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ABSTRACT 

A non-linear discrete-time mathematical program model is proposed to determining the 
optimal extraction policy for a single primary supplier of a durable non-renewable 
resource, such as gemstones or some metals. Karush, Kuhn and Tucker conditions allow 
obtaining analytic solutions and general properties of them in some specific settings. 
Moreover, provided that the objective function (i.e., the discounted value of the incomes 
throughout the planning horizon) is concave, the model can be easily solved, even using 
standard commercial solver.  However, the analysis of the solutions obtained for different 
assumptions of the values of the parameters show that the optimal extraction policies and 
the corresponding prices do not exhibit a general shape. 
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1. Introduction 

This paper deals with the optimal production policy for a single owner of the primary 
source of a durable non-renewable (therefore, exhaustible) resource, such as gold or 
diamonds. The problem is approached by means of non-linear discrete-time 
mathematical programming, what allows, under very general assumptions and by 
means of  Karush, Kuhn and Tucker conditions, obtaining analytic solutions and general 
properties of them in some particular settings and computing easily the optimal 
policies. 
  
Although most economic theory is not explicit about whether inputs into production 
are renewable or non-renewable, this distinction has significant implications of the 
optimal policies of producing and pricing the resource. 
 
Natural resources can be renewable (e.g. fish stocks or forests) or non-renewable (all 
minerals). Among the latter, some (gemstones, precious metals and other metals like 
copper) are durable, whereas others (e.g. all kinds of fossil fuels, phosphates and other 
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mineral fertilizers, and fossil water) are not. Non-durable resources disappear as such 
when they are used (burnt or dispersed), while durable resources may be reused, 
perhaps after recycling. 
 
Therefore, when a non-renewable resource is durable, at any time there is an 
inventory of the resource in the ground and an inventory of the already used amounts 
of the resource that are potentially reusable.  
 
Since the seminal papers by  Gray (1914) and Hotelling (1931), where the famous 
Hotelling’s rule concerning the price evolution of an exhaustible resource in a 
competitive market is stated, a certain number of papers and books on the economics 
of non-renewable resources have been published. The great majority of these 
publications (many relevant references can be found in Corominas and Fossas, 2015), 
explicitly or not, deal exclusively with non-durable resources, while the literature on 
the economics of durable non-renewable resources is relatively scarce. From the ten 
references included in a recent paper on this subject that deals with the prices of 
durable exhaustible resources under stochastic investment opportunities (Atewamba 
and Gaudet, 2014) only one (Levhary and Pindyck, 1981) is specifically devoted to 
durable non-renewable resources. Hence, this topic remains largely unexplored. 
 
In any case, as it will be shown below, research on this issue has revolved mainly 
around the conditions under which the Hotelling rule is valid or it is not. However, the 
objective of the present paper is to show the use of a non-linear discrete-time 
mathematical programming model to find the optimal extraction policies of the single 
owner of a durable non-renewable resource in a variety of scenarios. 
 
The implications of the durability for a monopolist1 were analysed in Coase (1972), 
where was stated what later has been known as the Coase Conjecture, namely,  that if 
a durable-goods monopolist were unable to precommit to a future sales trajectory, 
market power would disappeared “in the twinkling of an eye”.  Karp (1993, 1996) 
specifies several settings in which the Conjecture fails.  
 
Some papers deal with durable renewable goods monopolies, considering the 
problems derived from the fact that the sale of their products creates a secondary 
market beyond the control of the monopolists, which lead to compare selling versus 
renting (Bulow, 1982; Suslow, 1986; Malueg and Solow, 1987, 1989). Although the 

                                                             
1 Note that to speak of monopoly in relation to a durable good can be considered to a certain extent as 
an abuse of language, since the supply can come from the possessor of the primary source of the good 
and from any of its holders. However, for the sake of simplicity, as many authors do, the terms 
monopoly and monopolistic are used in the present paper in this specific sense. 
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possibility of renting, which arises in these settings, are hardly applicable to durable 
exhaustive resources,  these questions are considered in Malueg and Solow (1988, 
1990) in spite of that those two papers deal with this kind of resources. 
 
Other researches concerning the economics of durable non-renewable resources focus 
on the validity of Hotelling’s rule for this kind of resources, as it is shown below.  
 
