
Time-Predictable Parallel Programming Models
Maria A. Serrano

Barcelona Supercomputing Center (BSC) and
Technical University of Catalonia (UPC), Barcelona, Spain

Email: maria.serranogracia@bsc.es

Eduardo Quiñones
Barcelona Supercomputing Center (BSC), Barcelona, Spain

Email: eduardo.quinones@bsc.es

Abstract—Embedded Computing (EC) systems are increas-
ingly concerned with providing higher performance in real-time
while HPC applications require huge amounts of information
to be processed within a bounded amount of time. Addressing
this convergence and mixed set of requirements needs suitable
programming methodologies to exploit the massively parallel
computation capabilities of the available platforms in a pre-
dictable way. OpenMP has evolved to deal with the programma-
bility of heterogeneous many-cores, with mature support for fine-
grained task parallelism. Unfortunately, while these features are
very relevant for EC heterogeneous systems, often modeled as
periodic task graphs, both the OpenMP programming interface
and the execution model are completely agnostic to any timing
requirement that the target applications may have. The goal
of our work is to enable the use of the OpenMP parallel
programming model in real-time embedded systems, such that
many-cores architectures can be adopted in critical real-time
embedded systems. To do so, it is required to guarantee the
timing behavior of OpenMP applications.

I. INTRODUCTION

High performance computing (HPC) has been for a long
time the realm of a specific community within academia and
specialized industries. Similarly, embedded computing (EC)
has also focused mainly on specific systems with specialized
and fixed functionalities for which timing requirements were
considered more important than performance requirements.
However, with the ever-increasing availability of more pow-
erful processing platforms, alongside affordable and scalable
software solutions, both HPC and EC are extending to other
sectors and application domains.

As a result, a new type of applications is crossing the
boundaries between the HPC and the EC domains. For such
applications, the correctness of the result is dependent on both
performance and timing requirements, and the failure to meet
either of them is critical to the functioning of the system. In
this context, it is essential to guarantee the timing predictability
of the performed computations.

The use of parallel programming models is fundamental
to exploit the performance of current and future many-core
architectures, while providing good programmability (and so
productivity) of high performance systems. Among the dif-
ferent models, OpenMP [1] has become one of the most used
parallel programming models due to its simplicity and scalabil-
ity in shared memory and heterogeneous systems. The latest
specifications of OpenMP incorporate a tasking model that
enables very sophisticated types of fine-grained and irregular
parallelism, in which the programmer may define explicit tasks
and their related data dependencies, as well as an advanced

accelerator execution model to deal with data movement and
efficient computation in heterogeneous architectures.

Unfortunately, OpenMP tasking and accelerator models
were created for a very different purpose than describing
real-time applications modeled as task graphs. However, its
syntax and execution model retain certain similarities to that
formalism that could make it a good candidate to fill the
existing gap between: (i) a convenient programming model for
heterogeneous many-cores and (ii) state-of-the-art techniques
for scheduling with timing guarantees.

Our work focuses on adopting the current OpenMP v4.5
specification to provide timing guarantees so that it can be
used in critical real-time embedded systems.

II. OPENMP TIMING CHARACTERIZATION

The first specifications of OpenMP (up to version 2.5) were
focused on a thread-centric model to exploit massively data-
parallel and loop-intensive types of applications. The latest
specifications of OpenMP (versions 3.0, 4.0 and 4.5) have
evolved to a task-centric model which enables very sophisti-
cated types of fine-grained and irregular parallelism, including
support for heterogeneous computing. This new model, known
as tasking model, provides a very convenient abstraction of
parallelism, being the run-time in charge of scheduling tasks
to threads. Despite this model lacks any notion of real-time
scheduling semantics, such as deadline, period or WCET, its
structure and syntax have certain similarities with the Directed
Acyclic Graph (DAG) real-time scheduling model [2] used
to analyse the timing behavior of parallel execution in real-
time. As an example, Figure 1a shows an OpenMP program
composed of five tasks and Figure 1b shows the corresponding
OpenMP-DAG, see more details in [3].

This tight correspondence between the structure and syntax
of an OpenMP program and the DAG model makes OpenMP
a firm candidate to be adopted in future real-time systems.

III. RESPONSE TIME ANALYSIS OF OPENMP DAGS

In real-time systems the correctness of each computation
depends not only on its logical result but also on the time
instant at which such result is produced. Failure to respond
within a specified time interval is considered as a faulty
response. Thus, a key property of a real-time system is
time predictability. The sporadic DAG scheduling model is
currently under investigation in the real-time community to
address time predictability of parallel computation. In the
sporadic DAG model, each real-time task (called DAG-task)
is represented with a directed acyclic graph (DAG).

