
GLTO: On the Adequacy of Lightweight Thread
Approaches for OpenMP Implementations
Adrián Castelló

Rafael Mayo
Enrique S. Quintana-Ortı́

Universitat Jaume I de Castelló
Castelló de la Plana, Spain

{adcastel,mayo,quintana}@uji.es

Sangmin Seo
Pavan Balaji

Argonne National Laboratory
Lemont, Illinois, USA
{sseo,balaji}@anl.gov

Antonio J. Peña
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
antonio.pena@bsc.es

Abstract—OpenMP is the de facto standard application pro-
gramming interface (API) for on-node parallelism. The most
popular OpenMP runtimes rely on POSIX threads (pthreads)
implementations that offer an excellent performance for coarse-
grained parallelism and match perfectly with the current hard-
ware. However, a recent trend in runtimes/applications points in
the direction of leveraging massive on-node parallelism in con-
junction with fine-grained and dynamic scheduling paradigms. It
has been demonstrated that lightweight thread (LWT) solutions
are more appropriate for these new parallel paradigms. We have
developed GLTO, an OpenMP implementation over the recently-
emerged Generic Lightweight Threads (GLT) API. GLT exports
a common API for LWT libraries that offers the possibility of
running the same application over different native LWT solutions.
In this paper we use GLTO to analyze different scenarios where
OpenMP implementations may benefit from the use of either
LWT or pthreads. Our study reveals that none of the threading
approaches obtains the best performance in all the scenarios, but
that there are important gaps among them.

Index Terms—GLT, Lightweight Threads, OpenMP, POSIX
Threads, Programming Models

I. INTRODUCTION

In the last years, the number of cores per processor has
been increasing periodically, reaching impressive counts such
as the 260 cores per socket that are present in the Sunway
TaihuLight supercomputer [1], which was ranked #1 in the
June 2016 TOP500 List [2].

The trend followed in that list indicates that future exascale
systems will support massive on-node parallelism, deploying
thousands or millions of cores per socket. However, extract-
ing the computational power of those machines will require
efficient libraries and programming models (PMs). One of
the most popular approaches to obtain acceptable on-node
performance is via the POSIX threads (pthreads) application
programming interface (API) [3], or through directive-based
PMs such as OpenMP [4] or OmpSs [5].

Those PMs are implemented on top of the pthreads API,
which matches perfectly with the current hardware and
coarse-grained codes, but fails to accommodate new software
paradigms that target dynamically-scheduled, fine-grained par-
allelism due to the high cost of management.

Several lightweight thread (LWT) libraries have been im-
plemented in the last years to tackle the fine-grained and

dynamic software requirements [6]. Each LWT solution fea-
tures its own PM and target environment. Some are im-
plemented for a specific Operating System (OS), such as
Windows Fibers [7] and Solaris Threads [8]. Compared with
those, ConverseThreads [9] and Nanos++ [10] support a
specific high-level PM; Charm++ [11] and OmpSs [5], re-
spectively. There are also general-purpose solutions such as
MassiveThreads [12], Qthreads [13], and Argobots [14]. The
Generic Lightweight Threads (GLT) API [15] is an effort
to unify these LWT solutions under a unique PM to foster
productivity and portability with a negligible overhead that is
demonstrated in [16]. This lightweight API offers the common
functionality of LWT solutions and is currently implemented
on top of MassiveThreads, Qthreads, and Argobots. As a
result, a runtime/application based on GLT requires no changes
to be executed on top of any of these three LWT solutions.

In this paper we present GLTO: our design and imple-
mentation of an OpenMP runtime on top of the GLT API.
Our OpenMP implementation is based on the open-source
BOLT project [17], which is in turn based on LLVM [18] (the
LLVM OpenMP runtime shares the code developed in the Intel
OpenMP [19] solution). We test our OpenMP implementation
with the OpenUH OpenMP Validation Suite 3.1 [20].

Based on GLTO, we analyze the most common OpenMP
patterns and discuss how LWTs deal with them, in comparison
with traditional pthread-based approaches. We evaluate our
OpenMP implementation and compare its performance with
those obtained when using the GNU and Intel OpenMP run-
times1 in four different scenarios: basic parallel code, for loop
based code, nested parallelism, and task parallelism. Our study
reveals that none of the solutions obtains the best performance
in all the scenarios, but that there are important gaps among
them.

In summary, the main contribution of this paper is a
thorough analysis of the OpenMP patterns that may benefit
from LWT or Pthreads based implementations.

The rest of the paper is organized as follows. Section II
reviews related work. Section III provides some background

1Since BOLT is still under development, a performance comparison with
GLTO is premature.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87661238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information about OpenMP and GLT. Section IV details the
GLTO implementation. Section V validates our OpenMP solu-
tion. Section VI provides an in-depth performance analysis of
the distinct scenarios. Section VII discusses the lessons learned
from the analysis of our experiments. Section VIII contains our
conclusions.

II. RELATED WORK

The OpenMP standard is currently supported by an impor-
tant number of compilers, including both open source and
vendor solutions. Although the current OpenMP specification
corresponds to version 4.5 [21], some compilers may not
support the complete set of directives. For example, the LLVM
project compiler (clang 3.9) supports all non-offloading
features of OpenMP 4.5. In contrast, Intel’s icc compiler
16.0 supports the complete OpenMP 4.0 specification, and
the newest icc 17.0 and the gcc 6.1 compiler from
GNU adhere to the complete OpenMP 4.5 specification. There
are other compilers that are one or more steps behind those
solutions. For example pgcc [22], from the Portland Group,
and OpenUH [23], support version 3.1 of the OpenMP speci-
fication.

