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In the heart, rapid pacing rates may induce alternations in the strength of cardiac con-

traction, termed pulsus alternans. Often, this is due to an instability in the dynamics

of intracellular calcium concentration, whose transients become larger and smaller at

consecutive beats. This alternation has been linked experimentally and theoretically

to two different mechanisms: an instability due to 1) a strong dependence of calcium

release with sarcoplasmic reticulum (SR) load, together with a slow calcium reuptake

into the SR or 2) to SR release refractoriness, due to a slow recovery of the ryanodine

receptors (RyR2) from inactivation. The relationship between calcium alternans and

refractoriness of the RyR2 has been more elusive than the corresponding SR Ca load

mechanism. To study the former, we reduce a general calcium model, which mimics

the deterministic evolution of a calcium release unit, to its most basic elements. We

show that calcium alternans can be understood using a simple nonlinear equation for

calcium concentration at the dyadic space, coupled to a relaxation equation for the

number of recovered RyR2s. Depending on the number of RyR2s that are recovered

at the beginning of a stimulation, the increase in calcium concentration may pass,

or not, over an excitability threshold that limits the occurrence of a large calcium

transient. When the recovery of the RyR2 is slow, this produces naturally a period

doubling bifurcation, resulting in calcium alternans. We then study the effects of

inactivation, calcium diffusion and release conductance for the onset of alternans.

We find that the onset of alternans requires a well-defined value of diffusion while it

is less sensitive to the values of inactivation or release conductance.

PACS numbers: 47.55.D-, 47.20.Ma, 47.11.-j, 68.03.Cd ionic models; ventricular ar-

rhythmias; calcium alternans
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Cardiac alternans is a dysfunction that has been identified as a risk factor for

cardiac arrhythmias. During alternans, beat-to-beat alternations in action po-

tential duration (APD) appear alongside alternations in cytosolic calcium con-

centration. Despite been tightly coupled, voltage clamp experiments have shown

that, often, the originating mechanism for alternans stems from an instability

in calcium handling. Two alternative scenarios may explain this instability, ei-

ther a slow reuptake of calcium after a release, or a long refractory period in

release. In this paper we study the conditions for alternans due to refractoriness

in calcium release, by reducing the dynamics of calcium to a simple two-variable

model. The model includes a nonlinear dependence of release with calcium con-

centration and a slow recovery from refractoriness. This simple model presents

excitability with a threshold that depends on the state of the ryanodine recep-

tors (RyRs), i.e., calcium sensitive channels through which calcium is released

to the cytosol. Calcium alternans appears as a bifurcation in which only one out

of every two pulses is able to cross this excitability limit.

I. INTRODUCTION

Cardiac excitation starts at the sino atrial node as a periodic change in the myocytes’

transmembrane potential, that then propagates along the atria and ventricles, inducing

the contraction of the heart and the pumping of blood throughout the body. Failure to

produce a proper excitation of cardiac tissue may results in life-threatening arrhythmias,

as atrial (AF) or ventricular fibrillation (VF). A well-known precursor of VF is cardiac

alternans1, a disturbance in the normal rhythm of the heart characterized by a beat-to-

beat alternations in the duration of the excited phase of the transmembrane potential,

i.e., in the action potential duration (APD) and in the concentration of cytosolic calcium,

which is the messenger that initiates contraction in cardiac myocytes. Since transmembrane

voltage and calcium concentration transients are tightly coupled (through the action of the

L-type calcium current and the sodium-calcium exchanger) beat-to-beat alternations in one

of them transform into alternations in the other. Thus, besides unbalances in transmembrane

currents that can give rise to APD alternans2, dysfunction in calcium handling can also be
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the reason behind the appearance of alternans. In effect, the persistence of contraction

alternans in pacing protocols with periodic action potential waveforms3 indicates that this

rhythm can be produced by beat-to-beat changes in the intracellular calcium response.

The originating mechanism that leads to a calcium transient instability is not completely

understood4–6. The calcium transient is initiated by an influx of calcium through the L-type

calcium channel, that opens in response to a change in transmembrane potential. This rise

in calcium concentration affects the opening probabilities of the calcium sensitive ryanodine

receptors (RyR2) at the sarcoplasmic reticulum (SR), itself a membrane bound structure

within the cell where most of the calcium is stored. Upon opening of the RyR2, calcium is

released from the SR, increasing its concentration at the cytosol, and initiating contraction.

The transient is finished either by the inactivation of the RyR2 channels or by the reduction

of the calcium levels close to the RyR2, a volume of the SR called junctional SR. Finally,

the action of the SERCA pump and the sodium-calcium exchanger, that pump calcium back

to the SR and out of the cell, respectively, return calcium concentration to its basal value,

so that it is ready to produce another transient.

Observation of SR calcium fluctuations during alternans7 suggested an important role

of SR calcium load in the onset of alternans. The prevailing explanation is based on a

steep relation between SR load and calcium release. This non-linearity, together with a slow

reuptake due to SERCA, leads to an instability of regular calcium cycling at high SR calcium

load and/or fast pacing rates, through a period-doubling bifurcation8. However, reports

where cytosolic calcium alternans was found without appreciable change in SR calcium

content9,10, have opened the possibility of alternative mechanisms, such as SR-Ca release

refractoriness. Optical mapping of healthy hearts by Wang et al11 shows that calcium

alternans appears with or without variations in SR content, suggesting RyR2 refractoriness

as responsible for their appearance at slower rhythms, sometimes followed by alternans

due to SR load at faster stimulation. Experiments by Shkryl et al12 show that incomplete

recovery of RyR2 from inactivation may result in alternans.

