑝𝑤𝑤���� =
𝑛𝑛 ∙ 𝑤𝑤

𝑖𝑖 ∙ (𝑧𝑧 − 𝑛𝑛 ∙ 𝑤𝑤)
                                                 (6) 

whereas in the case of RRA it becomes: 

𝑝𝑝𝑤𝑤���� =
𝑤𝑤

𝑖𝑖 ∙ (𝑅𝑅 − 𝑤𝑤)                                                   (7) 

Finally, in order to calculate throughput 𝑆𝑆 we need to specify 𝛱𝛱𝐶𝐶𝑀𝑀, 𝛱𝛱𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 and 

𝑇𝑇𝐷𝐷𝑅𝑅 values, that are directly depended on (1) and (3) as well as on the specifics of the 

wireless access control scheme as they have been analyzed in the previous section.  

Fig. 5-5(a) depicts the saturation throughput results obtained by both the analytical 

model and the respective simulation tool for the CW-MT-MAC scheme, for various 
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optical capacity availability factors denoted by the WR ratio, ranging from 0.1 to 0.9 

and for the two most extreme distributions with σ=0 and σ=4.47, respectively. As can 

be noted the curves and symbols practically overlap each other, denoting that in satu-

ration conditions CW-MT-MAC exhibits equal performance at the system level, irre-

spective of the client distribution pattern. In addition, Fig. 5-5(a) displays the excellent 

matching existing between the analytical results and the respective simulation-based 

findings, experiencing only negligible differences up to a maximum of 3%. This good 

agreement between theory and simulation confirms the validity of the model, revealing 

also the linear dependence existing between throughput and the optical availability ratio 

WR. CW-MT-MAC yields an efficiency rate of almost 92% (throughput to load), a fact 

that is indicative of the nearly optimum capacity exploitation in this dual-medium plat-

form.  

Fig. 5-5(b) presents the average throughput for each of the 50 participating users in the 

network, when the later are spread out using the distribution with σ =2.05. As can be 

 

Fig. 5-5: a) User throughput vs. w/R ratio b) Throughput per user for all participating users of 
the network c) User throughput and its standard deviation vs. the user distribution standard de-

viation. 
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clearly observed, CW-MT-MAC manages to level out all throughput deliverance irre-

spective of the inequalities inserted into the network from the uneven client populations. 

In comparison, classic MT-MAC exhibits great disproportion regarding capacity allo-

cation where the majority of clients residing in crowded RAUs receive less-than-aver-

age throughput opportunities, whereas the small fraction of clients that are in less-oc-

cupied areas receive up to four times greatest share. The above behavior undermines 

the network’s efficiency as a whole, since users residing in different RAUs perceive a 

highly variating resource availability depending on their current location. 

This variation can be more fully visualized in Fig. 5-5(c) where the mean throughput 

per user as well as its standard deviation for all distribution patterns of Fig. 4-3 and for 

WR=0.5 is depicted. As can be noted, the mean throughput remains constant regardless 

of the clients’ distribution, but the case is totally different when coming to the standard 

deviation of the later, where CW-MT-MAC exhibits significantly lower throughput de-

viations compared to MT-MAC. MT-MAC’s standard deviation values equal zero only 

in the case of the uniform user distribution pattern, and increase rapidly as the users get 

unevenly distributed amongst the system’s RAUs, showing the latter’s inefficiency to-

wards accommodating irregular populations in RoF networks. On the other hand, CW-

MT-MAC’s σ-values remain zero for the first four user distribution patterns where the 

number of clients 𝑛𝑛 is always lower than 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 = 10. When overcoming this point, 

CW-MT-MAC dedicates a wavelength to all RAUs having 𝑛𝑛 > 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 clients, which 

produces inequalities and therefore deviation of throughput. However, the latter always 

delivers the best possible throughput uniformity, offering a clear advantage and fairer 

throughput delivery. 

5.4 MT-MAC delay analysis 

5.4.1 Non saturation delay analysis 

For the delay analytical model, we consider an MT-MAC network consisting of the 

CO, 𝑤𝑤 wavelength pairs and 𝑅𝑅 RAUs connected to the CO through an optical fiber of 

length 𝛥𝛥 km. The network is utilizing an optical bus topology and the inter-RAU fiber 

interval is 𝑙𝑙 km, i.e. the first RAU is 𝛥𝛥 km away from the CO, the second RAU is 𝛥𝛥 +

𝑙𝑙 km away from the CO, etc. Data packets are assumed to follow a Poisson arrival pro-
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cess with bit rate of 𝜆𝜆 Mbits/s and a fixed size of 𝐵𝐵 bits. Traffic is assumed to be sym-

metric, meaning that all clients introduce the same load into the network. The fiber 

transmission links provide 1 Gbit/s of bandwidth to each RAU which is shared amongst 

the wireless terminals serviced by each RAU. All RAUs are considered to serve the 

same number of clients 𝑛𝑛 and therefore the symmetric traffic property applies in the 

RAU domain as well. We declare 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 to be the cycle time defined as the time between 

the start of two successive data transmission windows for a fixed RAU. 

Since the MT-MAC operates under fixed service we can derive an accurate estimation 

of the cycle duration. To do that we need to specify the duration of the SF 𝑇𝑇𝑆𝑆𝑅𝑅 and the 

waiting period 𝑇𝑇𝑊𝑊𝑀𝑀𝑀𝑀𝐶𝐶. 𝑇𝑇𝑊𝑊𝑀𝑀𝑀𝑀𝐶𝐶 refers to the time that a RAU has no assigned wavelengths 

either due to lack of pending traffic or due to wavelength time sharing amongst the 

network’s RAUs. 𝑇𝑇𝑆𝑆𝑅𝑅 is equal to the sum of the duration of the SCP 𝑇𝑇𝑆𝑆𝐹𝐹𝐶𝐶  and the data 

transmission period 𝑇𝑇𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀. The first is comprised of one mandatory RRF followed by 

optional RRFs in case the first does not suffice in resolving the clients that request 

channel access. According to the MT-MAC rules the duration of the RRF frame 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 

is defined as: 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = 3𝛿𝛿𝑅𝑅𝑀𝑀𝐹𝐹𝐹𝐹𝑅𝑅 + 𝑙𝑙(3𝛿𝛿𝑀𝑀𝑀𝑀𝑅𝑅 + 𝑇𝑇𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑀𝑀𝐷𝐷 + 𝑇𝑇𝑀𝑀𝐶𝐶𝐴𝐴)                                   (1) 

where 𝛿𝛿𝑀𝑀𝑀𝑀𝑅𝑅 is the propagation delay in the wireless medium, 𝑚𝑚 is the size of the slots 

pool that the clients choose a random number from and 𝑇𝑇𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃, 𝑇𝑇𝑀𝑀𝐷𝐷 and 𝑇𝑇𝑀𝑀𝐶𝐶𝐴𝐴 are the 

transmission delays of the POLL, ID and ACK packets respectively. On the other hand, 

𝑇𝑇𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 is defined as the time it takes to transmit several sequential DFs plus the corre-

sponding POLL and ACK frames. In the fixed service regime, the number of sequential 

DFs that is granted per RAU is immutable and always equal to 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀. DF's duration 𝑇𝑇𝐷𝐷𝑅𝑅 

is defined as: 

𝑇𝑇𝐷𝐷𝑅𝑅 =
2𝛿𝛿𝑅𝑅𝑀𝑀𝐹𝐹𝐹𝐹𝑅𝑅 + 3𝛿𝛿𝑀𝑀𝑀𝑀𝑅𝑅 + 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃 + 𝑇𝑇𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 + 𝑇𝑇𝑀𝑀𝐶𝐶𝐴𝐴)

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀
                                    (2) 

where 𝑇𝑇𝐷𝐷𝑀𝑀𝐶𝐶𝑀𝑀 is the transmission delay of the DATA packet. Based on the above we 

define 𝑇𝑇𝑆𝑆𝑅𝑅 as: 

𝑇𝑇𝑆𝑆𝑅𝑅 = 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝐷𝐷𝑅𝑅                                                              (3) 
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Notice that at this point we consider only one RRF per SF. As described before, due to 

the MT-MAC rules this is not the only possibility since it could take more than one 

RRFs for the 2nd Cont. Period to resolve. Later on, a corrective factor will be added to 

account for that event, but at this point only the mandatory RRF is taken into account. 

Having defined 𝑇𝑇𝑆𝑆𝑅𝑅, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏is calculated as: 

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 =
𝑅𝑅
𝑤𝑤
𝑇𝑇𝑆𝑆𝑅𝑅                                                                        (4) 

Since the cycle time is constant, the system can be considered at discrete moments that 

are apart 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 seconds as depicted in the example provided in Fig. 3-4.  

We define 𝑄𝑄(𝑝𝑝)to be the queue size of a RAU at time 𝑝𝑝 ∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏. 𝑄𝑄(𝑝𝑝) is a discrete 

homogeneous Markov chain, which means that 𝑄𝑄(𝑝𝑝) depends on the "past" states 

(𝑄𝑄0,𝑄𝑄1, … ,𝑄𝑄𝑚𝑚−1) only through the present and is independent of 𝑝𝑝. Therefore, we are 

able to define transition probabilities and a transition matrix as it has been similarly 

done in [87]: 

𝑝𝑝𝑖𝑖,𝑗𝑗 = Pr[𝑄𝑄(𝑝𝑝 + 1) = 𝑗𝑗|𝑄𝑄(𝑝𝑝) = 𝑖𝑖]                                            (5) 

𝑃𝑃 =

⎝

⎜
⎜
⎛

𝑝𝑝0,0 𝑝𝑝0,1 𝑝𝑝0,2 ⋯ 𝑝𝑝0,𝑀𝑀
𝑝𝑝1,0 𝑝𝑝1,1 𝑝𝑝1,2 ⋯ 𝑝𝑝1,𝑀𝑀
𝑝𝑝2,0 𝑝𝑝2,1 𝑝𝑝2,2 … 𝑝𝑝2,𝑀𝑀
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝑝𝑝𝑀𝑀−1,𝑀𝑀
0 0 0 … 𝑝𝑝𝑀𝑀,𝑀𝑀 ⎠

⎟
⎟
⎞

                                                (6) 

The transition probabilities are given below: 

𝑝𝑝𝑖𝑖,0 = � 𝑒𝑒�−
𝜆𝜆
𝐹𝐹𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

�𝜆𝜆𝐵𝐵 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏�
𝑘𝑘

𝑘𝑘!

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀−𝑖𝑖

𝑘𝑘=0

                                                   (7a) 

for 𝑖𝑖 ≤ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀, 

𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑒𝑒�−
𝜆𝜆
𝐹𝐹𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

�𝜆𝜆𝐵𝐵 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏�
PMAX+𝑗𝑗−𝑖𝑖

𝑃𝑃MAX + 𝑗𝑗 − 𝑖𝑖
                                               (7b) 

for 𝑖𝑖 ≥ 0,𝑗𝑗 > 0 and 𝑗𝑗 − 𝑖𝑖 ≥ −𝑃𝑃MAX, 



Chapter 5: Mathematical Analysis 

124 

𝑝𝑝𝑖𝑖,𝑗𝑗 = 0                                                                              (7c) 

for 𝑖𝑖, 𝑗𝑗 ≥ 0 and 𝑗𝑗 − 𝑖𝑖 < − 𝑃𝑃MAX. 

Equation (7a) states that it is only possible for a queue to send all its packets in one 

transmission window if the number of Poisson generated packets is equal or smaller 

than the maximum transmission window. This probability is given by the sum of prob-

abilities of having no more packet arrivals than the maximum transmission window. 

The general probability of having a transition of 𝑖𝑖 packets in the queue at an instant 𝑝𝑝 

to 𝑗𝑗 packet at instant 𝑝𝑝 + 1 in a cycle period is equal to the probability of generating 

exactly 𝑃𝑃MAX + 𝑗𝑗 − 𝑖𝑖 packets and is given in (7b). Equation (7c) is a special case of (7b) 

and it states that if 𝑗𝑗 is smaller than 𝑖𝑖 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 then 𝑝𝑝𝑖𝑖,𝑗𝑗 is zero since that transition would 

require a transmission window greater than 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀. In order to be able to derive results 

we must set the upper limit 𝑀𝑀 of the buffer size. This limits the dimension of the matrix 

𝑃𝑃,causing the sum of the elements of all the lines to be less than one, which contravenes 

the mandatory property of a Markovian matrix. This problem is alleviated by defining 

the last element of each row of matrix P as: 

𝑝𝑝𝑖𝑖,𝑀𝑀 = 1 − � 𝑝𝑝𝑖𝑖,𝑗𝑗

𝑀𝑀−1

𝑗𝑗=0

                                                                 (8) 

In order to find the stationary probabilities of queue sizes, a linear system of equations 

must be solved. 