Supporting an OpenMP specification means that each solu-
tion must have its own OpenMP runtime with its own features
because they may target specific hardware or code. However,
the most prominent runtimes are those offered by GNU and
Intel—namely libgomp and the Intel OpenMP runtime. In
some cases, the same runtime code is shared among compilers,
as it occurs for the implementation of the Intel solution, which
can be linked with code built by the clang compiler.

In the field of LWT libraries, the works in [6], [9], [12],
[13], [14] introduce distinct LWT definitions, discuss imple-
mentation details, and analyze performance. The work in [24]
conducts an analysis of different LWT solutions from the
semantic point of view and evaluates their performance.

The relationship between LWTs and the OpenMP runtime
has also been explored in the past. In [25] and [26], nested
parallelism is analyzed and resolved by means of LWT so-
lutions. Moreover, the effect of OpenMP implementations
when executed in NUMA architectures and scheduling for
task parallelism have also been studied in [27] and [28],
respectively.

To the best of our knowledge, this is the first paper analyzing
the general appropriateness of LWTs for the implementation
of OpenMP runtimes.

III. BACKGROUND

In this section we review the OpenMP PM and describe the
GLT implementation and its interaction with the underlying
LWT libraries.

A. OpenMP

The OpenMP API supports multi-platform shared-memory
multiprocessing programming, and current implementations
cover most architectures and operating systems. OpenMP
offers a directive-based PM to accelerate a code by means

Fig. 1: PM offered by the GLT library.

of “pragmas”. Intel and GNU offer two common OpenMP
implementations that rely on top of Pthreads in order to exploit
concurrency.

OpenMP runtimes are commonly composed of two main
parts: the work-sharing constructs and task parallelism. In
contrast with work-sharing constructs, where all the OpenMP
implementations follow a similar policy, distinct OpenMP
implementations leverage different mechanisms for task man-
agement. In particular, while the GNU version implements
a single shared task queue for all the threads, the Intel
implementation incorporates one task queue for each thread
and integrates work-stealing for load balance control. In both
solutions, the task management is separated from the work-
sharing implementations because task directives were added
in the OpenMP 3.0 specification.

B. Generic Lightweight Threads

GLT is a common API that was designed with the aim of
unifying, under the same PM, a variety of LWT libraries. It is
currently implemented on top of three general-purpose LWT
solutions: MassiveThreads, Qthreads, and Argobots. Despite
this API does not support the complete set of the native LWT
semantics, the selected group is sufficient to implement our
OpenMP runtime.

The GLT API abstracts the semantics of each component
under the same terminology. Figure 1 illustrates the PM
offered by this API. Specifically, GLT_thread refers to
the OS thread itself, while GLT_ult represents the user-
level threads (ULTs). In addition, GLT_tasklet, a lighter
work-unit that does not own a stack (preventing migration
or yield operations), is offered as part of the common API.
While tasklets are natively supported only by Argobots, these
are implemented on top of ULTs for Qthreads and Mas-
siveThreads. GLT_scheduler acts differently depending on
the underlying library and it may change the performance of
the PM but not the final result of the execution.

Although adding an extra software layer between the
OpenMP runtime and the underlying libraries may affect per-
formance, GLT does not add any appreciable overhead because
it offers a header-only version that allows the compilers to

Fig. 2: Software stack choices of an OpenMP code.

avoid the extra calls by embedding the LWT code by means
of static inline declarations [29].

The use of this intermediate software level allows the
programmer to test and leverage different LWT solutions under
just a single code version. This feature provides portability,
enabling the adaptation to the underlying hardware/software
combination.

IV. OPENMP OVER GLT

In this section we justify the design decisions that we made
in order to adapt the LLVM OpenMP runtime to the use of
LWTs.

As argued in Section I, our implementation is based on the
BOLT project that is, in turn, based on LLVM. We selected
this starting point because both the runtime and the clang
compiler [30] are open source. In addition, this runtime can
be linked from code generated with the Intel compiler.

A. GLTO Interactions

GLTO offers a complete implementation of OpenMP 4.0
for C, C++, and Fortran codes. GLTO can be linked with
code generated by the clang or icc compilers. Figure 2
shows that an OpenMP code compiled with these tools can
be linked to the original Intel OpenMP runtime and executed
using pthreads, or linked with the GLTO runtime and executed
over the desired LWT solution. The flexibility added by GLTO
helps developers in two ways: if a LWT solution implements
the GLT API, an OpenMP code can be executed on top of
that LWT solution; in case a code benefits from a certain
mechanism, the user can change the underlying library without
modifying the OpenMP code.

B. GLTO Implementation Details

LWT libraries use two threading levels. The lowest level
is composed by a number of OS threads. Those threads are
scheduled by the OS (like the pthreads) and ULTs run on
top of them. These ULTs are created, scheduled, and executed
inside the user space so their handling overhead is lighter than
that of their OS counterparts.