Restrepo et al showed13, using a detailed model of calcium handling that takes into

account the interactions of many calcium release subunits, that calcium alternans could

appear independently of the steepness of the release-load relationship. They proposed an

alternative mechanism for alternans based on a beat-to-beat alternation in the number of

refractory RyR channels. Other numerical studies have also highlighted the importance of
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RyR2 refractorines in order to explain experimental results: Lugo et al14 reproduced the

experiments by Shkryl et al12 considering a slow recovery from inactivation in the dynamics

of the RyR2. The analysis of a human atrial model by Chang et al15 shows that only the

inactivation of RyR2 gives rise to alternans at slower pacing rates, as observed clinically in

patients vulnerable to atrial fibrillation (AF).

In the cell, the global calcium signal is obtained from integrating many local calcium

release events, or sparks. Refractoriness of release affects the likelihood of each of these

events, themselves stochastic. The fact that refractoriness at a local level gives rise to a

global period-doubling bifurcation was observed in an array of coupled stochastic, excitable

elements16. In ventricular cells, the link between local release events and global alternans

has been shown to rely in three factors: randomness of Ca sparks; recruitment of a Ca

spark by neighboring Ca sparks; and refractoriness of Ca release units (CaRU), in what

has been termed as 3R theory17,18. Later on, this theory has been extended to include the

effect of alternans due to a steep SR Ca load-release relation, showing that these mechanisms

typically act synergistically19. Using a deterministic whole cell model, Alvarez et al20 showed

that, depending on the kinetics of the RyR2, alternans may appear due to either SR load

alternations, to a slow recovery of RyR2 from inactivation, or to a combination of both.

These results indicate that RyR2 refractoriness plays an essential role in the onset of

calcium alternans and demands a better understanding of the particular effects of a change

in its dynamics. Following this idea, in this paper we start from a modified ventricular

myocite model20,21, able to reproduce calcium alternans by RyR2 refractoriness, and pro-

ceed to obtain a reduced model that contains just the essential elements that take part

in this mechanism. This simplification facilitates an analytical treatment by reducing the

mathematical description of the calcium transient to a nonlinear equation for the dyadic

calcium concentration coupled to a relaxation equation for the number of recovered RyR2s,

assuming fixed SR calcium concentration. While the release events are stochastic, in this

paper we will consider the deterministic limit (corresponding to very fast diffusion in whole

cell models where the global behavior of calcium is coordinated, or to a calcium release unit

with a large number of RyR2). Even if this approximation will preclude us from giving

a quantitative description of the transition in ventricular (or atrial) cells, the fact that it

is a useful limit both at the global (cell) and local (CaRU) scale will allow us to obtain a

deeper qualitative understanding on the dependence of the onset of alternans with different
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Figure 1. Time traces of a) transmembrane voltage, b) junctional, c) subsarcolemmal and d) SR

calcium concentrations during alternans. The parameters are the same as in20, with ka=0.6 mM−2,

kim=0.013 ms−1, kom=0.06 ms−1, ki=0.5 mM−1, and Tperiod=500 ms.

parameters involved in RyR2 kinetics and SR release.

The rest of the paper is organized as follows: in Section II we present the model for

intracellular calcium handling. Section III is devoted to the analysis of the model and in

Section IV we present the discussion and main conclusions of our work.

II. MODEL AND APPROACH

In Fig. 1 we show typical traces of transmembrane voltage and calcium during alternans,

obtained with a rabbit ventricular myocyte model21. As in most whole cell models, calcium

dynamics is splitted into different compartments of the cell given the large differences in con-

centration in the SR and in the cytosol. Even in the cytosol, concentrations are markedly

different close to the membrane and further away from it. In this particular model there are

four compartments: cytosol, sarcoplasmic reticulum (SR), subsarcolemma close to the cell

membrane and junctional area (also called dyadic space) close to region of the membrane

with L-type calcium channels (LCC). Calcium concentrations in each compartment are la-

belled as ci, cSR, cs, and cj, respectively. We use the same values of the parameters as in20,
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Figure 2. Calcium fluxes at the junctional space.

except for those related to RyR2 kinetics of activation, inactivation and recovery from inac-

tivation that were varied with respect to the original model in21 in order to obtain calcium

alternans in the model as well as to reproduce the post-rest-potentation results described

by Picht et al.9. As it was shown in20, for these values of the parameters calcium alternans

appears due to SR release refractoriness, stemming from a slow recovery from inactivation

of the RyR2. This instability occurs due to the interplay of a slow recovery time scale of

the RyR2 and a strongly nonlinear dependence of SR release with the number of recovered

RyR24,23,24.

