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Background: Our group earlier developed a small monitoring device, which uses 
accelerometer measurements to accurately detect motor fluctuations in patients with 
Parkinson’s (On and Off state) based on an algorithm that characterizes gait through the 
frequency content of strides. To further validate the algorithm, we studied the correlation 
of its outputs with the motor section of the Unified Parkinson’s Disease Rating Scale 
part-III (UPDRS-III).

Method: Seventy-five patients suffering from Parkinson’s disease were asked to walk 
both in the Off and the On state while wearing the inertial sensor on the waist. Additionally, 
all patients were administered the motor section of the UPDRS in both motor phases. 
Tests were conducted at the patient’s home. Convergence between the algorithm and 
the scale was evaluated by using the Spearman’s correlation coefficient.

results: Correlation with the UPDRS-III was moderate (rho −0.56; p < 0.001). Correlation 
between the algorithm outputs and the gait item in the UPDRS-III was good (rho −0.73; 
p < 0.001). The factorial analysis of the UPDRS-III has repeatedly shown that several 
of its items can be clustered under the so-called Factor 1: “axial function, balance, and 
gait.” The correlation between the algorithm outputs and this factor of the UPDRS-III was 
−0.67 (p < 0.01).

conclusion: The correlation achieved by the algorithm with the UPDRS-III scale sug-
gests that this algorithm might be a useful tool for monitoring patients with Parkinson’s 
disease and motor fluctuations.
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inTrODUcTiOn

Although no assessment methods can substitute the clinical 
judgment, subjective and objective measures in PD complement 
each other, each method having strengths and weaknesses (1). 
Objective data from inertial sensors are interesting new way of 
assessment, with some strengths such as their comparability 
among physicians, their independence of the observer training, 
and the fact that their results can be understandable even by the 
patients (2, 3).

Inertial sensors are of great interest in the case of patients 
with motor fluctuations. These patients experience fluctuations 
between a state called On, where symptoms are satisfactorily con-
trolled with medication, and a state called Off, where symptoms 
reappear and patients experience difficulties in motor function 
(4, 5). As the disease progresses, these motor fluctuations become 
increasingly frequent and difficult to control with medication, 
so objective and detailed information about their intensity and 
chronology could be an invaluable aid for the fine-tuning of the 
medication.

Accelerometers can detect different motor symptoms and 
fluctuations in patients with Parkinson’s disease (6–9). Our 
group earlier developed an algorithm capable of detecting 
the motor state in patients with motor fluctuations (On and 
Off) based on accelerometry data from a single inertial sen-
sor located on the patient’s waist. As published before, the 
algorithm detects whether the patient is walking in Off with 
specificity and sensitivity of 96 and 94%, respectively, under real 
conditions of use. To that end, the algorithm first detects gait, 
then identifies strides and extracts a frequency characteristic 
of them, which has been shown to be related to the motor state 
(10). This frequency characteristic consists in the power spectra 
between 0 and 10 Hz.

Although the motor status has traditionally been classified 
dichotomously in On and Off states, motor symptoms are a con-
tinuum between these two states, and are more precisely scored 
by numerical scales such as the Unified Parkinson’s Rating Scale 
part III (UPDRS-III). As the output of the previously developed 
algorithm is a continuous numerical variable, in this study, we 
aim to investigate its possible correlation with the UPDRS, to 
further validate the algorithm.

MaTerials anD MeThODs

This prospective study was conducted on a sample of 75 patients 
suffering from idiopathic Parkinson’s disease, according to the 
criteria of the UK Brain Bank (11), in moderate stage (Hoehn 
and Yahr scale >2) with motor fluctuations. Patients older than 
80 years and those with implanted electronic devices, dementia, 
or gait-impairing health problems other than Parkinson’s disease, 
were excluded from the study. Patients unable to recognize their 
own On–Off motor states, were also excluded. Participants were 
selected by convenience sampling among those attending the 
neurology clinics in any of the participating hospitals: Centro 
Médico Teknon (Spain), Fondazione Santa Lucia (Italy), Maccabi 
Healthcare Services (Israel) School of Medicine, NUI Galway 
(Ireland). We estimated a minimum of 62 patients included to 

find a significant correlation coefficient of 0.4, considering a 
<0.05 α error and <0.1 β error. For sample size calculation, the 
following formula was used (12):

 N Z Z= + +⋅[( ) ]/C 2 3α β  (1)

where N is the minimum sample size, the standard normal devi-
ate for α = 0.05 is Zα = 1.960, the standard normal deviate for 
β = 0.1 is Zβ = 1.282, and C r r= × + −0 5 1 1 0 424. / .[( ) ( )]ln =  being 
r the expected correlation coefficient (0.4).