Complying with the OpenMP Specifications [21], our GLTO
implementation responds to the OMP_NUM_THREADS en-
vironment variable to create as many GLT_threads as
OpenMP threads are requested by the user. As depicted in
Figure 3, GLT_threads are bound to CPU cores and are cre-
ated when the library is loaded. They will be the responsible to
execute the GLT_ults created at runtime. Standard-compliant
dynamic adjustment of threads via the num_threads clause

Fig. 3: Relationship between OpenMP code and the GLTO
implementation.

and the omp_set_num_threads library routine is also
possible.
GLT_ults act as Pthreads do inside the POSIX-based

OpenMP solutions when work-sharing constructs are invoked.
The left-hand side plot of Figure 3 shows that each OMP
Thread is converted into a GLT_ult in that scenario.

For task parallelism (right-hand side of Figure 3), each
OMP task is also converted to a GLT_ult. However, due to
the different data structures used by the OpenMP runtime for
OMP Thread and OMP task, inside the GLTO implementation,
the behavior of the GLT_ult differs when acting as an
OMP Thread or an OMP task.

In the next subsections we discuss in more detail how GLTO
acts in each scenario.

C. Work-sharing Construct

For work-sharing constructions, our OpenMP solution mim-
ics the mechanism that the GNU and Intel runtimes implement.
The master thread assigns the function pointer to each thread
in the runtime and then, once the work is done, the master
thread joins the others. When the merge is completed, the
master thread finalizes the parallel construct and continues
executing the sequential code until a new parallel region is
detected.

In GLTO, the work is assigned by creating a GLT_ult with
the function pointer for each GLT_thread, and the master
thread waits for work completion using a join function. As
in the pthread solutions, the master thread continues with the
execution of the sequential code.

D. Task Parallelism

In contrast with work-sharing structures, the task parallelism
implementation may differ depending on the specific OpenMP
solution. The main reason is that task directives were intro-
duced in the OpenMP 3.0 specification, and the runtimes added
the required functions with the primary goal of maintaining the
performance attained by the work-sharing implementations.

As demonstrated later in our experimentation, it is in
these scenarios where LWTs can deliver higher performance,
especially in the case of leveraging fine-grained tasks. GLTO
contemplates two possible scenarios when tasks are used. In
case the code enters a master or single region, it indicates that
a single GLT_thread creates all the tasks and the remaining
GLT_threads execute them. If our runtime detects this
scenario, it uses a round-robin dispatch so that it can schedule
the tasks to any of the GLT_threads. In contrast, if the code
is not inside such region, each GLT_thread creates its own
tasks and then executes them.

E. Nested Parallelism

Although nested parallel codes are rare, this type of par-
allelism may appear implicitly. For example, a code can
present an OpenMP parallel for loop and, inside the loop,
it can call an external library that is also accelerated via
OpenMP directives. That code features nested parallelism and
current pthread-based OpenMP solutions tend to offer low
performance.

GLTO deals with nested parallelism applying the following
policy. For the outer parallel level, the runtime divides the
work as in the work-sharing case. If a nested level is found,
each GLT_thread generates and executes the GLT_ults for
the nested code. This mechanism avoids the oversubscription
that impairs performance when the pthread-based OpenMP
solutions are used.

F. Load Imbalance

The GLTO default configuration may be affected because
of irregular parallel codes. More concretely, if there is a load
imbalance among OpenMP tasks or in nested parallelism, the
performance of our GLTO design suffers. However, in these
cases, we take advantage of GLT to modify the number of
work-unit queues inside the GLT PM. In some detail, if we
use the GLT_SHARED_QUEUES environment variable, all the
GLT_threads share the same queue, and the load imbalance
is neutralized by enforcing a work-sharing behavior.

G. Specific Implementation Issues

Although GLT offers a common API for LWT libraries, the
specific scheduling and management mechanisms depend on
the underlying native LWT library. Therefore, these features
may affect the performance behavior of the entire imple-
mentation. This aspect may not be noticeable when the GLT
library is used directly. However, OpenMP relies on a master
thread that handles all the thread structures and executes the
serial code. Therefore, the primary GLT_thread cannot be
changed. In LWT implementations it is common that the
main execution becomes a schedulable item, so that it can be
stolen (if the library allows work-stealing) by a non-primary
GLT_thread. If this situation occurs, the master thread in
OpenMP will not be the primary GLT_thread any longer.

This feature forced us to slightly modify the OpenMP run-
time when MassiveThreads is used as the library under GLT
because MassiveThreads allows that a thread steals the main

TABLE I: Results of the OpenUH OpenMP Validation Suite
3.1 for the OpenMP runtimes.

GNU Intel GLTO
OpenMP constructs 62 62 62
Used tests 123 123 123
Successful test 118 118 121/122
Failed Test 5 5 2/1

execution. This modification does not allow the main thread
to yield and, as a consequence, the potential performance
improvement cannot be fairly measured.

V. GLTO VALIDATION

In this section, we show the results for the validation tests
and compare them with those obtained with the Intel and GNU
OpenMP runtimes.

The OpenUH OpenMP Validation Suite 3.1 is leveraged
to test the OpenMP 3.1 specification. It consists of 123
benchmark tests that analyze 62 OpenMP constructs, including
task parallelism. The suite employs an automatic approach
to run different types of tests in normal, cross, and orphan
modes [20].