To better understand the effect of different parameters (diffusion, inactivation, release,

etc) we will reduce the dynamics of calcium to a minimal model, that will suffice to reproduce

calcium alternans. Although we do it for a specific model, the procedure we detail here will

lead to the same simplified model for almost any single whole cell model of the literature,

allowing us to test universal features of alternans due to RyR refractoriness in whole-cell

calcium models. We will follow several steps:

- Decoupling of the dynamics of calcium at the junctional space from that of calcium at

the other compartments.
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At the junctional space (see Fig. 2), calcium concentration (cj) is affected by fluxes

coming from the extracellular medium (ICaL), from the SR (ISR), and from diffusion

to the adjacent cytosol (or, depending on the model, subsarcolemmal) space (Idiff ):

dcj
dt

= ICaL + ISR − Idiff (1)

The SR release current is given by ISR = grelPO(cSR − cj), being grel the conductance

of the RyR2 channels and PO the fraction of RyR2 channels that are in the open

state. The diffusive current Idiff = (cj − ci)/τdiff is just proportional to the calcium

concentration difference between two compartments. The L-type calcium current is an

inward current that depends on transmembrane voltage and calcium concentration.

To decouple the calcium dynamics at the junctional space from the other compartments

we fix the calcium concentrations both at the SR (cSR) and at the cytosol space (ci =

c0). Thus, this excludes the possibility of alternans due to SR calcium alternations7

and allows a strong control of the system given that we eliminate all homeostatic

processes.

- Simplification of the LCC type current.

In order to retain a realistic but tractable problem, the behavior of the L-type calcium

channels needs to be simplified. We will consider the L-type calcium current as an

external stimulus, introducing a fixed amount of calcium during a given time, so

ICaL =

 ImaxCaL , if mod(t, Tperiod) ≤ ∆T

0, if mod(t, Tperiod) > ∆T
(2)

with ∆T = 10 ms. The L-type current described this way would correspond to the

current through a LCC channel next to a cluster of RyR2 receptors. At the local level

of the Calcium Release Unit (CaRU) where a cluster of RyR2 controls the release

of calcium, LCC opening does trigger a roughly constant current of calcium. It is

only the average of these stochastic opening among the thousands of LCC present

in the cell, where some clusters open and others do not, which gives rise to a larger

time-scale at the whole-cell level. Here we want to deal with a model which can be

directly related to the behavior of a single CaRU in order to discuss its properties in a

broader context. Thus, our model provides a description of how a CaRU would work
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Figure 3. Representation of RyR2 gating dynamics25. The four markovian states of the RyR2 are

O (open), I1 and I2 (inactivated) and C (close). The respective rates for transitions between states

are represented. The recovery time is defined as τ = 1/kim.

if, instead of 10-100 receptors in the cluster, thousands of them were present making

the deterministic approximation correct.

Under this approximation, Eq. (1) becomes:

dcj
dt

= ICaL(t) + grelPO(cSR − cj)− (cj − c0)/τdiff (3)

so, with the previous simplifications, the dynamics of junctional calcium is only coupled

to the dynamics of the RyR2 through the fraction of open RyR2 channels PO.

- Simplification of the dynamics of the RyR2.

A schematic representation of the dynamics of gating of RyR2 channels25 is shown

in Fig. 3. The description of the RyR2 considers transitions among four states, one

open (O), one closed (C), and two inactivated (I1, I2), given by the probability rate

equations:

dPC
dt

= kimPI1 − kicjPC − kac2
jPC + komPO (4)

dPO
dt

= kac
2
jPC − komPO − kicjPO + kimPI2 (5)

dPI1
dt

= komPI2 − kac2
jPI1 − kimPI1 + kicjPC (6)

dPI2
dt

= kicjPO − kimPI2 − komPI2 + kac
2
jPI1 (7)

8



The dynamics of the RyR2 given by Eqs. (4)-(7) can be simplified using the fact

that it possesses two invariant manifolds26, so its dynamics can be reduced to a two

dimensional dynamical system for two variables p and q, defined through PC = pq,

PO = q(1 − p), PI1 = p(1− q), PI2 = (1− q)(1− p). By direct substitution it is easy

to show that p and q satisfy the equations26

dp

dt
= kom(1− p)− kac2

jp (8)

dq

dt
= kim(1− q)− kicjq (9)

From the previous definitions one can also write p and q as p = PC + PI1 and

q = PC + PO, being therefore q the fraction of RyR2 that are in the close or open

states, i.e. that have recovered from inactivation. These two equations represent a

basic model compatible with the known physiological properties of the RyR2. The

first one introduces the well known calcium-induced calcium-released nature of cal-

cium transient. The second dictates the possibility of some sort of inactivation or

termination of the RyR2.

