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Recent advances in machine learning techniques and spe-
cialized hardware has enabled a resurgence in the interest
and applicability of powerful artificial neural network based
prediction systems. However, as of yet no significant leaps have
been taken towards applying machine learning in heterogeneous
scheduling in order to maximize system throughput. As
heterogeneous systems become more ubiquitous, computer
architects will need to develop new CPU scheduling approaches
applying novel techniques capable of exploiting the diversity of
computational resources. However, non-heterogeneous aware
schedulers like the current Linux Completely Fair Scheduler
(CFS) [3] cannot take advantage of diverse system resources.
Heterogeneous scheduling approaches have been previously
proposed by V. Craeynest et al. [6] and Markovic et al. [2]
which intend to provide full and fair utilization of the different
hardware resources for all threads. These approaches yielded
significant performance benefits compared to the CFS on
heterogeneous architectures. In this extended abstract, we
describe a novel performance prediction model which is the first
of its kind to utilize machine learning performance predictors
at the granularity of scheduling quanta. We then highlight how
a heterogeneous system scheduler may be improved by the
addition of this model.

The prediction model is composed of the following:

• Statistical information about each thread’s state and which
core type it has been executing on.

• A next quantum behavior predictor (NQP) that predicts
what will be a thread’s behavior during the next scheduling
quantum.

• Machine learning based performance predictors which use
a thread’s behavior statistics to estimate its performance
for a given core type.

Recognizing and exploiting the variations in program behav-
ior is instrumental for effective schedulers in achieving optimal
mapping schemes to maximize system performance. While not
all programs exhibit the same behavior, studies [1], [4] have
shown that the behavioral periodicity in different applications
is typically consistent. In fact, the behavioral periodicity has
been shown to be roughly on the order of several millions of
instructions and is present in various different and even non
correlated metrics stemming from looping structures inside of
applications.

In addition, in order to provide contextual awareness to a
CPU scheduler, certain thread and hardware statistics should

be periodically collected. These may include values indicating
a thread’s state (e.g. running, ready, or stalled), execution time,
number of instruction executed, types of instructions executed,
number of memory operations, cache accesses as well as hit
or misses, and available cores and their types. The amount of
statistics needed to be collected depends upon the complexity
and optimization scheme of the scheduler.

Several novel approaches such as [5] have been proposed
which predict program behavior based upon various statically
or dynamically collected program statistics. However, for our
model, we propose using a next quantum thread behavior
predictor (NQP) that will always predict the next behavior to
be equal to the previous quantum behavior. It takes as input
a selection of thread statistics and by utilizing the ”previous-
value” prediction, it then passes these same thread statistics as
the input parameters to the machine learning based performance
predictors.

The machine learning architectures that the predictors are
based upon can include a diverse selection. Artificial neural
networks, decision trees, and clustering schemes such as k-
means or nearest neighbors are examples of machine learning
(ML) models that can be utilized alone or in conjunction
as an ensemble to improve the prediction accuracy and
training generalization. A separate ML based predictor (whether
individual or ensemble based) should be implemented and
trained for each different core type present in the target system.
Therefore, the ML predictors take as input the thread statistics
(which describe its expected behavior for the next quantum)
and predict an estimated IPC value. This IPC value is the
performance expected of executing that thread on the core
type for which the predictor has been trained. The central
features to research in detail are: the hyper-parameters of the
ML predictors, the target applications of the system (or what
benchmarks provide enough generalization for most programs),
and which thread statistics to collect (parameter engineering).
The hyper-parameters include items such as the number of
hidden units and hidden layers of a neural network, the training
algorithms, and which regularization techniques to use. These
may be fine tuned by hand or through a machine learning
approach as well and should be further evaluated by the amount
of overheads that they would add. For instance, a leaner but
less precise neural network may lead to a more optimal all
around predictor when considering overheads compared to a
very deep or complex ensemble of predictors.

Identifying target applications is also critical in the sense that
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the data collected for training, validation, and testing should be
composed of execution results from benchmarks which reflect
these target applications. These data should be gathered by
running the predetrmined benchmarks on the different core
types and sampling the IPC result and other thread statistics
periodically after each scheduling quantum. The model could
also be trained online to improve its ability to predict for newly
executed applications dynamically.

When a scheduling quantum is completed, the statistics of
each thread passes through the NQP and then the predictors of
all the different core types (with the exception of the core type
the thread last executed on since the NQP prediction will suffice
in this case). In this manner, the system throughput of all the
different thread mappings on the heterogeneous architecture
can be compared. Assuming that the prediction error of the
model is not onerously high, then these comparisons will offer
a heterogeneous system scheduler ample knowledge in order
to constantly maximize the system throughput. Issues to be
improve upon and included in the future consist of specific
ML model implementations, parameter tuning, including thread
interference effects, and possibly targeting other scheduling
goals such as reducing energy consumption.
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