Table I displays the results of executing the Validation Suite
with the GNU, Intel, and GLTO runtimes. gcc 6.1 was
used for the GNU runtime and icc 16.0.1 for Intel and
GLTO. GLTO is combined with the icc compiler because it
can accommodate a larger number of tests than the clang
tool does. Those results expose that, while the Intel and
GNU runtimes pass 118 tests, our OpenMP implementation
succeeds in 121 or 122, depending respectively on the use
of Argobots/Qthreads or MassiveThreads as the underlying
library. The failed tests for GLTO over Argobots/Qthreads
are the omp_taskyield and the omp_task_untied. The
reason is that, once a task is bound to a GLT_thread,
there is no work stealing, so the task is resumed in the same
GLT_thread and the test counts the number of tasks that
have been created and started by one GLT_thread and
resumed by another GLT_thread. If we use MassiveThreads,
which allows work stealing, only omp_taskyield fails,
because there are not enough tasks that change from one
GLT_thread to another. The same tests fail for the GNU and
the Intel runtimes, which indicates that they do not integrate
any mechanism for migrating tasks from one OMP thread to
another once the tasks have been created. With these runtimes,
the tests fail in the normal and orphan modes. The other failed
test is the omp_task_final, because the task marked as
final is not directly executed.

The general test failure when task parallelism is used
indicates that the solutions adopted are not as solid as in the
case of work-sharing constructs. This agrees with the fact that
task management was added as a separate mechanism.

VI. PERFORMANCE EVALUATION

In this section we first describe the hardware and software
employed for our experimental evaluation. Then we present
the results for the different experimental scenarios.

A. Hardware and Software

The results were obtained on a 36-core (72-hardware thread)
machine equipped with two 18-core Intel Xeon E5-2699 v3
(2.30 GHz) CPUs and 128 GB of RAM. The libraries are
Intel OpenMP Runtime 20160808, GOMP 6.1, GLT 01-2017,
Argobots 01-2017, Qthreads version 1.10, and MassiveThreads
version 0.95. GLT, GOMP, and LWT libraries were compiled
with gcc 6.1. The Intel OpenMP implementation and GLTO
were compiled with icc 16.0.

The OpenMP environment variables were set to the
values that show higher performance for each scenario.
OMP NESTED and OMP BIND PROC were set to true
for all tests. The former was asserted in order to measure the
actual nested management, because otherwise the OpenMP
runtime treats nested parallelism as one level of parallelism
and sequential code. The latter was asserted in order to prevent
thread migration among cores. Moreover, for the POSIX-
based OpenMP implementations, the environment variable
OMP_WAIT_POLICY was initialized to active for work-
sharing codes and to default for task parallelism. In the
work-sharing codes, keeping active the OMP threads improves
the time of work completion. In the task parallelism cases,
conversely, the active mode increments the overhead caused
by contention in the work-stealing mechanism.

B. OpenMP as Environment Creator

One way to use OpenMP is by adding just a #pragma
omp parallel embracing all the application code. The
OpenMP threads can be handled as simple Pthreads, distin-
guished by their thread ID. In this manner, the user only
benefits from OpenMP in the thread creation and joining
operations while, inside the code, it is the user’s responsibility
to divide the work among them.

In this experiment we use the UTS Benchmark [31], a code
parallelized with OpenMP that measures the performance at-
tained when executing an exhaustive search on an unbalanced
tree. The tree is built at execution time by using a divisible
random number generator that splits the structure, enabling a
parallel processing while still generating a deterministic tree.

Figure 4 shows the performance when UTS is executed on
top of the OpenMP implementations using the problem size
T1XXL, which corresponds to the larger problem instance that
fits into memory. The results are the average of 50 executions
and the represented error bars reveal reduced execution time
variations. The bars labeled as GCC and ICC correspond
to the GNU and Intel solutions, respectively; GLTO(ABT),
GLTO(QTH), and GLTO(MTH) correspond to the GLTO im-
plementations over Argobots, Qthreads, and MassiveThreads,
respectively. The results expose close performances among
almost all the OpenMP solutions. The reason for this behavior
is that the code only employs OpenMP for the environment
set up, and the interactions among threads are then managed
by the programmer’s code. The performance difference be-
tween GCC and the other solutions is caused by the different
compiler outputs.

Fig. 4: Execution time for the UTS benchmark (T1XXL size)
on top of OpenMP runtimes increasing the number of OpenMP
threads.

Fig. 5: Execution time for the UTS benchmark (T1XXL size)
on top of pthreads and native LWT solutions increasing the
number of threads.

There is a noticeable performance loss when GLTO is
used on top of Qthreads. In order to discard a bad design
in the GLTO runtime we translated UTS from the pthreads
version [32] to the native LWT APIs. The results are reported
in Figure 5 (as in the previous case, they are the average of
50 executions), and reveal that the increase of time is because
of the LWT implementation itself. The main reason is that
two threads are bound to the same CPU and the Qthreads
implementation protects all the memory words with mutex
regions, adding a noticeable contention when we increase the
number of OS threads.

In summary, the choice among OpenMP implementations
in this scenario is not critical for the application performance.