𝜋𝜋𝑃𝑃 = 𝜋𝜋                                                                            (9) 

�𝜋𝜋𝑖𝑖

𝑀𝑀

𝑖𝑖=0

= 1                                                                       (10) 

where 𝜋𝜋 is the vector defining the probabilities of the queue sizes ranging from 0 to 𝑀𝑀 

in the steady state. The average queue size 𝑄𝑄�  at the end of each transmission cycle is: 

𝑄𝑄� = �𝜋𝜋𝑖𝑖𝑖𝑖
𝑀𝑀

𝑖𝑖=0

                                                                       (11) 

In order to derive the average queue size 𝑄𝑄 in the continuous time domain we must add 

the terms that account for the packets that have been produced during the 2nd Cont. 
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Period that precedes each SF and the packets that are born in between the discrete mo-

ments, i.e. 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 intervals. For calculating the average number of RRFs that will take 

place at the beginning of each SF we deploy the same two-dimensional (2-D) Markov 

chain model, depicted in Fig. 5-1, which demonstrates the 2nd Contention Period again 

from the perspective of a single RAU. The model follows the 𝑆𝑆𝑖𝑖,𝑘𝑘 naming convention, 

where 𝑖𝑖 stands for the 𝑖𝑖-th RRF frame of the current SF and 𝑘𝑘 is the number of clients 

that are yet to be resolved by means of the 2nd Cont. Period. For each SF there is an 

upper limit 𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 denoting the maximum number of RRFs that can take place within a 

single SF. Beyond that limit, the data transmission period commences with the clients 

that have been resolved, whereas any unresolved terminals will retry during the next 

SF.  

The 2nd Contention Markov chain can be logically divided into distinct rows and col-

umns. The first row corresponds to the initial state of the 2nd Cont. Period where all 

wireless clients are unresolved, whereas each individual row after that corresponds to a 

single RRF in the SF, i.e. the 2nd row corresponds to the 1st RRF, the 3rd row to the 2nd 

RRF and so forth. Each column represents the number of clients that are yet to be re-

solved in the 2nd Cont. Period. As such, the far-left column signifies the maximum num-

ber of unresolved clients 𝑛𝑛 and the far-right represents the situation where all users have 

been resolved, i.e. the number of unresolved users has reached zero. It should be noted 

that 𝑆𝑆𝑖𝑖,1 type of states are not present in the Markov state diagram, given that node 

collision can only occur when at least two users are available for picking the same slot 

number in the random selection process. 

The initial steady state probabilities are set based on the stationary distribution of queue 

sizes π: 

⎩
⎪
⎨

⎪
⎧
𝑆𝑆0,0 = 𝜋𝜋0                           
𝑆𝑆𝑖𝑖,0 = 𝜋𝜋𝑖𝑖,   for 0 < 𝑖𝑖 < 𝑛𝑛

𝑆𝑆𝑏𝑏,0 = �𝜋𝜋𝑖𝑖

𝑀𝑀

𝑖𝑖=𝑏𝑏

for 𝑖𝑖 ≥ 𝑛𝑛    
                                                     (12) 

The transition probability from state 𝑆𝑆𝑖𝑖,𝑘𝑘 to state 𝑆𝑆𝑖𝑖+1,𝑘𝑘−𝑥𝑥 equals to the probability of 

having 𝑥𝑥 out of a current total of 𝑘𝑘 unresolved clients making a unique number choice 

and consequently getting resolved. This probability is provided by the equation: 
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𝑝𝑝𝑘𝑘(𝑥𝑥) =
(−1)𝑥𝑥𝑙𝑙!𝑘𝑘!

𝑥𝑥!
�

(−1)𝑏𝑏(𝑙𝑙 − 𝑝𝑝)𝑘𝑘−𝑏𝑏

(𝑝𝑝 − 𝑥𝑥)! (𝑙𝑙 − 𝑝𝑝)! (𝑘𝑘 − 𝑝𝑝)!
                                  (13)

𝑘𝑘

𝑏𝑏=𝑥𝑥

 

for 𝑘𝑘 ∈ [2,𝑛𝑛], 𝑥𝑥 ∈ [0,𝑘𝑘]\{𝑘𝑘 − 1}.  

A complete summary of all the non-null one-step transition probabilities is provided 

below: 

�𝑝𝑝
{𝑖𝑖 + 1,𝑘𝑘 − 𝑥𝑥|𝑖𝑖,𝑘𝑘} = 𝑝𝑝𝑘𝑘(𝑥𝑥)

𝑝𝑝{𝑖𝑖 + 1,0|𝑖𝑖, 0} = 1                                                     (14) 

for 𝑖𝑖 ∈ [1, 𝑖𝑖max),𝑘𝑘 ∈ [0,𝑛𝑛]\{1}, 𝑥𝑥 ∈ [0,𝑘𝑘]\{𝑘𝑘 − 1}. The second part of Eq.(14) de-

notes that, once reaching a state where all nodes have been resolved, the 2nd Cont. Pe-

riod is over and the CO initiates the transmission of sequential Data Frames until the 

end of the SF duration. 

The steady state probabilities of type 𝑆𝑆0,𝑘𝑘 (with k>0) form the Cumulative Distribution 

Function (CDF) of the numbers of RRFs that are necessary for completing the 2nd Cont. 

Period. Since the number of RRFs is an integer, we obtain the Probability Mass Func-

tion (PMF) from the CDF by means of subtraction. In turn, the PMF is used to derive 

the average number of RRFs 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 necessary to complete the 2nd Cont. Period. 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 is 

used to calculate the average number of packets that have been produced during the 2nd 

Cont. Period: 

𝑄𝑄𝑅𝑅𝑅𝑅𝑅𝑅 = 𝜆𝜆
𝐹𝐹

(𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 − 1)𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 for 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 ≥ 1                                           (15𝑝𝑝) 

𝑄𝑄𝑅𝑅𝑅𝑅𝑅𝑅 = 0  for 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅 = 1                                                    (15𝑏𝑏) 

Notice that in (15a) 1 was subtracted from 𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅, since in the initial calculation of 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 

the first RRF, which is mandatory, was already included. 



Chapter 5: Mathematical Analysis 

127 

 

To finalize the transition of the average queue size from the discrete to the continuous 

time domain we must account for the average number of packet arrivals that occur in 

between the 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏 intervals. Because Poisson arrivals are uniformly distributed in time, 

the average queue size in continuous time will be equal to the average queue size ex-

actly in the middle of the discrete cycle intervals, i.e. the middle of the cycle.  

𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚 = 𝜆𝜆
𝐹𝐹
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2

                                                                   (16)  

The average queue size in continuous time 𝑄𝑄 is given by the following sum: 

𝑄𝑄 = 𝑄𝑄� + 𝑄𝑄𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚                                                           (17) 

By means of Little's law, which states that the average number of packets in a stable 

system is equal to their average arrival rate multiplied by their average waiting time in 

the system, we yield the average waiting time or delay 𝐷𝐷: 

   𝐷𝐷 = 𝑄𝑄 ∗
𝐵𝐵
𝜆𝜆

                                                                      (18) 

TABLE 5-2 DELAY ANALYSIS SPECIFICATIONS 
PARAMETER SYM-

 
VALUE 

Number of Wavelengths w 3-10 
Number of RAUs R 10 
Fiber Length between CO and 1st 

 
L 200m-

 Packet arrival rate at the RAU λ 0.1-1 Gbps 
Fixed Transmission Window PMAX 30 
Fiber propagation delay δFIBER 1μs = 

 Slots in RRF s 10 

Number of clients per RAU n 5 
RAU range - 10m 
Air propagation delay δAIR 0,032μs 
Number of RRFs per SF NRRF Variable 
Wireless Data Bitrate - 1 Gbps 
ACK Size BACK 8 bytes 
DATA Packet Size (at the MAC 

 
B 1500 

 POLL Size BPOLL 64 bytes 
ID Size BID 64 bytes 
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5.4.2 Performance Evaluation 

This section presents the performance of the proposed analytical model and evaluates 

its accuracy by comparing the delay values against the respective results obtained by 

the non-saturation simulation platform employed in Chapter 3 and Chapter 4. The re-

sults produced here correspond to a network configuration comprising 10 RAUs in a 

bus topology, serviced by 𝑤𝑤 optical wavelength pairs each offering 1Gbps backhaul 

capacity as it is schematically depicted in Fig. 3-5. Table 5-2 summarizes the full spec-

ification parameters of the simulation run and of the respective analytical model where 

applicable. Performance is tested for various load conditions, wavelength availabilities, 

fiber lengths, transmission window sizes and data packet sizes. In this chapter load val-

ues correspond to the aggregated Poisson arrivals of all the wireless terminals per RAU 

and are presented in a normalized scale compared to the wireless channel capacity, 

ranging from 10% (100Mbps) up to 95% (0.95Gbps). Wavelength availability is re-

ferred as WR and is displayed as a percentage, i.e. for 10 RAUs and 3 wavelengths WR 

is 30%, whereas for 10 RAUs and 8 wavelengths WR is 80%. The different WRs allow 

the study of the RoF system under dynamic operative conditions where the engagement 

of the optical resources is assigned on the fly based on the desired service level. Simu-

lation results are displayed with the use of a circle symbol and represent the average of 

100 runs while the protruding capped vertical lines signify the 95% confidence interval, 

meaning that 95% of the produced simulation values fall within this interval. 

c) Performance vs. Load 
Fig. 5-6 displays the packet delay versus various load conditions for four different WRs 

namely 30%, 50%, 80% and 100%. For all the above scenarios, we witness that delay 

values start and remain very low (sub 0.5ms) until the point that the network enters its 

saturation regime. Note that for each of the different presented WRs, the saturation 

point is not constant, i.e. 30% WR the network saturates around 30% (300Mbps) of-

fered load per RAU, whereas for 80% WR the saturation point is around 80% 

(800Mbps) of generated traffic. This comes as a direct effect of the backhauling capa-

bility of the presented network, since the latter depends on and is limited by the number 

of wavelengths available to the network. By means of Fig. 5-6(a) it is evident that delay 
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values start off in the sub 0.4 millisecond range and remain very low as long as the per 

RAU load is under 80% (800Mbps). In this area we also notice that the theoretical 

results practically coincide with the average values of the respective simulation runs. 

When the offered load approaches the maximum theoretical wireless channel capacity, 

delay values increase rapidly as the packets remain longer in the buffer queue awaiting 

transmission. In this area we note also small deviations between the average simulation 

and the analytical results. This discrepancy is explained by the fact that near the maxi-

mum theoretical wireless channel bitrate the average arrival rate approaches the sys-

tem's capacity, resulting in the queue becoming unstable and therefore susceptible to 

small variations caused by the probabilistic Poisson traffic. However, even in these high 

load conditions the analytical results are within the 95% confidence interval of the sim-

ulation runs. The same curvature applies in the delay performance for every tested WR, 

as depicted in  Fig. 5-6(b)-(d), with the only changing factors being the load value at 

which the network experiences saturation conditions, for reasons previously explained, 

and the absolute delay value that each configuration reaches in the congested areas. The 

latter happens due to the fact that the lack of wireless capacity in the low WR ratios 

forces each client to wait longer periods for the wavelength assignment to take place, 

thus introducing further delays.  

 

Fig. 5-6 Delay vs. Normalized load for 10 RAUS and (a) 10 wav. (100% WR) (b)8 wav. (80% 
WR) (c) 5 wav. (50% WR) and (d) 3 wav. (30% WR). 
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d) Performance vs. Fiber Length 
Fig. 5-7 and  Fig. 5-8 present the packet delay performance versus various fiber lengths 

ranging from 200m up to 10km for two WRs, namely 50 and 100%, and for normalized 

load generation ranging from 10% up to 95% for 100% WR and 45% for 50% WR. As 

can be noted in the 100% WR case displayed in Fig. 5-8, for low and medium load 

conditions ranging up to 50% of normalized load (Fig. 5-8(a)) delay values are very 

low and always in the sub 0.5ms range for all tested fiber lengths up to 10km. The 

produced results display only a very small and linear performance degradation taking 

place amongst the shorter and longer tested network ranges. This shows that when there 

is high optical capacity availability, the MT-MAC protocol is capable of tolerating long 

 

Fig. 5-7 Delay versus the length of the optical part of the network for 10 RAUs and 5 wave-
lengths (50% WR) (a) for 10-20% normalized load (b) 30% norm. load (c) 40% normalized 

load (d) 45% norm. load. 

