
On the application of CMA-ES
to biped walk

RRI I

Institut de Robòtica i Informàtica Industrial

Alejandro Suárez
Carles Miralles
Salvador Medina

January 2017

IRI-TR-17-03

Technical Report

Abstract

This project studies the applicability of Evolution Strategies - Covariance Matrix Adapta-
tion to enable a biped robot to walk with no previous knowledge. While most work on the
subject is based on Genetic Algorithms, we believe that CMA-ES shows indeed great po-
tential. Our work focuses on the DARwIn-OP robot, although it can be easily extrapolated
to other humanoids. The evaluation of the solutions’ goodness is performed via simulation
to keep the real robot away from potential harm.

Keywords: Evolutionary Algorithms, CMA-ES, Robotics, Biped Walking

1. Introduction

Controlling humanoid robots to make them walk is a rather complex and difficult task.
Among all the difficulties, one of the most notable ones is that the movement itself is
unstable in its nature. The robot is not fixed to the ground and in each walking cycle there
are two moments in which the robot is standing in just one foot while the other is moving to
perform a step. Several disciplines like Physics, Biology, Mechanics and Computer Science
converge in the understanding of the sequence of movements that lead to a successful and
effective gait. Our purpose is to apply CMA-ES to come up with good solutions for this
challenge.

1.1. Robots and simulation frameworks

The evolution until achieving a successful gait behavior goes through many failed attempts
(i.e. falls) so it is dangerous and unfeasible to work directly with robots. Therefore the use
of simulators is a must. We make use of a very realistic simulation model of our humanoid
robot. It goes without saying that this solution can be easily extrapolated to other robots,
provided their model is available. We use ROS and the Gazebo simulators. More details
on this can be found in Appendix A.

The selected robot is a DARwIn-OP : a small humanoid robot manufactured by ROBO-
TIS (the interested reader may see the specifications in Appendix C). This particular robot
is an open platform and has been used in several competitions like IEEE ICRA Robot Chal-
lenge1 and RoboCup2. In addition IRI 3 will provide a physical one subject to satisfactory
results.

1.2. Goals of our work

The movement of a robot is determined by the evolution of the joint values that are as-
sociated to the robot’s actuators. Therefore our main objective is to find a set of joint’s
functions for each of the DARwIn-OP ’s actuators that allow it to walk. Moreover we would
like to make the DARwIn-OP advance as fast as possible. Once a solution has been found,
the next step would be to test it on the real robot.

We propose ourselves, as a milestone, to make the DARwIn-OP walk faster than in the
specifications (i.e. 24cm/s as shown in Appendix C). Also, we would like this solution to
be very stable and reproducible.

1. ICRA 2012 Home Page: http://icra2012.org/program/robotChallenge.php

2. RoboCup Mexico 2012: http://www.robocup2012.org/

3. Institut de Robtica i Informtica Industrial: http://www.iri.upc.edu/

2

http://icra2012.org/program/robotChallenge.php
http://www.robocup2012.org/
http://www.iri.upc.edu/

Evolution strategies for biped walking

We believe that CMA-ES can yield faster results than the more commonly used GA in
this application. We pose as a secondary objective to find a configuration of the algorithm
(fitness function, the initial strategy’s centroid and the CMA-ES’s parameters) that leads
to a fast convergence. We believe that a faster convergence would make Evolutionary
Algorithms’ approaches to this challenge more attractive and widely used. It would allow
for a quicker adaptation of the gait behavior of the robot under small variations such as
changes in the mass distribution, in the PID controllers that govern the actuators or in
the physic properties of the environment. Nevertheless checking the performance in these
special environments is outside the scope of this project.

2. Previous work

The robots’ presence in our daily lives is nowadays more noticeable and is estimated that
their use will explode in the current century. Humanoid robots present a great potential
when it comes to adaptability. Therefore finding methods that allow to find the parame-
ters needed for optimizing (under different criteria) biped locomotion is still an interesting
research topic with important practical implications. The current section reviews some of
the different approaches tried in the past.

The work in [Pratt, 1995] describes a technique called Virtual Model Control. It consists
in a control scheme based on a high accuracy robot model and the interaction and constraints
between different parts of the robot. This method is quite robust since it relies on a precise
model of the robot and on its physical characteristics to calculate the movement parameters.
Therefore it is a robot dependent method. Another difficulty addressed in the dissertation
is the non-ideal actuators (noise, latency, etc).

Another method is that of [Benbrahim and Franklin, 1997] which uses Reinforcement
Learning, namely the self scaling reinforcement algorithm (SSR). In this case the robot
learns to walk by means of repeated experiments in which the actions that lead to failure
(e.g. falling or not meeting another soundness criteria) are penalized, while the actions that
lead to successful behavior are rewarded. This approach gains in generality and adaptability
with respect to the previous one at the price of introducing a learning stage before the
robot can actually walk. However, according to [Benbrahim and Franklin, 1997, p. 64],
the use of reinforcement learning without any previous knowledge takes impractical times.
To overcome this issue, a supervised learning approach is proposed by means of adding a
pre-trained neural network with examples obtained from a simulator environment. This
adds one additional step of supervised learning to the solution.

