
Leveraging FPGAs to Accelerate the Query
Processing of SQL-Based DataBases

Behzad Salami
Computer Science Department

Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Email: behzad.salami@bsc.es

Osman Unsal
Computer Science Department

Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Email: osman.unsal@bsc.es

Adrian Cristal Kestelman
Computer Science Department

Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Email: adrian.cristal@bsc.es

Abstract—With the rise of Big Data, providing high-
performance query processing capabilities through the accel-
eration of database analytics has gained significant attention.
Leveraging Field Programmable Gate Array (FPGA) technology,
this approach can lead to clear benefits. In this work, we briefly
introduce the design and implementation of an FPGA-based
platform that enables fast query processing for database systems
by melding novel database-specific accelerators with commercial-
off-the-shelf (COTS) storage using modern interfaces, in a novel,
unified, and a programmable environment. The proposed engine
can perform a large subset of SQL queries through its set of
instructions that can map compute-intensive database operations,
such as filter, arithmetic, aggregate, group by, table join, or sort,
on to the specialized high-throughput accelerators. To minimize
the amount of SSD I/O operations required, it also supports
hardware MinMax indexing for databases. We evaluated our
query processing engine with five decision support queries from
the TPC-H benchmark suite and achieved a speedup from
1.8X to 34.2X, in comparison to the state-of-the-art DBMS, i.e.,
PostgreSQL and MonetDB.

I. INTRODUCTION

FPGAs provide a unique opportunity to build an efficient
query processing platform, by constructing a high-throughput
execution engine with the additional aim of minimizing over-
heads of data movement [1]. It is mainly the consequence of;
(i) the inherent characteristics of massively parallel and con-
figurable architecture of FPGAs, suitable for data streaming
in deep pipelined-style execution (ii) the rise of High-Level
Synthesis (HLS) technology, which makes FPGA applications
relatively easier to develop compared to low-level languages
such as VHDL or Verilog, and (iii) the availability of soft cores
that implement modern interfaces, such as PCIe 3.0 (Periph-
eral Component Interconnect Express) or SATA-3 (Serial AT
Attachment).

For the query processing, FPGAs have been utilized in two
distinct approaches: (i) traditional data offloading mechanisms,
where data in the host-attached storage is offloaded towards
external processing units or accelerators implemented in the
FPGA [2], or (ii) placing the processing units directly in the
data path between the host machine and the main storage units
[3]. The first approach could incur overheads stemming from
the additional data movement since data needs to be offloaded
through the Operating System (OS) and device driver layers.
In contrast, the second approach allows processing units to

Fig. 1. Overall architecture of the proposed engine with its major components.
(1) software extensions for DBMS in the host, (2) Data storage units and
device controllers, (3) Query accelerators that are organized in a clockwise
unidirectional ring bus (RBAA), (4) Programmable Interconnection Unit (PIU)
to manage the accesses to the off-chip data storage units, in a fully flexible
fashion, (5) Data and Process Controller (DPC) to orchestrate the involved
modules of the engine to process the SQL queries.

get direct access to the data blocks and facilitates low-latency
data transmission. In addition, it can correspond to significant
speedups in the query execution. In this work, we follow the
second approach to minimize the data transmission overheads.

In a nutshell, the main objectives of this work as a novel
query processing engine, are listed as below:

• to provide an infrastructure that sits between the host and
the data storage in SSD, and utilizes PCIe-3 and SATA-
3 interfaces to work directly with blocks of database
columns

• to design a set of efficient query accelerators inside such
an infrastructure that can facilitate the query processing
in a fully pipelined fashion

• to allow the DBMS to utilize these accelerators by issuing
query-specific instructions, exposing flexibility in the data
movement and in enabling accelerators

II. THE OVERALL ARCHITECTURE

In the proposed query processing engine, the host communi-
cates with the FPGA through an Application Program Interface
(API), to transfer data and instructions using the PCIe-3 inter-
face. When the host initiates the query execution, the query
plan needs to be converted into our specific instructions. Inside
the FPGA, these instructions are managed and executed by the
Data and Process Controller (DPC), which orchestrates the
movement of data blocks between the SSD, DDR-3, hist, and

4th BSC Severo Ochoa Doctoral Symposium

106

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87661649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Accelerators. The query is effectively executed by streaming
blocks of data, from the storage, through the accelerators, and
back. Finally, the result of the query is returned to the software
or stored back into the SSD.