 

Fig. 5-8 Delay versus the length of the optical part of the network for 10 RAUs and 10 wave-
lengths (100% WR) (a) for 10-50% normalized load (b) 60% norm. load (c) 70% normalized 

load (d) 80% norm. load (e)90% norm load (f) 95% norm. load 
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fiber hauls and is able to achieve optimum delay values as long as the offered network 

load does not exceed 50% of the maximum theoretical normalized value. Again here it 

can also be seen that the analytical and the simulation results coincide perfectly for all 

derived values of fiber length, since the network does not enter its saturation regime 

which would cause buffer depletions and instability in the queue. At higher load con-

ditions, such as the case depicted in Fig. 5-8(b) representing the 60% offered network 

load, the MT-MAC protocol fails to maintain the low latency properties in long fiber 

lengths. Specifically, when the fiber length exceeds 8km, delay values increase rapidly, 

as the larger cycle times effectively lead to more packet births than the amount of data 

frames that can be serviced by the static transmission window. This fact also attributes 

for the small discrepancy between the analytical and the mean value of the simulation 

results, since the system operates at capacity forcing data packets to wait multiple cycle 

times before transmission, therefore resulting in an unstable system. However, the an-

alytical results are always within the 95% confidence interval of the simulation results 

exhibiting the excellent match between simulation and theory. The same behavior is 

also evident in  Fig. 5-8(c)-(f) that display the delay results for normalized loads ranging 

from 70-95% respectively.  The only alternating factor is the maximum fiber length that 

can be tolerated for each load value, i.e. at 70% load, the maximum fiber length within 

which the MT-MAC protocol exhibits low delay properties is around 5km, at 80% the 

saturation point drops to 2km and at 90% load the maximum fiber length drops to 400m. 

In the extreme scenario of 95% load, depicted in  Fig. 5-8 (f), the network appears 

saturated even for the smallest fiber lengths, effectively denoting the upper limit where 

the MT-MAC’s remote arbitration scheme is capable of delivering fast service to the 

end users.  

Regarding the 50% WR ratio, a similar performance pattern is observed for low load 

values (up to 20% Fig. 5-7(a)), with delay being constantly in the sub 0.5ms region for 

all tested network ranges up to 10km. As the ingress load increases however (Fig. 5-7 

(b)-(c)), the network enters its saturation regime at high fiber lengths. As in the previous 

scenario, the specific length where the increased cycle time causes the network to sat-

urate is based on the offered network load, ranging from 8km in the case of 30% load 

down to 200m in the extreme scenario of 45% load. In is also noteworthy that in the 
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50% WR scenario the actual delay is greater compared to the case of 100% WR, due to 

the fact that wavelength sharing causes added delays as the RAUs are forced to wait 

approximately 50% of the system time for a wavelength assignment.   

e) Performance vs. Transmission Window Size Pmax 
One of the most crucial parameters that define the performance of the fixed service 

regime is the size of the transmission window 𝑃𝑃max. To this end the proposed analysis 

can be employed to derive the optimum window size based on the available WR and 

the respective load conditions. Fig. 5-9 and Fig. 5-10 present the packet delay perfor-

mance of the hybrid MT-MAC protocol versus 𝑃𝑃max for two different WR ratios, 

namely 50 and 100%, and for various normalized load conditions ranging from 10% up 

to 95% for the 100% WR case and 45% for the 50% WR case.  

Fig. 5-9 presents the case of the 100% WR versus the 𝑃𝑃max value ranging from 10 up 

to 100 packets per static window assignment. As can be seen in Fig. 5-9 (a), while the 

offered load ranges from 10% up to 50%, delay values remain very low and increase 

linearly with 𝑃𝑃max at a very low rate. The reason for the slow performance deterioration 

 

Fig. 5-9 Delay versus the length of the transmission window Pmax for 10 RAUs and 10 wave-
lengths (50% WR) (a) for 10-50% normalized load (b) 60% norm. load (c) 70% normalized 

load (d) 80% normalized load (e) 90% normalized load (f) 95% normalized load 
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is that in low traffic conditions a large transmission window size leads to underutiliza-

tion of the wireless channel, since the initial polling sequence constructed at the begin-

ning of the SF is larger than the number of packets waiting in the nodes’ buffers. This 

directly translates to unused transmission opportunities when the nodes’ buffers are de-

pleted. Moreover, larger transmission windows lead to larger cycle times and therefore 

to less frequent executions of the 2nd Cont. Period which, according to the MT-MAC 

rules, is responsible for constructing the polling sequence in the CO. This forces the 

inactive users that did not partake in the last 2nd Cont.Period to wait longer periods until 

the beginning of the next SF, thus introducing further delays into the network. As load 

increases (Fig. 5-9(b)-(d)), we observe that the delay performance is no longer linear to 

𝑃𝑃max, but instead very small 𝑃𝑃max values (i.e. 10) exhibit higher delays than larger 𝑃𝑃max 

values (i.e.20). Once the delay reaches its global minimum, linearity is reestablished 

and any further increase in the transmission window results in a small rate linear incre-

ment of the delay, similarly to the low-medium traffic conditions depicted in Fig. 

5-9(a). This behavior is caused by the fact that for very small 𝑃𝑃max values, the transmis-

sion window no longer suffices for all packets to be transmitted, thus a part of the out-

standing traffic is forced to wait for the next transmission opportunity that will take 

place in the following SF. When load increases even further (Fig. 5-9(e)), incoming 

traffic greatly exceeds the capacity of the transmission window causing high delays and 

instability in the queue which results in the exhibited difference between the theoretical 

and simulation results. As 𝑃𝑃max increases however, delay values decrease and the sys-

tem’s utilization factor drops below 1, resulting in the theoretical results to be well 

within the 95% confidence interval, once again proving the excellent matching between 

 

Fig. 5-10 Delay versus the length of the transmission window Pmax for 10 RAUs and 5 wave-
lengths (50% WR) (a) for 10-30% normalized load (b) 40% norm. load (c) 45% normalized 

load 
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the theoretical analysis and the simulation. Finally, in the extreme case of 95% normal-

ized load depicted in Fig. 5-9 (f), the system resides in unstable saturation conditions 

for all the tested values of 𝑃𝑃max, therefore exhibiting high delay values and a higher 

degree of mismatch between the theoretical and simulation results.  

In the 50% WR scenario depicted in Fig. 5-10, we note that the system exhibits the 

same overall behavior with the difference being that the system enters saturation regime 

in lower normalized load values and produces higher absolute delay values as opposed 

to the 100% WR scenario. The latter is again attributed to the fact that the RAUs are 

inactive for a significant portion of the system time while waiting for wavelength as-

signment, thus contributing towards higher delay values. 

f) Performance vs. the Data Packet size 
Fig. 5-11 and Fig. 5-12 present the MT-MAC’s delay performance versus the size of 

the Data Packet at the MAC layer for two WR ratios, namely 50 and 100%, and for 

various normalized load conditions ranging from 10% up to 95% for the 100% WR 

case and 45% for the 50% WR case. The tested Data Packet sizes range from 500 up to 

15000 bytes per packet. Fig. 5-11 presents the scenario of 100% WR. By means of Fig. 

5-11(a) we observe that in low load conditions the increment of the Data Packet size 

 

Fig. 5-11 Delay versus the length of the transmission window Pmax for 10 RAUs and 5 wave-
lengths (50% WR) (a) for 10-30% normalized load (b) 40% norm. load (c) 45% normalized 

load 
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leads to a small rate linear increment in the derived delay. This is due to the fact that 

the larger the data packet size the more time it takes for a packet to reach the head of 

the polling sequence and initiate transmission. A further increment of the offered traffic 

above 60% of the maximum theoretical capacity (Fig. 5-11(b)-(c)) creates a phenome-

non similar to the previous section, meaning that very small packet sizes cause the net-

work to perform worse than greater packet sizes. This is due to the fact that for very 

small payload sizes the generated traffic exceeds the capacity of the packet and there-

fore data has to be split into several packets. The increased number of packets reduces 

the protocols efficiency since it also increases the overhead of the actual transmission 

due to the additional headers and signaling requirements, therefore resulting in higher 

latencies. However, we also notice that once the packet size grows large enough to 

accommodate the produced traffic, delay values drop until they reach their minimum 

value, signifying the optimum packet size for the specific load/WR conditions. Beyond 

this optimum value any further increment causes the delay to increase at a low rate for 

the same reasons as the ones presented in Fig. 5-11(a). The very high load scenarios 

presented in Fig. 5-11(d) and (e) follow a different curvature than the rest of the load 

conditions. Specifically, in both figures delay values start low, then rapidly increase 

until they reach a maximum value, and in turn drop before resuming the normal linear 

behavior that was evident in the previous figures. In order to justify this behavior, we 

include Table 5-3 that presents the average normalized throughput values and packet 

drops percentages as they were derived by the simulator. Normalized throughput values 

have been calculated as the number of data packets that were correctly delivered per 

 

TABLE 5-3 THROUGHPUT VALUES IN 
PACKET SIZE VS DELAY ANALYSIS 

P. Size 
(bytes) 

Load 90% Load 95% 
TH PD TH PD 

500 0.692 23.0% 0.692 27.2% 
1000 0.818 8.50% 0.818 14.0% 
1500 0.871 3.35% 0.871 7.86% 
2000 0.890 0% 0.899 3.70% 
2500 0.892 0% 0.918 2.82% 
3000 0.900 0% 0.930 1.01% 
3500 0.890 0% 0.937 0.33% 
4000 0.891 0% 0.944 0% 
4500 0.897 0% 0.945 0% 

 TH: Average Normalized System Throughput (0-1) 
PD: Average Packet Drop Percentage (0%-100%) 
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time slot, with a time slot being equal to the time required for a data packet to be trans-

mitted. As it can be seen in the left-most portion of the Fig. 5-11(d) and (e), while the 

delay slope is increasing, throughput values are less than the corresponding normalized 

load since the network exhibits packet losses. The latter effectively means that the sys-

tem services less packets than the ones that are generated and therefore delay values are 

counted as lower, since the packets that succeed in entering the buffer are serviced faster 

while the discarded packets are not taken into consideration when measuring the sys-

tem’s delay performance. To this end, as long as the packet drops are more than zero, 

the delay measurements appear lower due to the assumption that the buffer’s capacity 

is finite. While the packet size increases and packet drops approach zero, delay in-

creases since the measurement process accounts for a greater percentage of the gener-

ated packets, therefore becoming more accurate. Finally, when packet drops become 

zero, the curvatures of the results resume a path similar to the ones presented in Fig. 

5-11(b)-(c). Note here that, due to the increased load, the packet size must increase to 

4000 bytes for the system to experience zero losses in 95% traffic, whereas 2000 bytes 

suffice for 90% load. Again here we notice that the theoretical results are always within 

the 95% confidence interval of the corresponding simulation results.  

Fig. 5-12 presents the same study for 50% WR ratio. Upon examination we notice that 

the results follow the same curvature, with the only differences being that the absolute 

delay values are higher than the corresponding results of 100% WR and increase at a 

higher rate. The latter is attributed to the fact that insufficient packet sizes and the con-

sequent data segmentation into multiple MAC layer packets has a more detrimental 

effect when the end nodes have to wait for wavelength assignment before being polled 

to transmit. 

 

Fig. 5-12 Delay versus the Data Packet size for 10 RAUs and 5 wavelengths (50% WR) (a) for 
10-30% normalized load (b) 40% norm. load (c) 45% norm. load. 
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5.5 Concluding Remarks 
In this chapter we have firstly presented an analytical model for calculating saturation 

throughput for the MT-MAC protocol. The analytical throughput model was accompa-

nied by a detailed saturation throughput performance analysis, assuming ideal channel 

conditions. The presented model relies on a two-dimensional (2-D) Markov chain ap-

proach for calculating the end-user transmission probabilities, taking into account con-

tention for both the optical and the wireless layer resources. An analytic formula for 

throughput computation was derived and the respective results for different optical re-

source availability factors were found to be in close agreement with simulation-based 

outcomes, confirming the validity of the MT-MAC model. Secondly we have presented 

a delay model that enables the computation of end to end packet latency under non 

saturation conditions, successfully confirming respective simulation results for differ-

ent numbers of optical wavelength availability ratios, network loads, fiber lengths and 

transmission window sizes. The theoretical results were found to be in excellent agree-

ment with respective simulation-based findings and always within the 95% confidence 

interval. This first successful MT-MAC modeling approach indicates that the functional 

convergence of the optical and the wireless connection links can yield new and efficient 

capacity and resource utilization concepts in 60 GHz RoF networks, equipping 60 GHz 

high-speed applications with high-level agile operational frameworks.  
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  Architectural Aspects 
and PON synergy 

The previous chapters have presented the MT-MAC protocols’ operation on top of ge-

neric topologies. However, in order to qualify for commercial and deployed fiber sys-

tems, it is imperative for the RoF approaches to be tested and compared to already 

deployed architectures and well-established infrastructural paradigms. In the fiber do-

main, a series of advantages such as cost effectiveness, energy savings, service trans-

parency, and signal security over all other last-/first-mile technologies have established 

the PONs as the by far predominant and most widely used optical fiber architecture[88]. 

This forces all possible future Fiber-Wireless (FiWi) solutions to strive for PON com-

patibility[89], and as such dictates the need for a detailed comparative study on the 

inter-play between the extended MT-MAC-enabled WLAN networks and deployed 

PON systems.  