We can find several other authors that apply generic methods. In the same line as
us, applying Evolutionary Algorithms, we can find [Picado et al., 2009], [Arakawa and
Fukuda, 1996] and [Heinen and Osório, 2006]. These three examples use Genetic Algorithms,
but considering different soundness criteria (i.e. fitness function), solution representation
(the Fourier oscillators from [Picado et al., 2009] vs the joint sequence specification of the
other two papers) and scope. In particular, one of the most notable differences is that
the last of these papers considers robots with more than 2 legs (which are actually more
stable). In essence, the common motif behind these last three works is that the individuals
(chromosomes) determine the movement of the robot’s joint. Each of these individuals is
simulated and the fitness function indicates its performance.

3

[Hebbel et al., 2006] falls into the category of Evolutionary Algorithms as well. In fact it
is closer to our own approach since it considers both Genetic Algorithms and several flavors
of Evolution Strategies (although not CMA) like (1 + 1) with the 1/5 rule, (1, 30), (5, 30)
and (5 + 30). The authors propose using a parametrization of the curves described by the
feet as the individual representation.

Perhaps surprisingly, there are not many works that revolve around the application of
CMA-ES to gait-behavior generation. In a slightly related way [Farchy et al., 2013] uses
CMA-ES to optimize the parameters of a simulator, so the behavior of the simulated robot
is as faithful as possible to the behavior of the real one. Then, the simulator is employed
to optimize the walking behavior of the robot and the cycle starts again. In this approach,
simulation and testing on the real robot are more closely interleaved. Contrarily to us,
the individuals of the CMA-ES algorithm are not robot’s movements specifications, but
simulation parameters that are adjusted to represent faithfully the behavior of the robot.

3. Application of CMA-ES to biped-locomotion generation

For this project, we have decided to use a particular subfamily of Evolution Strategies:
Covariance Matrix Adaptation - Evolution Strategies (CMA-ES). The pillars that support
this decision are mainly three: (1) at the time of writing this report, this algorithm is
considered the state-of-the-art of ES (arguably even of Evolutionary Algorithms); (2) the
lack of literature on the application of CMA-ES to tackle the generation and optimization
of biped locomotion; (3) and our genuine interest in discovering how well-suited it is for
this particular task.

CMA-ES was first described in [Hansen and Ostermeier, 2001]. In words of their authors,
it does not require an intensive parameter tweaking. For the reader’s convenience, we have
outlined the CMA-ES algorithm (pseudo-code included) in Appendix E. The new individuals
are generated according to a multivariate Gaussian distribution. Part of the success of this
method comes from the great power that provides the Covariance Matrix Adaptation scheme
to adapt to the fitness function. This adaptation is somewhat reminiscent of the update
step in quasi-Newton methods, although derivative free, robust to noise and with potential
to avoid getting stuck in local extrema.

The algorithm depends on the parameters λ, µ, as well as the initial m, σ0 and C. Here
λ is the size of the population each generation; µ defines the number of individuals that will
be used to calculate the new mean; m is the centroid of the newly generated individuals;
σ0 represents is the “step” and modulates the strength of the mutation; and C is the initial
co-variance matrix. Note that σ0 and C are updated at each generation depending on the
generated population and that their initial value can be decided (or let to the default).

3.1. Fitness function

The parents of the next generation are decided depending upon the fitness function. This
function is very important, as it guides the algorithm to a particular kind of solutions.

We use the fitness function proposed in [Heinen and Osório, 2006]:

f =
δ

1 + θ
(1)

4

Evolution strategies for biped walking

where
θ(r1...n, p1...n, y1...n) =

√
V ar(r1...n) + V ar(p1...n) + V ar(y1...n) (2a)

δ(yleftfoot, yrightfoot) = max(yleftfoot, yrightfoot) (2b)

δ represents the distance traversed by the robot during a single simulation (we simulate
10 seconds). Instead of using the center of gravity or any other part of the body, we use
the distance of the furthest foot in good contact with the ground. This will ensure that
individuals that fall forwards are not preferred over individuals that barely advance but do
not fall. This will also avoid no-biped advancement up to certain extend.

θ measures the instability of the robot. Namely, it is the average oscillation (row+pitch+yaw)
of the torso in radians.

Combining δ and θ as shown in Equation 1 we can optimize both the robot’s speed
and stability avoiding multi-objective fitness function. This way we do not incur on a
careful selection of weighting factors for each objective. Moreover for this first take on
the problem we want to avoid including very specific knowledge about the robot and the
walking dynamics (like the ZMP in [Arakawa and Fukuda, 1996]).

It is important to stress that the fitness function is not deterministic because the simu-
lator has a stochastic behavior4. Therefore the same individual will render different fitness
values each time it is simulated. Typically, the deviation is quite slight, but there are cases
in which the individuals are at the edge of stability and may either fall or walk at a fast
pace.