Stewart (1980) uses an optimisation discrete-time model and the Lagrange multiplier 
technique (what implies the assumption that the resource has to be depleted unless it 
is unlimitedly available) to compare, regarding the production throughout a finite time 
horizon of a durable exhaustible resource, the strategy of a competitive extractive 
industry with that of a monopolistic one. The author considers a general demand 
function that may vary from period to period and the notion of quasi-durability, which 
is quantified by means of a coefficient corresponding to the fraction of the stock of the 
extracted resource that remains from one period to the next. Stewart concludes that 
Hotelling’s rule applies to competitive and monopolistic markets, although in these 
latter, contrarily to that happens in the former, the optimal strategy may lead to falling 
prices.  
 
Levhari and Pindyck (1981), a fundamental contribution on the subject, using a 
continuous time infinite horizon formulation with growing demand and the Maximum 
Principle, criticise Stewart’s conclusions and argue that, although in a competitive 
market the price minus the marginal cost will rise at the rate of interest, this does not 
imply that price is steadily rising. The authors also discuss briefly the case of 
monopolistic markets and conclude that this rule does not hold in them. Besides, they 
point out that the evolution of the prices of durable resources “have shown long 
secular declines during at least part of their history, and in many cases have indeed 
been U-shaped over the long term (50-100 years)” and show that, under specific 
assumptions, their models can explain these behaviours.  
 
Chilton (1984), however, show that, if a convenient definition of marginal revenue is 
used, Hotelling’s rule extends to the case of monopolistic extraction of a durable good.  
 
Malueg and Solow (1988) analyse in detail the two-periods case under the 
assumptions of monopoly, static linear demand function, and perfect durability. They 
adapt a model from Bulow (1982), with the additional assumption that the resource is 
exhaustible. Their analysis focusses on the differences that exhaustibility induces in the 
monopoly equilibrium of durable resources. 
 
The same authors (Malueg and Solow, 1990) analyse if monopoly leads or not to 
overconservation in the case of durable exhaustive resources. They use two models 
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with static linear demand functions and an infinite horizon (a discrete-time model  
with perfect durability and a continuous-time one in which costs are an increasing 
function of cumulative production) and obtain from them similar results, with the 
general conclusions that monopoly is overconservative and prices fall monotonically 
during  the production period..  
 
In the present paper, a discrete-time non-linear mathematical programming model is 
proposed for determining the optimal policies of the single primary supplier of a 
durable exhaustible resource, under a variety of assumptions. This approach allows 
dealing with any evolution of the demand function throughout the time, any number 
of periods of the planning horizon and either with perfect durability or any degree of 
partial durability. Moreover, it makes easier the computation of the optimal policies 
and permits also analysing the properties of these policies in diverse settings. 
 
The structure of the rest of the paper is as follows. The adopted assumptions and the 
mathematical programming model are stated in section 2. The properties of the 
optimal solutions in several particular settings are discussed in section 3, which also 
contains numerical examples. Section 4 closes the paper with some concluding 
remarks and future research lines. 
 
2. Assumptions and model formulation 
 
We consider a finite planning horizon divided into T periods. The equilibrium price, tp , 
for each period, t , is a function, ϕt  , of the stock of resource in circulation , ts ;  i. e.

( )ϕ=t t tp s 2. At the beginning of the planning horizon, the single primary supplier 

possesses an amount R  of the resource and the stock in circulation is 0s . 
 
We assume that the costs of production and distribution are negligible, although they 
could be easily incorporated if they are constant or depending on time and not on the 
amount of resource in the hands of the monopolist.  
 
The stock in circulation  in any period, ts , is assumed to be equal  to ρ − +1· t ts x , where 

( )≥ 0tx  is the amount of resource extracted and introduced into the market by the 

monopolist in period t  and ( ]( )0,1ρ ∈ is the proportion of the stock available in −1t  

                                                             
2 Although some authors (e. g. Stewart, 1980) refer the equivalents of  tϕ  function as the inverse 
demand functions, others (Levhari and Pindyck, 1981) avoid the use of this denomination, as we do in 
the present paper (except when describing the work of authors that use it). Note that, strictly speaking, 

tϕ is the relation between the stock of resource in circulation and the price and that the stock in 
circulation does not necessarily coincides with the supply of the resource, in the sense of the amount 
put to sale. 
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that is still available in t  (a part of the available stock can deteriorate, be dispersed or 
lost  or not considered marketable by its owners). The value zero is excluded, because 
in this case the resource would be non-durable; 1ρ =  corresponds to a perfectly 
durable resource and 0 1ρ< <  to the infinitely many degrees of partial durability. Of 

course, the value of this parameter may depend on time; however, we assume, for the 
sake of simplicity of the formulations, that it does not (relaxing this assumption, on the 
other hand, is straightforward). 
 