In this chapter, we present an extensive study on the formation, convergence and inter-

facing of various 60GHz Gigabit WLAN over GPON architectures. Two possible net-

work scenarios are investigated for the establishment of extended range mm-wave 

WLANs, the first one being based on a recent standardization effort and the other on a 

recent promising research outcome:  i) the Radio-and-Fiber (R&F) scenario termed as 

“GPON-plus-802.11ad”, which considers several 802.11ad routers attached to equally 

numbered ONUs employing the GPON network as the fiber backhaul infrastructure and 

ii) the RoF scenario termed as “MTMAC-over-PON”, which substitutes GPON’s Op-

tical Network Units (ONUs) with RAUs while GPON’s Optical Line Terminal (OLT) 

facilities get upgraded so as to operate under the MT-MAC paradigm. Extensive simu-

lation-based throughput and delay results are obtained for a plethora of network sce-

narios, revealing the dependence and denoting the benefits and shortcomings of the 

above architectures on several network planning parameters: the load of the network, 
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the number of available optical wavelengths, the percentage of intra-LAN and Internet-

destined network traffic as well as the PON’s total fiber length. 

In addition, driven by the above findings we study for the first time to the best of our 

knowledge a hybrid RoF/R&F architecture under the scope of mm-wave communica-

tions. This multi-tier mixed architecture, termed as “GPON-plus-MT-MAC”, considers 

a short-length MT-MAC (RoF) network in a bus topology attached to a GPON ONU 

that serves the intra-WLAN or intra-cell communication demands, whereas any inter-

cell claims are forwarded by the MT-MAC CO to the GPON network through an exist-

ing CO/ONU interface. The results derived by GPON-plus-MTMAC’s extensive per-

formance evaluation confirm that the latter architecture combines the properties of the 

MTMAC-over-PON and the GPON-plus-802.11ad approaches, balancing their trade-

offs in an optimal manner. 

6.1 RoF and R&F architectures for mm-wave communications 
In RoF systems, the Central Office (CO) modulates RF signals onto an optical carrier 

which in turn travels over an analog fiber link towards simple RAU (Optical/Electri-

cal/Optical + Antenna) modules. RoF's centralized architecture allocates all network 

complexity to the CO and thus overall implementation and operational costs drop while 

handover and operational-maintenance procedures become simpler. Moreover, the use 

of simplified RAUs enables the physical expansion of the network dimensions with 

spatiotemporal centralized resource allocation. However, the added distance that wire-

less signals must propagate through the (usually) several kilometers long interleaved 

fiber can cause significant problems in the operation of the wireless MAC protocols 

(i.e. timeouts etc.) thus limiting the maximum physical reach of the network. The latter 

becomes increasingly a problem in the 60GHz domain since timeout constraints are 

even stricter, thus further decreasing the maximum network length. In addition, the re-

mote nature of centralized control becomes a bottleneck in a volatile wireless environ-

ment where frequent link establishments dictate the exchange of control packets that 

are otherwise optional in wired networks. RoF implementations inherently operate as 

backhauling architectures since packets traverse the entire network. This can be bene-

ficial for packets destined towards Internet destinations, as the former travel faster by 

remaining at the MAC layer thus avoiding the delays produced by higher layers like the 

IP. However, the opposite is true for packets destined to close proximity nodes since 
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they will be indiscriminately forwarded to the CO and therefore acquire significant de-

lay overheads.  

 In R&F systems, discrete optical and wireless networks are merged in order to form 

one single integrated network that utilizes different optical and wireless MAC proto-

cols. This means that intra WLAN traffic does not propagate towards the optical net-

work and distributed as well as client-to-client ad hoc connections avoid the fiber’s 

extra propagation delays. This feature also alleviates all wireless MAC restrictions from 

the optical portion of the network such as the maximum fiber length. However, within 

the context of the 60GHz communications, providing large scale coverage would re-

quire massive active equipment installations, which in turn translates to higher costs 

and lower energy efficiency. In addition, the range of mm-wave WLANs (<10m as 

specified in 802.11ad) requires the physical presence of the nodes within a very con-

fined area and is therefore impractical for broad adoption.  

This chapter attempts a head-to-head comparison between the predominant RoF and 

R&F FiWi specifications in order to determine the optimal conditions and identify the 

trade-off points for a variety of network conditions so as to function as a future guide 

for the upcoming 60GHz hybrid optical/wireless network implementations. Both tested 

RoF and R&F architectures utilize tree-based PON infrastructures, since the latter are 

generally considered the strongest candidate for widespread deployments. Fig. 6-1(a) 

depicts the Radio-over-Fiber approach operating under the MT-MAC paradigm termed 

as the MTMAC-over-PON architecture. In this scenario, an MT-MAC Access Gate 

(MTAG), that includes the necessary hardware resources for generating the RoF optical 

channels, is placed at the location of a conventional GPON OLT. The OLT is in turn 

 

Fig. 6-1 (a) The MT-MAC-over-PON architecture (b) the GPON-plus-802.11ad architecture 
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connected to an Optical Distribution Network (ODN) with L km length that employs a 

1:N passive splitter. ODN's fibers terminate in the RAUs that provide the mobile users 

with 60GHz wireless connectivity. By transferring all functionalities to the CO and 

substituting the active Access Points (APs) units with RAUs the MT-MAC architecture 

forms an extended range WLAN that bypasses the inherent limitations of the 60GHz 

medium in a cost-effective way. Moreover, the MT-MAC scheme employs a dynamic 

wavelength allocation algorithm that assigns optical capacity only to RAUs with active 

wireless clients and therefore permitting the physical reach extension of the RoF net-

work by allowing the deployment and operation of a greater number of antenna units 

with fewer optical resources. This way a MT-MAC architecture with 𝑁𝑁 RAUs and 𝑤𝑤 

available wavelengths offers 𝑁𝑁 60GHz wireless channels to the users, 𝑤𝑤 of which can 

function concurrently, whereas data backhauling is operated in an 𝑤𝑤-channel WDM 

PON fashion.  

Fig. 6-1(b) displays the Radio & Fiber architecture, termed as the GPON-plus-802.11ad 

approach. As mentioned before, this approach stems from the well investigated subject 

of FiWi integration as the latter has been extensively presented in the literature, with 

the majority of work revolving around EPON/GPON integration with Wi-

MAX/LTE/DOCSIS[36]-[39] or 802.11[40] and mesh networks[41],[42]. The GPON-

plus-802.11ad architecture is comprised of 𝑁𝑁 802.11ad Access Points (ADAPs) that are 

bridged to equally numbered ONUs and consequently backhauled through GPON's 

ODN. The employed GPON network features 2.5Gbps Down- and 2.5Gbps Up-link 

capabilities whereas the ONU-ADAP communication is handled by their common pro-

tocol translation interface that mainly consists of the GPON Encapsulation Method 

(GEM) scheduler and the GEM classifier. The GPON-plus-802.11ad network offers 𝑁𝑁 

continuously operating 60GHz wireless channels to the users alongside buffering and 

local routing functionality (packets travelling to intra-cell destinations stay within the 

MT-MAC portion of the network), whereas only the packets that head to destinations 

residing in other ADAPs of the network are traversed through the GPON infrastructure. 
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6.2 Performance evaluation 
In order to assess the performance of RoF versus R&F 60GHz WLAN formations we 

perform a comparative evaluation of the MT-MAC-over-PON network versus the 

GPON-plus-802.11ad network. Both configurations are based on a 10km long PON 

network with 1:32 splitting ratio. In the GPON-plus-802.11ad network, each of the 

ONUs is attached through the G-PON/802.11ad interface to an ADAP, whereas in the 

MT-MAC-over-PON network, the PON fibers terminate directly in RAUs. Both radios 

provide a 6.5𝑚𝑚 radius mm-wave coverage, therefore each of the network configurations 

provides 32 ∗ 𝜋𝜋 ∗ 6.52 ≈ 4245𝑚𝑚2 of 60GHz service area. Every ADAP or RAU unit 

services 5 randomly placed clients in its range and sector scanning is employed prior to 

the first packet exchange with a specific client in order to enable the required direction-

ality in the transmission. For the communication part we focus on the uplink transmis-

sion direction. Regarding the 802.11ad, every non-AP STA contends for its transmis-

sion opportunities (TXOPs) based on the Distributed Coordination Function (DCF) op-

eration. To obtain results for the GPON-plus-802.11ad we implemented an event-

driven simulator based on the Pamvotis 802.11 WLAN simulator[90] that was extended 

to support 802.11ad and GPON operation, whereas for the MT-MAC network an event-

driven simulator was implemented in Java. The full list of simulation parameters is 

presented in Table 6-1.  

TABLE 6-1. SIMULATION PARAMETERS 

GPON-plus-802.11ad MT-MAC-over-PON 
RTS 160 bits + PHY Header ID Packet Size 64 bytes 
CTS 208 bits + PHY Header POLL Packet Size 64 bytes 
ACK 112 bits + PHY Header 1st Cont. Policy Static Interval   
G-PON downlink 2.5 Gbps  1st Cont. Interval 5ms 
G-PON uplink 2.5Gbps RRF size Policy  Flexible 
SIFS 3 μs Minimum RRF Slots 3 
DIFS 13 μs SuperFrame Size Policy Gated 
Slot time σ 5 μs Data Serving Policy Round Robin 
Min CWsize (CWmin) 16 ACK Policy Immediate  
Max CW size (CWmax) 480 Number of wavelengths Variable 

Common Specifications 
Control PHY header 40 bits 

SC PHY header 64 bits 
MAC Header 320 bits 

Data Packet Payload 2000bytes 
Nr. of ONUs 32 

Control PHY Rate (MCS0) 27.5 Mbps 
SC PHY Rate (MCS4) 1155 Mbps 

SC PHY Range 6.5 m 
G-PON fiber Length L = 10 km 
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6.2.1 Dependency on traffic load 

Fig. 6-2 and Fig. 6-3 illustrate the architectures’ performance behavior versus various 

intra/inter-cell traffic shapes and load conditions. The generated load ranges from 0.1 

up to 1 packet generation per timeslot per RAU/ADAP where the timeslot is defined as 

the transmission delay of a single data packet for the given data channel rate. Two traf-

fic shapes are considered: i) traffic shaped under the under the traditional 80/20 

rule[91], meaning that 80% percent of the traffic is destined for intra-WLAN destina-

tions whereas 20% of the traffic goes beyond the local subnet and heads to GPON's CO 

(Fig. 6-2) and ii) the more modern 20/80 rule meaning that 20% percent of the traffic 

is destined for intra-WLAN destinations whereas 80% of the traffic goes heads to 

GPON's CO (Fig. 6-3). In this chapter we employ the above distinction in order to cat-

egorize traffic based on the backhauling requirements relative to existing PON infra-

structures for interfused optical/wireless networks. The term intra-WLAN is interpreted 

as intra-cell in order to maintain a clear comparative platform between the different 

architectures, whereas the cell is defined as the 60GHz radio service area provided by 

a single RAU or ADAP. The 80/20 ratio is studied because it closely describes the usual 

mm-wave applications such as cable replacement scenarios, e-Health applications as 

well as highly-secure enterprise networks that restrict Internet traffic. On the other 

hand, the 20/80 ratio represents other type of applications such as server farms and/or 

other web based computing scenarios where most of the data exchange is between ser-

vice providers (ISPs, cloud computing, cloud storage companies etc.) and their custom-

ers.  

 

Fig. 6-2 Delay Throughput and Delay for 80/20 traffic (80% stays within the cell). 
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As can be observed in Fig. 6-2(a) (80/20 traffic ratio), the GPON-plus-802.11ad 

throughput curves increase with load until the point that throughput reaches its satura-

tion plateau. For the RoF architecture represented by the MT-MAC-over-PON scenario 

we note that for low wavelength availability, such as 2 wavelengths, throughput appears 

already saturated even for 10% traffic load conditions (0.1 packet/slot/RAU), since all 

packets have to traverse the entire network length (10 km in this scenario) both in the 

uplink and downlink direction for the establishment of the communication link and the 

data exchange. This adds up to significant delays, especially for the packets that head 

towards nearby intra-cell destinations. However, by employing the MT-MAC’s inher-

ent capability to utilize a larger set of optical wavelengths, the MT-MAC-over-PON 

can operate in a WDM-PON fashion causing throughput values to rise as more wave-

lengths are added, up to the point where the MTMAC-over-PON's performance sur-

passes that of the GPON-plus-802.11ad network. As can be witnessed in Fig. 6-2(a), 

with 8 employed wavelengths the MTMAC-over-PON manages to match and in addi-

tion to surpass the GPON-plus-802.11ad's performance by an average of 16%. This 

throughput improvement escalates even further to an average of 75% for 12 wave-

lengths. The witnessed performance increment stems from the higher number of optical 

wavelengths that in turn leads to less time-consuming wavelength (de)allocation activ-

ities as well as longer SuperFrame lengths therefore increasing the protocol's efficiency. 