Therefore, in addition to the fitness function from equation 1, we propose an alternative
fitness evaluation that emphasizes stability and is robust against randomness. This evalua-
tion can be seen in Algorithm 1. Basically it consists of: (1) performing several simulations;
(2) picking the worst of the measured fitness (worst-case scenario); (3) and clamping the
distance so once the robot reaches δmax, the only way of increasing the fitness function is
by reducing the average oscillation.

input : individual I
output: Fitness evaluation

1 for i← 1,M do
2 δi, θi ← SimulateIndividual(I) ;

3 fi ← min(δmax,δi)
1+θi

;

4 end
5 return min(f1 . . . fM)

Algorithm 1: Alternative fitness evaluation procedure

We apply the fitness function from Equation 1 in section 4.1 to generate walking behavior
starting from static positions. Then, as we can see in section 4.2, we use Algorithm 1 as the
evaluation method in an improvement phase aimed at generating more stable individuals
starting from marginally stable ones.

4. Simulations in Gazebo are not repeatable: http://answers.ros.org/question/40208/

gazebo-simulations-not-repeatable/

5

http://answers.ros.org/question/40208/gazebo-simulations-not-repeatable/
http://answers.ros.org/question/40208/gazebo-simulations-not-repeatable/

3.2. Representation of the solutions

We apply the idea proposed in [Picado et al., 2009]. Since joints typically follow a cyclic
movement, we can associate a periodic oscillator to each of them. Each oscillator consists
of a single term Fourier series (i.e. a constant plus a sinus function), as shown in 3. Much
like in the aforementioned work we assume that all the oscillators share the same period.

f(t) = C +A1 sin

(
2π

T
t+ φ1

)
∀t ∈ R (3)

Figure 1: This image depicts all the DARwIn-
OP ’s joints.

This means that for defining a solution
using this simplification we have to consider
3 variables for each joint: the offset C, the
amplitude A and the phase φ, as well as the
period of the global oscillation T .

In the case of the DARwIn-OP robot,
we would needNjoints·3+1 = 61 parameters
to represent the movement of all the joints.
We can see in figure 1 all the robot’s joints.
Fortunately, the number of parameters can
be greatly reduced if we fix the joints that
do not have a great influence over the gait
(like j elbow) and we assume sagittal sym-
metry.

For the purpose of this work, each
individual explicitly defines the move-
ment only for j shoulder pitch l, j hip roll l,
j hip pitch l, j knee l, j ankle pitch l and

j ankle roll l. The right hand side is inferred by symmetry. For this reason, the total
number of variables needed for representing a solution is 6 · 3 + 1 = 19 real values.

It is worth mentioning that we define a maximum and minimum limits for each of
these 19 parameters to keep the algorithm from wasting time on absurd solutions. If a
generated individual violates some of these constraints, we forced it back (reproject) into
the feasible space. This is one of the methods studied in [Diouane et al., 2015] for dealing
with constrained problems.

3.3. Termination criteria

Problems with a big search space and noisy fitness functions like this one may take a lot
of time to converge, or even not converge at all. Furthermore, one of the main goals of
our work is to be able to find a solution in a very small time. For this reason, it is very
important to accurately define the termination criteria of the executions.

We have picked four of the criteria described in [Hansen, 2009]. The complete list of
termination criteria that we have used is listed below:

• MaxIter. We have modified the formula from the paper. Considering that a normal
laptop computer can execute up to 4 simulations in real time, that each simulation

6

Evolution strategies for biped walking

takes up to 10 seconds and we want to limit this time to 3 days, the maximum number
of individuals that can be generated is about 100000. For this reason, we will limit
the maximum number of iterations to 100000/λ.

• Stagnation. The median of the 20 newest values is not smaller than the median of
the 20 oldest values, respectively, in the two arrays containing the best function values
and the median function values of the last 0.2t+ 120 + 30D

λ iterations. This criterion
never triggered in our case.

• ConditionCov. The condition number of covariance matrix exceeds 1014 (inversion
becomes numerically unstable).

• EqualFunVals. In more than 1
3 of the last D iterations the objective function value

of the best and the k-th best solution are identical, that is f(x1...λ) = f(xk...λ), where
k = 1 + 0.1 + λ

4 (low diversity).

In addition, we have added an additional criterion of our own in the improvement phase
described in 4.2:

• GoodEnough: the fitness value of the best individual from last generation exceeds
δmax/1.2 (i.e. it reaches the threshold distance with an average oscillation below 0.2
radians).

4. Results and Discussion

In this section we describe the results we obtained from the experiments5. These results are
compared with the ones obtained by [Picado et al., 2009] using Genetic Algorithms, since
the characteristics of the robot used in his work are very similar to DARwIn-OP ’s (similar
size, mass and the same number of joints).

4.1. Starting from a statically stable individual

The first experiment that we have carried out is to check whether or not it is possible to
learn good walking parameters starting from a static individual.

