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Abstract—Microbenchmarks are fundamental in the design of
a microarchitecture. They allow rapid evaluation of the system,
while incurring little exploration overhead. One key design aspect
is the thermal design point (TDP), the maximum sustained power
that a system will experience in typical conditions. Designers tend
to use hand-coded microbenchmarks to provide an estimation for
TDP. In this work we make the case for a systematic methodology
to automatically generate code-representative microbenchmarks
that can be used to drive the TDP estimation.

I. INTRODUCTION

The thermal design point (TDP) is a key aspect in the design
of a microarchitecture. It indicates the maximum sustained
power dissipation that a system will experience during typical
runtime conditions and constrains the design of the cooling
system. It is critical to have a good TDP estimation. If it
is too low, power-hungry workloads will get throttled, which
negatively impacts the overall system performance. If it is too
high, we incur an increase in terms of packaging and cooling
cost. As a consequence, a TDP estimation that is representative
of real workloads is a main goal during the design process.

In a typical design environment it is infeasible to execute
a wide range of applications to come up with a realistic
TDP. Simulating cycle-intensive applications is a serious time
investment, which prevents rapid design space exploration
in the early stages of development. As a consequence, the
industry relies on microbenchmarks to single out and evaluate
the crucial parts of real applications. These microbenchmarks
are often hand-crafted, L1-contained kernels with a low branch
missprediction to maximize power dissipation and provide a
conservative TDP estimation. Creating these microbenchmarks
requires a significant engineering effort, and knowledge of the
underlying architecture as well as the common workloads.

Previous work has successfully highlighted the benefit of
microbenchmark generators for a wide range of purposes:
cloning program behavior [5], [6], power profiling [4], [7], or
to generate synthetic tests [1]. In this work we make the case
for a framework to automatically extract code-representative
microbenchmarks from real applications, which can then be
used to effectively drive the TDP.

In this context, we have set the following goals:
• The generated microbenchmarks should provide a safe

upper-bound for power. Therefore, we will force them to
be L1-contained, with predictable branches.

• The generated instruction sequences should be code-
representative, i.e. occur like this in the original bench-
mark.

• The methodology should be easily extendable, and appli-
cable to a variety of architectures, without being tied to
a specific simulation infrastructure.

II. FRAMEWORK

Fig. 1 gives an overview of the workflow for our framework.
It can be divided into four stages: 1) Execution Tracing, 2)
CFG Annotation, 3) Snippet Selection, and 4) Microbench-
mark Synthesis.
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Fig. 1: Overview of our proposed workflow.

A. Execution Tracing

We first trace the execution of the selected benchmark. To
this end, we have developed a sampling based profiler using
the perf_event interface. At regular intervals, we gather the
current program counter (PC), as well as a set of configurable
performance monitoring counters (PMCs), such as the branch
and cache miss/hit ratio.

B. CFG Annotation

In this step we use the obtained runtime profile to annotate
the control flow graph (CFG) of the application. A CFG is a
graph representation of the program’s executional flow. Each
node represents an uninterupted sequence of instructions, or
basic block (BB), each vertex the corresponding branch or
fall-through at the end of a BB.

With the sampled program counter as key, we associate each
sample to a specific BB. We then weigh each BB, based on
the number of samples it generates. The measured PMCs can
be used as an additional heuristic to increase the weight of
impactful BBs.
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C. Snippet Selection

Using the CFG annotation we select a subset of the heav-
iest BBs. In our initial approach, we ignore all BB, which
sample count is a below an α threshold (0.1 − 1.0% in our
experiments).

We can now generate code snippets for each selected BB
(seed). A code snippet is a short sequence of BBs between a
loop (or function) entry and exit point. We form these snippets
by finding all acyclic paths between the entry and exit BB
that go through the seed. For each BB we only select the
snippet with the heighest accumulated weight. The snippets
are validated against the instruction trace of the original
application.

D. Microbenchmark Synthesis

Finally, we pass the snippets to a MicroProbe-based [2]
backend that generates standalone executables. To this end we
take the snippet kernel and embed it into a new loop. All
branches are modified so that they directly jump to the next
BB in the snippet chain. Where necessary, memory references
are changed so that they access a previously allocated, L1-
contained, memory region. The generated assembly code now
can be compiled for the target architecture.

III. EVALUATION

We have tested our first approach on an IBM BladeCen-
ter PS701 system, featuring an eight-core IBM POWER7
processor running at 3.8 GHz. The benchmarks have been
selected from the SPEC CPU 2006 benchmark suite. We
execute each benchmark in isolation, and use our toolchain to
generate the corresponding microbenchmarks with a threshold
α = 0.1 and 1.0. We then execute the created microbench-
marks, and compare their power dissipation with the original
application. We use AMESTER to access the on system power
meters each millisecond. The shown values are normalized
with respect to the maximum observed system power.

Fig. 2 shows the power histogram for two of the selected
benchmarks and the corresponding microbenchmarks with
different thresholds. We plot the percentage of samples/snip-
pets (y-axis) observed for each power range (x-axis). We
can observe that the original benchmarks tend to have two
to three dominant power ranges, corresponding to the main
kernels of the application. In the case of perlbench (a), our
approach is able to replicate both spikes. As we decrease
the threshold, our framework will consider more snippets and
better approximate the original application. For zeusmp (b),
a lower threshold produces an even more notable change in
proportion of sampled power regions. We plan to investigate
the most appropriate threshold in the future. It is important
to note, that in all cases, we are able to provide a safe upper
bound for power.

IV. CONCLUSION

In this work we have highlighted the need for microbench-
marks in estimating the TDP of a microarchitecture design.
We have also presented our initial approach to automatically
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Fig. 2: Power histograms for benchmarks and their correspond-
ing microbenchmarks

extract code-representative microbenchmarks from real appli-
cations using runtime profiling and CFG analysis. Finally, we
present preliminary results on a POWER7 system.

For future work we plan to further test our methodology and
apply it to parallel workloads and in the context of runtime-
aware architectures [3], [8]. We also consider expanding the
snippet selection phase with more sophistcated heuristics.
Lastly, we plan to port our framework to different architectures
and release it as an open-source toolchain.
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