Together with Eq. (3), this defines a three dimensional, nonautonomous dynamical

system for the junctional calcium concentration and the state of the RyR2. In the limit

of slow recovery times, compared with the opening time of the RyR2 (kim � kom),

we will consider that the opening of the RyR2 occurs almost instantaneously at the

time scales of recovery. Thus, we can consider that Eq. (8) is in quasisteady state

dp/dt ' 0, so

p ' kom
kom + kac2

j

(10)

and, therefore

PO = q(1− p) ' q
kac

2
j

kom + kac2
j

(11)

Then, using Eqs. (3), (9) and (11), we end up with a two dimensional system, given by:

dcj
dt

= ICaL(t) + grelq
kac

2
j

kom + kac2
j

(cSR − cj)− (cj − c0)/τdiff (12)

dq

dt
= kim(1− q)− kicjq (13)

These equations represent a basic model that includes all relevant physiological informa-

tion needed to test and study the appearance of calcium alternans disconnected from SR

alternation and homeostatic effects.
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Parameter Dimensional Non dimensional

RyR2 inactivation ki=0.5mM−1 ms−1 γ = ki/kim
√
kom/ka = 25

RyR2 recovery from inactivation kim=0.002ms−1

RyR2 activation ka=12mM−2 ms−1

RyR2 closing kom=0.12ms−1

SR calcium concentration cSR=500µM cSR/
√
kom/ka = 5

Cytosolic calcium concentration c0=0.1µM c0/
√
kom/ka = 0.001

Maximal L-type calcium current

conductance

ICaLmax=50µM ms−1 ICaLmax

√
ka/kom/kim = 25

RyR2 channel conductance grel=0.556ms−1 α = grel/kim = 278

Diffusive time between dyadic and

cytosolic spaces

τdiff=2ms β = 1/kimτdiff = 250

Table I. Standard values of the parameters in Eqs. (12), (13), taken from20.

Although in Table I we provide benchmark values for the parameters in these equations,

wide uncertainties exist in most of them. In some cases, particularly for RyR2 conductance

grel and RyR2 inactivation ki, broad disagreement exists even about their order of magnitude.

The reason is that different order of magnitudes lead to different functional regimes of

operation of the RyR2. A small conductivity grel requires a high probability of RyR2 opening

making inactivation an unrealistic feature. On the other hand, a large conductance grel

leads necessarily to a relevant level of inactivation, otherwise the calcium concentration in

the junctional volume would reach unrealistic values. Another important parameter is τdiff ,

which indicates the effective diffusion, basically controlled by the level of protein crowding

in the cytosol and the level of calcium buffer.

To eliminate some of the parameters we will further normalize junctional calcium con-

centration cj by
√
kom/ka and time by τ = 1/kim. Then the two equations to be analysed

are:

dcj
dt

= ICaL(t) + α q

(
c2
j

1 + c2
j

)
(cSR − cj)− β(cj − c0) (14)

dq

dt
= 1− q − γcjq (15)

The adimensional parameters are related to different features of the dynamics: α to the
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Figure 4. a) Evolution as a function of time of normalized junctional calcium (cj , in black solid

line) and RyR2 recovery variable (q, in dotted red line) for a pacing of the LCC at Tperiod = 960

ms. b) The same evolution in phase space cj − q, showing the standard calcium transient. c) and

d) Appearance of calcium alternans with periodicity 2:1 where a large transient alternates with a

small transient occurring at Tperiod = 505 ms.

release strength of the RyR2, β to difussion and γ to the relevance of the inactivation (or

termination process) of the receptor. Our goal is to fix the rest of parameters, which are

reasonably well-known, and vary α, γ and β from their standard values, shown in Table I,

in order to test the effects on the dynamics.

III. ANALYSIS OF THE MODEL

A. Calcium transient and 2:1 alternation

The evolution of calcium cj in the junctional space and the recovery variable q given by

Eqs. (14), (15) shows the standard transient calcium behavior at long stimulation periods

(Figs. 4a and b). LCC triggers the calcium-induced calcium-release opening of the RyR2

that results in a sharp increase in the level of junctional calcium. Upon closing of the LCC,

the release of calcium finishes due to the inactivation of the RyR2 opening. The variable
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q drops, closing the release (cf. Eq. (11)), and calcium is then diffused away, getting back

to the basal level fixed in the model at co. Simulations of the model also show that an

increase of the pacing frequency leads to the well-known 2:1 bifurcation with alternation of

the strength in the calcium transient from one beat to the next (Fig. 4c and d). In this

regime at a given beat the calcium transient is large while it becomes small at the following

beat.

This is the same behavior as observed in the global whole cell model described in20 and

the general mechanism is well understood. If, at a given beat, the number of recovered RyR2,

q, is large, then, given the nonlinear relation between the calcium release strength and the

number of recovered RyR2, release is also very large. However, this drives the inactivation

of the receptors in the cluster, i.e., q drops dramatically for this release. Provided that the

recovery from inactivation is slow enough, at the next beat the number of recovered receptors

is low. This produces a small release and also small inactivation with q not dropping as much

as in the previous beat. At the next beat the receptors are then fully recovered, starting the

same process all over again.

While the general mechanism is clear, the details of the non-linear release dependence on

q are not completely understood. Formally, the release depends linearly on q and it is only

through the nonlinearity of the calcium-induced calcium-release process that a nonlinear

interaction is generated. Following this line of thought, the relevance of the slow time scale

of inactivation γ is clear; a fast recovery will make this type of alternation impossible. On

the other hand, the possible effects and relevance of diffusion β and strength of release α

is not clear given that their influence, if any, should be directly linked to the nonlinear

properties of the release.