In order to do this, we have executed CMA-ES with the fitness function from equation
1, and the first four termination criteria specified in 3.3. We have tested different values
of λ, µ and σ0. Table 1 in annex F summarize our results. We consider solutions with
fitness greater than 2 as good solutions since the average speed in these solutions is similar
or greater than that of DARwIn-OP ’s specification.

As it can be clearly seen in the tables, the algorithm usually finds better solutions for
large values of λ. This means that a big number of descendant must be generated in each
iteration to ensure that the algorithm does not gets stuck in a local maxima.

Another interesting noticeable fact is the influence of the µ parameter. CMA-ES tends
to be faster and find better solutions for very small values of µ. This means that for the

5. In addition to this section, the interested reader can check out a demonstration video of our work:
https://www.youtube.com/watch?v=8n8mF-RmsNs

7

https://www.youtube.com/watch?v=8n8mF-RmsNs

0 50000 100000 150000 200000
Number of individuals

0

1

2

3

4

5

Fi
tn

e
ss

max
std
best
mean

(a) Evolution of the fitness value for
λ = 800, µ = 1 and σ = 0.10
starting from an static pose

0 200 400 600 800 1000 1200 1400 1600
Number of individuals

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
tn

e
ss

max
std
best
mean

(b) Evolution of the fitness value for
λ = 25, µ = 5 and σ = 0.10
starting from scratch.

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of individuals

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fi
tn

e
ss

max
std
best
mean

(c) Evolution of the fitness value for
λ = 100, µ = 5 and σ = 0.15
starting from an unstable solu-
tion.

Figure 2: Evolution of the CMA-ES starting from scratch and starting from an unstable
solution. 2(a) (high λ) shows convergence to a quite good solution (MaxIter con-
dition met), while 2(b) (low λ) shows very poor results (EqualFunVals condition
kicked in). 2(c) corresponds to an improvement execution over the solution found
in 2(a)

individual representation that we have defined, combining several good individuals does not
help generating better descendants.

An example of a successful evolution can be appreciated in figure 2(a). One of the
solutions that have proven to be better both in terms of the obtained fitness and visual
verification is the one obtained with λ = 800, µ = 5 and σ = 0.10.

We see that both the maximum and the average fitness improves slowly, until the maxi-
mum fitness reaches a value close to 1. From that point it increases fast until it approaches
4. At this point the curve flattens. Looking at the simulator, we can observe that in the
first generations of individuals the robots always fall after a few steps, or fail to advance
at all. This leads to a fitness that is similar among all individuals (low variance). After

8

Evolution strategies for biped walking

the generation of some individuals that are able to walk for a small period without falling,
the algorithm focuses on improving that solution, and the diversity and variance of the
population increase. After that point, the best solution is further improved until the fitness
value flattens.

This behavior also manifests with other parameters and executions, but the local max-
ima that the fitness function reaches varies. This is to be expected as CMA-ES is a stochastic
algorithm and different executions might yield different results even with the same param-
eters.

On the other hand, figure 2(b) exemplifies a evolution process that gets stuck in a poor
region of the solution space. This execution has been obtained with a comparatively low λ
parameter (25).

4.2. Refining a marginally stable individual

In the previous subsection, we discussed the feasibility of making the robot walk starting
from a static pose and without previous knowledge. In this case, it takes quite a long time
to find the first promising solution.

A possible option to accelerate this process is to initialize the algorithm with a previously
found individual as the initial mean. In figure 2(c) we show the fitness curves when the
best individual of the last generation of a previous execution is used as the initial mean.

The fitness function has been slightly modified with respect to the previous experiment
restricting the maximum distance to 4 meters and evaluating each individual 3 times taking
the minimum fitness. With this modification of the fitness function we obtain slower (close
to 0.4m/s) but more stable solutions. This is, we refine the already found sub-optimal
solution.

The evolution of the fitness value in this case is different from what we saw for the
static case. As we can see in the figure, convergence is reached much faster, with just 16000
individuals. The mean fitness increases fast and ends up very close to the maximum fitness
value while its standard deviation stabilizes or even decreases. At this point, we see that all
individuals in the last generations are almost identical and the EqualFunVals stop condition
is triggered.

It is also relevant to point out that even though the fitness of the sub-optimal solution
used as the mean was high, the mean and maximum fitness obtained in the first generations
is rather low. This is due to the fact that the initial variance used is high. Even small
variations in the parameters of the oscillators can make the robot fall and greatly harm the
fitness value.

4.3. Testing our solutions in a real DARwIn-OP robot

As the last step of our experiment, we selected some of the more promising solutions and
compiled them for being used in an actual DARwIn-OP . Sadly, none of these solutions
worked and in some cases the robot walked backwards or fell. These are the possible
reasons for this unexpected behavior:

• The robot that we were given was missing some parts (hands and protective case) and
some of them were not the same of the specification (the original head was replaced
by a camera) hence altering the mass distribution of the robot.