The study was conducted at the patients’ home and neighbor-
hood. The researchers visited the patients within the time period 
they typically were in the Off phase (occasionally facilitated by 
reducing or skipping the previous dopaminergic medication 
dose). Once the Off state was confirmed by the patient and 
the researchers, the inertial sensor was placed on the patient’s 
waist and he/she was asked to walk for some minutes (inside 
and outside home). More concretely, patients were asked to (I) 
show their home; if this took less than 2 min, the patient was 
asked to repeat it; and (II) walk without assistance 10  m. The 
researchers waited until the patient entered the On phase and 
repeated the test with sensor. All patients were also administered 
the UPDRS-III both in Off and On phase. The sensor readings 
were not available to the researchers at the moment of data col-
lection, and the researchers involved in data collection did not 
participate in data analysis. We did not consider necessary to 
blind the UPDRS assessors to the motor’s phase since UPDRS in 
clinical practice is usually administered by professionals who are 
aware of the motor phase of the patient at the time of evaluation. 
The local Ethical Committees approved the research protocol 
in each study site. All participants signed an informed consent 
form before their inclusion in the study.

The sensor consisted of a 9 ×  2 device, which was worn by 
patients at the waist through a neoprene belt. This sensor includes 
a triaxial accelerometer (13). Its measurements were treated by a 
signal processing algorithm that analyses patient’s gait. The algo-
rithm firstly detects gait by using a machine learning technique 
(Support Vector Machines), which was trained through labeled 
signals from 10 PD patients of a previous study (14). Second, 
the algorithm segments the signals into strides by recognizing 
specific characteristics on the acceleration measurements. Each 
individual stride is then characterized through a single frequency 
feature consisting of the power spectra between 0 and 10  Hz. 
This feature provides a scalar value whose range is usually 3–6 
for patients in Off, and 7–10 for patients in On. In a previous 
study (10), patients in On state provided higher values of this 
feature than patients in Off state; hence, this frequency feature 
is expected to be negatively correlated with UPDRS scores. The 
algorithm analyses walking bouts with 10 or more strides. Patients 
during the data collection may walk several times; thus, for each 
patient and motor state, features obtained in the walking bouts 
done during a data collection were separately averaged, and the 
resulting value from each patient and motor state was compared 
to UPDRS.

For data analysis, bivariate correlations (Spearman) were 
conducted between the numerical results of the algorithm and 
the UPDRS-III. More concretely, we obtained the correlation 
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FigUre 2 | Scatter plot of the algorithm output against UPDRS Gait (item 22).

FigUre 1 | Scatter plot of the algorithm output against UPDRS-III total score.

TaBle 1 | Characteristics of the participants.

Mean sD

Age 68.6 7.4

Years of disease progression 11.6 1.5

n %

Women 27 36
Men 48 64
Married 61 81.3
Single/widower 14 18.7
Dyskinesia
 No 28 37.3 
 Yes 47 62.7

Median iQr

Unified Parkinson’s Disease Rating Scale Part-III*
 Off 40 25
 On 15 13
Mini-mental 29 3
H&Y 3 0.5
FOG-Q 13.5 7.5

*p < 0.001.

TaBle 2 | Spearman’s correlation coefficient between the Unified Parkinson’s 
Disease Rating Scale-motor items and the data from algorithm.

item # Description rho p

22 Gait −0.729 <0.001
20 Arising from chair −0.627 <0.001
24 Body bradykinesia and hypokinesia −0.548 <0.001
21 Posture −0.536 <0.001
2 Facial expression −0.469 <0.001
1 Speech −0.464 <0.001
10 + 11 Lower extremities rigidity −0.453 <0.001
8 + 9 Upper extremities rigidity (both) −0.435 <0.001
23 Postural stability −0.419 <0.001
18 + 19 Legs agility (both) −0.340 <0.001
7 Axial rigidity −0.332 <0.001
16 + 17 Alternating movements of hands (both) −0.322 <0.001
12 + 13 Finger taps (both) −0.314 <0.001
14 + 15 Hand grips (both) −0.297 <0.001
3 Tremor lower extremities −0.253 0.002
5 Tremor upper extremities −0.182 0.026
4 Tremor face, lips, chin −0.129 0.116
6 Action tremor of hands −0.008 0.924

