
1

Saiph, a Domain Specific Language for
Computational Fluid Dynamics simulations

Sandra Macià, Vicenç Beltran, Daniel Mira and Sergi Mateo
Barcelona Supercomputing Center (BSC-CNS)

sandra.macia@bsc.es, vicenc.beltran@bsc.es, daniel.mira@bsc.es and sergi.mateo@bsc.es

Abstract—Nowadays, High-Performance Computing (HPC) is
assuming an increasingly central role in scientific research while
computer architectures are becoming more and more hetero-
geneous and using different parallel programming models and
techniques. Under this scenario, the only way to successfully
exploit an HPC system requires that computer and domain
scientists work closely towards producing applications to solve
domain problems, ensuring productivity and performance at the
same time. Facing such purpose, Saiph is a Domain Specific
Language designed to ease the task of solving couple and
uncouple Partial Differential Equations (PDE’s), with a primary
focusing on Computational Fluid Dynamics (CFD) applications.
Saiph allows to model complex physical phenomena featured by
PDE’s, easing the use of numerical methods and optimizations
on different computer architectures to the users.

I. INTRODUCTION

THIS project aims to ease the development of scientific
applications by allowing domain experts to transcribe

their equations into the code Saiph and then generating HPC-
ready code that efficiently exploits the computational resources
of modern heterogeneous supercomputers while dealing with
all the specific aspects of solving systems of PDE’s. To achieve
that, Saiph provides a high-level syntax that directly maps
with concepts of the domain, hiding from the user all the
complexities related to numerical methods and HPC systems.
Users only have to translate their equations to Saiph language
and specify some physical and numerical parameters; initial
and boundary conditions and post-processing strategy. Later,
domain optimizations can be internally applied providing extra
efficiency and correctness boosting the workflow productivity.
The final specialized system of equations is then solved in
parallel using MPI and applying intra-node parallelization
techniques (using OpenMP/OmpSs) to achieve high compu-
tational performance.

II. SAIPH OVERVIEW

This section introduces the design and underlying technol-
ogy used for the development of Saiph and the resulting high-
level language. We briefly describe the Saiph project and its
state of development.

A. Saiph design and underlying technologies

Saiph, as a DSL, has been designed to be simple, efficient,
largely applicable in Computational Mechanics problemas and
in particular on CFD applications. It has been implemented

Fig. 1. Underlying design and technologies of the compilation process

as an embedded compiler in Scala[1] using the Lightweight
Modular Staging (LMS)[2] as a DSL development platform
and the Scala Virtualized Compiler[3].

Saiph applications are compiled at the front end with the
LMS and the Saiph implementation together using the Scala
Virtualized Compiler. At the middle end, the output of the first
phase is compiled using our embedded compiler; the domain
specific optimizations implementations are applied at this point
and the LMS generates the corresponding IR nodes. Finally,
the output of the embedded compiler (C++ file) is compiled
and linked with our low-level C++ library that handles the
numerical and parallelization issues, producing a binary ready
to be executed in parallel . Figure 1 shows the compilation
process and the internal design structured by layers.

Saiph has two main layers: the Scala compiler and the C++
library. This separation eases the DSL development, as in each
of them the efforts are devoted to the developments naturally
belonging to the layer. In that way, we can take advantage of
each tool being used at its natural layer. High-level domain-
oriented syntax and domain specific optimizations are thus
implemented at the Scala compiler, while MPI and OpenMP
libraries and auxiliary, mainly numerical methods, are inte-
grated into the C++ library.

B. Saiph as a language
Saiph offers a high level syntax to unambiguously define a

complete system of PDE’s used for the characterization of a
physical phenomena. The main components are presented in
this section.

1) Units: The basic component of Saiph, they represent
a physical magnitude through a value and its dimensionality
information. Units can be combined and compared, and are
internally used to check the consistency of the equations.

4th BSC Severo Ochoa Doctoral Symposium

89

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87661594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

def L = 1 ∗ Meters

2) Mesh: Saiph works with Cartesian meshes that can be
defined in 1D, 2D or 3D. The sizes are specified by the users
using physical continuous space.
val mesh = CartesianMesh(L, L)

3) Terms and Consterms: Saiph offers these components to
represent dimensional variables and constants for the problem.
val T1 = Term(Temperature)("Temp1", mesh, 300 ∗ Kelvins)

4) Operators: There is a complete set of numerical opera-
tors available to combine the different terms in order to build
the system of discretized equations.

