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The neural command from motor neurons to muscles — sometimes referred to as the neural drive to
muscle — can be identified by decomposition of electromyographic (EMG) signals. This approach can be
used for inferring the voluntary commands in neural interfaces in patients with limb amputations. This
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paper proposes for the first time an innovative method for fully automatic and real-time intramuscular
EMG (iEMG) decomposition. The method is based on online single-pass density-based clustering and
adaptive classification of bivariate features, using the concept of potential measure. No attempt was made
to resolve superimposed motor unit action potentials. The proposed algorithm was validated on sets
of simulated and experimental iEMG signals. Signals were recorded from the biceps femoris long-head,
vastus medialis and lateralis and tibialis anterior muscles during low-to-moderate isometric constant-force
and linearly-varying force contractions. The average number of missed, duplicated and erroneous clusters
for the examined signals was 0.5± 0.8, 1.2± 1.0, and 1.0± 0.8, respectively. The average decomposition
accuracy (defined similar to signal detection theory but without using True Negatives in the denominator)
and coefficient of determination (variance accounted for) for the cumulative discharge rate estimation were
70± 9%, and 94± 5%, respectively. The time cost for processing each 200 ms iEMG interval was 43± 16
(21–97) ms. However, computational time generally increases over time as a function of frames/signal
epochs. Meanwhile, the incremental accuracy defined as the accuracy of real-time analysis of each signal
epoch, was 74± 18% for epochs recorded after initial one second. The proposed algorithm is thus a
promising new tool for neural decoding in the next-generation of prosthetic control.

Keywords: Neural decoding; electromyography; EMG Decomposition; prosthetic control; online algo-
rithms.

1. Introduction

Muscles are typically controlled by a few hundred
motor neurons whose cell bodies are in motor nuclei
in the spinal cord or brain stem.1 The electrical activ-
ity of a muscle — electromyogram (EMG) — is the
algebraic sum of the muscle fiber action potentials
activated by the neural activation of the innervating
motor neurons. A motor neuron and the muscle fibers
it innervates is the smallest functional voluntary unit
by which the nervous system controls the movements
and is called motor unit. The neural command from
motor neurons conveying information about the con-
trol of muscle voluntary contractions is often referred
to as the neural drive to muscle.2 The neural drive to
muscles can be identified from EMG signals recorded
either noninvasively (surface EMG, sEMG) or inva-
sively with needle and wire electrodes (intramuscular
EMG, iEMG). iEMG has high selectivity for indi-
vidual motor unit action potentials, compared with
sEMG, and is thus used to measure motor unit activ-
ity.3 The identification of the neural drive to muscles
is obtained by the so called decomposition of EMG
signals. According to this procedure, the motor unit
action potential (MUAP) trains are extracted from
the EMG.4

Applications of EMG decomposition are in
diagnosing neuromuscular diseases based on mor-
phological measures of MUAPs,5 estimating MU
architectural properties, physiological and anatom-
ical studies of the neuromuscular system,6 studies
on MU control7–9 and neural connectivity,10,11 and

neurological assessments.12 Although, Brain–
Computer interface (BCI) is usually performed using
electroencephalogram (EEG),13,14 it is possible to
use EMG decomposition for human–machine inter-
facing to control external devices.2

The automatic decomposing of EMG signals
was pioneered by LeFever and De Luca.15,16 Sub-
sequently, several other EMG decomposition algo-
rithms have been developed. For example, Stashuk
proposed a quantitative approach for decompos-
ing EMG signals.17 A wavelet-based feature extrac-
tion for multichannel EMG decomposition was
introduced by Zennaro and collaborators.18 Break-
throughs in EMG decomposition have been the
EMGLAB software for decomposing intramuscu-
lar EMG signals which is freely available online19

and two commercial methods for decomposing
surface EMG signals.20,21 Recently single-channel
intramuscular EMG signal decomposition methods
have been proposed,22,23 as well as multichannel
approaches.24,25

For most applications, offline decomposition of
the EMG is sufficient and indeed the vast majority
of decomposition approaches did not deal with con-
straints in computation time.26 However, recently,
the use of EMG decomposition has been proposed for
establishing neural interfaces in patients with limb
amputations.27 In these patients, nerve activity can
be indirectly recorded by guiding nerves that previ-
ously innervated the missing limb muscles into acces-
sary muscles that are used as biological amplifiers
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of nerve activity.28 The resulting EMG signals are
usually processed as global interference signals for
extracting their amplitude as a crude estimate of
nerve activity.29–32 However, recently, it has been
proposed that the EMG signals from reinnervated
muscles can be decomposed so that the efferent
neural information of the innervating nerves can be
extracted directly.2,27 In this way, a neural inter-
face is established which provides the same infor-
mation as if the nerve would be directly interfaced
with neural intrafascicular electrodes. This approach
has been previously discussed as a theoretical possi-
ble way to control active prostheses33 and is based
on a strong evidence of direct association between
the neural drive to muscles estimated from EMG
decomposition and muscle force.34 Nonetheless, for
this approach to be feasible in practice, the EMG
decomposition needs to be performed in real-time,
whereas, all current decomposition methods are in
fact time consuming (for instance, the run-time of
the state-of-the art decomposition program PD II for
different muscles and force levels are listed in Table 1
in).35 Actually EMG decomposition is in most cases
not even fully automatic but requires a long inter-
action with expert operators. These restrictions

Table 1. Parameters for simulating iEMG signals.

Model parameters Values

Length of signals 10–20 s
Sampling frequency 10 kHz
Number of Motor Units 5–8
Maximum relative energy difference

between MUAPs of different MUs
0.5

Indicator of shape difference between
MUAPs of different MUs

0.5

Percentage of superimposition 20
Maximum number of superimposed

MUAPs
4

Starting firing frequencies 6–20 Hz
Ratio between the final and starting

firing frequency
2.5

Percentages of double and random firings
with respect to the grand total

10

Number of trains with double discharge
firings in the signal

4

Ratio between the standard deviation of
the inter-pulse interval (IPI) and the
mean IPI

0.1

Additive noise 15 dB
Signal frequency band 50–3000 Hz

are not acceptable for controlling active prosthe-
ses which requires a maximum processing delay of
few hundreds milliseconds.36 Therefore, the present
study proposes an innovative method for fully auto-
matic and online intramuscular EMG decomposition,
which is not possible with current methods. We focus
on invasive EMG rather than surface EMG because
future prosthetic systems will require implantable
technology that has the advantage of not requiring
electrode replacement.