 Let ( )α =1,...,t t T  be the discount factor corresponding to period t . 
 
Then, the policy that maximises the present value of the single supplier can be 
determined by means of solving the following mathematical program: 
 

( )

( )

( )

0
1 1 1

1

Model MODER
(Monopolistic Optimisation for a Durable Exhaustible Resource)

maximise · · · · · ·

s.t.

1

0 1,..., 2

T T t
t t

t t t t t t t
t t

T

t
t

t

z s x s x x

x R

x t T

τ
τ

τ

M ϕ M ϕ ρ ρ −

= = =

=

 = = + 
 

T

− T =

∑ ∑ ∑

∑

 

 
Given that the constraints are linear and define a feasible solution set with interior 
points, if the objective function is concave the Karush, Kuhn and Tucker (KKT) 
conditions are necessary and sufficient for optimality. 
 
As it is known, a necessary and sufficient condition for the concavity of the function is 
that the Hessian matrix be negative semi-definite. That this condition holds or does not 
depends on the specific properties of the ϕt  functions. 

 
Then, in some specific settings the use of KKT conditions allows deducting analytic 
expressions for the optimum values of the variables and, hence, general properties of 
the optimal solutions for the corresponding setting. 
 
Moreover, if concavity holds, the model, having only the non-negativity constraints 
and the linear constraint concerning the availability amount of the resource in the 
hands of the monopolist, is easy to solve using any commercial mathematical 
programming  (even Excel can be used, provided that the value of T is not too high). 
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Calling ( )0u ≥ the multiplier associated with constraint (1) and ( )0; 1,...,tv t T≥ = those 

associated with constraints (2), the KKT conditions for MODER can be written as 
follows: 

( )0 1,...,t
t

z u v t T
x
∂

− + − = =
∂

 

( ) ( ) ( )

( ) ( ) ( ) ( )

' '

1

' '

1

· · · · · · ·

· · · · · · 0 1,...,

T
t

t t t t t t t t
tt t

T
t

t t t t t t t t
t

s ss x s s x u v
x x

s x s s x u v t T

τ
τ τ τ τ

τ

τ
τ τ τ τ

τ

α ϕ α ϕ α ϕ

α ϕ α ϕ α ϕ ρ

= +

−

= +

∂ ∂
− − − + − =

∂ ∂

= − − − + − = =

∑

∑
 

  
 

 3. Optimal policies for specific settings, with linear ϕt  functions 

 
In this section, we will use linear tϕ   functions:  

( ) ( )·t
t t t t t

t

Pp s Q s
Q

ϕ= = −  

where tP  is the choke price (i. e.,  the limit price when ts  goes to 0) and tQ is the 

maximum amount of the resource in circulation. 
 
Then, the objective function of MODER becomes: 
 

0
1 1

1
2

1 1 1 1

· · · ·

· · · · · ·

T t
t tt

t t t
t t

T T T t
t

t t t t t t t
t t t

Pz Q s x x
Q

x x x x

P
P

P

P
P

P

α ρ ρ

β β β ρ

−

= =

−
−

= = = =

 = − − = 
 

= ∆ − −

∑ ∑

∑ ∑ ∑∑
 

where ·t t
t

t

P
Q
αβ =  and 0·t

t tQ sρ∆ = − . 

Using this notation, the elements of the Hessian are: 

( ) ( )2· 1,..., ; · 1,..., ;t
tt t th t T h t T tτ

τ τβ ρ β τ−= − = = − = ≠  

And the KKT conditions: 

( )
1

1 1

· 2· · · · · · 0 1,...,
t T

t t
t t t t t t

t

x x x u v t Tτ τ
τ τ τ

τ τ

β β β ρ β ρ
−

− −

= = +

− ∆ + + + + − = =∑ ∑  

In every particular case it is easy to check whether the Hessian is positive-semidefinite 
and, if it is, solve the mathematical program using an appropriate solver. 
 
Additionally, in some specific settings, analytical expressions can be found for the 
optimal values of the variables. In the rest of this section, three of these settings are 
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analysed: (i) 2T = ; (ii) ( )03, 0; , , 1 1,2,3t t tT s Q Q P P tα= = = = = = ; (iii) 

0 0; , ,t ts Q Q P P= = = 1 , 1t tα ρ= ∀ = . Finally, numerical results for two examples of 

more general settings are presented. 
 