9

• The parameters of the simulation were set so that the friction between the floor and
the robot’s feet was high. In the real test environment, the floor was quite slippery.
We tried to solve this by attaching rubber to the base of the feet but the robot kept
falling.

• The simulation did not take into account the acceleration phase, present and deter-
minant in a real world scenario.

• The script that we executed in the robot was not exactly the same as in the simulator,
as we had to re-code it to c language. With just one session with the robot we did
not have time to debug our code.

Some images of the experiments performed with the robot as well as a link to the video
can be found in Appendix 4.3.

5. Strengths and weaknesses

In section 2, we have seen approaches like [Pratt, 1995] that are capable of getting a precise
solution at the price of making explicit use of robot. This make these solutions robot-
dependent. In our solution, those models are not part of the algorithm but just the simulator
framework. By proceeding this way, our solution can be easily applied to other kinds of
robots by just altering the model used in the simulator and the joint’s names.

More advanced techniques such as [Benbrahim and Franklin, 1997] use supervised learn-
ing to get an robot-agnostic solution. To make this method feasible, the author explores
the use of a pre-trained neural networks to provide prior knowledge and hence accelerate
the exploration. CMA-ES provides a clear advantage over the aforementioned method since
no previous knowledge nor supervised learning is required.

When we compare the use of CMA-ES with other works that make use of Genetic
Algorithms, such as [Picado et al., 2009] and [Arakawa and Fukuda, 1996], we also find
other advantages: with CMA-ES, definition of selection, crossover and mutation criteria
is not required. In addition to that, some of the algorithm’s parameters are subject to
self-adaptation making it much easier to be tuned.

Moreover in terms of convergence velocity, we have obtained results that suggest that
CMA-ES has the potential to find acceptable solutions in less time. For instance, in [Picado
et al., 2009] the experiments needed 300 generations of 100 chromosomes each to come up
with an individual that walks at 50cm/s. As we can see in table 2, an execution of CMA-ES
λ = 100, σ = 0.1 and µ = 5 yields a fitness of 4.1 (speed greater than 41cm/s) at the last
generation (33700 individuals simulated), while it needs just about 8900 individuals to come
up with a solution that is able to walk more than 2 meters. While we have not improved
their mark, we have not devoted as much effort to this as we have to ensure that the gait
is stable. However, we strongly believe that this milestone can be achieved.

Another strong point of our solution is that we can easily adapt the trade-off between
speed and stability with the alternative fitness evaluation proposed in algorithm 1. This
refinement phase can be performed in very few iterations, as we could also prove. It can be
also useful to adapt gait parameters that work for certain conditions (environment, mass
distribution, PID controllers) to other conditions.

10

Evolution strategies for biped walking

There are also multiple drawbacks of this approach being the non-deterministic nature
of CMA-ES one of the most troublesome (although the same can be said of any other EA
approach). Even with good parameters, the algorithm might find different solutions in
successive executions. The value given by the fitness function is not deterministic neither,
as it depends on the simulator.

Another limitation of our work is the fact that we do not consider the gait-preparation
phase and just focus on constant speed movement. Furthermore, the Fourier expansion
used to describe the periodic movement of the motors might be too simplistic.

Also, we have not explored other external factors like differences in ground friction or
inclination, tolerance of the motors or even the effects of wind. It would be possible to
execute the algorithm for each of these scenarios with just slight modifications though.

6. Conclusions and future work

We have proposed the use of CMA-ES to optimize biped locomotion. We believe that this
algorithm is, from theoretical and practical point of view, very suitable for the stated chal-
lenge because we have to navigate through a space of continuous solutions. Another reason
that supports this choice is that CMA-ES is robust against the inherent noise present in
most simulators (which is a good preparation for what awaits us in the real world). We
have found several individuals that yield promising results inside the simulation environ-
ment. However there is still much work to do to cover the gap between the simulation and
the real robot.

The experimentation part has made us aware of the captivating nature of evolution-based
algorithm. Many unexpected results have shown up while working on the implementation:
individuals that advanced crawling or adopting a quadruped pose. We could avoid this up
to certain extent being careful on the way we measure the distance traveled by the robot
and selecting reasonably low σ0 parameters (“step” parameter of the CMA-ES algorithm).

At the moment of writing these conclusions we have covered only the case of an already
marching robot, with no preparation steps to start the gait process. We had to take this into
account via in the initialization of the robot’s position at the beginning of each simulation.

Regarding CMA-ES particularities we have checked the repercussion of σ0, λ (number
of descendants) and µ (number of members of each generation). At the very beginning we
started using big values of σ0 getting as a result a chaotic execution of the algorithm that
usually lead to crawling robots (seal-like movement). On the other hand, and although
more rigorous statistical study is needed (i.e. more executions repeating the same set of
parameters and analyzing them in terms of means and standard deviations), we have found
a general pattern: we need reasonably high λ values (say, greater than 100), and quite
low µ values (say, lower or equal than λ/16) to have certain guarantee of obtaining good
solutions. We hypothesize that we need to generate enough descendants so the evolution
does not get stuck following falsely promising directions, and that recombining too many
individuals that are good on their own does not lead to better individuals.