We proceed to pursue the analysis in two directions. First, we study the stability of the

period one and period two orbits and test if there is any other type of behavior present

in the model, such as different periodicities or more chaotic behavior. Second, we try to

understand the nonlinear process that leads to 2:1 alternation, and probably to other types

of periodicities, which should allow us to understand how diffusion or release strength may

play a role in the alternans bifurcation.
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B. Bifurcation diagrams and higher order periodicities

In order to find different behavior and understand the alternation process we first study

the stability of the period one (1:1) and period two (2:1) solutions. We use the continuation

software AUTO27, as implemented in XPPAUT28. Since this software only allows continu-

ation of orbits in autonomous dynamical systems, we have converted our nonautonomous

system given by Eqs. (14), (15) into an autonomous system, expressing the forcing (ICaL(t))

in terms of periodic functions. The details are given in Appendix A. Continuation tech-

niques allow the analysis of the evolution of asymptotic solutions in a system of ODE when a

parameter is varied. They also possess the important advantage of allowing the computation

of unstable solutions and, thus, indicate a change in the type of stable solution.

A typical bifurcation diagram, plotting peak calcium concentration cj as a function of the

stimulation period Tperiod, is shown in Fig. 5. The period one orbit, stable at large periods,

becomes unstable through a period doubling bifurcation (PD) to a branch of period two

solutions, as expected. This solution becomes unstable at lower stimulation periods until
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Figure 6. a) Bifurcation diagram as a function of pacing period (Tperiod). The black dot points

corresponds to the maximum value of cj during five beats, obtained from numerical integration

of Eqs. (14), (15). The solid (dashed) lines corresponds to the stable (unstable) solutions in Fig.

5. In the lower panels we show the evolution of the variables cj with black solid line and q with

red dashed line, and the corresponding phase portrait, for different pacing periods: b) and c)

Tperiod = 290ms, d) and e) Tperiod = 690ms.

the period one solution regains stability at very high frequencies with low cj peak values.

Fig. 6a shows the solutions found by numerical integration on top of the bifurcation diagram

presented in Fig. 5. As expected from the bifurcation diagram, the instability of the period

one orbit gives rise to a period two orbit (alternans) at larger frequencies. At lower periods,

in the region where the period 2 orbit is unstable, we observe a whole set of different complex

dynamics.

The presence of complex and multiple bifurcations and instabilities from 2:1 alternations

as pacing frequency increases agrees with the appearance high-order periodicities, and even

of rather chaotic behaviour, observed in full models (see20). We show in Fig. 6 typical

examples of the more complex dynamics observed at periods where the period 1 and 2 orbits

are unstable. We observe, for instance, period three orbits (Figs. 6d,e) and more irregular
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the period one solution (black) or alternans (red) and dashed lines to the unstable ones. For lower

values of γ the period-doubling (PD) bifurcation transforms to a Saddle-Node (SN)

behavior (Figs. 6b,c). In this work we have focused on the analysis of the period one and

period two orbits, and, therefore, we have not continued the branches emanating from the

period two solutions. However, the general framework to understand the 2:1 bifurcations

will allow us to explain the reason for this wide range of high-order periodicities.

It is interesting to study under which conditions these higher periodic orbits appear. At

large values of the inactivation (see Fig. 7d), the region of irregular dynamics disappears,

and the period two branch is stable in the whole range between the two period doubling

bifurcations. Decreasing inactivation, the period two orbit becomes unstable at lower stimu-

lation periods (Fig. 7c). For still lower inactivation, the first instability becomes subcritical

(Fig. 7a, b). It is only when inactivation is reduced (see, for instance, Fig. 7a), that both the

period one and the period two solutions become unstable through saddle-node bifurcations

as the period Tperiod is reduced.
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Figure 8. a) Bifurcation diagram depending on period for values of the parameters: α=278, β=250

and γ=10. Panels b), c) and d) show the bifurcation lines corresponding to the variation of the

SN and PD with parameters α, β and γ. The red and black dots correspond to the position of

the saddle-node (SN) and the period-doubling (PD) in the bifurcation diagram in a). The values

between the two lines corresponds to the region where the period one orbit is unstable.

C. Role of diffusion and release strength in the appearance of alternans

We proceed to analyse now how the parameters describing diffusion and release strength

affect the appearance of alternans. For that, we have continued in parameter space the

two bifurcation points that limit the stability of the period one orbit. With this process

of continuation we obtain the general picture of how the global structure of the bifurcation

space is and, more specifically, whether the parameter range which presents alternation is

broad or small. In Fig. 8a we show a typical bifurcation diagram, for γ = 10, where the

stable period one orbit is limited by a saddle-node (SN) bifurcation at large Tperiod and a

period-doubling (PD) at low Tperiod. Taking the value of Tperiod at which these limit points

appear we follow PD and SN as we change the period and the strength of the release α.

The resulting curves are shown in Fig. 8b. The region in Tperiod − α space that presents

alternation is clearly limited by the two curves. We observe that very large values of α
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Figure 9. Panels a) and c) show the bifurcation diagram depending on strength of the release α

and the diffusion parameter β for a 400 ms stimulation period. Panels b) and d) show the diagram

of the continuation bifurcation points SN and PD as a function of the inactivation parameter γ.

precludes the presence of alternans. There are clearly optimal values of the release around

α ' 300 which favour the presence of alternans for a wide range of pacing frequencies.