 
3.1. Linear tϕ  functions with 2T =  

This case is similar to that dealt with in Malueg and Solow (1988). However, here the 
model is more general, because the tϕ functions corresponding to the two periods may 

be different and the degree of durability may have any value in (0,1]  . 
 
The objective function is this case is: 

2 2
1 1 1 2 2 2 1 1 2 2 2 1 2· · · · · · · · ·z x x x x x xβ β β β ρ β= ∆ + ∆ − − −  

Dividing this expression by 1β  and replacing 2 1/β β  with θ , the following objective 

function results: 
2 2

1 1 2 2 1 2 1 2

1 2 1 2

ˆ · · · · · · ·
s.t. , 0, 0

z x x x x x x
x x R x x
θ θ ρ θ= ∆ + ∆ − − −
+ ≤ − ≤ − ≤

 

Then ( )
2 ·

ˆ
· 2·

H z
ρ θ

ρ θ θ
− − 

=  − − 
 and the condition for ẑ  be concave is: 

( ) ( )2 2 22 ·
ˆdet 4· · 0 · 4

· 2·
H z

ρ θ
θ ρ θ ρ θ

ρ θ θ
− −

= = − ≥ ≤
− −

 

 
Therefore, assuming that this condition holds, KKT conditions are necessary and 
sufficient for optimality: 
 

1 1 2 1

2 1 2 2

2· · · 0
· · · 2· · 0

x x u v
x x u v

ρ θ
θ ρ θ θ
− ∆ + + + − =

− ∆ + + + − =
 

 
In this case, the mathematical program has only three constraints, each one of them 
can be active or not in an optimal solution. Taken into account that the case in which 
the two non-negative constraints are active is trivial (this can happen if and only if 

0R = ), there are six subcases: 
 
Subcase 1.1: ( )1 2 1 20 , 0 0, 0, 0x R x u v v< < = ⇒ = = ≥  

Then, ( )1 1 2 1 2/ 2, · · / 2x v θ ρ= ∆ = ∆ −∆ , and the conditions for this solution be valid 

are: 1 2 1/ 2 , · / 2R ρ∆ < ∆ ≤ ∆ . 

 
Subcase 1.2: ( )1 2 1 2, 0 0, 0, 0x R x u v v= = ⇒ ≥ = ≥  
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The solution corresponding to this subcase is optimal iff 

1 2 2 1 22· 0, · · · 2· · · · 0u R v u R R Rρ θ θ ρ θ θ= ∆ − ≥ = + − ∆ = ∆ − + − ∆ ≥ , i.e., 1 2·R∆ ≥ ,

( )2 1· 2· /R Rρ θ∆ ≤ + ∆ − . 

 
Subcase 1.3: ( )1 2 1 20, 0 0, 0, 0x x R u v v= < < ⇒ ≥ ≥ =  

2 2 1 2 1/ 2, · · / 2x v ρ θ= ∆ = ∆ −∆ ; valid iff 2 1 2/ 2 , · · / 2R ρ θ∆ < ∆ ≤ ∆ . 
 
Subcase 1.4: ( )1 2 1 20, 0, 0, 0x x R u v v= = ⇒ ≥ ≥ =  

The solution corresponding to this subcase is optimal iff 
( ) ( )2 1 1 2 1· 2· 0, · · · 2· · · 0u R v u R R Rθ ρ θ θ ρ θ= ∆ − ≥ = + −∆ = ∆ − + −∆ ≥ , i.e., 2 2·R∆ ≥

( )1 2· 2· ·R Rθ ρ∆ ≤ ∆ − + . 

 
Subcase 1.5: ( )1 2 1 2 1 2, 0, 0, 0, 0x x x x R u v v> + < ⇒ = = =  

( ) ( ) ( ) ( )2 2
1 1 2 2 2 12· · · / 4 · , 2· · / 4 ·x xρ θ ρ θ θ ρ ρ θ= ∆ − ∆ − = ∆ − ∆ − . This solution is 

optimal provided that the expressions defining 1 2,x x  are >0 and 

( ) ( )( ) ( )2
1 2 1 22 · 2 · · / 4 ·x x Rρ ρ θ ρ θ+ = − ∆ + − ∆ − < (note that the denominators of 

these expressions cannot be negative when the objective function is concave). In this 
subcase, the condition 1 2p p>  holds without exception.  