Here, we propose for the first time a method
for the decomposition of intramuscular EMG signals
with processing time limited to 200ms for each pro-
cessing interval of 200ms. Therefore, this method
can be applied for the online extraction of MUAP
trains to control a new generation of active prosthe-
ses based on direct decoding of the neural drive to
muscles. Since the control variable would be a series
of action potentials discharged by motor neurons,
this approach is theoretically equivalent to record-
ing nerve activity but with the advantage of requir-
ing an implantation into muscles instead of nerves,
with greater signal-to-noise ratio and less invasive
surgery. This paper presents in detail the proposed
EMG decomposition algorithm and its implementa-
tion, with specific emphasis on the online aspects,
as well as a full validation of the online decompo-
sition for both synthetic and experimental signals.
The focus is on the decomposition while its use for
controlling external devices in man-machine interfac-
ing is left to subsequent studies.

2. Materials

We assessed the performance of the proposed EMG
decomposition method on simulated as well as exper-
imental iEMG signals.

2.1. Simulated signals

The model of intramuscular EMG signal genera-
tion has been previously described37 and used for
validating EMG decomposition algorithms.38 This
model generates synthetic signals with the possi-
bility to vary the number of MUs, percentage of
superimposition between MUAPs, inter- and intra-
class variability in the MUAP shapes and recruit-
ment conditions. Twelve simulated signals were gen-
erated in this study. Five of these signals represented
linearly increasing muscle activation over 10 s and
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the remaining signals corresponded to 20 s linearly
increasing and decreasing activation. The average
number of motor units (MUs) and mean discharge
rate (MDR) in the simulated dataset was 6.6± 1.3,
and 32.8±14.3 pulses/s, respectively. Other param-
eters used for generating the simulated signals are
provided in Table 1.

2.2. Experimental signals

Experimental signals were recorded during isomet-
ric contractions from the vastus medialis obliquus
(VM), vastus lateralis (VL), biceps femoris long-head
(BFlh), and tibialis anterior (TA). The subjects were
healthy, without any neuromuscular disorder, pain,
or regular training of the lower limb. All subjects
were informed about the procedures of the study,
which was conducted in accordance with the Decla-
ration of Helsinki and approved by the local ethics
committee. The reference maximal voluntary con-
traction (MVC) for the definition of the submaximal
force levels was selected as the highest value of two
knee extensions for VM and VL, flexion for BFlh,
dorsiflexion of the ankle for TA over a period of 5 s,
separated by 2min of rest.

Experimental Protocol VM and VL. Five
men (mean±SD, age: 26±2.9 years; stature:
1.83±0.03m; body mass: 73±12.2kg) participated
in this experiment. Each subject seated relaxed on an
Isokinetic dynamometer (KinCom Dynamometer–
Chattanooga, TN, USA) with the hip and distal
thigh firmly strapped to the chair, the lower right
leg secured to the dynamometer lever arm above
the lateral malleolus, and the rotational axis of the
dynamometer aligned with the right lateral femoral
epicondyle. The knee was flexed at 90◦.

Signals were recorded from VM and VL with a
pair of Teflon-coated stainless steel wires (diame-
ter: 0.1mm; A-M Systems, Carlsborg, W) inserted
with 23-gauge hypodermic needles. The wires were
cut to expose only their cross sections, and pro-
vided bipolar signals which were amplified (Coun-
terpoint EMG, DANTEC Medical, Skovlunde, Den-
mark), band-pass filtered (500Hz–5 kHz), sampled at
10 kHz, and stored after 12-bit A/D conversion. The
ground electrode was mounted at the right ankle.

The subjects performed two isometric knee exten-
sions at 10% and 30% MVC (random order) for
10 s, with 2 min of rest in between. An oscilloscope

provided a visual feedback on the force output for
the subjects.

BFlh. Five men participated in this experi-
ment (mean±SD, age: 35±5.2 years; stature:
1.79±0.05m; body mass: 80± 7.5 kg). Each subject
laid prone on a bed with the knee of the left leg
flexed at 45◦ and the thigh in slight lateral rota-
tion according to SENIAM recommendations.39 The
torque in isometric knee flexion was measured by a
cuff, placed around the ankle and connected to a load
cell. A monopolar needle electrode (27 gauge, 37mm,
Gilroy, CA, US) was inserted into the muscle. The
monopolar iEMG signal was amplified with filter set-
tings of 5Hz–5 kHz (Nicolet Viking, Madison, WI),
sampled at 10 kHz, and stored on a computer. The
monopolar reference was located proximal to a sur-
face electrode on the thigh, while the ground elec-
trode was located on the medial knee. A load cell
and custom made amplifier measured the knee flex-
ion force, recorded concurrently with the iEMG sig-
nals. The force signal was also provided as a feedback
to the subject on a circular bar graph display. The
subjects performed one-minute isometric constant-
force knee flexion contractions at 5% and 10% MVC,
each lasting 20 s.