Bold type: significant results.
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between the algorithm outputs and the total UPDRS-III and, 
furthermore, between the algorithm outputs and the UPDRS-III 
items. Every patient was included twice in the same analysis: the 
first time while he/she was in the Off phase and the second time 
while in the On phase. For the sake of clarity, we would like to 
note that each correlation value was obtained by using a single 
input variable (scalar algorithm results) and a single output vari-
able (UPDRS values, as previously described).

resUlTs

A total of 75 patients fulfilled the required criteria and their data 
were complete. The clinical and sociodemographic characteristics 
of the sample are shown in Table 1.

The correlation between UPDRS-III and algorithm outputs 
was −0.56 (p  <  0.001). The correlation with the gait item of 
UPDRS-III was −0.73 (p < 0.001). Figures 1 and 2 show scatter 
plots of the algorithm output against UPDRS-III total score and 
against the gait item of the scale. The correlation of the rest of 
items in the motor section of UPDRS with the algorithm outputs 
is shown in Table  2. The factorial analysis of the UPDRS-III 
had previously shown that the following items are clustered in 
one factor: speech, facial expression, arising from a chair, gait, 
postural stability, posture, and body bradykinesia [Factor 1: “axial 
function, balance, and gait” (15)]. The correlation between the 
algorithm output and Factor I was −0.67 (p < 0.01).

DiscUssiOn

According to the most widely used interpretation of the correla-
tion coefficient, the algorithm outputs are moderately correlated 
with the UPDRS-III (16). Some items of the UPDRS-III, related 
to axial function, are well correlated with the algorithm results: 
gait, arising from chair, global bradykinesia, and posture. Such 
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items are part of the so-called Factor 1 of the UPDRS, which also 
includes facial expression and postural stability. Therefore, the 
correlation with the complete Factor 1 of the UPDRS-III is also 
good. On the other hand, a low correlation is found for items 
related to tremor and hand grips with values between −0.3 and 0.  
These low correlations were expected given that the algorithm 
analyses gait based on acceleration measurements obtained from 
the waist.

In a similar work, Weiss et al. (17) tested an accelerometer, 
placed in the lower back, on 22 Parkinson patients while walk-
ing. Their sample of patients was about the same age and sex 
distribution than ours, although in average had less severe 
disease: H&Y  =  2.5; UPDRS motor in Off  =  23.6  ±  9.4; and 
4.8 (SD3.8) years of disease progression. The test included 
a 1-min straight walk in On and Off state and a 500-m walk 
around the hospital at their self-selected speed. This latter test 
was only performed in On state. They did not find correlations 
between the acceleration measures and the UPDRS motor or the 
Hoehn and Yahr scale; however, they found a lower correlation 
(Pearson’s = 0.5) between the average stride time and a subset 
of gait related items of the UPDRS (UPDRS-Gait5): falling, 
freezing of gait, walking, postural stability, and gait. The lack of 
significant correlation may be due to using the locomotor band 
of 0.5–3  Hz, which is suitable for acceleration measurements 
sensed from the lower limbs but does not match the locomotor 
band from waist measurements (usually quite above 3 Hz, until 
10 Hz).

Zwartjes et al. (18) used four accelerometers and gyroscopes 
in feet, thigh, chest, and arms, to assess bradykinesia in six 
Parkinson patients. Their methodology is based on analyzing the 
signals from the four sensors to extract gait parameters, such as 
step length and step velocity, and other temporal features such 
as duration of a standing position and some hand movements. 
They found good correlations between parameters related to step 
length and step velocity with the item of body-bradykinesia of the 
UPDRS-III (rho = 0.7); however, they did not investigate global 
correlations with the UPDRS-III. These results suggest that step 
length is well correlated with bradykinesia UPDRS; however, the 
limited number of patients of their study limits the generalization 
of the results. For this experiment, they used patients with DBS, 
who were measured under three conditions: “On” (stimulator at 
the optimal settings), “Intermediate” (stimulator at a stimulation 
amplitude of 80% of the optimal setting), and “Off ” (stimulator 
Off). Interestingly, the score derived from their algorithms did 
not differ significantly between the “Off,” “Intermediate,” and 
“On” states; this makes a difference with our algorithm, whose 
outcomes identifies the On and Off phases with high validity, as 
published before (10).