Therefore, the performance improves with increasing number of wavelengths and the 

protocol’s saturation capacity is extended to higher load values. Going beyond 12 wave-

lengths will further increase the saturation point to higher load conditions and also pro-

vide additional performance gap between the MTMAC-over-PON and GPON-plus-

 

Fig. 6-3 Throughput and Delay for 20/80 traffic (80% heads to destinations outside the cell).  
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802.11ad architectures. The proportional relationship of optical resources to the maxi-

mum achieved throughput also indicates that the support of specific application types 

is subject to the number of available optical wavelengths, i.e. resource-heavy applica-

tions will demand higher optical capacity to be adequately supported. However, it be-

comes evident that a broad range of application services can be supported by employing 

the necessary number of available wavelengths. Delay values, depicted in Fig. 6-2(b) 

for the same configuration, follow an ascending path as load increases before becoming 

essentially stable at the point where throughput saturates. Beyond throughput’s satura-

tion point any excessive packet arrivals become immediately dropped after birth due to 

buffer overflow. Note here that measured delay refers only to the packets that get de-

livered, whereas dropped packets are excluded from the above metric.   

Fig. 6-3(a) and Fig. 6-3(b) present the same results but for traffic shaped under the more 

modern 20/80. Here, throughput and delay values follow the same curvature as in Fig. 

6-2(a) and Fig. 6-2(b) with the difference that GPON-plus-802.11ad’s performance 

drops significantly lower, whereas MTMAC-over-PON’s corresponding performance 

remains unchanged. Specifically, GPON-plus-802.11ad’s throughput saturation value 

drops from ~250Mbps to ~125Mbps per ADAP. This performance degradation is 

caused by the quadrupled extra-cell traffic that places a heavy burden upon GPON’s 

limited uplink capacity, where only one wavelength is employed towards servicing the 

upstream traffic from all ONUs, therefore causing buffer overflows and packet drops 

in the GPON/ADAP interface. 

This section provides a head to head comparison regarding the performance of the two 

tested architectures versus load for various optical capacities (2,4,8 and 12 wave-

lengths) and also displays how the RoF and R&F architectures compete against each 

other. In this work we are not proposing a specific number of wavelengths to be used 

universally since the criteria for this selection span across multiple decision factors such 

as desired service level, hardware cost, energy efficiency, upkeep costs etc. This work 

focuses on the individual as well as the comparative performance aspects of the tested 

RoF and R&F architectures supporting VHT wireless over optical communication and 

to identify the optimal architecture given the relevant network parameters. 
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6.2.2 Dependency on percentage of intra/inter-cell traffic ratio 

To gain a more detailed insight into the impact of the intra/inter-cell traffic ratio, Fig. 

6-4(a) and Fig. 6-4(b) focus on the performance under various inter- and intra-cell traf-

fic shapes ranging from 10% up to 100% of traffic heading towards internet destina-

tions. The results are shown for a constant load generation of 0.5 packets per slot time 

per RAU/ADAP. As can be seen in Fig. 6-4(a) and Fig. 6-4 (b), the MT-MAC-over-

PON's throughput and delay performance remains constant regardless of the intra/inter 

LAN traffic ratio fluctuations and depends solely on the number of available wave-

lengths, since packets have to traverse the whole network irrespective of the traffic 

shape. On the other hand, GPON-plus-802.11ad’s throughput values remain constant 

only while the ratio of Internet-heading traffic is lower that 30%, whereas beyond that 

point, throughput drops almost linearly due to congestion in the single wavelength 

GPON backbone. The same is true for delay performance depicted in Fig. 6-4(b) where 

the average packet delay remains almost stable while the extra-cell traffic is lower than 

30%, but increases soon after, reaching its maximum value of 88ms when all traffic 

heads beyond the cell. Notably the equilibrium point regarding the two architectures’ 

throughput performance varies depending on the number of the MT-MAC available 

wavelengths. For instance, for 2 available wavelengths the equilibrium point is set 

around 100% of the traffic heading beyond the cell, whereas for 4 wavelengths this 

value drops to 75%. Beyond 4 wavelengths there is no equilibrium point since MT-

MAC-over-PON surpasses the performance of 802.11ad-plus-GPON for all traffic 

shapes. This is due to the fact that when increasing the number of wavelengths, the MT-

MAC-over-PON architecture essentially operates in a WDM-PON fashion, therefore 

 

Fig. 6-4 Throughput and Delay versus percentage of traffic heading towards Internet destina-
tions 
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gaining a significant advantage in data backhauling towards the existing single wave-

length GPON implementations. However, when traffic demands concern mostly intra-

cell destinations (left-most part of Fig. 6-4(a) and (b)), GPON-plus-802.11ad manages 

to achieve the same performance with only a single wavelength in the optical backbone 

due to the close proximity of the ADAP with the wireless clients, making it very effi-

cient for very short range applications. We also observe that for the same throughput 

values the MT-MAC-over-PON architecture exhibits lower delays with their respective 

difference progressively increasing as the inter-cell ratio rises. 

6.2.3 Dependency on the optical capacity 

To better understand the role of the optical wavelength availability Fig. 6-5 displays the 

relation between performance and optical capacity for both competing architectures. 

Regarding GPON-plus-802.11ad we consider a variable number of "stacked" GPON 

networks with 1.25 Gbps down and uplink capacity. The "stacked" GPON solution is 

one of the dominant candidate technologies according to the NG-PON2[92] paradigm, 

where multiple GPON sub-networks share the same optical distribution infrastructure 

by employment of Wavelength Division Multiplexing (WDM) mechanisms. As far as 

the MT-MAC-over- PON architecture is concerned, Fig. 6-5's x-axis depicts the num-

ber of available optical wavelengths, each one having a capacity equal to that of the 

wireless channel (1.155 Gbps). The results are shown for a constant load generation of 

0.5 packets per slot time per RAU/ADAP. As has been expected both architectures 

benefit greatly from the increase of the optical availability in terms of throughput (Fig. 

6-5(a)) as well as delay (Fig. 6-5(b)). Specifically, in the MT-MAC-over-PON case, 

 

Fig. 6-5 Throughput and Delay versus number of available wavelengths in the MT-MAC-
over-PON scenario or Stacked GPONs in the GPON-plus-802.11ad scenario 
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throughput increases linearly with optical capacity whereas delay decays at an expo-

nential rate, proving the direct relationship between the MT-MAC architecture’s per-

formance and the wavelength availability. Regarding the GPON-plus-802.11ad net-

work, throughput performance increases with optical capacity (Fig. 6-5(a)). The incre-

ment rate is linear at lower optical capacities, where the GPON part of the network is 

the main communication bottleneck. However, throughput’s increment rate drops as 

more GPONs are stacked on the fiber portion of the network, since the bottleneck grad-

ually shifts from the fiber backhaul to the wireless portion of the network. Notably, the 

wireless bottleneck phenomenon does not appear in the RoF architecture, since the sys-

tem will continue to derive gains until there is a 1:1 relationship between the number 

of wavelengths and the RAUs present in the network. Beyond that point no further 

performance increment is possible since no more than one wavelength can be assigned 

to every RAU. Note that the produced throughput is derived based on the optical ca-

pacity scale (depicted as the x-axis) which is 1.25Gbps for the GPON-plus-802.11ad 

and 1.15Gbps for the MT-MAC-over-PON network, thus giving an advantage to the 

former in terms of absolute throughput performance displayed in Mbps. Regarding the 

average packet delay (Fig. 6-5(b)), delay remains constant at lower optical capacities 

where the optical part of the network experiences saturation, since GPON’s design en-

ables a steady service delivery rate for the packets that fit into the offered buffer space. 

At higher optical capacities the communication bottleneck shifts from the optical net-

work to the wireless domain, causing a decrease in the delay as more stacked-GPON 

facilities are added into the network. 

6.2.4 Dependency on fiber length 

In the interest of future Long-Reach PON (LR-PON) applications, Fig. 6-6 reviews the 

performance of both architectures versus the length of the Optical Distribution Network 

(ODN), ranging from 5 km up to 40 km of fiber. The results are shown for a constant 

load generation of 0.5 packets per slot time per RAU/ADAP, whereas in order to pro-

duce results relative to the ODN size, 100% of the generated traffic is considered to 

target internet destinations. As can be noted in Fig. 6-6(a) the GPON-plus-802.11ad 

architecture sustains only minor throughput performance degradation as the fiber length 
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increases whereas the MT-MAC-over-PON architecture is strongly affected and its per-

formance is shown to be decreasing with the ODN size. This performance drop is at-

tributed to the added delays introduced in the contention periods of the MT-MAC pro-

tocol that burdens the remote arbitration scheme in increased fiber lengths. On the other 

hand, the employment of the purely optical GPON protocol in the backhaul of the R&F 

architecture allows the latter to operate more efficiently in longer lengths, since packet 

transmission solely through cable is more robust and the usual time-consuming func-

tions present in the wireless domain such as Collision Avoidance and/or ACK mecha-

nisms are omitted. The same performance behavior is evident in the delay values as 

well (Fig. 6-6(b)) where it can be observed that in the MT-MAC scenario delay in-

creases with distance whereas in the GPON-plus-802.11ad case delay remains rela-

tively constant. This effect highlights the drawback of remote arbitration scheme em-

ployed by the MT-MAC protocol and its inherent weakness to operate in great fiber 

lengths for the reasons described in Chapter 6.1, whereas it displays the benefit of em-

ploying a multi-tier architecture such as the GPON-plus-802.11ad when it comes to 

LR-PON deployment. 

6.2.5 MT-MAC-over-PON vs. GPON-plus-802.11ad comparative summary  

The direct comparison of the two tested architectures reveals several aspects regarding 

the operation and the respective differences of the RoF and R&F paradigms concerning 

the formation of next-generation converged wireline and wireless networks. As de-

scribed by the results, the GPON-plus-802.11ad architecture (R&F approach) operates 

very efficiently when the majority of traffic demands heads towards intra-cell destina-

tions due to the close proximity of the ADAPs to the wireless clients that leads to local 

 

Fig. 6-6 Throughput and Delay versus length of PON network 
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and therefore faster traffic arbitration. In addition, the distinction between the wired 

and wireless domain offers two significant advantages: i) it allows for shortest commu-

nication paths when nodes reside within the same cell area and ii) it avoids time-con-

suming operations in the optical part of the network that are necessary in the wireless 

links, like the ACK mechanism, since optical MAC protocols (such as GPON’s MAC 

operation) have been specifically designed and optimized for fiber links. This provides 

a clear advantage over the RoF approaches such as the MT-MAC protocol that cannot 

distinguish between the wired and wireless transmission part of the wireless packets 

and therefore have to employ stricter MAC standards over the whole network length. 

However, the benefits of the GPON-plus-802.11ad approach come at the cost of mas-

sive active AP equipment, a parameter that becomes of greater importance when refer-

ring to the very-short range (<10m) mm-wave communications, deeming such installa-

tions as impractical for massive deployment.  

The MT-MAC-over-PON architecture enables the formation of extended range 60GHz 

WLANs by shifting all intelligent operations to one single, easily manageable and up-

gradable location, while coverage is provided through simple RAU modules. MT-

MAC’s dynamic wavelength allocation mechanism provides also the framework for 

interactive network control by shifting resources to active RAUs while withdrawing 

capacity from silent ones. In addition, the remote physical location of the MTAG acts 

as a natural relay for inter-cell traffic making the RoF scheme more effective for the 

modern 20/80 telecom paradigm as it has also been shown by the results. Nonetheless 

optical capacity abundance through WDM techniques as well as relatively short fiber 

lengths are a restricting technical necessity in order to achieve nominal network opera-

tion.  