C. OpenMP in a Compute-Bound Code

This case study reflects the most frequent target for
OpenMP. It mainly consists of an iterative code that is executed
a certain number of times. This code configuration is highly
favorable for OpenMP, and it is where the runtimes may
exploit a substantial fraction of the hardware parallelism. In
order to study this scenario, we have chosen the CloverLeaf
mini-app [33], which solves the compressible Euler equations

Fig. 6: Execution time for the CloverLeaf mini-app
(clover bm4.in size) on top of OpenMP runtimes increasing
the number of OpenMP threads.

on a Cartesian grid, using an explicit second-order accurate
method. Each cell stores three values: energy, density, and
pressure, and a velocity vector is stored at each cell corner.
This organization of the data, with some values at cell centers
and others at cell corners, is known as a staggered grid. This
code is written in Fortran.

The main part of the mini-app is a for loop that is
executed 2,955 times. The loop is divided into several kernels,
each calculating a value of the cells using #pragma omp
parallel for directives. Concretely, 114 parallel for
loops are executed 2,955 times, resulting in a total of 336,870
executions. Figure 6 depicts the average of 50 executions
of the application for each of the OpenMP solutions using
the clover bm4.in problem instance. In this scenario the time
variation is slightly larger for MassiveThreads because of the
internal work-stealing mechanism. In addition, the mechanism
implemented by the GNU and Intel runtimes (labeled as
GCC and ICC, respectively) in the work-sharing constructs
performs better. As argued earlier, Intel and GNU just pass the
function pointer to be executed to the threads, while the GLTO
implementation creates as many ULTs as GLT_threads.

In order to analyze this time gap we have measured the time
spent in the work assignment step inside the OpenMP runtime.
Figure 7 shows the difference among OpenMP implementa-
tions, demonstrating that the non-LWT solutions deploy the
most efficient mechanism. Although the single time difference
among implementations is barely noticeable, repeating this
operation the over 336,000 times of the entire execution yields
a nonnegligible total time difference.

In contrast with the scenario presented in Section VI-B,
the well-developed work-sharing construct mechanism benefits
from using the pthread-based OpenMP solutions.

D. OpenMP with Nested Parallelism

Nested parallelism is not a common OpenMP pattern, but
it may appear hidden to the user. Moreover, an increasing
number of cores may allow programmers to introduce several
levels of parallelism in order to extract all the computational
power of future hardware.

Fig. 7: Execution time for the work assignment mechanism in
OpenMP runtimes increasing the number of OpenMP threads.

1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 #pragma omp parallel for firstprivate(i)
4 for (int j = 0; j < N; j++){
5 null_code(i,j);
6 }
7 }

Listing 1: OpenMP nested parallelism code example.

Due to the defective design of the nested parallelism mecha-
nism in current OpenMP implementations, it is extremely diffi-
cult to find an application that exploits this parallel paradigm.
In order to study this behavior, we have thus implemented
a microbenchmark that measures the overhead of managing
nested parallel codes inside the OpenMP runtimes. This test
is composed of two for loops accelerated via #pragma
omp parallel for directives without any code in order
to measure the management time as showed in Listing 1.

Figure 8 reveals the performance difference among the
OpenMP implementations when the outer and inner loop
comprise 100 iterations, and Figure 9 does the same with
1,000 iterations for each loop. These results are the average
of 1,000 repetitions. The execution time of the pthread-based
implementation is, at least, one order of magnitude higher than

Fig. 8: Execution time for the nested parallel code on top
of OpenMP runtimes with 100 iterations in the outer loop
increasing the number of OpenMP threads.

Fig. 9: Execution time for the nested parallel code on top
of OpenMP runtimes with 1,000 iterations in the outer loop
increasing the number of OpenMP threads.

that of GLTO over Argobots and Qthreads. The performance
of GLTO over MassiveThreads is affected by the design issue
discussed in Section IV-G. In this case, the action of the
master thread has a strong impact in the overall execution time
because it needs to yield in order to execute the inner loop
code. As GLTO over MassiveThreads does not allow this, the
work of the master thread needs to be stolen by the remaining
threads.

The problem with the pthread-based OpenMP implementa-
tions is due to CPU core oversubscription. On the one hand,
the GNU solution creates a number of threads for the outer
loop, and for each of the iterations of the outer loop a new
team of threads is created for the inner loop. This approach
does not reuse idle threads to save the context of each outer
loop thread. On the other hand, the Intel implementation acts
like GNU’s for the outer loop, but Intel solution reuses the
idle threads. Nevertheless, Intel still creates new teams for the
inner loop. GLTO only creates GLT_ults and, as a result, the
system is not affected by oversubscription, yielding a reduced
performance loss.

Table II summarizes the actual number of used threads
when the environment variable OMP NUM THREADS is set
to 36 in the scenario with 100 iterations for each loop. The
total number of Pthreads exceeds the 72 CPU cores of the
machine, and the management overhead impairs performance.
In our test, with OMP NUM THREADS set to 36, setting
100 iterations in the outer loop implies that GNU generates
100 x 35 threads in order to complete the teams for the nested
parallel constructs that are composed by 1 thread of the outer
loop and 35 new threads for the inner loop. If we include
the 36 threads of the main team, we have the 3,536 threads.
Intel just creates 36 teams of 36 threads (1,296 threads) once,
and then reuses the idle ones. Although GLTO creates 3,500
GLT_ults, those are lighter to handle than the OS threads
and, in addition, they do not incur in oversubscription because
just 36 GLT_threads are created. For the larger scenario,
the total number of threads is multiplied by a factor of 10
(corresponding to the number of iterations of the outer loop).