5) Equations: Defining equations in Saiph involves declar-
ing terms and combine them through operators. An equation
is formed by the left-hand side and the right-hand side
expressions. Consequently, the units of both sides must match,
otherwise, Saiph emits and error.
val eq1 = Equation(lhs_expr, rhs_expr)

C. Internal features
Internal features are completely transparent to the user.
1) Numerical methods: Numerical evaluations require the

discretization of continuous functions, models, and equations
which are time-space dependent. The spatial discretization fol-
lows explicit high-order schemes based on the finite difference
method for which different oprators are available, while the
time marching is based on high-order Runge Kutta methods.
Saiph uses non-uniform structured meshes.

2) Exploiting parallelism: Inter and intra-node parallelism
are harmoniously combined. For the inter-node parallelism, the
mesh is partitioned by the last dimension and a similar work-
load is distributed across the available MPI processes. Each
process solve its part of the mesh for the whole simulation.
Computations at each time-step are parallel and dependence’s
free but, after each of them, each MPI process has to exchange
its boundaries with its neighbors in order to correctly update
all the values to be used for the spatial derivatives of future
computational steps. Regarding intra-node parallelism, each
equation can be integrated in parallel at any time-step. The
iteration space of the loop traversing the mesh is distributed
across available OpenMP threads and executed in parallel.
Each equation is solved in parallel for all the points of the
mesh, one equation after the other.

3) Domain specific optimizations: Saiph has features and
components which does not change the user external interface
while changing the Saiph internal behaviour. Those optimiza-
tions are specific for the resolution of PDEs systems and
even more specific for the resolution of CFD problems. As an
example of those optimizations, we considered the advection
term of a convection-diffusion-reaction (CDR) equation. When
identified, this term can be treated with different operators de-
pending on the type of problem. For instance, for convection-
dominated flows, a low-dissipation central scheme can be
used, although upwind differentiation can be activated when
there is no sufficient resolution to capture the sharp of the
gradients.

Fig. 2. Saiph - Two-dimensional advection-diffusion simulation

III. APPLICATION EXAMPLE

We present an advection-diffusion problem, represented by
the following partial differential equation.

∂T
∂t
= −u · ∇T + ∇ · (k∇T) (1)

A small hot 2D cube is being transported within a periodic
domain. The following snippet code corresponds to the tran-
scription of this equation into Saiph code.

val eq = Equation(dt(T), −u∗grad(T) + div(k∗grad(T)))

Figure 2 shows the results from this advection-diffusion Saiph
application.

IV. CONCLUSION

Saiph appears to be a powerful tool that can be advanta-
geously used by scientists without knowledge on numerical
methods and High-Performance Computing, while internally
providing the advantages of such expertise. Several domain
specific optimizations can be implemented as well as new suit-
able numerical methods and parallelization strategies boosting
the efficiency, flexibility and genericity while maintaining its
usability.

REFERENCES

[1] M. Odersky and al., “An Overview of the Scala Programming Language,”
EPFL, Lausanne, Switzerland, Tech. Rep. IC/2004/64, 2004.

[2] T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls,” ser. GPCE ’10.
New York, NY, USA: ACM, 2010, pp. 127–136. [Online]. Available:
http://doi.acm.org/10.1145/1868294.1868314

[3] A. Moors, T. Rompf, P. Haller, and M. Odersky, “Scala-virtualized,” ser.
PEPM ’12. New York, NY, USA: ACM, 2012, pp. 117–120. [Online].
Available: http://doi.acm.org/10.1145/2103746.2103769

Sandra Macià studied physics at the UB. After
obtaining her degree she enrolled the Master in
Innovations and Research in Informatics, on the
High Performance Computing specialization, MSc
at UPC-FIB, where she obtained the Severo-Ochoa
MSc scholarship. For her master thesis she joined
the Barcelona Supercomputing Center, Computer
Science Dpt., where she started to work on Domain
Specific Languages for the resolution of systems
of Partial Differential Equations. Currently she is
developing her PhD studies as a Severo Ochoa PhD

student, targeting the same subject and with focus on Computational Fluid
Dynamics applications.

4th BSC Severo Ochoa Doctoral Symposium

90