An additional idea for future work is to introduce more specialized knowledge in the
fitness function, although part of the appeal of this approach is precisely avoiding this. It
can also be interesting to test CMA-ES with different types of solution (e.g. considering
more terms in the Fourier expansion or considering completely different functions), and

11

to include somehow the optimization of gait-preparation procedure so the robot can walk
starting from a completely static pose. Moreover we could face more difficult challenges like
climbing stairs using CMA-ES.

References

Takemasa Arakawa and Toshio Fukuda. Natural motion trajectory generation of biped
locomotion robot using genetic algorithm through energy optimization. In Systems, Man,
and Cybernetics, 1996., IEEE International Conference on, volume 2, pages 1495–1500.
IEEE, 1996.

Hamid Benbrahim and Judy A Franklin. Biped dynamic walking using reinforcement learn-
ing. Robotics and Autonomous Systems, 22(3-4):283–302, 1997.

Y Diouane, S Gratton, and LN Vicente. Globally convergent evolution strategies. Mathe-
matical Programming, 152(1-2):467–490, 2015.

Alon Farchy, Samuel Barrett, Patrick MacAlpine, and Peter Stone. Humanoid robots learn-
ing to walk faster: From the real world to simulation and back. In Proceedings of the
2013 international conference on autonomous agents and multi-agent systems, pages 39–
46. International Foundation for Autonomous Agents and Multiagent Systems, 2013.

Nikolaus Hansen. Benchmarking a bi-population cma-es on the bbob-2009 function testbed.
In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, pages 2389–2396. ACM, 2009.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary computation, 9(2):159–195, 2001.

Matthias Hebbel, Ralf Kosse, and Walter Nistico. Modeling and learning walking gaits
of biped robots. In Proceedings of the Workshop on Humanoid Soccer Robots of the
IEEE-RAS International Conference on Humanoid Robots, pages 40–48, 2006.

Milton Roberto Heinen and Fernando Santos Osório. Applying genetic algorithms to control
gait of physically based simulated robots. In 2006 IEEE International Conference on
Evolutionary Computation, pages 1823–1830. IEEE, 2006.

Hugo Picado, Marcos Gestal, Nuno Lau, Luis P Reis, and Ana M Tomé. Automatic gener-
ation of biped walk behavior using genetic algorithms. In International Work-Conference
on Artificial Neural Networks, pages 805–812. Springer, 2009.

Jerry E Pratt. Virtual model control of a biped walking robot. PhD thesis, Massachusetts
Institute of Technology, 1995.

12

Evolution strategies for biped walking

Appendix A. Implementation details

We have chosen Gazebo6 as our simulation environment because it is easily integrable into
ROS7. It has many adepts and supports the widely used URDF (Universal Robot Descrip-
tion Format) in which we can find the specification of many robots. We do not start from
scratch: we make use of DARwIn-OP ’s model developed by the IRI. We have adapted this
model to our own needs (e.g. disabling the camera and the other sensors since we do not
use as they add significant overhead to the simulation). In figure 3 we can see two instances
of the simulator running in parallel.

Figure 3: Two simulations running at once

We have used the DEAP’s8 utilities and implementation of CMA-ES to perform our
work.

All in all, our implementation contains both C++ and Python code.

A.1. Source

The complete source code that conforms our implementation, along with setup instructions
can be found at https://gitlab.com/cmirallesp/ci.

Next we list all the scripts and modules that we have developed for this project. This
list only contains the files that have been used for the final experiments and does not include
previous tests. These test files can be found in the project’s repository.

• darwin fourier controller.cpp A Gazebo-ROS plugin that gets the list of parame-
ters of the oscillators and takes care of the joint trajectory execution (using an error-
proportional or P controller). In addition to that, it computes the distance traversed

6. http://gazebosim.org/

7. Robot Operating System (http://www.ros.org/), an open source platform for working in the field of
robotics with many utilities.

8. Distributed Evolutionary Algorithms in Python, http://deap.readthedocs.io/en/master/index.html

13

https://gitlab.com/cmirallesp/ci
http://gazebosim.org/
http://www.ros.org/
http://deap.readthedocs.io/en/master/index.html

by the robot as well as the oscillation of the center of masses according to our fitness
function definition in 3.1. In addition to this, the plugin detects the moment when
the robot falls so that the simulation can be stopped before the specified maximum
duration.

• es darwin.py A python script that executes the CMA-ES algorithm with the speci-
fied values of λ, σ0, µ and initial centroid. The number of Gazebo simulators running
on the machine can also be specified with the n workers parameter (we take advan-
tage of the independence between fitness evaluations to run several simulations at
once). This script generates checkpoint files at each generation (checkpoint * * *.pkl
and population gen *.pkl) so that if the execution is halted, it can resumed from the
point where it was interrupted. It also implements the termination criteria specified
in 3.3.