TABLE II: Number of created and reused threads for each
OpenMP implementation in nested parallel constructs with 100
iterations for each loop.

OpenMP Created Reused Created
Implementation Threads Threads GLT_ults
GCC 3,536 0 —
Intel 1,296 2,240 —
GLTO 36 0 3,500

Fig. 10: Execution time of CG with a granularity 10 on top of
OpenMP runtimes increasing the number of OpenMP threads.

In summary, for nested parallelism the use of the LWT
implementations provides a performance improvement against
the Pthread solutions.

E. OpenMP in Task Parallelism

To study the performance in this scenario, we selected a
conjugate gradient (CG) benchmark. In mathematics, the CG
method is an algorithm for the numerical solution of sym-
metric positive definite systems of linear equations. We have
converted the OpenMP #pragma omp parallel for di-
rectives in the implementation of CG [34] into #pragma
omp task directives. In our implementation, a single thread
acts as a producer while the remaining threads perform the
consumer actions. The input matrix is the bmwcra_1 with a
total number of 14,878 rows. The code transformation allows
us to adjust the task granularity and the number of tasks.
Here we show the result for granularities of 10, 20, 50, and
100 rows per task, which result in 1,488, 744, 298, and 149
tasks, respectively. We study the effect of three parameters on
performance: number of threads, task granularity, and number
of tasks.

In contrast with the previous scenarios, we have not included
the GNU OpenMP implementation because of two reasons.
First, the original CG implementation uses the Intel Math
Kernel Library [35] and, therefore, the comparison between
this library and other GNU-available solutions would not be
fair. Second, the mechanism used in GOMP in order to deal
with task parallelism is totally different from that implemented
by the Intel OpenMP runtime.

Figures 10 to 13 display the results for granularities of
10, 20, 50, and 100 rows per task. Those results reflect the

Fig. 11: Execution time of CG with a granularity 20 on top of
OpenMP runtimes increasing the number of OpenMP threads.

Fig. 12: Execution time of CG with a granularity 50 on top of
OpenMP runtimes increasing the number of OpenMP threads.

Fig. 13: Execution time of CG with a granularity 100 on top of
OpenMP runtimes increasing the number of OpenMP threads.

average time of 1,000 executions. Since a smaller number
of tasks implies less runtime overhead, it makes sense that
the execution time decreases when moving from fine-grained
to coarse-grained tasks. However, the execution time of the
GLTO solutions is much lower than that of the Intel OpenMP
runtime for granularities of 10 and 20 (Figures 10 and 11,
respectively). For this benchmark, only GLTO on top of Ar-
gobots maintains an acceptable performance for a granularity
of 50 (Figure 12). If we compare the GLTO options among
them, we observe the effect of different implementation details
of the underlying libraries. On the one hand, GLTO(ABT)
exhibits almost flat performance lines for the 4 scenarios,
which means that the interaction between the GLT_threads
is almost non-existent, while GLTO(MTH) and GLTO(QTH)
suffer from contention (the execution time increases as the
number of threads does). The former because of work-stealing
between GLT_threads and the latter because of the mutex-
protected access to each word in memory.

In the Intel OpenMP runtime, the execution time gap
between fine-grained and coarse-grained tasks is critical. How-
ever, this solution shows good performance up to 4 threads
in the finest-grained scenario (Figure 10) and up to 8 for
granularities of 20 (Figure 11) and 50 (Figure 12) rows per
task. Once this number of threads is reached, the performance
of Intel OpenMP drops. This loss is caused by a combination
of two causes: 1) the contention introduced by the work-
stealing mechanism; and 2) an internal cut-off mechanism
implemented in the runtime. In this scenario, the producer
thread creates the tasks into its own task queue while the
consumers try to gain access to that queue, in order to steal a
task each time. Moreover, the cut-off mechanism is triggered
once a certain number of tasks are queued—256 in the case
of the Intel OpenMP runtime—and then the new tasks are
executed directly as a sequential code. It is important to remark
that a task that is directly executed is less expensive than a
queued task. This is because the latter needs to be handled
by the runtime scheduler and thus has to wait to be executed.
If task creation is faster than task consumption, the cut-off
mechanism is triggered and the performance is maintained.
Conversely, if task creation is slower than task consumption,
the size of the task queue never reaches the limit to trigger
the mechanism, and all tasks must pass through the internal
OpenMP task mechanism, decreasing performance.

We have analyzed those reasons in detail by measuring
both the number of queued tasks and the cut-off mechanism
separately. Table III summarizes the percentage of the number
of queued tasks for each granularity size. Here it is remarkable
that a reduced number of non-queued tasks benefits the overall
performance. That suggests that the OpenMP task management
needs more development effort.

Additionally, we have implemented a test where a single
thread creates 4,000 tasks. We have executed that test with
three different cut-off values: the default (256), a number
where all the tasks are queued (4,096), and a configuration
where most of the tasks are executed directly (16). Figure 14
shows the effect of incrementing the number of OpenMP

TABLE III: Percentage of queued tasks for each task granu-
larity configuration.