4th BSC Severo Ochoa Doctoral Symposium

108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87661654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 #pragma omp p a r a l l e l {
2 #pragma omp s i n g l e { / / τ1
3 p1,1

4 #pragma omp task { / / τ2
5 p2,1

6 #pragma omp task / / τ3
7 { p3,1 }
8 p2,2

9 #pragma omp t a s k w a i t
10 p2,3

11 } p1,2

12 #pragma omp t as k depend (out : a)
13 { p4,1 } / / τ4
14 p1,3

15 #pragma omp t as k depend (in : a)
16 { p5,1 } / / τ5
17 }}

(a) OpenMP source code. (b) OpenMP DAG.

Fig. 1: Example of an OpenMP program composed of tied
tasks (a) and its corresponding OpenMP-DAG (b).

In the following subsections we briefly describe our research
on computing the response time analysis of real-time OpenMP
applications represented as DAGs. The response time analysis
computes the worse-case response time a system may take,
in this case, when being scheduled in a parallel processor
with a given number of cores. Thus, when compared with
the application deadline we can provide OpenMP applications
with real-time guarantees.

A. Response Time Analysis of an OpenMP task

Despite being OpenMP a convenient candidate to be
adopted in future real-time systems, it incorporates features
that limit its practical usability in real-time systems. The most
notable example is the distinction between tied and untied
tasks. Tied tasks force all parts of a task to be executed on the
same thread that started the execution, whereas a suspended
untied task is allowed to resume execution on a different
thread. The execution model of tied tasks has serious implica-
tions on the response time analysis of OpenMP applications,
making difficult to adopt it in real-time environments.

In [6] we analyze, from a timing perspective, the two
tasking existing models in OpenMP: tied and untied. The
considerations drawn in this work suggest that using tied
tasks inside time-critical applications is not recommendable
because of the inherent pessimism that underlies the timing
analysis of such tasks and the conceptual difficulties behind the
construction of an accurate schedulability test. We also show
that a simple schedulability analysis of OpenMP programs is
possible whenever untied tasks are involved. This suggests
that the use of untied tasks would be preferable for parallel
applications in a real-time context, since it would permit to
exploit a parallel execution model in a predictable way.

B. Response Time Analysis of a set of OpenMP tasks

When consideirng several OpenMP applications with dif-
ferent priorities, preemption is a key concept since it allows
the operating system allocate the core to tasks requiring
urgent service. The limited preemption (LP) approach has been
proposed in the literature to reduce the run-time overhead

due to preemptions and still preserve the schedulability of
the system. According to this approach, a task implicitly
executes in non-preemptive mode and preemption is allowed
only at predefined locations inside the code, called preemption
points. In this way, a task is divided into a number of non-
preemptive chunks (also called sub-tasks); if a higher priority
task arrives between two preemption points of the running
task, preemption is postponed until the next preemption point.

Interestingly, the LP approach with fixed preemption points
resembles the OpenMP task execution model [3]. Therefore,
in [4] and [5] we evaluate the LP strategy for DAG-based task-
sets; we show the necessary conditions under which DAG tasks
may experience lower and higher priority task interference for
different LP sub-approaches.

IV. FUTURE WORK

Our future work focuses on the schedulability analysis of
the OpenMP accelerator model for heterogeneous architec-
tures. We will investigate novel time predictable scheduling
solutions for the OpenMP accelerator model in current many-
core heterogeneous architectures. In these architectures, the
main problems lie in: (1) the proper scheduling of data
transfers and computation on acceleration devices, and (2)
the characterization of the multiple interferences and inter-
dependencies that may arise among the simultaneous access
of various accelerator devices in a many-core system.

V. ACKNOWLEDGMENT

This work was funded by the EU project P-SOCRATES
(FP7-ICT-2013-10) and the Spanish Ministry of Science and
Innovation under contract TIN2015-65316-P.

REFERENCES

[1] OpenMP Application Program Interface, Version 4.5. November 2015.
[2] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and

A. Wiese. A generalized parallel task model for recurrent real-time
processes. In RTSS, 2012.

[3] R. Vargas, et. al. OpenMP and Timing Predictability: A Possible Union?
In 18th Design, Automation and Test in Europe Conference (DATE), 2015.

[4] M. A. Serrano, A. Melani, M. Bertogna, and E. Quinones. Response-
time analysis of DAG tasks under fixed priority scheduling with limited
preemptions. In DATE, March 2016.

[5] M. A. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quinones. An
analysis of lazy and eager limited preemption approaches under dag-based
global fixed priority scheduling. In ISORC, May 2017 (to apperar).

[6] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quinones. Timing characterization of OpenMP4 tasking model. In
CASES, 2015.

Maria A. Serrano is a PhD. student in the De-
partment of Computer Science at the Barcelona
Supercomputing Center (BSC), Spain, since 2014.
She studied a B.S / M.S in Computer Science
Engineering (2006-2013) and a M.S. in Systems En-
gineering and Computer Science (20013-2014) at the
University of Zaragoza, Spain. Her research interests
focus on Real-Time systems, specifically on many-
cores embedded processors and on providing parallel
programming models with timing guarantees.

4th BSC Severo Ochoa Doctoral Symposium

109