TA. Five men participated in the experiment
(mean ± SD, age: 36.4 ± 12.8 years; stature: 1.77 ±
0.10m; body mass: 81 ± 11.0 kg). While supine on a
bed, they were asked to dorsiflex the ankle against
a cuff around the foot connected to a load cell, with
the foot inverted and without extending the great
toe. A monopolar needle electrode (27 gauge, 37mm,
Gilroy, CA, US) was placed in the third distal part
of the muscle. The monopolar iEMG signals were
amplified in the same way as for BFlh, with the
monopolar reference located on the distal tendon
and the ground electrode located on the patella. The
iEMG signals were also high-pass filtered at 1 kHz
and displayed in real time to enable the investigators
to visualize the signal complexity and quality during
the experiment. The subjects were asked to increase
the strength of the contraction until the iEMG signal
contained from 6 to 12 active MU trains, as judged
by the investigators. Also, signals were recorded dur-
ing ramp contractions up to 40% MVC. Audio feed-
back of the iEMG signals was provided to help the
subjects maintain steady contractions. Each subject
performed one-minute isometric contractions twice.
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3. Method

3.1. Algorithm

The flowchart of the proposed algorithm is depicted
in Fig. 1. The details of this method are provided in
the following:

3.1.1. Signal Conditioning

The proposed recursive algorithm uses 200ms iEMG
signal epochs for the analysis. The frame size was
selected as to be suitable for prosthesis control.36,40

The input signal frame is passed to the first-order
high-pass Butterworth filter with the cut-off fre-
quency of 1 kHz in the forward and reverse direc-
tion. Moreover the initial condition of the filter was
set as to have zero-phase distortion and minimize
start-up and ending transients.41 This filter decreases
the duration of the Active Segments (AcS’s).
Moreover, it reduces the temporal overlaps and
removes the low-frequency and nondiscriminating
components.19

3.1.2. Segmentation

The segmentation is performed by a detection
threshold of Kσnoise (with K set to 4.0),19 on
2 ms intervals. The standard deviation of the back-
ground noise, σnoise, is estimated using the algorithm
introduced in Ref. 42. The noise properties are adap-
tively estimated for each signal epoch.

3.1.3. Feature Extraction

The feature extraction consists of two steps (Fig. 1).
The first step is the alignment phase in which the
detected active segments are aligned on the high-
est peak using a high-resolution peak alignment
method introduced in Ref. 43. The alignment is per-
formed to sub-sampling-interval using trigonometric
interpolation to eliminate residual error due to time
quantization. This makes it possible to analyze EMG
signals sampled at the Nyquist rate without oversam-
pling. The time instants of the aligned peaks were
considered as the discharge times of the active motor
units.

Fig. 1. The main flowchart of the proposed online intra-muscular EMG signal decomposition algorithm. AcS: active
segment; CDR: cumulative discharge rate.
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In the second step, each AcS was projected in a
two-dimensional feature space. The two features were
the Root Mean Square (RMS) and the Difference
Absolute Standard Deviation Value (DASDV),44

defined as follows:

RMS =

√√√√ 1
N

N∑
i=1

x2
i , (1)

DASDV =

√√√√ 1
N − 1

N−1∑
i=1

(xi+1 − xi)
2
, (2)

where x is the vector of the AcS time samples and
N is the number of samples in each AcS.

3.1.4. Online clustering and classification

An online single-pass density-based clustering
method was developed to detect the number of MUs
and their corresponding clusters in the feature space
(Fig. 1). The pseudo-code of the algorithm was pro-
vided in the appendix.

In the proposed algorithm, the representative of
each cluster is the time average of all the MUAPs in
that cluster and the neighborhood of a cluster center
is defined by two numbers, NB1 and NB2, in the 2-D
feature space (Fig. 2A). If there is only one point in
a cluster (i.e. a new cluster has been just defined),
that point is the cluster center and the neighborhood
borders are then calculated using Eq. (3).

NB1 = 0.1 × f1var + f1noise,

NB2 = 0.1 × f2var + f2noise,
(3)

where f1var and f2var are the variability of RMS
and DASDV values based on a high resolution shift,
respectively. In fact, we used high-resolution align-
ment of 0.2 samples for the AcS using the algorithm
proposed by McGill and Dorfman43 and the maxi-
mum variability was estimated in the feature space.
The parameters f1noise and f2noise are the variabil-
ity of RMS and DASDV value for background noise,
respectively.19

When a cluster contains more than one member
(i.e., it starts to grow), the neighborhood borders are
adaptively calculated according to Eq. (4).

NB1 = µRMS + 0.1 × δRMS + f1noise,

NB2 = µDASDV + 0.1 × δDASDV + f2noise

(4)

where µ and δ are the mean and standard devia-
tion of the cluster members in the feature space.

Fig. 2. The definition of neighborhood of a cluster
center.

Accordingly, the neighborhood of each cluster is
defined independently. Clusters with higher ampli-
tude MUAPs or higher MUAP variability, have wider
neighborhood with respect to smaller MUAPs.

The correlation parameters used in Algorithm 1
are defined as follows. Pseudo-correlation and Corre-
lation are measures of similarity between time sam-
ples of two AcS’s, defined by Eqs. (5)–(6):45

PsCk = max




∑m
j=1(xjyk+j + |xj + yk+j |
×max{|xj |, |yk+j |})∑m
j=1 (max{|xj |, |yk+j |})2

, 0




k = 1, 2, . . . , m, (5)

Cor = max




∑m
j=1(xjyj + |xj + yj|
×max{|xj |, |yj |})∑m
j=1 (max{|xj |, |yj |})2

, 0




, (6)

where m is the length of the sought-after cluster rep-
resentative x, equal to that of the AcS y in our
algorirthm. In fact, the lower bound of the cor-
relations was set to zero. Meanwhile, the thresh-
old for pseudo-correlation (Thr PsC) was set to
0.5, in the algorithm 1. It was tuned based on
the sensitivity analysis. The pseudo-correlation func-
tion was implemented in C++ with Optivec vector-
ization package46 for vector and matrix operations
(http://www.optivec.com/).

The optimal performance of the proposed algo-
rithm is achieved when using pseudo-correlation
instead of correlation in Algorithm 1. However, we
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used correlation in AcS assignment to decrease the
running time. It did not significantly degrade the per-
formance of the program.

The density-based clustering method proposed
here is based on the concept of the potential mea-
sure.47 The potential of an AcS x in a group of M

AcS’s is defined as

P (x) =
M∑

j=1

e−α‖x−xj‖2
, (7)

where α is a weight constant fixed to 0.5 in this study.
Any values between 0.3 and 0.8 were acceptable.

From this definition, any point with many close
neighbors (densely surrounded) has high potential
while sparsely located points have low potential.