6.3 GPON-plus-MT-MAC hybrid RoF/R&F architecture 
RoF architectures lack some of the critical features of the R&F implementations, such 

as fast access resolution in the wireless domain, local routing capabilities and long reach 

PON support. On the other hand, R&F architectures require massive active equipment 

installations, which in turn produce higher deployment, maintenance and upgrade costs 

as well as lower energy efficiency, factors that become increasingly severe in the dense 
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mm-wave antenna deployment scenarios. To this end, this work studies the conjoined 

performance of a hybrid RoF/R&F architecture termed as the “GPON-plus-MT-MAC” 

approach, a multi-tier scheme that combines the properties of both the RoF and R&F 

network topologies, such as the flexibility and cost-effective WLAN extension proper-

ties of the RoF MT-MAC scheme along with the long-reach and traffic discrimination 

capabilities of the GPON-plus-802.11ad network. As shown in Fig. 6-7, the GPON-

plus-MT-MAC approach splits the network into two counterparts: i) the GPON that 

covers the majority of the network, usually employing a several kilometers long fiber 

and ii) the short range MT-MAC network that offers the wireless access in the users 

premises. This distinction follows the current backhaul/fronthaul differentiation para-

digm that is predominant in Cloud-RAN/5G research efforts. The hybrid GPON-plus-

MT-MAC scheme allows the overall architecture to offer quick WLAN access control 

due to the close proximity of the MTAG to the RAUs and also provide fast and efficient 

multi-km long backhaul capabilities for connection with the service providers. This way 

the hybrid scheme establishes the level of performance displayed by R&F architectures 

but without the massive Access Point installations and also without the fiber length 

limits imposed by RoF architectures. In the GPON-plus-MT-MAC specification the 

MT-MAC network lies in a bus topology with the CO being attached to a short length 

fiber that is connected to a series of RAUs. The CO communicates with a conventional 

GPON ONU, with the protocol translation taking place at their interface. The CO-ONU 

interface undertakes the task of encapsulating MT-MAC Data Frames (MTDFs) des-

tined for points outside the WLAN directly into the GPON Encapsulation Method 

(GEM) frame format, whereas it re-routes packets destined for intra-WLAN destina-

tions. In turn the ONU buffers the GEM frames as they arrive, and transmits them at 

 

Fig. 6-7 The hybrid RoF/R&F multi-tier architecture “GPON-plus-MT-MAC”. 
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specific time slots defined at the Upstream Bandwidth map (UB map) by the OLT, 

according to GPON’s operational rules. Depending on its size, each MTDF is mapped 

either to a single frame or fragmented into multiple GEM frames. By occupying a single 

ONU for the same wireless coverage area, the GPON-plus-MTMAC approach offers 

great flexibility in the design and possible extension of the currently deployed fiber 

PONs to enter the FiWi era, since the latter architecture can offer multiple wireless area 

coverage while enabling the concurrent operation with other services already linked to 

GPON's ONUs.  

 The rest of this section presents the comparative performance evaluation of the GPON-

plus-MT-MAC architecture versus the GPON-plus-802.11ad and the MT-MAC-over-

PON networks. All configurations are again based on a 10km long PON network with 

1:32 splitting ratio. In the GPON-plus-MT-MAC network, the CO is attached through 

a fiber bus to 32 RAUs with 13m of intra-RAU fiber interleaves, creating a RoF net-

work with 416m of total fiber length, that offers the same coverage area as the RoF and 

R&F architectures studied in the previous section (≈4245m2). The CO communicates 

with one of the GPON's ONUs through the G-PON/MTMAC interface. The GPON-

plus-802.11ad network follows the same specifications as presented in the previous 

section. In order to provide a fair comparison with the R&F and RoF architectures the 

ONU's buffer size have been set to hold the maximum number of packets that can be 

provided by the wireless clients. This is calculated as the sum of the buffers of the 

served clients multiplied by the percentage of traffic that is heading towards the OLT, 

i.e. 80% or 20% based on the traffic generation pattern. Considering 2000 bytes per 

packet this is equal to 12Mbytes of buffer space for the 20/80 traffic and 3Mbytes for 

the 80/20 traffic. The full list of the tested configurations depicted in the rest of this 

section is: 

• The GPON-plus-AD depicted in Black. 

• The GPON-plus-MTMAC for: 

o  2 wavelengths depicted in Red.  

o 4 wavelengths depicted in Blue. 

o 8 wavelengths depicted in Purple. 

o 12 wavelengths depicted in Green.  

• The MT-MAC-over-PON for:  
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o 8 wavelengths depicted in Purple with dotted line. 

o 12 wavelengths depicted in Green with dotted line.  

6.3.1 Dependency on traffic load 

Fig. 6-8 illustrates the architectures’ performance behavior versus various intra/inter-

cell traffic load conditions. The generated load ranges from 0.1 up to 1 packet genera-

tion per timeslot per RAU/ADAP. Fig. 6-8(a) and Fig. 6-8(b) display the derived 

throughput and delay results respectively for traffic that follows the traditional 80/20 

rule, meaning that 80% percent of the traffic is destined for intra-cell destinations 

whereas 20% of the traffic goes beyond the local subnet and heads to GPON's CO. 

Throughput values follow the same track as with the corresponding results presented in 

Fig. 6-2. Specifically, it can be witnessed that throughput values rise with load until the 

point where no more packets can get through and thus throughput reaches its saturation 

value. For the GPON-plus-MTMAC architecture, this saturation point depends on the 

number of employed optical wavelengths, and fluctuates from <0.1 packet/slot/RAU 

for 2 wavelengths up to 0.4 packets/slot/RAU for 12 wavelengths. In the case of 2 em-

ployed wavelengths, the GPON-plus-MTMAC architecture appears to be throughput 

saturated in all the range of tested load volumes meaning that the majority of the pro-

duced traffic gets dropped in the MT-MAC portion of the network due to buffer deple-

tion. However, by taking advantage of the MT-MAC’s inherent operational capability 

to support a variable number of wavelengths, we can increase the optical capacity of 

the fronthaul portion thus significantly improving the overall network performance. In 

our test setup we notice that when 8 wavelengths are employed, the GPON-plus-

MTMAC outperforms the GPON-plus-802.11ad architecture by an average of 20%, a 

 

Fig. 6-8 Throughput and Delay for 80/20 traffic (80% stays within the cell). 
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performance enhancement that is also 4% higher to the respective MT-MAC-over-PON 

value. This effect takes place because the addition of more wavelengths results in higher 

fronthauling bandwidth which in turn surpasses the ADAP’s capacity and therefore 

produces higher throughput values. Delay results depicted in Fig. 6-8(b) start at a low 

point and increase rapidly when the offered load approaches throughput's saturation 

point. When load exceeds the saturation point delay values remain almost constant, 

since the excessive packets get dropped due to buffer overflow and are thus discarded 

from the delay metric. Regarding the GPON-plus-MT-MAC architecture, when load 

exceeds 0.4 packets per slot per RAU, delay values for the 12 wavelength set up are 

greater than the ones corresponding to 8 wavelengths. This is due to the fact that the 

increment from 8 to 12 wavelengths increases throughput and decreases delay in the 

MT-MAC subsection of the combined network, but on the other hand this higher 

throughput directly adds to GPON's load and therefore its delay. Since the delay in-

crease in GPON is greater than the corresponding drop in the MT-MAC subsection we 

notice the phenomenon that the increase in MT-MAC's optical capacity causes increase 

in the overall mean packet delay. The same reason also accounts for the fact that, above 

the saturation point, the MT-MAC-over-PON architecture exhibits lower delay that the 

GPON-plus-MT-MAC network, although the former performs marginally worse in the 

throughput domain compared to the later.  

Fig. 6-9(a) and Fig. 6-9(b) present the same results but for traffic shaped under the more 

modern 20/80 rule, meaning that 80% of it is destined beyond the cell’s subnet, whereas 

 

Fig. 6-9 Throughput and Delay for 20/80 traffic (80% heads to destinations outside the cell). 
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only 20% in intended for intra-cell destinations. Here, throughput and delay values fol-

low again the same curvature as in Fig. 6-8(a) and Fig. 6-8(b) but now the two archi-

tectures that employ GPON for backhauling (GPON-plus-MT-MAC and GPON-plus-

802.11ad) exhibit less throughput and higher delay values, since the massive amount 

of uplink traffic faces the limited capacity of the single wavelength GPON network and 

thus a significant portion of the offered load gets discarded at the GPON-RAU/ADAP 

interface due to buffer overflow. However, by comparing these two architectures we 

notice that the results maintain the same performance ratio regarding the optical wave-

length availability as in the case of the 80/20 traffic. A significant point risen by Fig. 

6-9 is that the GPON-plus-MTMAC and GPON-plus-802.11ad architectures are nega-

tively affected by the increase of extra-cell traffic, since both of them rely on the lim-

ited-capacity GPON for backhauling of data. Due to that, the backhauling capabilities 

of the two GPON-based architectures are limited to the GPON capacity (2.5Gbps in our 

simulations), whereas the MT-MAC-over-PON is a WDM scheme and therefore can 

employ a higher number of wavelengths which translates in higher backhauling capac-

ity. However, in the traditional scheme 80/20 traffic model where the majority of the 

produced traffic stays within the cell, the opposite is true, since the remote arbitration 

of the MT-MAC-over-PON architecture creates intolerable delays, a problem that is 

not encountered in the other two architectures where the access mechanism is located 

closely to the wireless nodes.  

 

Fig. 6-10 Throughput and Delay versus percentage of traffic heading towards Internet desti-
nations. 
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6.3.2 Dependency on percentage of intra/inter-cell traffic ratio 

Fig. 6-10 provides a better insight regarding the hybrid architectures' performance ver-

sus the ratio of intra/inter-cell traffic with the results being shown for a constant load 

generation of 0.5 packets per slot time per RAU/ADAP. Regarding the GPON-plus-

MT-MAC architecture, throughput and delay results follow the same trajectory as the 

GPON-plus-802.11ad network, meaning that throughput values drop and delay values 

rise while the percentage of traffic that heads beyond the cell increases. As it is depicted 

in Fig. 6-10(a), throughput’s highest point is located on the left-most portion of the 

graph when the majority of traffic heads towards intra-cell destinations while its abso-

lute value is depended on the tested configuration. Throughput values remain relatively 

steady as the percentage of traffic that heads outside the cell increases, until GPON 

reaches its maximum service capacity. Beyond GPON’s saturation point, throughput 

decreases gradually since all excess traffic gets immediately dropped at the interface 

due to buffer overflow. The lowest throughput value of ~72Mbps per RAU/ADAP is 

derived for 100% of inter-cell traffic and it is common for all of the tested configura-

tions since it corresponds to GPON’s uplink capacity divided by the number of 

RAUs/ADAPs (32 in this case). As described in the previous section, given the specific 

PON configuration, the GPON-plus-MT-MAC architecture requires at least 8 wave-

lengths (1/4 of the total number of RAUs) to be able to overcome GPON-plus-

802.11ad’s performance. Delay values depicted in Fig. 6-10(b), abide in general to the 

following curvature: remain steady while throughput remains steady, increase rapidly 

when the intra/inter-cell traffic is nearing the GPON’s saturation point and increase 

with steady rate after the latter point. The specific x-points notating the three distinct 

regions described above depend on the configuration (i.e. the number of employed 

wavelengths). As it is evident in Fig. 6-10 throughput and delay results can be divided 

into two categories. On one side are the GPON backhauled architectures that are nega-

tively affected by the increase of the extra-cell traffic due to GPON’s limited capacity. 

On the other side is the MT-MAC-over-PON architecture that exhibits steady perfor-

mance, regardless of the network size since all performance aspects of the latter remain 

independent of the intra/inter-cell traffic ratio, due to indiscriminate packet backhaul-

ing. This fact highlights once again that when the majority of the traffic is destined for 

backhauling, RoF implementations offer higher performance due to RoF’s inherent 
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backhauling nature, whereas in high intra-cell traffic conditions the hybrid RoF/R&D 

architecture yields better results. 

6.3.3 Dependency on the optical capacity 

In order to fully comprehend the role of the optical resource availability Fig. 6-11 dis-

plays the relation between performance and optical capacity for the considered FiWi 

architectures. Regarding the GPON backhauled schemes we considered a variable num-

ber of "stacked" GPON networks with 1.25 Gbps down and uplink capacity respec-

tively, whereas specifically for the GPON-plus-MT-MAC architecture each of the 

curves depict a different optical capacity value in the MT-MAC portion of the network. 

As far as the MT-MAC-over-PON architecture is concerned, Fig. 6-11's x-axis depicts 

the number of available optical wavelengths, each one having a capacity equal to that 

of the wireless channel (1.155 Gbps). The results are shown for a constant load gener-

ation of 0.5 packets per slot time per RAU/ADAP. As can be noted, all architectures 

benefit greatly from the increase of the optical availability in terms of throughput (Fig. 

6-11(a)) as well as in terms of delay (Fig. 6-11(b)), however not all in an identical 

manner. On one hand, we observe that the MT-MAC-over-PON’s throughput values 

increase purely linearly since the addition of wavelengths results in RAUs getting more 

optical capacity and longer transmission windows and thus causing a linear increase in 

the overall system’s bandwidth. On the other hand, for the two architectures that em-

ploy GPON as the backhauling solution, throughput values increase linearly with each 

addition in the GPON stack only up to the point that any further increase causes no 

further performance enhancement and throughput stagnates. The latter happens because 

 

Fig. 6-11 Throughput and Delay versus number of available wavelengths in the MT-MAC-
over-PON scenario or Stacked GPONs in the GPON-plus-802.11ad scenario. 
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the GPON-plus-MT-MAC and GPON-plus-802.11ad architectures are actually com-

prised of two separate networks and thus any additional GPON stack affects only a 

portion of the network. When the GPON capacity increases to a large extend, the bot-

tleneck factor shifts from the GPON to the 802.11ad/MT-MAC portions of the archi-

tecture and thus throughput and delay values stabilize around the values that are pro-

duced by the latter networks. The same trend can be seen in the delay results depicted 

in Fig. 6-11(b) where we witness the exponential decline of the mean packet delay while 

more wavelengths are added to the GPON backhaul, up to the point where delay stabi-

lizes and equals the delay produced by the 802.11ad or MT-MAC parts of the network. 

