
Efficient Scalable Computing through
Flexible Applications and Adaptive Workloads

Sergio Iserte, Rafael Mayo, Enrique S. Quintana-Ortı́
Universitat Jaume I (UJI)

Castelló de la Plana, Spain
{siserte,mayo,quintana}@uji.es

Vicenç Beltran, Antonio J. Peña
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
{vbeltran,antonio.pena}@bsc.es

Abstract—In this paper we introduce a methodology for
dynamic job reconfiguration driven by the programming model
runtime in collaboration with the global resource manager.
We improve the system throughput by exploiting malleability
techniques (in terms of number of MPI ranks) through the real-
location of resources assigned to a job during its execution. In our
proposal, the OmpSs runtime reconfigures the number of MPI
ranks during the execution of an application in cooperation with
the Slurm workload manager. In addition, we take advantage
of OmpSs offload semantics to allow application developers deal
with data redistribution. By combining these elements a job is
able to expand itself in order to exploit idle nodes or be shrunk
if other queued jobs could be initiated. This novel approach
adapts the system workload in order to increase the throughput
as well as make a smarter use of the underlying resources. Our
experiments demonstrate that this approach can reduce the total
execution time of a practical workload by more than 40% while
reducing the amount of resources by 30%.

Keywords-Job Reconfiguration; Dynamic Reallocation; Smart
Resource Utilization; Scale-Malleable workload

I. INTRODUCTION

In real HPC facilities, applications run on shared computers
where hundreds or thousands of other applications are com-
peting for the same resources. In this scenario, applications
are submitted to the system with the shape of parallel jobs
that conform the current workload of a system. Adapting
the workload to the infrastructure can render considerable
improvements in resource utilization and global throughput. A
potential approach to obtain the desired adaptivity consists in
applying dynamic job reconfiguration, which devises resource
usage to be potentially changed at execution time.

The adaption of the workload to the target infrastructure
brings benefits to both system administrators and end users.
While administrators would like to see the throughput rate in-
creased and a smarter resource utilization by the applications,
end-users are the direct beneficiaries of the scale-adaptivity
as they will not experience strict resource requirements on
submission. Although this may prevent the application from
being executed in the shortest time, a faster completion time
(waiting plus execution time) will compensate for this.

In order to dinamically adapt a workload to the infrastruc-
ture we need two main tools: (i) a resource manager system
(RMS) capable of modifying the resources assigned to a job;
and (ii) a parallel runtime to rescale an application. In our

solution, we have connected these components by developing
a communication layer between the RMS and the runtime.

In this work we enhance the Slurm Workload Manager [1]
to achieve fair dynamic resource assignment while maximizing
the cluster throughput. We select Slurm because it is one of
the most widely-adopted RMSs worldwide, it is open-source,
portable, and highly scalable [2], [3].

To exploit a collection of distributed resources, the vast
majority of the scientific applications that run on high perfor-
mance clusters use the Message Passing Interface (MPI) [4],
either directly or on top of programming models or libraries
leveraging MPI underneath. Reconfiguration is possible in MPI
applications via the MPI spawning functionality.

The direct use of MPI to handle migrations, however,
requires considerable effort from skilled software developers
in order to manage the whole set of data transfers among
processes in different communicators. For this purpose, we
benefit from the recently-incorporated offload semantics of
the OmpSs programming model [5] to ease the malleability
process and data redistribution. In addition, we adapt the
Nanos++ OmpSs runtime to interact with Slurm. We improve
the Nanos++ runtime to reconfigure MPI jobs and establish
direct communication with the RMS. For that, applications
will expose “reconfiguring points” where, signaled by the
RMS, the runtime will assist to resize the job on-the-fly. We
highlight that, although we benefit from the OmpSs infras-
tructure and semantics for job reconfiguration, our proposal
may well be leveraged as a specific-purpose library, and
applications using this solution are free to implement on-node
parallelism using other programming models such as OpenMP
or OmpSs.