Using the concept of potential, the center of any
cluster is defined as the point in the cluster with the
highest potential value. When a new point (xk) is
added (removed) to (from) a cluster, the potentials
of all the points (xi) within the cluster are increased
(decreased) with one term as in Eq. (8)

Pnew(xi) = Pold(xi)± e−α‖xi−xk‖2
. (8)

Thus, it is possible to save the previous potential
of all the points and only add or remove one term
to update the potential of any point in the cluster.
When a new point is added to a cluster, if its poten-
tial is greater than the potential of the previous clus-
ter center it becomes the new center, otherwise the
cluster center is unchanged.

The following two sections of the algorithm start
after five initial frames and run at each iteration.

3.1.5. Sparse cluster re-assignment

The parameter cluster age indicates the elapsed time
from the birth of a cluster. Because the minimum fir-
ing rate for motor units in humans is usually not
below 5Hz,48 a cluster with less than 5 assigned
AcS’s and with cluster age of 1 s is considered as
a sparse cluster and is eliminated (Fig. 2B). The
elements of this cluster are then reassigned to the
existing clusters. If no cluster is assigned to such
AcS’s, they are considered as outliers (i.e. superpo-
sitions).

3.1.6. Cluster merging

Two or more clusters are merged together (Fig. 2C),
under the following two conditions: Clusters with

Pseudo-correlation of the representatives >0.5
(Thr merge) and up to 5 inter-spike interval viola-
tions (or namely as firing-time inconsistencies) (ninc)
in the merged firing times. A firing time is inconsis-
tent if it follows the previous one with a separation
interval <1/60 s.22,49

3.1.7. CDR calculation and report

The estimate of the neural drive to the muscle
is obtained from the Cumulative Discharge Rate
(CDR).50 After decomposition of each epoch, the
firing rate of each motor unit is estimated using
a robust method proposed by McGill et al.42 and
Marateb et al.22 and the CDR is estimated in pulse/s
(pps). In order to decrease the fluctuations of CDR
in different frames, the CDR is low-pass filtered with
an exponential smoothing filter (Eq. 9)) with the
smoothing factor equal to 0.8.51 Since the CDR esti-
mation is based on the firing rate distribution, it is
robust to missed firings.

y(n) = βx(n) + (1 − β)y(n − 1); y(1) = x(1), (9)

where x, and y are the input and output of the fil-
ter, respectively. The parameter β is the smoothing
factor.

3.2. Validation

For the experimental iEMG recordings, the decom-
position with the proposed algorithm was com-
pared with that performed by an experienced
investigator using the EMGlab decomposition soft-
ware (http://www.emglab.net).19 The investigator
checked and edited the results to make sure that the
identified firing patterns were valid. Then the manual
results of the constant-force isometric contractions
were assessed using a rigorous a posteriori statistical
analysis52 rating each discharge as highly confident
if it was found to be accurate within ± 0.5ms with
a confidence level of >99% (LTP: likely true posi-
tive), as approximate when it was accurate within
± 5.0ms with a confidence level of >95%, and as
uncertain otherwise.22 LTP firings were used as the
gold standard. The quality of the manual decompo-
sition was assessed based on the percentage of the
LTPs in the decomposition. These annotations were
considered as the gold standard.45,53

Each identified MUAP train was assessed as valid
if at least 50% of its discharges were time-locked to

1750025-7

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

17
.2

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 8

3.
59

.1
91

.2
25

 o
n 

10
/0

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 19, 2017 20:15 1750025

S. Karimimehr et al.

the discharges of a valid manually identified train
within ± 0.5ms.

Three classes of validation measures were used:

(i) Measures to assess the quality of clustering: Sen-
sitivity (Se%), Precision (Pr%) and Accuracy
(Acc%)

(ii) Measures to assess the quality of decomposition:
Assignment accuracy (Ac%), Assignment rate
(Ar%) and General Assignment Performance
(GAP%)

(iii) Measures to assess the quality of CDR esti-
mation: R-squared (R2), Variance Accounted
For (VAF) and Pearson Correlation Coefficient
(Pea)

For each identified MUAP, the measures of clus-
tering quality are according to Eqs. (10)–(12),

Se =
TP

TP + FN
, (10)

Pr =
TP

TP + FP
, (11)

Acc =
TP

TP + FN + FP
, (12)

where TP (true positive) is the number of highly
confident discharges that the algorithm identified
within ± 1 ms, FN (false negative) is the number of
highly confident discharges that the algorithm failed
to identify within ± 1ms, and FP (false positive) is
the number of discharges identified by the algorithm
that did not match any manually identified discharge
within ± 1 ms.

The assignment accuracy (Ac), assignment rate
(Ar) and general assignment performance (GAP)
were defined as follows:54

Ac% =
number of correctly assigned MUAPs

total number of MUAPs assigned

× 100, (13)

Ar% =
total number of MUAPs assigned
total number of MUAPs detected
× 100, (14)

GAP% = Ac × Ar. (15)

The complexity of each EMG signal was char-
acterized in terms of the signal-to-interference ratio
(SIR),55 which is an estimate of the percentage of the
signal energy explained by the manual decomposition
results. The MDR and coefficient of inter-spike inter-
val (ISI) variation (CoV) of each MUAP train were

estimated using the algorithm described in Ref. 43.
The distinguishability of each MUAP was character-
ized in terms of the decomposability index (DI),56

which is a measure of how different the MUAP is
from all the other MUAPs in the signal, defined as
below:

DIk =
min{‖muk‖, ‖muk − muk∗‖}

V RMS
× 100, (16)

where muk is the kth MUAP and muk∗ is the most
similar template to muk among the other templates
in the signal and V RMS is the Root-Mean-Square
value of the entire signal.