The effect of diffusion is presented in Fig. 8c. Just as in the case of release strength, there

is an optimal value for diffusion at around β = 250 which facilitates alternation for a wide

range of pacings. It is quite interesting that the phase diagram with β (Fig. 8c) is inverted

with respect to that varying α (Fig. 8b). In this case large values preclude alternation

altogether, while for smaller values, the parameter space with alternans shrinks becoming

smaller and smaller until it finally disappears as the PD collides with the SN.

For completeness, we also present the phase diagram using the parameter γ, that measures

the importance of inactivation, reobtaining again the results in20 where the presence of

alternans is linked to the time scale of the recovery. As explained before, the mechanism

for alternans requires the interaction between the time scale fixed by γ and the nonlinear

release. It is thus expected that alternation occurs always around periods fixed by the time

scale given by γ.
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We can follow up this analysis by, instead of choosing the stimulation period as bifurcation

parameter, choose the strength of release α or diffusion β at a given pacing. We take

Tperiod = 400ms as the standard period where one should expect alternans. The reasoning

behind this selection of phase space cuts is clear. While the role of inactivation is understood,

how the possible existence of alternation is affected by diffusion or release strength remains

to be addressed.

Regarding the appearance of complex solutions when we vary the strength of the release,

α (Fig. 9a), we get the same kind of behaviour as before, where for large and small values of

these parameters the period one solution is stable and there are intermediate values where

alternans (and more complex behaviour) appear. The same structure is again obtained when

the bifurcation parameter is the diffusion, β (Fig. 9c). In both cases, the transition is also

asymmetrical for large and small values of α and β. At large α (resp. small β) instability of

the period one solution gives rise to alternans (stable period two branch), that then become

unstable resulting in complex behaviour before the period one solution regains stability in

a period doubling bifurcation.

We can then proceed with the continuation of the bifurcation points that limit the stability

of the period one orbit, in order to construct the γ−α and γ−β phase diagrams (Figs. 9b and

d). In both cases there is a large range of parameters where alternation occur. Interestingly,

the region of instability seems to follow a line in γ − α or γ − β space. However, while

it moves to large values of α as γ is increased, it is much less dependent on β. For a

broad range of release strengths (α) it is possible to find a corresponding inactivation γ

that allows for the presence of alternans, although once γ is fixed, the α range is limited.

This is not the case for diffusion where the global scope is reduced. The scope of values

where diffusion can present alternans is sligthly more limited but, more importantly, quite

independent on the inactivation γ. Thus, release strength can be tuned as a function of the

recovery levels, but diffusion must be fixed around certain values in order to have alternation.

Characteristic time scales of the diffusion, which are normally related with the presence of

large proteins and buffers, can have a crucial role in the tendency to generate alternans.

This may have important implications for understanding and controlling alternation since

diffusion has already been set as a possible target to eliminate the coordination of alternans

(see22). Here, the diffusion constraints to obtain alternans can present an opportunity to

prevent even the apperance of alternation at the local level.
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dcj
dt = f(q, cj , ICaL) = 0 in blue

and the flow direction. a) ICaL 6= 0, b) ICaL = 0.

D. Nullclines and phase diagrams

A better understanding of the onset of alternans in Eqs. (14), (15) can be obtained

studying the nullclines and the corresponding trajectories in phase space. The nullclines,

corresponding to dcj/dt = f(q, cj, ICaL) = 0 and dq/dt = g(q, cj) = 0 give the curves:

q =
[β(cj − c0)− ImaxCaL ](1 + c2

j)

αc2
j(cSR − cj)

and q =
1

1 + γcj
(16)

where the first curve sets the excitability threshold and the second one the termination of

release (Fig. 10b). These curves intersect at a (locally) stable fixed point. When ImaxCaL = 0

(Fig. 10b) the fixed point is located at low values of cj. However, when the LCC becomes

active, this fixed point changes position, moving to lower values of q and a larger value

of cj (Fig. 10a). Not only the fixed points are affected, the velocity flow in phase space

changes. The trajectory, shown in black in Fig. 10, is affected consecutively by both phase

space flows. First, during a brief period of time ∆t, the nullclines with ImaxCaL determine the

flow. The final point when ICaL closes can end up at the right or at the left of the nullcline

f(q, cj, 0) = 0. If to the right, then the trajectory gives an excursion (a calcium transient)

before returning to the fixed point (Fig 10b). On the other hand, if the final point is on the

left of the nullcline there is no large excursion but a short return to the stable fixed point

which was lost for a short time.

Let us consider that the system starts at the position of the fixed point when ICaL = 0.