Griffiths et  al. (19), using the wrist-worn Parkinson’s 
Kinetigraph (Global Kinetics Corporation) in 34 patients with 
Parkinson’s, established the correlation of a bradykinesia score 
with UPDRS-III (Pearson: 0.64); the bradykinesia score was 
defined as the mean spectral power surrounding the maximum 
acceleration within a 2-min epoch. For this correlation, a single 
measure of the UPDRS in On was compared with the average 
bradykinesia score obtained from 10  days of measurement (no 
data are provided on the severity of the patients’ disease). It does 

not appear that the UPDRS would have been administered in Off 
at any time and they do not provide data on patients’ Off time 
during the 10 days, so it is not clear how much their algorithm 
correlates with the scale when the patient moves worse. Also, they 
did not report correlations with specific items or subscales of the 
UPDRS-III to compare with.

Although other studies with acceleration measurements exist, 
it is difficult to compare the results, as they did not use correla-
tions with the UPDRS, or they focused on other very specific 
tasks of the scale, such as tremor or dyskinesia items, which are 
unrelated to our algorithm.

Classical methods to assess Parkinson’s symptoms include 
questionnaires that are administered in the office, which col-
lect information reported by the patient, and measurement 
instruments based on physical exams, such as the UPDRS. The 
former are affected by memory bias and the latter only record 
the motor state at the time of exploration (advanced Parkinson’s 
is a fluctuating pathology; therefore, the symptoms present at 
the consultation time, may not represent well the whole clinical 
picture). As a consequence, the classic instrument often used 
as gold standard is the diary of motor fluctuations, which has 
to be filled by patients for several days. The problem is that 
these diaries also have their limitations, as some patients do 
not recognize their symptoms and patients’ adherence to the 
method is poor, since recording symptoms’ timeline is a hard 
task, difficult to complete beyond few days (20). On the other 
hand, sensors are not subject to memory bias or awareness 
of symptoms and do not require human intervention so they 
could be used in the long term if needed. However, sensors-
based systems could have usability problems that have to be 
carefully addressed, and adherence of patient to such systems 
has to be demonstrated yet.

We agree with those who argue that the correlation of the new 
objective instruments (sensors), with the classic clinical scales, 
does not have to be perfect (1). The classical instruments are more 
qualitative, and are influenced by multiple variables; thus, a high 
correlation between them and pure quantitative measurements, 
such as the accelerometer signal, is not expected. In addition, 
it is the limitations of the classical instruments that prompt 
researchers to search for new methods of assessment; therefore, 
the perfect correlation of new methods with the old ones would 
only indicate that the former are no better than the later. It is to 
be demonstrated in future studies whether the measurements of 
the new sensors lead or not to a better clinical control, compared 
to the traditional methods, although it is likely that, at least in the 
case of patients who do not recognize their motor fluctuations 
correctly, sensors would improve the time mapping of the motor 
phase. Furthermore, we think that the sensors would describe the 
motor phase better than the diaries, in those moments in which 
the patients are not clearly in Off or On, but in an intermediate 
state or switching the phase.

Our algorithm is limited by the fact that it is an algorithm 
that analyses the patient’s gait, which means that it does not 
provide data on motor status if the patient does not walk. The 
authors believe that this limitation is not very important in 
clinical practice, since patients with Parkinson’s who walk, do so 
multiple times a day, producing enough data to map symptoms 
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related with axial function (21, 22). In any case, the information 
of our sensor could be supplemented with additional sensors (for 
example, in the extremities), in the event that a more exhaustive 
monitoring of the motor state were required. In addition to this, a 
further correlation analysis on a more extensive population of PD 
patients may help to ensure the reliability of the measurements 
taken from the strides.

The studied algorithm has previously proven to accurately 
detect the Parkinson’s motor phase (On or Off) (10). Our present 
results encourage the interpretation that the measurements of the 
algorithm correspond to the patient’s axial function, especially 
the influence of bradykinesia on the gait. The observation that 
the algorithm may monotonically decrease with the UPDRS-III 
scale suggests that the values offered by the algorithm have a 
diagnostic value and are more discriminative than the mere 
dichotomous On/Off classification. Therefore, this kind of algo-
rithm might be an excellent tool for monitoring patients with 
Parkinson’s disease and motor fluctuations related to patient’s 
axial function.
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