OpenMP Task Granularity
Threads 10 20 50 100

1 100 100 100 100
2 80 93 84 100
4 88 81 63 100
8 90 97 39 100

16 94 100 100 100
18 94 100 100 100
32 95 100 100 100
36 100 100 100 100
40 100 100 100 100
48 100 100 100 100
64 100 100 100 100
72 100 100 100 100

Fig. 14: Execution time of executing 4,000 tasks with three
different cut-off values in the OpenMP Intel runtime increasing
the number of OpenMP threads.

threads. The largest size (labeled as 4,096) exposes the con-
tention time because, in this case, all the tasks pass through the
runtime mechanism so that, adding more threads, increments
the total cost of accessing the task queue. In contrast, the
smaller value offers an acceptable performance though, when
more than 16 threads are used, the producer is not fast enough
to create tasks and to complete the queue. At that point,
contention appears. Up to 8 threads, the execution time is
almost the same as that obtained with the sequential code.
Although this cut-off value should be better than the default
number, 16 is a small number of queued tasks.

In contrast with other scenarios, the Intel OpenMP runtime
outperforms the GLTO implementations for the coarse-grained
problem (Figure 13). Although all the tasks are queued and
scheduled, the time spent in the task execution stage prevents
that the threads ask immediately for more work reducing con-
tention. In this case, the behavior of the Intel OpenMP runtime
is close to that observed in the for loop case. Also, the
work dispatch in GLTO does not help because work stealing
is not leveraged. As an exception, GLTO over MassiveThreads
(GLTO(MTH)) outperforms the other alternatives up to 4
threads because this library does work stealing by default.

Summarizing, the results in the Intel OpenMP implementa-
tion indicate that, compared with LWT-based solutions, it can-

not deal successfully with the fine-grained parallel paradigm.
In that case, a LWT-based approach should be selected.

VII. SELECTION OF THE APPROPRIATE OPENMP
SOLUTION

Reviewing the performance results presented in this pa-
per, the choices for two of the scenarios are well defined.
Concretely, compute-bound applications composed by for
loops benefit from the pthread-based implementation thanks to
the accurate work distribution mechanism that is, at present,
more efficiently implemented than the LWT work dispatch by
means of ULTs. In contrast, nested parallel applications benefit
from the use of a LWT-based solution due to the reduced
management cost of the ULTs, compared with the expensive
context-switch mechanism of the Pthreads.

When OpenMP is employed as an environment creator, the
difference between LWT and pthread-based approaches does
not show any clear winner. In this scenario, it is the application
code which determines performance.

For applications leveraging task parallelism, there are more
aspects to be taken into account. While fine-grained tasks tend
to benefit LWT-based solutions, coarse-grained codes favor the
use of pthread-based runtimes. The performance of a code with
intermediate granularity depends on two factors. The first is
the number of threads. A reduced number of these (compared
with the total number of cores) performs better for the Intel
solution because of the reduced contention and the cut-off
mechanism. However, increasing the number of threads avoids
this mechanism and, at the same time, introduces contention
due to thread interaction. The second factor is the time gap
between task creation and execution, which is critical in order
to trigger the cut-off mechanism. LWT-based solutions do not
experience a high performance drop. Instead, they are just
affected by the interaction among OS threads. In this case, the
best choice for the GLTO implementation employs Argobots
as the underlying library thanks to the close to null interaction
between GLT_threads.

Although scientific applications are usually implemented
following a single pattern, it may well occur that more than one
pattern is used inside the application code. In that case, the best
choice will depend on the pattern dominating the performance
of the application.

VIII. CONCLUSIONS

We have presented a new OpenMP implementation on top of
the GLT API named GLTO [36]. This library presents a com-
mon API for LWT solutions and it is currently implemented
on top of Argobots, MassiveThreads, and Qthreads. The GLTO
runtime allows us to compare OpenMP codes with different
underlying LWT solutions without modifying the code.

We discussed the design decisions taken during the imple-
mentation of GLTO, and we exposed how the runtime behaves
in different OpenMP scenarios. In addition, we have tested our
runtime implementation with the OpenUH OpenMP Validation
Suite 3.1, attaining better results than the reference runtimes.
Moreover, we have presented a fair comparison between the

well-known GNU and Intel OpenMP runtimes and our new
approach in different OpenMP scenarios: environment creator,
compute bound for loop-based codes, nested parallelism,
and task parallelism. For each case, we have showed the
performance difference and analyzed the reasons (if any) of
the disparity of results.

Our results revealed that no OpenMP implementation is
a clear winner. While pthread-based solutions outperform
the LWT-based implementations in simple work-sharing con-
structs, the latter attain better results in nested and fine-grained
task parallelism.

ACKNOWLEDGMENT

The Researchers from the Universitat Jaume I de Castelló
were supported by project TIN2014-53495-R of the MINECO
and FEDER, the Generalitat Valenciana fellowship programme
Vali+d 2015. Antonio J. Peña is cofinancied by the Spanish
Ministry of Economy and Competitiveness under Juan de la
Cierva fellowship number IJCI-2015-23266. This work was
partially supported by the U.S. Dept. of Energy, Office of
Science, Office of Advanced Scientific Computing Research
(SC-21), under contract DE-AC02-06CH11357. We gratefully
acknowledge the computing resources provided and operated
by the Joint Laboratory for System Evaluation (JLSE) at
Argonne National Laboratory.

REFERENCES

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang,
Y. Wang, C. Zhou, and G. Yang, “The sunway taihulight supercomputer:
system and applications,” Science China Information Sciences, vol. 59,
no. 7, p. 072001, 2016.