Results also reveal that GPON-plus-802.11ad retains an advantage over the GPON-

plus-MT-MAC for less than 8 available wavelengths due to the local arbitration scheme 

in the wireless part of the network which directly benefits the delay values. However, 

given enough optical capacity availability the MT-MAC manages to alleviate the per-

formance difference and provide greater throughput and lower delay values while main-

taining the advantage of the flexible, future-proof and cost-efficient architecture. 

6.3.4 Dependency on fiber length 

Regarding Long-Reach PON applications, Fig. 6-12 reviews the performance of all the 

architectures versus the distance of the ODN length, ranging from 5km up to 40km of 

fiber. The results are shown for a constant load generation of 0.5 packets per slot time 

per RAU/ADAP, whereas in order to produce results relative to the ODN size, 100% 

of the generated traffic is considered to target internet (extra-cell) destinations. As Fig. 

6-12(a) depicts, both GPON-based configurations exhibit static throughput values for 

 

Fig. 6-12 Throughput and Delay versus length of PON network. 
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all attested ODN lengths. The latter is due to the fact that GPON’s T-CONT1 mode of 

operation employed here is based on unsolicited periodic permits granting fixed pay-

load allocations and therefore throughput is unaffected by the ODN length. The pro-

duced throughput values range from around 68Mbps for the GPON-plus-MTMAC ar-

chitecture employing 2 wavelengths to approximately 72Mbps for all the rest GPON-

based architectures. Since all generated traffic is considered to extra-cell destinations, 

and therefore is routed towards GPON, the produced throughput results correspond to 

GPON’s uplink capacity divided by the number of RAUs/ADAPs (32 in this case). The 

small discrepancy between the 2 wavelengths GPON-plus-MTMAC architecture and 

the other architectures stems from the fact that for 2 employed wavelengths the GPON-

plus-MTMAC’s throughput is capped by the MT-MAC portion of the network instead 

of the GPON portion as it is for all the other cases. Compared to the analysis carried 

out in section 6.2.4, it is shown here that the multi-tier GPON-plus-MTMAC architec-

ture alleviates the drawback of the MTMAC-over-PON scheme that suffered perfor-

mance losses in great fiber distances due to the remote arbitration of the wireless me-

dium. Regarding the respective delay results depicted in Fig. 6-12(b), we notice again 

that the GPON-based architectures produce a relatively steady delay since the only al-

ternating factor is the propagation delay which is very small (4.9μs per added km) com-

pared to the delay produced due to transmission and access control that is in the order 

of 100ms. Another significant point is that the GPON-plus-MT-MAC scheme exhibits 

greater delay than the GPON-plus-802.11ad architecture for the same throughput val-

ues (Fig. 6-12(b)). This is due to the fact that besides the GPON delay, packets get 

served continuously by the 802.11 Access Points, whereas in the GPON-plus-MTMAC 

scheme transmission is intermitted by intervals when clients wait for wavelength as-

signment in the RAU. However, GPON-plus-802.11ad's superiority at this point comes 

at the cost of the active access point equipment, making it a severely inefficient way to 

provide wide 60GHz coverage given the very restricted (<10m) range of the specific 

medium. Finally, it is noteworthy that the MT-MAC-over-PON network’s perfor-

mance, which was introduced in Section 6.2.4 and again displayed here for comparative 

reasons, yields superior performance when 4 or more wavelengths are employed com-

pared to the single-wavelength GPON backhauled architectures, therefore making it 

also a valid candidate for Next-Generation PONs when multi-wavelength resources are 

available. 
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6.3.5 The GPON-plus-MT-MAC architecture and overall performance evaluation 

The performance results reveal the nature and specific characteristics of the hybrid 

RoF/R&F GPON-plus-MT-MAC architecture towards the formation of a multi-tier ar-

chitecture. As constituted by the respective results the GPON-plus-MT-MAC scheme 

operates very efficiently under the 80/20 traffic ratio improving the performance gain 

of the MT-MAC-over-PON scheme by an average of 4%. In addition, the distinction of 

the wired and wireless portion of the network allows the GPON-plus-MT-MAC archi-

tecture to operate for longer fiber backhaul lengths thus being able to cooperate with 

future generation LR-PONs. Finally, the latter architecture is the most suitable for fu-

ture FiWi extensions of currently deployed PONs since it occupies only a fraction of 

the GPON's ONUs therefore enabling concurrent utilization with already existing 

GPON services. 

Table 6-2 summarizes the architectures’ overall comparison results displaying the con-

ditions on which each one prevails or is mostly well suited for. According to the pre-

sented results, the MT-MAC-over-PON architecture is suitable for high inter-cell traffic 

but requires high optical availability and operates efficiently only for short fiber lengths. 

GPON-plus-802.11ad is predominant in high intra-cell traffic, low optical availability 

in the optical PON backhaul and is very efficient for great fiber distances such as the 

case of LR-PONs, but at the expense of acquisition and employment of active AP equip-

ment. The GPON-plus-MTMAC architecture optimally combines the advantages of 

both architectures and is highly efficient in increased intra-cell traffic, low optical avail-

ability in the optical backhaul, can operate effectively in long fiber distances and cap-

tures only one ONU per each deployed RoF network.  

TABLE 6-2 SUMMARY OF PREVAILING CONDITIONS FOR EACH ARCHITECTURE 

Metric MT-MAC-over-
PON 

GPON-plus-
802.11ad 

GPON-plus-MT-
MAC 

Traffic 
Shape 

Modern 20/80 rule 

High Inter-
ONU Traffic √ X 

Χ 
High Inter-Cell 
Traffic √ 

Classical 80/20 Rule High Intra-Cell 
Traffic X √ 

Optical Backhaul Capacity Requirements HIGH LOW LOW 
PON fiber length tolerance LOW HIGH HIGH 
Area of Wireless Coverage per PON ONU LOW LOW HIGH 
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6.3.6 WDM-PON operation under the NG-PON2 paradigm 

Throughout this chapter we have considered the TWDM-PON or "PON Stacking" par-

adigm as the major solution towards providing a Next Generation PON compatible 

functionality. This choice was based on the fact that the TWDM-PON scheme has been 

formally submitted and approved by the FSAN community as the primary solution for 

NG-PON2 since it is less disruptive and less expensive than other approaches, primarily 

due to the reuse of existing components and technologies[93]. However, in the open 

topic of the NG-PON2 formation and standardization there have been several proposals 

concerning the WDM-PON approach which presumes a dedicated wavelength channel 

to each optical network unit. Fig. 6-13 presents a WDM GPON architecture where the 

GPON’s CO employs a multi-wavelength source and an array of transmitters and re-

ceivers each one carrying its own data stream. Each transmitter modulates a distinct 

wavelength and in turn all wavelengths get propagated through the fiber towards the 

ONUs. Instead of a splitter, the WDM GPON employs an Arrayed Waveguide Grating 

multiplexer that has the capability of statically and passively routing each wavelength 

to a distinct output port. Therefore, each ONU receives a static assignment of a dedi-

cated wavelength for uplink and downlink traffic. In this way, the WDM GPON para-

digm transforms the PON to an uncontested delivery line with static transmission/prop-

agation delays. Due to the dedicated nature of the optical capacity, every ONU receives 

𝑁𝑁 times more capacity than in the TWDM-PON scenario, where 𝑁𝑁 is the splitting ration 

 

Fig. 6-13 A WDM GPON architecture. 
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of the AWG multiplexer. This provides a manifold increment of the traffic limit im-

posed by the optical backhaul, thus establishing the wireless network as the predomi-

nant performance factor, given that the aggregated wireless traffic is lower than the 

average uplink service rate. In case the aggregated arrival rate from the wireless net-

work is greater than the capacity of the optical backhaul, then the PON becomes again 

the bottleneck and sets the upper limit to the throughput of the conjoined optical/wire-

less network. Regarding the three architectures reviewed in this work, the transition to 

a WDM-PON operation would impact performance in the following ways: 

a) GPON-plus-802.11ad: 
 In this case, the backhaul WDM-PON network will immediately propagate the data 

packets to the OLT as soon as they arrive on the head of the ONU buffer, since no 

contention is taking place. Given a Poisson generation model traffic, the above trans-

lates to small or zero queuing delays in the ONU as long as the mean aggregated arrival 

packet rate from the wireless 802.11ad access point 𝜆𝜆𝑀𝑀𝐷𝐷 is less than the maximum 

packet service rate 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 supported by the WDM-PON. Above 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 the queue be-

comes unstable and any excess traffic is dropped. Therefore, in the R&F scenario all 

packets that arrive at the ONU will be immediately forwarded to the OLT provided that 

𝜆𝜆𝑀𝑀𝐷𝐷 < 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂, whereas the aggregated delay of the packets arriving at the OLT will be 

the sum of the delay produced by the 802.11ad network (MAC functions and corre-

sponding transmission/propagation delays) plus the transmission/ propagation delays 

of the optical network (no access control and queuing delays). For all values of 𝜆𝜆𝑀𝑀𝐷𝐷 that 

are less than 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 the optical throughput will rise linearly with load since there is no 

contention access and all uplink timeslots are available for transmission. If 𝜆𝜆𝑀𝑀𝐷𝐷 ap-

proaches or exceeds 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 the optical throughput will enter the saturation zone and any 

further increment will cause excess packets to be dropped at the ONU. Compared to 

the TWDM-PON, the absence of contention for uplink traffic as well as the dedicated 

optical capacity in the WDM-PON results in higher throughput and lower delays in the 

unified R&F network for the packets that are destined towards the OLT. 

b) MT-MAC-over-PON:  
In the case that the MT-MAC protocol has a 1:1 wavelengths to RAUs ratio, then each 

RAU has a permanently assigned wavelength and no contention will take place in the 

optical domain (termed as 1st contention in the MT-MAC operation). This creates an 
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effect similar to the previous case and as a consequence all delays and throughput lim-

itation caused by the sharing of the optical resources is alleviated. In this configuration 

throughput is limited by the MAC functions in the wireless domain (termed as 2nd con-

tention period) and the respective transmission/propagation delays in both the optical 

and wireless domains. Therefore, as long as the aggregated traffic of all wireless clients 

λ is lower than the maximum capacity offered by the optical wavelength 𝑅𝑅max , 

throughput will rise linearly and delay will be the sum of the transmission/propagation 

delays in both the optical and wireless domains. If λ is in the vicinity or higher than 

𝑅𝑅max then throughput will enter its saturation regime and any additional traffic will be 

dropped from the wireless clients' buffers. Overall, compared to the classic MT-MAC 

approach where optical wavelengths are limited, graphs are expected to follow the same 

curvature but offer higher throughput results and lower delays. The above have already 

been reported in Chapter 3 where a 1:1 wavelength/RAU ratio in the MT-MAC has 

already been tested and presented.  

c) GPON-plus-MT-MAC:  
In the case of the hybrid RoF-plus-R&F approach, replacing the TWDM-PON with a 

WDM-PON offers the same advancement as in the case of GPON-plus-802.11ad, 

meaning that any performance hindering and added delays caused by the sharing of the 

uplink wavelength are alleviated due to the dedicated optical wavelengths in the back-

haul. The multiplication of the per ONU optical capacity due to the dedicated wave-

length association as well as the lack of time consuming access control mechanism in 

the uncontested medium causes the immediate throughput increment and significant 

drop in the delay values. Specifically given that 𝜆𝜆𝑀𝑀𝐶𝐶−𝑀𝑀𝑀𝑀𝐶𝐶  is the aggregated packet ar-

rival rate at the ONU-MTAG interface and 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 is the service rate of the WDM-PON 

ONU, if 𝜆𝜆𝑀𝑀𝐶𝐶−𝑀𝑀𝑀𝑀𝐶𝐶 < 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 the throughput in the optical part of the network will rise 

linearly with the load and delay will be very low. If 𝜆𝜆𝑀𝑀𝐶𝐶−𝑀𝑀𝑀𝑀𝐶𝐶  is close or greater than 

𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 then the throughput of the WDM-PON will enter the saturation regime and all 

excess traffic will be dropped at the ONU buffer. Therefore, the adoption of the WDM-

PON infrastructure multiplies the 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂 as well as enables the use of simpler access 

control mechanisms and will yield better performance and lower delay values in the 

cases where 𝜆𝜆𝑀𝑀𝐶𝐶−𝑀𝑀𝑀𝑀𝐶𝐶 < 𝑅𝑅𝐶𝐶𝐶𝐶𝑂𝑂. 
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6.4 Conclusive remarks 
In this chapter we have presented an extensive study regarding the network planning 

and formation of 60GHz Gigabit WLAN enterprise networks over existing GPON in-

frastructures. Three possible architectures where studied: i) the RoF approach MT-

MAC-over-PON, ii) the R&F approach GPON-plus-802.11ad and iii) the hybrid 

RoF/R&F GPON-plus-MT-MAC approach that combines the properties of both the 

aforementioned architectures. Extensive simulation results were presented revealing 

the dependence of the 60GHz enterprise network performance on several network plan-

ning parameters: the load of the network, the number of optical wavelengths being 

available to the network, the percentage of intra-LAN and Internet-devoted network 

traffic and the PON’s total fiber length. Results have shown that the MT-MAC-over-

PON architecture is suitable for high inter-cell traffic but requires high optical availa-

bility and short fiber lengths. The GPON-plus-802.11ad is predominant in high intra-

cell traffic, low optical availability and operates efficiently even for great fiber distances 

but at the expense of acquiring and operating abundant active AP equipment. The 

GPON-plus-MTMAC architecture optimally combines the advantages of both architec-

tures being highly efficient in increased intra-cell traffic, low optical availability as well 

as in the case of long fiber distances. Moreover. the latter architecture is the most suit-

able for future FiWi extensions of currently deployed PONs since it offers increased 

freedom and flexibility regarding the network planning. 
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 Conclusions and future 
work 

This chapter completes the dissertation by summarizing our main contributions, while 

also providing some potential research lines for future investigation. In particular, Sec-

tion 7.1 contains the most significant concluding remarks of our research, while Section 

7.2 outlines the open research issues related to our contributions. 