For assessing the quality of CDR estimation, the
following goodness-of-fit measures were used:57,58

R2 = 1 −
∑n

i=1 (CDRorig(i) − CDRest(i))
2∑n

i=1 (CDRorig(i) − ¯CDRorig(i))
2 ,

(17)

VAF =

(
1 −

∑n
i=1 (CDRorig(i) − CDRest(i))

2∑n
i=1 (CDRorig(i))

2

)

× 100, (18)

Pea = 100

×

∑n
i=1(CDRorig(i) − ¯CDRorig(i))

× (CDRest(i) − ¯CDRest(i))√∑n
i=1 (CDRorig(i) − ¯CDRorig(i))

×∑n
i=1(CDRest(i) − ¯CDRest(i))

,

(19)

where CDRorig is the CDR from the manually
decomposed signal, ¯CDR is the mean value of CDR,
and CDRest is the estimated CDR from the algo-
rithm. Also, n is the length of the CDR vector.

In fact, Precision (defined in Eq. (11)) and
Assignment Accuracy (Eq. (13)) are identical since
the number of correctly assigned MUAPs is equal to
TP and the total number of MUAPs assigned equals
TP +FP. The total number of detected MUAPs is
calculated in the segmentation step.

Further, we used an online measure named Incre-
mental Accuracy (IA).59 The definition of IA is the
same as in Eq. (11) but it is calculated in each frame
during the algorithm progression.

The analysis was performed on an Intel Core i7
2.4 GHz CPU with 4 GB of RAM. The algorithm was
mainly implemented in MATLAB 8.2 (The Math-
Works Inc., Natick, MA, 2013).
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3.3. Statistical analysis

Parameter CDR R2 was analyzed with a three-way
ANOVA with factors the muscle (BFlh, TA, VM, VL,
Sim) and the contraction type (isometric or ramp)
and level. When the ANOVA identified a significant
difference, the Tukey’s honestly significant difference
(HSD) post-hoc test was used for pair-wise com-
parisons. The Pearson’s correlation coefficient (Pea)
was calculated to investigate whether the number of
missed, duplicate, erroneous MUs and SIR influenced
CDR R.2 Moreover, for all correctly identified MUs,
the parameter r was calculated among Se, Sp, Acc
and DI. The level of significance was set to 0.05.
Data was analyzed using STATA 10 (StataCorp,
2007).

4. Results

The analyzed EMG signals are listed in Table 2.
They were of low to moderate complexity, containing
from 2 to 14 manually detected MUAP trains (aver-
age 7.5±2.5 units). The value of mean discharge rate
and coefficient of variation for the signals in Table 2
were 12.0±2.1 pps and 17.0±10.5%, respectively.
The signal to interference ratio and DI of the ana-
lyzed signals were 87.0±10.3 and 7.7± 4.2, respec-
tively. The average LTP percentage of the gold stan-
dard was 85±8.

The results of the proposed algorithm for a repre-
sentative signal are depicted in Fig. 3. The SIR of this
signal is 91% and the DI is 4.8± 2.4. The algorithm
detected all 7MUs without any miss, duplicate or
erroneous cluster.

The overall performance measures of the algo-
rithm are presented in Tables 3 and 4. The aver-
age number of missed, duplicated and erroneous clus-
ters for the examined signals was 0.5±0.8, 1.2±1.0,
and 1.0±0.8, respectively. Overall, the sensitivity
of the algorithm was 75±7% while the assignment
accuracy was 79±6%. The accuracy was 70±9%
and the assignment rate was 91±4%. The precision
for all the evaluated signals was 73±7%. Overall,
eighty percent of the energy of raw iEMG signals
was explained by the decomposition results. How-
ever, higher percentages shown for VM and VL could
be due to the fact that the analog high-pass filter
used in the recording system had a relatively high
cut-off frequency (500Hz) compared to 50Hz used
for TA and BFlh. Statistical analysis showed that
the parameter Acc was strongly correlated with Se
(Pea = 0.9; p < 0.05) and moderately correlated
with Pr and DI (Pea = 0.5; p < 0.05).

Table 4 shows the ability of the proposed algo-
rithm in the online estimation of CDR. Over
all the analyzed signals, the R-squared, Variance
Accounted For and Pearson correlation coefficient
were 69± 21%, 94±5% and 95± 4%, respectively.
The time cost for processing individual 200ms inter-
vals was 43±16ms. Statistical analysis revealed that
none of the factors duplicate, erroneous, missed MUs
and SIR influenced the CDR R2 (|Pea| < 0.3; p <

0.05). Meanwhile, the only significant difference for
CDR R2 was between 40% MVC and 30% MVC con-
traction level (F = 49.4; p < 0.05).

Figure 4 shows the estimate of CDR in a repre-
sentative experimental signal with two consecutive

Table 2. The properties of the iEMG signals used in this study (mean± std).

Signal-Contraction Level
type Muscle (MVC%) N MU MDR (pps) CoV (%) SIR (%) DI (dB)

Exp-Isometric BFlh 5 6.0± 1.4 9.2± 1.5 11.0± 4.0 90± 4 6.0± 5.4
Exp-Isometric BFlh 10 7.2± 2.2 9.7± 1.4 17.5± 12.1 85± 13 6.4± 3.5
Exp-Isometric VL 10 8.2± 1.9 8.4± 1.8 11.8± 7.3 90± 5 7.2± 6.2
Exp-Isometric VL 30 10.5± 1.9 9.6± 2.5 16.2± 10.4 86± 5 6.8± 2.9
Exp-Isometric VM 10 6.0± 4.1 9.4± 1.4 10.1± 5.3 72± 27 9.3± 3.0
Exp-Isometric VM 30 10.5± 0.6 9.3± 2.3 14.3± 9.7 82± 3 5.8± 3.2
Exp-Isometric TA <5 4.4± 2.2 9.0± 0.9 14.3± 3.3 75± 18 7.0± 2.4
Exp-Ramp TA <40 8.0± 4.1 10.2± 1.4 25.5± 22.3 82± 11 11.9± 6.9
Sim-Ramp — — 6.6± 1.3 32.8± 4.0 33.0± 6.4 94± 2 8.8± 0.5

Note: Exp: Experimental; Sim: Simulated. N MU is the number of motor units, MDR is the mean discharge

rate in pulses/s, CoV is the coefficient of variation of the interspike interval, SIR is the signal to interference

ratio and DI the decomposability index.
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(a)

(b)

Fig. 3. (A) The result of decomposing a 10 s iEMG signal from BFlh at 5% MVC. None of the MUs were missed and
No erroneous MUs were detected by the proposed algorithm. A segment of the EMG signal (high-pass filtered at 1 kHz,
top trace) and the residual signal after decomposition (bottom trace). The numbers at the top indicate the identified MU
discharges. (B) The templates of the identified MUs (left), the identified discharge times of each MU (middle), and the
identification sensitivity and precision of each MU (right). The overall sensitivity (Se), precision (Pr) and accuracy of the
algorithm were 76± 16, 98± 1, and 75± 16, respectively.