[2] “TOP500 Supercomputer Sites,” www.top500.org/, June 2016.
[3] “Pthreads API,” computing.llnl.gov/tutorials/pthreads/.
[4] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-

memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[5] BSC, “The OmpSs programming model,” http://pm.bsc.es/ompss/.
[6] D. Stein and D. Shah, “Implementing lightweight threads.” in USENIX

Summer, 1992.
[7] Microsoft MSDN Library, “Fibers.”
[8] “Programming with Solaris Threads,” docs.oracle.com/cd/E19455-01/

806-5257/6je9h033n/index.html.
[9] L. V. Kalé, M. A. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon,

“Converse: An interoperable framework for parallel programming,” in
Proceedings of the 10th International Parallel Processing Symposium
(IPPS), April 1996, pp. 212–217.

[10] BSC, “Nanos++,” pm.bsc.es/projects/nanox/.
[11] L. V. Kale and S. Krishnan, CHARM++: A portable concurrent object

oriented system based on C++. ACM, 1993, vol. 28, no. 10.
[12] J. Nakashima and K. Taura, “MassiveThreads: A thread library for high

productivity languages,” in Concurrent Objects and Beyond, ser. Lecture
Notes in Computer Science, 2014, vol. 8665, pp. 222–238.

[13] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in Proceedings of
Workshop on Multithreaded Architectures and Applications, April 2008.

[14] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,
P. Carns, A. Castelló, D. Genet, T. Herault, P. Jindal, L. V. Kalé,
S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun, and
P. Beckman, “Argobots: A lightweight threading/tasking framework,”
2016, https://collab.cels.anl.gov/display/ARGOBOTS/.

[15] “Generic Lightweight Threads API,” github.com/adcastel/GLT.

[16] A. Castelló, S. Seo, R. Mayo, P. Balaji, E. S. Quintana-Ortı́, and
A. J. Peña, “GLT: A unified API for lightweight thread libraries,” in
Proceedings of the IEEE International European Conference on Parallel
and Distributed Computing, Santiago de Compostela, Spain, August
2017.

[17] “BOLT: A Lightning-Fast OpenMP Implementation,” bolt-omp.org/.
[18] “LLVM project,” http://openmp.llvm.org/.
[19] “Intel OpenMP Runtime Library,” https://www.openmprtl.org/.
[20] C. Wang, S. Chandrasekaran, and B. Chapman, “An openmp 3.1

validation testsuite,” in Int. Workshop on OpenMP, 2012, pp. 237–249.
[21] OpenMP Architecture Review Board, OpenMP Application

Programming Interface Version 4.5, http://www.openmp.org/wp-
content/uploads/openmp-4.5.pdf, Nov. 2015.

[22] “PGI Compilers & Tools,” http://www.pgroup.com/.
[23] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng, “Openuh:

an optimizing, portable openmp compiler,” Concurrency and Computa-
tion: Practice and Experience, vol. 19, no. 18, pp. 2317–2332, 2007.

[24] A. Castelló, A. J. Peña, S. Seo, R. Mayo, P. Balaji, and E. S. Quintana-
Ortı́, “A review of lightweight thread approaches for high performance
computing,” in Proceedings of the IEEE International Conference on
Cluster Computing, Taipei, Taiwan, September 2016.

[25] P. E. Hadjidoukas and V. V. Dimakopoulos, “Nested parallelism in
the ompi openmp/c compiler,” in European Conference on Parallel
Processing. Springer, 2007, pp. 662–671.

[26] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance evalu-
ation of openmp applications with nested parallelism,” in International
Workshop on Languages, Compilers, and Run-Time Systems for Scalable
Computers. Springer, 2000, pp. 100–112.

[27] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and R. Namyst,
“Forestgomp: an efficient openmp environment for numa architectures,”
International Journal of Parallel Programming, vol. 38, no. 5, pp. 418–
439, 2010.

[28] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins, “Schedul-
ing task parallelism on multi-socket multicore systems,” in Proceedings
of the 1st International Workshop on Runtime and Operating Systems
for Supercomputers. ACM, 2011, pp. 49–56.

[29] P. Chang and W. Hwu, “Inline function expansion for compiling c
programs,” in Procedings of the ACM SIGPLAN 1989 Conference on
Programming Language Design and Implementation. ACM, 1989, pp.
246–257.

[30] “Clang project,” http://clang.llvm.org/.
[31] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and

C. Tseng, “UTS: An unbalanced tree search benchmark,” in Languages
and Compilers for Parallel Computing. Springer, 2006, pp. 235–250.

[32] “The Unbalanced Tree Search (UTS) benchmark,” https://sourceforge.
net/projects/uts-benchmark/.

[33] “CloverLeaf miniapp,” http://uk-mac.github.io/CloverLeaf/.
[34] J. I. Aliaga, H. Anzt, M. Castillo, J. C. Fernández, G. León, J. Pérez,

and E. S. Quintana-Ortı́, “Unveiling the performance-energy trade-off in
iterative linear system solvers for multithreaded processors,” Conc. and
Comp.: Practice and Experience, vol. 27, no. 4, pp. 885–904, 2015.

[35] “Intel Math Kernel Library,” https://software.intel.com/en-us/intel-mkl.
[36] “GLTO: Generic Lightweight Thread OpenMP,” github.com/adcastel/

glto-runtime.