7.1 Thesis conclusions 
The main research contribution presented in this thesis revolves around the concept 

of medium transparency in MAC protocols when applied to converged RoF networks. 

In Chapter 3 we demonstrated the rules and operation of the MT-MAC protocol. This 

MAC protocol is the first of its kind to be able to dynamically allocate both optical and 

wireless capacity and resources. The notion of medium-transparency relies on two par-

allel running contention periods with nested dataframe structures. Hardware wise, the 

MT-MAC operation is based on wavelength selectivity functions implemented at the 

RAU site, thus allowing for compatibility with completely passive optical distribution 

network implementations and for telecom operator transparent fiber-network infra-

structures. By taking advantage of the RoF architecture that allows the CO to act as a 

relay, the MT-MAC protocol forms extended reach 60GHz WLAN networks offering 

connectivity also between wireless devices that are attached to different RAUs and have 

no LOS. To examine the performance of the MT-MAC protocol we have presented 

extensive evaluation results for both bus and PON architectures of RoF network topol-

ogies, both for Poisson and for burst-mode traffic at bit-rates up to 3Gb/s, confirming 

in all cases the enhanced potential of our protocol to easily adapt to the network topol-

ogy whilst providing broadband 60GHz WLAN functionality. The derived results con-

firmed the successful performance even under Gb/s burst-mode traffic, a fact that ren-

ders the MT-MAC suitable for high-bandwidth latency-sensitive WLAN applications 

like HD video streaming. The proposed MAC protocol was found to utilize almost all 



Chapter 7: Conclusions and future work 

168 

of the available bandwidth, since in all tested cases throughput increased almost linearly 

with the offered load as long as load resided within the WR ratio. When load exceeded 

the WR value, throughput reached its constant saturation limit. At the same time, delay 

values remain in the μsec range when load is below the WR value and increase rapidly 

when load approaches WR, however always being below 100msec. We have also eval-

uated the MT-MAC’s performance for bus networks with up to 128 RAUs, showing 

that throughput decreased by 3% and delay increased by 5% compared to the 10 RAU 

setup, and for PON networks with up to 64 RAUs, showing a 1.8% decrease in through-

put and a 4% increase in delay compared to the 10 RAU PON network, confirming the 

highly scalable aspects of the proposed protocol and its tolerance to large number of 

RAUs. Finally, in order to assess the wireless arbitration process, we have conducted 

simulation evaluations for 2 up to 20 nodes per RAU, showing that for a 1000% in-

crease in the node population the protocol exhibited only a 10% throughput reduction, 

due to the longer duration wireless arbitration process. 

In Chapter 4 we have presented an updated version of the MT-MAC protocol, 

termed as Client-Weighted MT-MAC. This MAC protocol was specifically designed 

to address fairness issues where each RAU receives a wavelength assignment for time 

proportional to the amount of active users that are served by it. To this end, fairness is 

achieved by equipping the protocol with the user-centric Client Weighted Algorithm 

for the optical capacity arbitration procedures. The tests that were carried out by means 

of simulation showed rapid improvement on delay equalization for various network 

conditions through simulation performance analysis for different user distribution pat-

terns and loads under specific wavelength availability constraints. Specifically, the 

CW-MT-MAC scheme achieved almost zero standard deviation for 4 out of the 5 stud-

ied user deviations achieving an overall 68% reduction in throughput and 72% reduc-

tion in delay standard deviation as the latter is perceived amongst the network’s users, 

thus proving its enhanced user-fairness properties. In addition, CW-MT-MAC achieved 

32% reduction in the exhibited intra packet standard deviation performance, highlight-

ing its ability to serve modern delay-restricted applications where Packet Delay Varia-

tion remains a major issue. 

In Chapter 5 we have presented two analytical models for calculating saturation 

throughput and non-saturation delay for the MT-MAC protocol. The proposed satura-

tion model is based on a two-dimensional (2-D) Markov chain for calculating the end-



Chapter 7: Conclusions and future work 

169 

 

user transmission probabilities, taking into account contention for both the optical and 

the wireless layer resources. The analytic formula for throughput computation and the 

respective performance evaluation for various network conditions were found to be in 

close agreement with simulation-based outcomes, confirming the validity of the MT-

MAC model. Secondly in the same chapter we presented an analytical model for cal-

culating the end to end delay of the MT-MAC. The presented analytical model enabled 

the calculation of packet delay under non saturation conditions, successfully validating 

the respective simulation results for various numbers of optical wavelength availability 

factors, network loads, fiber lengths, transmission window sizes and data packet pay-

loads. In non-saturation conditions the theoretical results were found to be in the sub-

ms region and in excellent agreement with respective simulation-based findings. In sat-

uration conditions the theoretical results exhibited small variations compared to the re-

spective simulation outcomes which are nonetheless always within the 95% confidence 

interval. The above confirm that the employment of Medium Transparent MAC proto-

cols is compatible and allows the derived results to function as a roadmap towards the 

efficient incorporation of the MT-MAC scheme into the envisioned era of 5G mm-wave 

small cell networks. 

In the final chapter of this thesis (Chapter 6) we presented an extensive study regarding 

the network planning and formation of 60GHz Gigabit WLAN enterprise networks 

when the latter are deployed over existing GPON infrastructures. Three possible archi-

tectures where studied: i) the RoF approach MT-MAC-over-PON, ii) the R&F approach 

GPON-plus-802.11ad and iii) the hybrid RoF/R&F GPON-plus-MT-MAC approach 

that combines the properties of both the aforementioned architectures. Extensive simu-

lation results were presented revealing the dependence of the 60GHz enterprise network 

performance on several network planning parameters: the load of the network, the num-

ber of optical wavelengths being available to the network, the percentage of intra-LAN 

and Internet-devoted network traffic and the PON’s total fiber length. Results have 

shown that the MT-MAC-over-PON architecture is more suited for high inter-cell traf-

fic since it requires high optical availability and short fiber lengths. The GPON-plus-

802.11ad is predominant in high intra-cell traffic, low optical availability and operates 

efficiently even for great fiber distances but at the expense of acquiring and operating 
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abundant active AP equipment. The GPON-plus-MTMAC architecture optimally com-

bines the advantages of both architectures being highly efficient in increased intra-cell 

traffic, low optical availability as well as in the case of long fiber distances. Moreover. 

the latter architecture is the most suitable for future FiWi extensions of currently de-

ployed PONs since it offers increased freedom and flexibility regarding the network 

planning. 

7.2 Future Work 
The main contributions presented in this dissertation can be followed by several new 

research lines for future investigation. The main open topics with respect to the MT-

MAC protocols are: 

• Wavelength assignment in the MT-MAC and CW-MT-MAC protocols is done 

in a round-robin fashion where the wavelengths are shared in the time domain 

amongst the system’s RAUs. Although it is not possible to assign more than one 

wavelengths to each RAU, it is technically possible to assign one wavelength 

concurrently to multiple RAUs. This would allow the sharing of a single wave-

length amongst RAUs that have low or complementary traffic characteristics. 

The benefits of that operation would be manifold. For instance, the RAUs will 

maintain an active connection to the CO for the majority of the time and the 

assignment/de-assignment procedures will be carried out more sparsely. This 

would directly lead to better delay performance since packets will be transmit-

ted faster and there will be less need for buffer space since the RAUs will stay 

unconnected for less time.  

• In the current formation of the MT-MACs, all packets belong to the same cate-

gory priority, meaning that there is no distinction made between packets that 

belong to delay sensitive streams and best effort communications. To this end 

it would be beneficial to incorporate a priority queue system in the MT-MAC. 

This would allow for further gains and better support of priority traffic, leading 

to higher Quality-of-Service and quality experience from the user’s side.  

• Due to telecommunication industry’s economy of scale, the sharing of infra-

structure among different service providers is becoming a necessity of business 

in the telecom world. Because of the above, it is fundamental to incorporate 
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infrastructure sharing capabilities in every next generation converged FiWi pro-

posed architecture, such as the MT-MAC. To this end, we plan to update the 

MT-MAC mechanisms in order to allow scheduling amongst various RF service 

providers that will lease capacity through a centralized scheme depended on 

each operator’s current capacity needs and level of service.  

• The joint operation of priority queuing and multiple RAU wavelength assign-

ment would raise a series of interesting questions on how to decide what is the 

optimum way to perform the RAU clustering, i.e. which RAUs should be 

grouped together under the same wavelength. This implies that a possible opti-

mal clustering algorithm would take into consideration not only the load of each 

wireless terminal but also the QoS category of the served traffic. For instance, 

a clustering algorithm would try to match high QoS delay sensitive applications, 

such as video streaming, with best effort traffic in order i) not to overload a 

single wavelength with more traffic that it can handle and ii) any sudden high-

QoS traffic increments will be accommodated by being “absorbed” by the best-

effort traffic where delays are more tolerated.  

• In CW-MT-MAC the fairness properties of the protocol are being carried out 

on the basis of the number of active clients per RAU. As it has been demon-

strated, this operation carries significant performance gains and thus it incentiv-

izes the extension of the employed model from a client-based approach to a 

queue-based approach. The latter would signify that instead of employing the 

number of active clients to assign transmission window slots, the CO would also 

request the number of packets in the queue and will carry out a more precise 

estimation of the appropriate window size for every RAU.  

• The end-to-end delay analysis currently considers the fixed service regime em-

ployed by the MT-MAC protocol. However, it would be useful to devise an 

analytical delay model for the CW-MT-MAC protocol as well. CW-MT-MAC’s 

operation resembles the gated service regime, where each client is given a trans-

mission window equal to the number of packets that it currently contains in its 

buffer. In the CW-MT-MAC case, that operation would take the number of ac-
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tive terminals per RAU into account. Such an analytical model for the con-

verged FiWi CW-MT-MAC protocol would grant a much more detailed insight 

on the internal operations of the gated service in a hybrid network.  

• With the vast deployment of 4G networks, as well as the 5G vision of totally 

interconnected devices, the energy consumption is growing at a staggering rate, 

which carries a heavy environmental impact and results in high operation ex-

penditure for wireless service providers. The current MT-MAC protocols de-

scribed in this thesis have not been optimized for low energy devices or eco-

friendly operation. To this end it would be beneficial to upgrade the MT-MAC’s 

algorithm of operation in order to allow the wireless nodes or the CO to enter 

sleep cycles in order to reduce their energy footprint. In addition, given the MT-

MAC protocol’s inherent capability to employ a variable number of wave-

lengths, it is useful to consider a joint energy/wavelength optimization scheme 

where the CO will turn on the optimal number of optical transceivers in a dy-

namic manner in order to match the current load of the network and reduce en-

ergy waste.  

• Software-Defined Networking (SDN) is an emerging architecture that is dy-

namic, cost-effective and adaptable to fast changing conditions, making it ideal 

for the high-bandwidth, dynamic nature of today's applications. SDN’s principle 

relies on decoupling the network control and forwarding functions enabling the 

network control to become directly programmable. To this end it is useful to 

implement MT-MAC mechanisms that will be able to set-up, manage and opti-

mize various aspects of the converged FiWi SDN network infrastructure such 

as (i) support for sliceable bandwidth variable transponders offering multiple 

modulation formats, (ii) wavelength and wireless carrier aggregation and (iii) 

spectrum sharing. In this way the MT-MAC will enable support for network 

slicing functionalities that will be executed in parallel and on top of the common 

FiWi physical infrastructure. 

• Finally, any actual implementation of the MT-MAC and CW-MT-MAC proto-

cols in real devices would be an important step ahead. So far, we have evaluated 

the protocols’ performance using detailed analytical probabilistic models 
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(mainly based on Markov theory) and by means of extensive simulation exper-

iments. However, the employment of the protocol rules in real testbeds would 

reveal unidentified weaknesses, while it would allow for a better and more com-

plete performance assessment. 
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