Our interest in developing an Application Programming
Interface (API) for Dynamic Management of Resources (DMR
API) is rooted on the lack of performance of Check-
point/Restart (C/R) mechanisms when applied to dynamic
reconfiguration. Figure 1 illustrates our point via a comparison
of the time needed for the non-solving stages of the N-body
simulation (see Section VII-B4) using the C/R approach versus
the DMR API. In particular, the labels of the “spawing”
bars reveal an important increment in the cost of spawning
processes for C/R with respect to the DMR API (e.g., for 48–
24 processes by a factor 63.75×), because of the need to save
data to disk to be later reloaded.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

0 100 200 300 400 500 600

48-12

48-24

48-48

48-12

48-24

48-48
C

/R
D

M
R

 A
P

I

31.4x

63.75x

77x

Execution time (s)

N
u

m
. o

f
p

ro
cs

. (
in

it
ia

l -
re

si
ze

d
)

Initial before solving

Spawning

Resized after solving

Fig. 1. Execution time of non-solving stages of N-body simulation.

In summary, the main contribution of this paper is a
mechanism to accomplish MPI malleability, based on existing
components (MPI, OmpSs, and Slurm) that enhances resource
usage in order to produce higher global throughput in terms of
executed jobs per unit of time. To that extent, we propose (1)
an extension of the OmpSs offload mechanism to deal with
dynamic reconfiguration; (2) a reconfiguration policy for the
RMS to decide whether a job must be expanded or shrunk; and
(3) a communication protocol for the runtime to interact with
the RMS, based on application-level API calls. Finally, (4)
we also provide an extensive evaluation of the framework that
demonstrates the benefits of our workload-aware approach.

The rest of this paper is structured as follows: Section II
discusses related work. Section III presents an overview of
the proposed methodology. Sections IV and V present the
extensions developed in the Slurm RMS and the Nanos++
runtime in order to support our programming model proposal
discussed in Section VI. The analysis and experimentation
involve these three sections: Section VII describes the plat-
form and applications; Section VIII evaluates all the features
implemented; and Section IX presents and analyses a realistic
use case for our framework, demonstrating the benefits of de-
ploying adaptive workloads in a production cluster. Section X
outlines the conclusions and discusses future work.

II. RELATED WORK

In general, a job (application) can be classified in one of the
following types: rigid, moldable, malleable and evolving [6].
These classes depend in the number of concurrent processes
during the execution of a job, so that we collapse them into
two categories:
• Fixed: the number of parallel processes remains constant

during the execution (rigid and moldable applications).
• Flexible: the number of processes can be reconfigured on-

the-fly, allowing distinct numbers of parallel processes in
different parts of the execution (malleable and evolving
applications) or job malleability. This action is known as
dynamic reconfiguration.

The first steps toward malleability were in shared-memory
systems exploiting the flexibility of applications. In [7] the
authors leveraged moldability together with preemptive poli-
cies, such as equi-partitioning and folding. These policies can
interrupt active jobs in order to redistribute processors among
the pending jobs.

Checkpointing mechanisms have been used in the past
to save the application state and resume its execution with
a different number of processes, or simply to migrate the
execution to other processes. The work in [8] explores how
malleability can be used in checkpoint/restart applications.
There, a checkpoint–and–reconfigure mechanism is leveraged
to restart applications with a different number of processes
from data stored in checkpoint files. Storing and loading
checkpoint files, however, poses a nonnegligible overhead
versus runtime data redistribution.

In [9], the authors combine Scalable Checkpoint/Restart
for MPI (SCR) [10] with the User Level Failure Migration
(ULFM) MPI standard proposal for fault-tolerance [11]. A
resizing mechanism based on CHARM++ is presented in [12].
The authors of that work demonstrate the benefits of resizing a
job in terms of both performance and throughput, but they do
not address the data redistribution problem during the resizing.