• eval pool.py This script is used by es darwin.py to communicate with the simulators.
It defines the FitnessEvaluationPool class, which distributes the evaluation task
among all the available Gazebo simulators.

• bounds.py Defines the limit of the parameters of the different oscillators according
either to the specifications of the real DARwIn-OP robot or to what seems reasonable
for a successful gait. This method is used when a new generation of individuals is
generated by es darwin.py.

• sweep.py This script iteratively executes the es darwin.py script for different values
of lambda, mu and sigma.

• extract population data.py This script reads the checkpoint files generated by
es darwin.py and plots the evolution of the fitness function. In particular, it plots the
maximum fitness for all previous generations, the maximum fitness for the current
generation and the mean fitness of the generation with its standard deviation.

• reproduce population.py For a given checkpoint folder, this script reproduces the
k best individuals of the specified generation in the Gazebo simulator.

• get table values.py Reads the checkpoint files of the specified folder and prints a
table in LATEXformat with the maximum fitness of the last generation, the number
of individuals generated and the numbers of individuals needed to get a fitness value
greater than 2.0.

Appendix B. Execution environment

For the simulations, we have used three machines with the exact same technical specifica-
tions. The most relevant ones are listed below:

• Processor: Intel i5-4460

• Memory: 4 x 4GB DDR @ 1866MHz

• Storage: Samsung SSD 850 EVO 250GB

14

Evolution strategies for biped walking

• OS: Arch Linux 64bit

• Environment: Ubuntu 14.04 Docker Image

The simulation environment was packed in a Docker9 image and distributed among the
different machines. This made sure that the configuration and versions in all machines were
exactly the same and greatly reduced the deployment time.

Appendix C. DARwIn-OP ’s specification sheet

The following list details the technical specifications of the robot used for this practice.
These specifications are extracted from its official website.

• Default walking speed: 24.0 cm/sec (9.44 in/sec) 0.25 sec/step - user modifiable gait

• Default standing up time from ground: 2.8 sec (from facing down) and 3.9 sec (from
facing up) - user modifiable speed

• Built-in PC: 1.6 GHz Intel Atom Z530 on-board 4GB flash SSD

• Management controller (CM-730): ARM CortexM3 STM32F103RE 72MHz

• 20 actuator modules (6 DOF leg x2+ 3 DOF arm x2 + 2 DOF neck)

• Actuators with durable metallic gears (DYNAMIXEL MX-28)

• Self-maintenance kit (easy to follow steps and instructions)

• Standby mode for low power consumption

• 3Mbps high-speed Dynamixel bus for joint control

• Battery (30 minutes of operations), charger, and external power adapter (Battery can
be removed from robot without shutting down by plugging in external power before
removal)

• Versatile functionality (can accept legacy, current, and future peripherals)

• 3-axis gyro, 3-axis accelerometer, button x3, detection microphone x2

Appendix D. Tests with a real DARwIn-OP robot

A video showing one of the solutions that we ran in the actual robot can be found in https:

//www.youtube.com/watch?v=lOaWvOA9cb4. Figures 4(a) and 4(b) show the DARwIn-OP
robot used in our experiments.

9. Docker: https://www.docker.com/

15

https://www.youtube.com/watch?v=lOaWvOA9cb4
https://www.youtube.com/watch?v=lOaWvOA9cb4
https://www.docker.com/

(a) Download mode, all motors dis-
abled.

(b) Executing one of the experimen-
tal walking behaviors

Figure 4: Real DARwIn-OP

Appendix E. CMA-ES algorithm

While CMA-ES follows in essence the basic leitmotiv from Evolutionary Computation, it
has the particularity that the amount of recombinants is fixed to one (a weighted mean of all
the individuals of the current population), and this recombinant gives place to λ descendants
through mutation. The next population is formed with the best µ children (deterministic
selection and replacement). Also it has a great adaptation power to the fitness function

16

Evolution strategies for biped walking

thanks to the update step of its covariance matrix. In Algorithm 2 we show how CMA-ES
works.

input : define λ, µ
output: single individual

1 initialize m, σ0, C = I, pσ = 0, pc = 0 ;
2 while not terminate do
3 for i← 1, λ do
4 xi = SampleMultivariateNormal(mean = m, covariance matrix = σ2C);
5 fi = CalculateFitness(xi);

6 end
7 xi...λ ← Argsorted(fi...λ, xi...λ);
8 m′ = m;
9 m ← UpdateMean(µ,x1, . . . , xλ);

10 pσ ← UpdatePs(pσ, σ−1C−1/2(m−m′)) ;
11 pC ← UpdatePs(pC , σ−1(m−m′), ||pσ||) ;
12 C ← UpdateCovariance(C,pc, (x1 −m′)/σ,. . . ,(xλ −m′)/σ) ;
13 σ0 ← UpdteSigma(σ0, ||pσ||) ;

14 end
15 return m or x1 // Either will do

Algorithm 2: Pseudo-code of the CMA-ES algorithm

Appendix F. Execution results

The results of the experiments carried out for this project can be found in the tables below.
For each combination of parameters, it shows the best fitness of the last generation, the
total number of individuals that were generated before a stop condition was triggered and
the number of individuals needed for obtaining one whose fitness is greater than 2.0.