The architecture of the proposed query processing engine is
composed of five major components: (1) software extensions
for DBMS in the host, including the Data Address Table (DAT)
and the CStore Foreign Data Wrapper (FDW) extension of
PostgreSQL, to manage the transfer of instructions and data,
respectively, (2) data storage units, i.e., SSD, DDR-3, and host
that are used as the primary or secondary database storage
units and device controller cores, i.e., PCIe-3, DDR-3, SATA-
3 to manage the data transfer to/from storage units, (3) a
set of efficient database accelerators, i.e., filter, arithmetic,
aggregation, group by, hash probe, hash build, and sort that are
organized in a unidirectional ring bus, which is called RingBus
of Accelerators (RBAA), (4) Programmable Interconnection
Unit (PIU) to set up a path to transmit the data in a fully
flexible fashion. It is composed of i) a 4-port bidirectional
programmable data connection switch (PDCS) to exchange
the data among SSD, DDR-3, host, and RBAA, ii) an arbiter
to manage the DDR-3 concurrent requests, and iii) a set of
synchronizing First In First Out (FIFO) modules for each in-
dividual port, separately for read and write directions, to cross
the different clock domains, (5) Data and Process Controller
(DPC) that is composed of an Instruction Cache (IC) to locate
the instruction set and an execute Finite State Machine (FSM)
i) to manage the accesses to the off-chip data sources and ii)
to control the accelerators to execute the corresponding query,
by issuing the appropriate control signals to the PIU and to the
RBAA, respectively. These signals are generated by translating
our query-specific instructions.

III. EXPERIMENTAL RESULTS

We developed our engine on a VC709 FPGA development
board with an XC7VX690T FPGA and 4GB of DDR-3 RAM.
It accesses a Crucial M4-256GB SSD through a customized
version of an SATA-3 controller, based on Groundhog [XX].
We evaluated our engine against the query processing engines
of several state-of-the-art software DBMS: (i) MonetDB 11.21
as a popular column-oriented database system, (ii) PostgreSQL
9.5 (PGSQL) as a popular object-relational row-oriented
database system, and (iii) CStore as the PostgreSQL’s column-
oriented data store extension. We evaluated our engine with
five decision-support TPC-H queries, under various conditions.
The studied queries are Q01, Q03, Q04, Q06, and Q14, which
heavily utilize and stress the various hardware accelerators.

• process-intensive queries (Q01), as it can be seen in
Figure 2(a), the I/O time of SSD is negligible and
the execution time is dominating. In process-intensive
workloads, the performance gain of the proposed FPGA-
based engine is mainly the consequence of exploiting
highly efficient query accelerators, in a deeply pipelined
fashion.

• I/O-process-balanced queries (Q03, Q04), the improve-
ment of the proposed engine is the consequence of both

(a)

(b)

Fig. 2. Total query processing time of the studied benchmarks in cold (a)
and warm (b) modes, comparing the proposed FPGA-based engine (AxleDB)
vs. MonetDB, CStore, and PostgreSQL in 1GB scale. Lower is better.

I/O efficiency and faster execution. For instance, the
FPGA-based engine reduces SSD I/O time by 17.9X
and execution time by 31.5X for Q04, in comparison to
the index-enabled PostgreSQL, which leads to a total of
23.4X speedup for this particular case.

• I/O-intensive benchmarks (Q06, Q14), SSD I/O time is
dominating. Comparing PostgreSQL with index-enabled
vs. non-index versions, we unexpectedly observed a sig-
nificant overhead of B-Tree indexes, which causes sub-
stantial performance degradation. In contrast, our FPGA-
Based engine, CStore, and MonetDB, thanks to their
column-oriented data storage, significantly reduce SSD
I/O transfers. The results demonstrate that the FPGA-
Based engine can process these queries, on average 2.4X
faster than MonetDB, and 21.6X faster than the average
of different versions of PostgreSQL.

In summery, the significant speedup of the proposed FPGA-
based engine against software-based comparison cases is the
consequence of two optimization points: i) offloading the
query processing onto the FPGA and following the streamline
data flow execution model and ii) optimized accesses to the
SSD (tightly coupled to the processing units -accelerators- in
the FPGA). As mentioned earlier, these points have propor-
tionally affected for each individual query,

REFERENCES

[1] Jun, Sang-Woo and others. BlueDBM: an appliance for big data analytics.
Proceedings of ISCA, pages=1–13, 2015, ACM.

[2] Casper, Jared and Olukotun, Kunle. Hardware acceleration of database
operations. Proceedings of FPGA, pages=151–160, 2014, ACM.

[3] Woods, Louis and others. Ibex: an intelligent storage engine with support
for advanced SQL offloading. Proceedings of the VLDB Endowment,
volume=7, number=11, pages=963–974, 2014.

4th BSC Severo Ochoa Doctoral Symposium

107