Table 3. The performance of the iEMG decomposition algorithm (in mean± std).

Clustering Identification (%)
Level Energy

Muscle (% MVC) N miss N dup N err Se Acc Ac Ar GAP (%)

BFlh 5 0.0± 0.0 1.0± 1.0 1.2± 0.8 81± 9 77± 7 77± 3 91± 3 70± 4 78± 9
10 0.2± 0.4 1.4± 1.9 1.6± 0.9 74± 4 66± 4 75± 9 90± 4 68± 11 71± 4

VL 10 0.6± 0.9 1.8± 1.3 1.0± 1.0 77± 7 72± 8 74± 3 95± 2 71± 4 92± 2
30 0.8± 0.9 1.3± 0.9 1.8± 1.5 69± 3 63± 3 80± 6 91± 2 73± 2 85± 1

VM 10 0.4± 0.5 0.2± 0.4 0.2± 0.4 80± 8 73± 5 84± 8 90± 3 76± 9 85± 13
30 0.8± 0.9 2.0± 1.4 1.3± 0.5 71± 3 65± 3 72± 9 93± 2 70± 11 84± 4

TA isometric <5 0.0± 0.0 0.2± 0.4 0.6± 0.5 84± 9 82± 9 92± 2 86± 8 79± 7 60± 6
Ramp <40 1.0± 1.4 1.8± 0.5 1.3± 0.9 76± 6 69± 13 65± 2 92± 4 60± 6 77± 9
Sim — 1.0± 0.9 1.0± 0.9 0.0± 0.0 73± 5 69± 4 87± 5 95± 1 83± 7 82± 4

Note: N miss is the number of missed motor units, N dup is the number of duplicated motor units, N err is the number

of erroneous motor units, Se: Sensitivity, Acc: Accuracy, Ac: Assignment accuracy (also known as Precision: Pr), Ar:

Assignment rate; GAP: General Assignment Performance. Energy: The percentage of the energy of the raw EMG

signal explained by the decomposition results.
1750025-10
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Table 4. Summary of CDR estimation performances (mean± std).

CDR estimate (%)
Level Epoch running

Muscle (% MVC) R2 VAF Pearson (Pea) time (ms)

BFlh 5 81± 9 95± 2 96± 3 39± 7
10 54± 12 97± 3 93± 5 39± 11

VL 10 63± 18 96± 3 95± 4 45± 31
30 43± 30 91± 1 97± 1 87± 5

VM 10 72± 19 93± 1 94± 4 31± 21
30 66± 24 93± 2 95± 2 71± 13

TA isometric <5 71± 22 96± 4 95± 1 31± 14
Ramp <40 90± 7 90± 10 98± 1 50± 15
Sim — 68± 22 91± 6 91± 6 29± 10

Fig. 4. CDR estimation for an experimental signal with two consecutive 30% MVC ramp contractions. The R-squared
measure for this estimate was 97.3%.

Fig. 5. Incremental Accuracy (IA) for a 10 s EMG signal BFlh with 5% MVC contraction level.
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Fig. 6. Computational cost of each epoch of signal through the time scale. These results are from an experimental signal
with ramp contractions at 30% MVC force.

30% MVC ramp contractions. In this example, no
MU was missed, thus the CDR estimation was unbi-
ased.

In an online algorithm it is essential that the
accuracy is high for the entire duration of the sig-
nal. Figure 5 shows the incremental accuracy (index
IA) over time for a representative EMG signal from
BFlh at 5% MVC.

In the proposed algorithm, each interval of anal-
ysis was 200ms, therefore it is important that the
computational cost for each interval is smaller than
200ms. Figure 6 shows the computational cost for an
experimental ramp signal at 30% MVC contraction
level. The average time for processing each 200-ms
interval over the 50 s long signal was 61ms, and the
maximum computational time was <92ms. For this
signal the number of identified MUs was 5 MUs with
MDR of 10.6±0.5 pps.

5. Discussion

The validation results (Table 3) showed that the pro-
posed online decomposition method could decom-
pose single-channel iEMG recordings during low to
moderate isometric constant-force and ramp contrac-
tions with an average accuracy of 70%. The process-
ing time of signals recorded at 30% MVC was in aver-
age twice of what obtained at 10% MVC for VM and

VL muscles (Table 4). Thus, the algorithm could not
operate real-time during higher contraction levels.

An attempt was made to implement resolv-
ing superimposed MUAPs. The resolving algorithms
proposed by Florestal et al.45 and Marateb and
McGill46 were implemented in Vectorized C++.
Although the decomposition accuracy significantly
increased (an average increase of 19%), the average
running time was 287ms for a 200ms epoch. Thus,
it was not practical in real-time implementation.

Since the program is online, superimposed
MUAPs were not resolved. In fact, ten percent
of the entirely analyzed AcS’s in the experimen-
tal data were marked as outlier by our algorithm.
Such superpositions frequently occur at higher con-
tractions, among which constructive and destructive
cases could reduce the performance of the proposed
decomposition algorithm. Thus, the accuracy of our
online algorithm is lower than typical offline com-
plete decomposition programs.22,35 However, its per-
formance is comparable to what obtained with other
offline incomplete decomposition programs, in terms
of the assignment rate, accuracy and general assign-
ment performance.23,54,60 In fact, the later parame-
ter is not only dependent on the number of super-
imposed MUAPs but also on the performance of the
decomposition program.23 Overall, 261 MUs (92%
of the entire identified MUs) had at least 50% of
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their discharges time-locked to those of the manu-
ally identified trains, and where therefore considered
for performance evaluation. Seventy-five percent of
the missed MUs had DI lower than 5 dB. Thus, they
were less distinguishable MUs. Meanwhile, 70% of
the MUs with DI higher than 7 dB had Acc higher
than 75%.