When the ICaL switch on, the system will move from this point. Assuming that inactivation
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rest of the trajectory up to a period of 400 ms ,c) and d) same for the next beat.

is slow compared with the time scale ∆t, in which the external current ICaL is acting, we

can consider that q is almost constant during this first stage. Then, integrating Eq. (14) it

is possible to compute an estimate of the threshold value of qthr above which the trajectory

crosses the nullcline f(q, cj, 0) = 0 (see Appendix B):

qthr =
β2

4ICaLαcSR

1 +

(
2π

4 + β∆t/τ

)2
 (17)

The existence of this limiting value makes the dependence of the trajectory with q very

nonlinear. During alternans, one has to expect that the crossing of the nullcline happens

only at non-consecutive beats. A clear depiction of this process is sketched in Fig. 11. In

one beat the number of recovered RyR2s is at a high value of q, a value large enough so the

trajectory starting at that point crosses the excitability threshold. If the period is not large
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enough, however, by the time the next stimulation arrives, the number of recovered RyR2s

q is at a much lower value than before. Then, in this case, the nullcline f(q, cj, 0) = 0 is

further to the right in phase space and the time ∆t is too short to increase the calcium level

beyond the nullcline. The system, consequently, returns to the fixed point, resulting in a

short transient. At the next beat, however, the value of q has recovered enough so as to

cross the threshold generating the well-known 2:1 alternans.

From Eq. (17) it is clear that diffusion and release strength play a very important role in
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the nature of the bifurcation. They move the limit of excitability. Once the recovery is fixed

(γ fixed), the slope of the nullcline determines how a decrease in q affects the ability to go

beyond the excitability threshold. This slope depends on the ratio β/α. However, this same

ratio is not present in the determination of the limiting value qthr leading to a qualitatively

different role for diffusion and for the release strength.

A detailed representation of the general process that explains high periodicities is given

for a 3:1 rhythm in Fig. 12. If the period of stimulation is further decreased, even after a

second short transient, the number of RyR2s has not recovered enough and one has to wait

to a third beat (or more beats) in order to be able to elicit a large transient. This mechanism

can be generalized to higher periodicities. The existence of this well define threshold qthr for

the onset of a spike, makes it possible to obtain the higher order periodicity and irregular

behaviour.

This explanatory picture of the system can be confirmed constructing a return map for

the variable q, qn+1 = f(qn) (Fig. 13). Alternans then appear when the slope of the map is

smaller than minus one f ′ < −1. Higher periodicity could be understood studying higher

order maps qn+2 = g(qn). In the maps in Fig. 13 the straight line at low q corresponds to

short calcium transients where during the excursion the value of q remains rather constant.

One can then obtain the map integrating Eq. (15) with initial value qn for a determined

period and setting cj ' 0. This gives a value of qn+1 ≈ 1− (1− qn) exp(−Tperiod/τ), which
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results in a linear dependence of qn+1 with qn, as seen in Fig. 13 for different pacings Tperiod.

On the other hand, at large qn one obtains an almost constant value of qn+1, independent

of qn. This corresponds to the large spikes where the trajectory rapidly follows the f = 0

nullcline down to its minimum value, where it jumps to the branch near cj ' 0, losing the

information of the initial state, and ending always approximately at the same value of q.

The transition between these two branches occurs at a value of q ' qthr. Alternans and

more complex rhythms appear as intermediate regimes when the system does not stabilize

in neither of these two states.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have presented a simplified model of calcium release which reproduces

calcium alternas due to refractoriness. Specifically, we introduce refractoriness as due to in-

activated states of the RyR2. Although there is debate on whether these inactivates states

actually exist29 there are clear indications that some kind of termination or refractoriness

similar to inactivation is present, specially in physiological conditions in heart tissue30. The

model can thus be considered as a phenomenological description that contains key physio-

logically relevant features of RyR2 release.

The simplified model can also be considered from two different points of view. Either

as a reduction of a whole cell-model where the calcium concentration in each compartment

corresponds to average values on the cell, or to the deterministic limit of a CaRU, where

the stochastic dynamics of the RyRs has been neglected. In the first type of models, alter-

nation appears, in the mathematical sense, as a period doubling bifurcation of the calcium

transient from 1:1 to 2:1 periodicity, presenting sometimes, and under some pacing, differ-

ent transitions to higher order periodicities. On the other hand, in models with subcellular

structure, alternans appears as the coordination of local random sequences of release, non-

release events. In this latter case, close to the alternans transition each RyR2 cluster has a

tendency to generate local alternation, but given the stochastic nature of this behavior, this

alternation changes phases continually. Alternans appear in this case as an order-disorder

transition (see Ref22 for details). The deterministic limit of the CaRU gives an idea of when

local units will present long sequences of release/non-release events.

Fixing cytosolic cacium level is a very reasonable approach if we understand this model as
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the deterministic limit of a RyR2 cluster. Near the cluster, calcium concentration is believed

to increase above 100 µM while buffers keep cytosolic and subsarcolemma concentration at

around 1-10 µM even during the transient making that, from the point of view of the dyadic

space, calcium concentration in the cytosol is constant. If we have the whole cell model

in mind, it allows us to focus on the effects of refractoriness, discounting the effects of the

SERCA pump which might give rise to alternans by a different mechanism related to the

presence of high nonlinearities in release as a function of SR content. Following this idea, a

constant ICaL current reproduces the current due to the opening of a LCC channel and, thus,

it is a good representation of what occurs in a CaRU. In whole cell models, however, the ICaL

current results of the sum of thousands of LCC currents and presents a very different form.

An important effect that we are not taking into account in this case, is the feedback between

calcium concentration and L-type calcium current, due to calcium induced inactivation of

the latter. However, even if peak ICaL alternations have been observed in experiments31, we

argue that they are subsequent to junctional calcium alternations.