The authors of [13] rely on an MPI implementation called
EasyGrid AMS in order to adjust automatically the size of
a job. Another similar approach is found in [14], where
a performance-aware framework based on the Flex-MPI li-
brary [15] is presented. That work leverages job reconfigura-
tion in order to expand/shrink a job targeting execution perfor-
mance. For that purpose, the framework monitors execution,
predicts future performance, and balances the load.

In the literature we can also find several works that com-
bine malleability with resource management. ReSHAPE [16]
integrates job reconfiguration techniques with job scheduling
in a framework that also considers the current performance of
the execution. Complementary research using this framework
analyzes its impact on individual performance and throughput
in small workloads [17], [18]. That solution, however, requires
all applications in the cluster to be specifically-developed
to be flexible under the ReSHAPE framework. In a more
recent work, they present a more in-depth study discussing
the ReSHAPE behavior with a workload of 120 jobs [19].

An additional important contribution is [20], where a batch
system with adaptive scheduling is presented. The authors
in this paper enable the communication between the RMS
Torque/Maui and Charm++ as a parallel runtime. Charm++
applications are presented as automatically malleable thanks
to checkpointing.

Compared with previous work, we present a holistic
throughput-oriented reconfiguration mechanism based on ex-
isting software components that is compatible with unmodified
non-malleable applications. Our experiments are run on a
platform with 65 nodes, for large workloads with up to 400
jobs. The numbers exceed the 50- node platforms and 230-
job workloads in the current state- of-the-art. Furthermore, in
contrast with previous studies, we configure our workloads not
only leveraging synthetic applications.

III. METHODOLOGY OVERVIEW

Slurm exposes an API that may be used by external software
agents. We use this API from the Nanos++ OmpSs runtime in

order to design the job resize mechanism. Thus, Slurm’s API
allows us to resize a job following the next steps:

• Job A has to be expanded
1) Submit a new job B with a dependency on the initial

job A. Job B requests the number of nodes NB to
be added to job A.

2) Update job B, setting its number of nodes to 0. This
produces a set of NB allocated nodes which are not
attached to any job.

3) Cancel job B.
4) Update job A and set its number of nodes to

NA+NB.
• Job A has to be shrunk

1) Update job A, setting the new number of nodes to
the final size (NA is updated).

After these steps, Slurm’s environment variables for job A
are updated. These commands have no effect on the status
of the running job, and the user remains responsible for any
malleability process and data redistribution.

The framework we leverage consists of two main compo-
nents: the RMS and the programming model runtime. The
RMS is aware of the resource utilization and the queue of
pending jobs. When an application is in execution, it periodi-
cally contacts the RMS, through the runtime, communicating
its rescaling willingness (to expand or shrink the current
number of allocated nodes). The RMS inspects the global
status of the system to decide whether to initiate any rescaling
action, and communicates this decision to the runtime. If the
framework determines that a rescale action is due, the RMS,
the runtime, and the application will collaborate to continue
the execution of the application scaled to a different number
of nodes (MPI processes).

IV. SLURM RECONFIGURATION POLICY

We designed and developed a resource selection plug-in re-
sponsible for reconfiguration decisions. This plug-in realizes a
node selection policy featuring three modes that accommodate
three degrees of scheduling freedom:

1) Request an Action: Applications are allowed to “strongly
suggest” a specific action. For instance, to expand the job, the
user could set the “minimum” number of requested nodes to
a value that is greater than the number of allocated nodes.
However, Slurm will ultimately be responsible for granting
the operation according to the overall system status.

2) Preferred Number of Nodes: One of the parameters that
applications can convey to the RMS is their desired number of
nodes to execute a specific computational stage. If the desired
size corresponds to the current size, the RMS will return
“no action”. If a “preference” is requested, and there is no
outstanding job in the queue, the expansion can be granted up
to a specified “maximum” (line 2 of Algorithm 1). Otherwise,
if the desired value is different from the current allocation,
(lines 6 and 10 of Algorithm 1) the RMS will try to expand
or shrink the job to the preferred number of nodes.