Among the entire performance measures reported
in this study, the most important criteria are
the CDR estimation quality measures (Table 4).
Indeed, the estimate of the neural drive to the mus-
cle is obtained from the CDR parameter.50 Three
goodness-of-fit measures R,2 VAF and Pea were
reported for CDR estimation. Although the parame-
ter R2 is usually known as Coefficient Of Determina-
tion (COD) to show the proportion of explained vari-
ance in the data by the predictor, VAF was reported
as an alternative formula61 and has been also used
in the literature for the same purpose.58,62–64 Pea
was also reported to show the linear dependence
between two variables. The CDR estimation was bet-
ter for the experimental ramp data (Table 4). This
could be due to the fact that the level of force is
not always high and the CDR estimation error is
biased toward higher MVC levels (Fig. 5). On the
other hand, the CDR estimation is robust enough to
take into account the variations of MDR and CoV
during the ramp contraction. Such a trend is bolded
during ramp contraction; shown by COD.

The parameter CDR R2 was not dependent on
SIR in our study. Thus, CDR could be correctly
estimated using incomplete decomposition where
robust measures of MDR and CoV are used for
its prediction. However, low-to-moderate force lev-
els/complex signals (Table 2) were used in our study.
It is expected that with the increased force, the CDR
goodness-of-fit drops.

In our study, the clustering validity measures
Se, Pr and Acc as defined in Eqs. (10)–(12), were
reported for each identified MU. The parameter TNs
(True Negatives) defined based on information the-
ory as the number of firings not assigned to each clus-
ter and not belonging to that cluster was relatively
high. Any criteria including this parameter is not
used in multi-class classification problems.65 Mean-
while, the classical accuracy measure overestimates
the performance of the algorithm and thus it was
not used. The accuracy measure, Acc, used in our
study was similar to that proposed by Holobar et al.

and Negro et al. as the rate of agreement between
two decomposition results.24,55 Other similar accu-
racy measures have been used in the literature.22,35

Although the classification performance of the pro-
posed algorithm is not high (Table 3), the quality of
clustering and also CDR estimation is high enough
to use in prosthesis control.

The MU assignment threshold of 50% was used
in our study. This threshold sets a lower bound for
highly confident discharges, TP, assignment accu-
racy and assignment rate. However, lowering such
a threshold, it may be difficult to determine whether
the two trains relate to the same MU. Also, there is
a trade-off between the number of reported missed
MUs and the reported classification accuracy. If the
threshold is high, identification accuracy is biased
toward higher values while the number of missed
MUs increases due to unassigned identified trains.
Moreover, the assignment of identified MUAPs to the
gold standard MUAPs was based on the agreement
rate between their firing times. However, the corre-
lation between the MUAP shapes extracted by our
algorithm and those obtained in EMGLAB ranged
between 0.66 and 1.00.

Moreover, the A-posteriori accuracy assessment
method used to check the accuracy of the manually-
decomposed signals, works on single-channel, time-
invariant signals. Thus, it was not used for the
ramp signals. In fact, the performance measures
reported for the ramp signals reflect the agreement
rate between the manually and automatically decom-
posed signals not the absolute accuracy.

In our study, the manual decomposition results
were used as the gold standard. Like other studies,
it is probable the superpositions were not correctly
resolved by manual decomposition. Thus, the same
gap would appear in the output of the algorithm and
also the gold standard, resulting in overestimation
of the decomposition accuracy. However, the detec-
tion probability (Pd) of the LTP IPIs, defined as the
percentage of regular IPI in the IPI histogram, was
estimated using the method proposed by McGill.66

The average Pd was 93± 10 (%) in constant-force
isometric contractions, showing that in average 93%
of the firing times of such signals were complete.

In our algorithm a high-pass filter of 1 kHz
was used for signal conditioning. Thus, most of
the volume-conducted distant MUAPs are removed
from the iEMG signal.26 However, these MUAPs are
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generally small, and have similar shapes. Therefore,
it is difficult to correctly classify such MUAPs. Also,
when they are in close temporal proximity to larger
MUAPs, they are missed. Thus, it is practical to
only detect MUAPs that can be consistently cor-
rectly assigned using such a high-pass filtering.67

Such a filtering, on the other hand, limits the
decomposition to MUs that have at least one muscle
fiber within a certain radius of the recording elec-
trode. This approach thus yields the activity of the
entire MUs having muscle fibers within a given cross-
sectional region of the muscle. The amplitudes of
MUAPs in the unfiltered signal depend both on the
size of the MU (the number of muscle fibers in the
MU, which is related to the recruitment threshold)
and also on the distance of the MU from the record-
ing electrode. The amplitude of the spike in the high-
pass filtered signal depends less on the total number
of muscle fibers in the MU and more on the dis-
tance of the fibers that are closest to the electrode.
Given two MUs, the MU with a smaller MUAP (in
the unfiltered signal) can have a larger spike (in the
high-pass-filtered signal) if it has a fiber closer to
the electrode. This is one advantage of filtering —
it selects MUs that have at least one fiber within
a certain radius of the electrode, regardless of their
recruitment thresholds. Thus it provides a reason-
ably objective sampling of the MU activity in the
vicinity of the recording electrode.

Low-amplitude MUs are not necessarily low
threshold MUs, they can also be higher-threshold
MUs that are distant from the electrode. In a case
of homogeneous force generation of the nervous sys-
tem across the muscle cross section, the decomposed
signal would be a reasonable characterization of the
neural drive to the muscle.