Another important simplification of the model, i.e., fixing the SR concentration, simplifies

the homestatic global effects seen in whole-cell models and allows us to differentiate alternans

due to SR release refractoriness from those due to SR content alternations. We acknowledge

that this approximation is, however, not straightforward from the point of view of the

deterministic limit of the RyR2 cluster. Given that SR calcium levels drop locally in the part

of the SR close to the ryanodine receptor, a more appropriate approximation to eliminate

homeostatic calcium levels, regulated by the interaction of SERCA pump and exchanger

with the RyR2 function, would be to consider a second calcium concentration describing

the SR junctional calcium drop while, effectively, the overall SR concentration remains

constant. However, we have found in our preliminary tests that this extra description does

not provide any new basic insight to the problem as long as the cluster of receptors has a

significant inactivation. The drop of calcium levels at the junctional SR only has relevance

when calcium release is terminated because calcium depletes in this area. Given that this

situation is not the one we address here, we have simplified the model as much as possible.

The results of the model can now be analyzed having in mind this double perspective. The

model reproduces the finding of20 where inactivation was key to observe alternans due to SR

release refractoriness. The general idea behind the mechanism is sustained in our analysis.

However, it provides further light on the effects of release strength and local diffusion. While
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it is possible to find a broad range of release strengths where alternation appears provided

the time scale fixed by recovery is adequate, such versatility is not present for diffusion, that

can not change as much once release strenght is fixed. This points to a key role of diffusion

in the generation of alternans. This is particularly important if we take the image of the

model as the deterministic limit of a cluster of RyR2. In subcellular stochastic models, a

change in diffusion has been shown to eliminate alternans by disrupting the coordination of

the local alternations. Our results hints at the possibility that changing diffusion might also

be affecting the same generation of local alternate events. A lower diffusion might not only

disrupt coordination by reducing the coupling among CaRU, but it would also reduce the

average persistence of the local alternation.

Analysis of the model has also helped to unveal the origin of the non-linear nature of

the alternans due to SR release refractoriness, which explains the appearance not only of

period doubling bifurcations but of higher order periodicities. We have found that there is a

strongly nonlinear dependence of calcium release with the level of recovered receptors, which

is linked to the excitable gap defined by the nullclines of the model. There is a critical value

of the number of recovered receptors that leads to a large calcium release, which gives rise

to an on/off process. Close to the critical value, the system can easily transit from release to

non-release events. This can lead to high order periodicity and quasi-intermittencies. Still,

in a real cell stochasticity would probably make higher order periodicities non-observable.

The model introduced and analyzed here, thus, provides key insights as to the mechansim

and effects of SR release refractoriness in whole-cell models and subcellular description,

explaining why RyR2 clusters in real cells have this strong tendency to produce this crucial

pro-arrythmic feature in cell signalling.
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Appendix A: Continuation method

In order to reduce Eqs. (14), (15) to an autonomous problem that can be analyzed by

AUTO, we rewrite the forcing in terms of the periodic solutions of an auxiliary autonomous

ordinary differential equations (ODE) system27,32. We represent the calcium current ICaL

as a pulse of duration ∆t = 10ms, that starts with a delay tc1 after each Tperiod and with a

halftime steep value, m, to its maximum value ICaLmax (Fig. 14). We adjust the parameters

in order to ensure a value of ICaLmax ' 30µM/s. The expression for ICaL then is

ICaL(t) =
ICaLmax

π
{0.5 + arctan[Ah(xs, ys)]} (A1)

with

h(xs, ys) = ys cos( 2πtc1
Tperiod

) + xs sin( 2π tc1
Tperiod

)− cos( π∆t
Tperiod

) (A2)

A =
mT 2

period

2π∆t
(A3)

and xs and ys periodic functions of time solution of the equations:

dxs
dt

= xs + (2π/Tperiod)ys − xs(x2
s + y2

s) (A4)

dys
dt

= ys − (2π/Tperiod)xs − ys(x2
s + y2

s) (A5)
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Appendix B: Threshold value qthr

To calculate the threshold value qthr we can integrate Eq. (14) from the value cj ' 0 to

the value of cj at the nullcline f(q, cj, 0) = 0. Neglecting terms of order c3
j (and c0), then

Eq. (14) becomes
dcj
dt

= αqcSRc
2
j − βcj + ICaL (B1)

Considering q constant, and integrating, we obtain:∫ β/αqcSR

0

dcj
αqcSRc2

j − βcj + ICaL
=
∫ ∆t/τ

0
dt (B2)

that results in:
4

∆
arctan

β

∆
=

∆t

τ
(B3)

with ∆ =
√

4ICaLαcSRq − β2. When diffusion is not too small a good approximation for

qthr can be obtained expanding the arctan as

4

∆
arctan

β

∆
' 4

∆
(
π

2
− ∆

β
) =

∆t

τ
(B4)

so

qthr =
β2 +

(
2π

∆t/τ+4/β

)2

4ICaLαcSR
(B5)

For the values used in the paper it gives a value of ∆ =174.5 and a value of the inactivation

threshold qthres =0.67.
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