 
Subcase 1.6: ( )1 2 1 2 1 2, 0, 0, 0, 0x x x x R u v v> + = ⇒ ≥ = =  

( )( ) ( )( )
( )( ) ( )( )

1 1 2

2 1 2

· 2 · · / 2· 1 · ,

· 2 · · / 2· 1 ·

x R

x R

θ ρ θ ρ θ θ

θ ρ θ ρ θ θ

= ∆ − ∆ + − − +

= −∆ + ∆ + − − +
 

This solution is optimal provided that the expressions defining 1 2,x x  are >0 (note that 

the denominator is 2≥ ) and  

( ) ( ) ( )( ) ( )( )2
1 2· 2 · 2 · · · 4 · / 2· 1 · 0u Rθ ρ ρ θ ρ θ ρ θ θ= − ∆ + − ∆ + − − + ≥ , 

or, equivalently, ( ) ( ) ( )2
1 22 · 2 · · 4 · ·Rρ ρ θ ρ θ− ∆ + − ∆ ≥ − . In this subcase, prices may be 

decreasing, stable or decreasing, depending on the values of the parameters for each 
specific instance.  
 
Therefore, even for the simple case 2T =  there is no single shape for the optimal 
policies, which depend on the specific values of the data. Some optimal policies imply 
the depletion of the resource, while others do not. For instance, for a perfectly durable 
resource ( )1ρ = , stable demand  and discount factors equal to 1  (therefore, with 

1θ = ) and initial stock in the market equal to 0 (what implies, taking into account the 
preceding assumptions, 1 2∆ = ∆ = ∆ ), the applicable subcases would be subcase 1.5 or 
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subcase 1.6, according if the value of the ratio / R∆  is <3/2 (in this subcase, 

1 2 / 3x x= = ∆ ; therefore, at the end of the planning horizon an amount of the 

resource equal to 2· / 3R − ∆  would remain in the ground) or ≥3/2 (in this subcase 6, 

1 2 / 2x x R= =  and the resource would be depleted).  

 
3.2. Linear tϕ  function with ( )03, 0; , , 1 1,2,3t t tT s Q Q P P tα= = = = = =  

The assumptions that define this setting imply ( )1,2,3t tβ β= =  (therefore, we can 

leave them aside) ( )1,2,3t t∆ = ∆ = . Therefore, the Hessian is: 

( )

2

2

2
2

2
H z

ρ ρ
ρ ρ
ρ ρ

 
 =  
 
 

, 

which is positive definite for all possible values of ( )0 1ρ ρ< ≤ . 

 
Moreover, the KKT conditions: 

2
1 2 3

1 2 3

2
1 2 3

2· · ·
· 2· ·

· · 2·

x x x u
x x x u

x x x u

ρ ρ
ρ ρ

ρ ρ

+ + + = ∆
+ + + = ∆

+ + + = ∆

 

 
Subcase 2.1: 1 2 3x x x R+ + <  

The condition that defines this subcase implies 0u = . Therefore, KKT conditions read 
as follows: 

2
1 2 3

1 2 3

2
1 2 3

2· · ·
· 2· ·

· · 2·

x x x
x x x

x x x

ρ ρ
ρ ρ

ρ ρ

+ + = ∆
+ + = ∆

+ + = ∆

 

whose solution is 
2

1 3 2
2 2 2·· , ·

4 4
x x xρ ρ ρ− − +
= = ∆ = ∆ . These values have to fulfil

1 2 3x x x R+ + < , i. e., 2

4
6 4·R ρ ρ

∆
<

− +
. 

Note that 2 1 3x x x≤ = , since ( )22 2· 2 0 1ρ ρ ρ ρ− + ≤ − < ≤ . Therefore, in this case the 

optimal policy shows a “bowl effect” (i.e., it is U-shaped), which is maximally apparent 

when 2 2ρ = −  (then, ( )2 1/ 2· 2 1 0,828x x = − = ). 

 
Subcase 2.2: 1 2 3x x x R+ + =   

Solving the four equations linear system yields: 
2

1 3 22 2 2

2 2 2· 4· , · , ·
6 4· 6 4· 6 4·

x x R x R u Rρ ρ ρ
ρ ρ ρ ρ ρ ρ
− − +

= = = = ∆ −
− + − + − +
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That is optimal provided that 2

40, i.e.,
6 4·

u
R ρ ρ
∆

≥ ≥
− +

. 

The optimal policy for this subcase shows the same bowl effect that the policy for 
subcase 2.1. 
 
In both subcases, prices are strictly decreasing. 
 