The neural drive to the muscle is the ensemble
of action potential trains from the entire pool of
motor neurons innervating the muscle. The larger the
population of motor units considered, the better the
estimation of the neural drive received by the mus-
cle. Owing to their selectivity, intramuscular elec-
trodes can detect only a small fraction of the MUs
active during a certain contraction. However, rela-
tive changes in neural drive can also be estimated
from a limited sample of MUs as those obtained
from intramuscular recordings.34 In fact, the esti-
mate of the neural drive would not be influenced
much assuming that the motor neurons receive a

common synaptic input.68 A further improvement of
the neural drive estimation could be obtained using
multichannel intramuscular electrodes.69

Real-time processing should prevent erroneous
classification in a given segment to be corrected later
on. Procedures mentioned in Secs. 3.1.5 and 3.1.6 are
related to such modifications. However, estimation of
CDR (as mentioned in Sec. 3.1.7) is real-time and no
correction is subsequently performed. In fact CDR
is the single real-time output of our algorithm for
prosthesis control. Meanwhile, the average IA (as a
true real-time performance index) was 74±18 (%)
for the entire frames except the first 5 frames in
which Secs. 3.1.5 and 3.1.6 were not yet activated.

In our algorithm, the epoch length of 200ms
was used. This could be problematic in real-time
applications. We used sensitivity analysis in which
the epoch length changed from 100ms to 300ms in
the step of 50ms (Table 5). It is possible to use
shorter epochs e.g. 150ms or even 100ms to improve
the entire recording and analysis time for real-time
applications. The overall performance of the algo-
rithm did not significantly decrease compared with
what obtains using 200ms analysis epochs. It is also
possible to further reduce the running time of the
algorithm by implementing the entire algorithm in
Vectorized C++ which is the focus of our future
work.

Two features namely RMS and DASDV were
used in our study. We further analyzed 94 fea-
tures used in EMG signal processing.44,70–73 Dif-
ferent combinations of such features were analyzed
using a ranking method. It was shown that among
bivariate features, those used in our study were opti-
mal in terms of accuracy and efficiency. We also

Table 5. Sensitivity analysis for changing the
epoch length.

Epoch Time
length (ms) Se (%) Pr (%) Acc (%) (ms)

100 73 72 67 30
150 74 73 68 39
200 75 73 70 43
250 75 74 70 50
300 77 74 72 60

Note: Se: Sensitivity; Pr: Precision; Acc: Accuracy;

Time: the average running time of the algorithm on

signal epochs.
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added peak-to-peak and then the irregularity coef-
ficient to our features to form the set of three and
four features. The overall accuracy of the algorithm
when using 2, 3, and 4 features was identical to
70%. The average running time was 43, 44 and 44ms
for analyzing 200ms signal epoch. The improve-
ment was not significant when moving from bivari-
ate to quadrivariate features. The improvement of
the accuracy of the method was however significant
when using up to 14 features that was not practi-
cal in online implementation. Moreover, incorporat-
ing superposition resolution algorithms, an average
increase of 19% in accuracy was obtained using our
bivariate features. Thus, there is a higher bound on
the expected accuracy when superimposed MUAPs
are not resolved.

A fixed threshold was used in our study for merg-
ing clusters (Fig. 2C). Adaptive thresholding such as
those proposed by Stashuk and Qu54 or soft thresh-
olding based on an expert-based fuzzy system pro-
posed by Marateb et al.22 if implemented online,
could in principle improve the performance of the
algorithm. On the other hand, the assignment of an
AcS to a cluster was performed adaptively in our
algorithm (Eqs. (3) and (4)), in which the neigh-
borhood of each cluster was estimated based on
its MUAP variability and general background noise
characteristics resulting in higher classification accu-
racy. Also, the proposed algorithm is used to decom-
pose single-channel iEMG signals. Multiple chan-
nels provide multiple views of the MUAPs, so that
MUAPs difficult to identify in one channel can often
be identified more reliably in another. The online
implementation of the multiple-channel version of
the proposed algorithm is expected to improve the
decomposition accuracy which is the focus of our
future activity. It could be possible to use the pro-
posed algorithm for decomposing other multi-unit
biosignals, such as cortical recordings.74

6. Conclusion

In conclusion, we have presented a novel online
method for the decomposition of single-channel
iEMG recordings. The method has been tested on
different muscles (BFlh, VM, VL and TA) as well
as simulated data during low-to-moderate isometric
constant-force or ramp contractions. The proposed
algorithm is thus a promising new tool for neural
decoding in the next-generation of prosthetic control.
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Appendix

The pseudo-code of the real-time iEMG decomposi-
tion algorithm

Algorithm 1. Online Clustering
Notation: Clus Rep(i) → representative of i-th clus-
ter

PsC(x, y)→Pseudo-correlation between two AcS’s
x and y

Cor(x, y)→Correlation between two AcS’s x and
y

Cntr(i)→ ith cluster center
AcS(i)→ the ith AcS time samples

Initial value: First point in the feature space
becomes the first cluster center (i.e. Cntr(1)) with
potential set to unity.

While (any AcS)
In the feature space, find the nearest cluster center

(Cntr(j)) to AcS(i) in the Euclidean space
If AcS(i) is inside the neighborhood of Cntr(j)

If PsC(Clus Rep(j), AcS(i)) > Thr PsC
Add AcS(i) to the j-th cluster
Update potential and center of the j-th cluster

Else
Find the most similar cluster center (Cntr(k)) to

AcS(i) using Cor between centers and AcS(i)
If Cor(Cntr(k),AcS(i)) is not low

Add AcS(i) to the k-th cluster
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Update potential and center of the k-th
cluster

Else
Make a new cluster and put AcS(i) as its

cluster center
End

End
Else

Find the most similar cluster center (Cntr(k))
to AcS(i) using PsC between cluster representatives
and AcS(i)

If PsC(Clus Rep(k), AcS(i)) > Thr PsC
Add AcS(i) to k-th cluster
Update potential and center of the k-th cluster

Else
Make a new cluster and put AcS(i) as its clus-

ter center
End

End
End
Note: The above algorithm is used for the first 10 s
signal recordings. Then the below information is
retained, the signal buffer is emptied and the next
frame is analyzed. This procedure continues for the
entire signal.

The stored information for each signal frame:
Detected spikes in the time domain and feature space,
potential of spikes, cluster age parameter, annota-
tions and CDR values.
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