It can be appreciated in Table 3 that some of the solutions found with high σ0 values
did not present the expected behavior. They correspond to robots that evolved a non-biped
advancement technique, much like in the example shown in figure 5

Figure 5: Non-biped advancement technique

17

σ0 λ µ Best f # Individuals # Individuals for f >= 2

0.05 25 1 0.311 4050 N/A
0.05 25 5 0.765 10400 N/A
0.05 25 3 4.278 11050 2825
0.05 25 6 0.685 10250 N/A
0.05 25 12 0.765 9975 N/A
0.05 50 1 0.752 18400 N/A
0.05 50 5 3.167 24500 5150
0.05 50 6 0.618 17700 N/A
0.05 50 12 1.004 13950 N/A
0.05 50 25 1.003 21350 N/A
0.05 100 1 1.330 28800 N/A
0.05 100 5 0.623 23200 N/A
0.05 100 12 2.253 39500 11600
0.05 400 1 4.543 100000 18800
0.05 400 5 0.767 74400 N/A
0.05 400 50 6.682 100000 18800
0.05 400 100 5.500 100000 14400
0.05 400 200 6.457 100000 12000
0.05 800 5 4.039 100000 35200

Table 1: Values of Max Fitness, Total Individuals, Individuals for Fitness >= 2 for σ = 0.05

18

Evolution strategies for biped walking

σ0 λ µ Best f # Individuals # Individuals for f >= 2

0.10 25 1 2.541 10900 5950
0.10 25 5 2.730 9875 3025
0.10 25 3 0.673 10600 N/A
0.10 25 6 0.404 6075 N/A
0.10 25 12 0.595 5075 N/A
0.10 50 1 0.339 12300 N/A
0.10 50 5 1.072 15500 N/A
0.10 50 6 4.072 13200 3500
0.10 50 12 0.582 7700 N/A
0.10 50 25 2.680 46950 9950
0.10 100 1 3.045 32000 9500
0.10 100 5 4.110 33700 8900
0.10 100 12 1.161 25800 N/A
0.10 100 25 5.231 51700 5800
0.10 100 50 0.463 13700 N/A
0.10 200 1 5.053 62400 8200
0.10 400 1 4.864 100000 30400
0.10 400 5 4.382 97200 14400
0.10 400 50 5.477 100000 20000
0.10 400 100 0.491 52400 N/A
0.10 400 200 0.487 44800 N/A
0.10 800 5 6.284 100000 6400
0.10 800 50 5.699 100000 24800
0.10 800 100 0.424 55200 N/A
0.10 800 200 0.426 51200 N/A
0.10 800 400 0.424 52000 N/A

Table 2: Values of Max Fitness, Total Individuals, Individuals for Fitness >= 2 for σ = 0.10

19

σ0 λ µ Best f # Individuals # Individuals for f >= 2

0.30 25 1 ∗3.049 8125 400
0.30 25 5 4.332 9050 1850
0.30 25 3 ∗0.363 3225 N/A
0.30 25 6 0.258 2975 N/A
0.30 25 12 0.351 5725 N/A
0.30 50 1 4.488 23100 3250
0.30 50 5 0.451 7400 N/A
0.30 50 6 ∗5.467 19200 2150
0.30 50 12 ∗4.210 19450 3000
0.30 50 25 ∗3.186 21950 4250
0.30 100 1 0.446 15000 N/A
0.30 100 5 0.511 16100 N/A
0.30 100 12 5.970 29000 3500
0.30 100 25 6.442 40000 7000
0.30 100 50 2.816 5400 4300
0.30 400 1 0.450 71600 N/A
0.30 400 5 0.491 68800 N/A
0.30 400 50 5.300 100000 13200
0.30 400 100 5.301 100000 15200
0.30 400 200 6.583 100000 23200
0.30 800 5 0.484 100000 N/A

Table 3: Values of Max Fitness, Total Individuals, Individuals for Fitness >= 2 for σ0 =
0.30. Non-biped (crawling) individuals are marked with ∗

20

	Introduction
	Robots and simulation frameworks
	Goals of our work

	Previous work
	Application of CMA-ES to biped-locomotion generation
	Fitness function
	Representation of the solutions
	Termination criteria

	Results and Discussion
	Starting from a statically stable individual
	Refining a marginally stable individual
	Testing our solutions in a real DARwIn-OP robot

	Strengths and weaknesses
	Conclusions and future work
	Implementation details
	Source

	Execution environment
	DARwIn-OP's specification sheet
	Tests with a real DARwIn-OP robot
	CMA-ES algorithm
	Execution results