 

3.3. Linear tϕ  function with ( )01, 0; , , 1 1,...,t t ts Q Q P P t Tρ α= = = = = =  

In this case, the KKT conditions read as follows: 

( )
1

2· 0 1,...,
T

t t t t
t

x x u v x x u v t Tτ τ
τ τ≠ =

−∆ + + + − = −∆ + + + − = =∑ ∑  

 
Adding up these T  equations gives:  

( )
1 1

· 1 · · 0
T T

t t
t t

T T x T u v
= =

− ∆ + + + − =∑ ∑  

Where either 
1

T

t
t

x R
=

<∑  or 
1

T

t
t

x R
=

=∑ . 

 

Subcase 3.1: 
1

T

t
t

x R
=

<∑  

The condition defining this subcase implies 0u = . The solution ( )1 · 1,...,
1tx t T

T
= ∆ =

+

fulfils the KKT conditions (since  0 0t tx v> ⇒ = ) provided that
1

·
1

T

t
t

Tx R
T=

= ∆ <
+∑ , i.e.,  

1·T R
T
+

∆ < . 

 

Subcase 3.2: 
1

T

t
t

x R
=

=∑  

In this case, 
1 1· 0 ·T Tu R iff R

T T
+ + = ∆ − ≥ ∆ ≥ 

 
and ( )1,...,t

Rx u R t T
T

= ∆ − − = = .  

  
In both subcases, prices decline regularly: 

( )1 1 1· 1,..., 1 ,with ·t t t
P Pp p x t T p P x+ = − = − = −
∆ ∆

 

( )In subcase 3.1, / 1Tp P T= + ; therefore, the final price tends to zero as the number of 

periods tends to infinity). In 3.2, 0Tp = . 
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3.4. Numerical examples 
 
3.4.1. Linear tϕ  function with ( )0 0; , , 1 1,..,t t ts Q Q P P t Tα= = = = =  

This example is an extension to any number of periods of the setting presented in 4.2. 
With T=10, Q=220, P=110, R=100, 0,9ρ = ,  the optimal productions,  which deplete 

the resource, show an accentuated bowl effect (Fig. 1), while the prices decline, in the 
whole planning horizon, more than a 50% (Table 1).  
 

 

Fig. 1: Optimal productions in the 10 periods of the planning horizon 
 for the example 4.4.1 

 
t  1 2 3 4 5 6 7 8 9 10 

tx  15,41 11,34 8,88 7,50 6,87 6,87 7,50 8,88 11,34 15,41 

tp  189,18 169,59 156,86 148,18 141,62 135,71 129,15 120,47 107,74 88,15 
Table 1. Optimal productions and prices for the example 4.4.1 

 
3.4.2. Linear tϕ  functions with ( )010, 100, 100, 100 10· 1 ,tT s R Q t= = = = + −  

        200,tP = 10.9t
tα

−=  
 
This example illustrates the significant effect of the parameter ρ  on the shape of the 
optimal extraction policy and on the evolution of price. Note that when 1ρ =  the price 

in the period 1 is 0, given that 1 0Q s= . 
 

 
1.00ρ =                                                             0.95ρ =  
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0.75ρ =                                                                0.50ρ =  

Fig. 2: Production (black bars) and prices (grey bars) for the optimal policies 
corresponding to the following data: 

( ) 1
010, 100, 100, 200, 100 10· 1 , 0.9t

t t tT s R P Q t α −= = = = = + − =  
In the case 1.00ρ =  the total amount extracted is 66,968; in the other cases, the 

resource is depleted 
 

4. Conclusions and prospects 

The problem of determining the optimal extraction policy of a durable non-renewable 
resource with a single primary supplier remains largely unexplored so far. 
 
In this paper, a discrete-time mathematical programming model for the problem is 
proposed. The model allows dealing with tϕ  functions (that give the equilibrium price 

as a function of the stock of resource in circulation) depending on time and with any 
degree of durability of the considered resource. Under some specific conditions on the 
shape of the tϕ  functions and the values of the parameters, this formulation, using the 

Karush, Kuhn and Tucker conditions, allows studying the properties of the optimal 
solutions and computing easily the optimal extraction policy and the corresponding 
prices. 
 
The applications of the model reveal that it is an efficient tool for determining the 
optimal extraction policies and the corresponding prices in a variety of settings. 
 
Although in some particular settings the use of the KKT conditions yields analytic 
solutions and general properties of them, the analysis of the solutions obtained for 
different setting show that the optimal extraction policies and the corresponding 
prices do not exhibit a general shape.  
 
Next future research on the problem will focus on incorporating the extraction costs in 
the model and extending the analysis to other types of tϕ  functions, considering the 

possibility of diverse behaviours of the single primary suppliers and the other holders 
of the resource. 
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