3) Wide Optimization: The cases not covered by the pre-
ceding methods (Algorithm 1, line 13) are handled as follows:

A job is expanded if there are sufficient available resources
to fulfill the new requirement of nodes and either (1) there is
no job pending for execution in the queue, or (2) no pending
job can be executed due to insufficient available resources.
By expanding the job, we can expect it to finish its execution
earlier and release the associated resources.

A job is shrunk if there is any queued job that could be
executed by taking this action. More jobs in execution should
increase the global throughput. Moreover, if the job is going
to be shrunk, the queued job that has triggered the shrinking
event will be assigned the maximum priority in order to foster
its execution.

Algorithm 1 Slurm Reconfiguration Policy
1: if preferred then
2: if am I the only job in the queue? then
3: action← expand.
4: processes← jobMaxProcs.
5: else
6: if can I expand to preferred? then
7: action← expand.
8: processes← max procs to(preferred).
9: else

10: if can I shrink to preferred? then
11: action← shrink.
12: processes← preferred.
13: else
14: if are there pending jobs in the queue? then
15: if can other job run with my resources? then
16: action← shrink.
17: processes← min procs run(targetJobId).
18: set max priority(targetJobId).
19: else
20: action← expand.
21: processes← max procs to(jobMaxProcs).
22: else
23: action← expand.
24: processes← jobMaxProcs.

V. NANOS++ RUNTIME EXTENSIONS

We implemented the necessary logic in Nanos++ to recon-
figure jobs in tight cooperation with the RMS. In this section
we discuss the extended API and the resizing mechanisms.

A. The Dynamic Management of Resources (DMR) API

We designed the DMR API with two main func-
tions: dmr_check_status and its asynchronous version
dmr_icheck_status. These routines instruct the runtime
(Nanos++) to communicate with the RMS (Slurm) in order to
determine the resizing action to perform: “expand”, “shrink”,
or “no action”. The asynchronous counterpart schedules the
next action for the next execution step, at the same time that

the current step is executed. Hence, by skipping the action
scheduling stage, the communication overhead in that step is
avoided. Details of the API overhead have to be avoided due
to lack of space.

Thus, in case an action is to be performed, these functions
spawn the new set of processes and return an opaque handler.
This API is exposed by the runtime and it is intended to be
used by applications. These functions present the following
input arguments.
• Minimum number of processes to be resized to.
• Maximum number of processes. This prevents the appli-

cation from growing beyond its scalability capabilities.
• Resizing factor (E.g.: a factor of 2 will expand/shink the

number of processes to a value multiple/divisor of 2).
• Preferred number of processes.

The output arguments return the new number of nodes and an
opaque handler to be used in the task offloading directives.

An additional mechanism implemented to reach a fair
balance between performance and throughput is the “checking
inhibitor”. This introduces a timeout during which the calls
to the DMR API are ignored. This knob is mainly intended
to be leveraged in iterative applications with short iteration
intervals. The inhibition period can be tuned by means of an
environment variable (NANOX_SCHED_PERIOD).

B. Automatic Job Reconfiguration

The runtime will perform the following actions in order to
leverage the Slurm resizing mechanisms (see Section IV) by
means of its external API:

1) Expand: A new resizer job (RJ) is first submitted
requesting the difference between the current and total amount
of desired nodes. This enables the original nodes to be reused.
There is a dependency relation between the RJ and the original
job (OJ). In order to follow better the RMS decisions, RJ is
set to the maximum priority, facilitating its execution.

The runtime waits until JR moves from “pending” to “run-
ning” status. If the waiting time reaches a threshold, RJ is
canceled and the action is aborted. This situation may occur
if the RMS assigns the available resources to a different job
during the scheduling action. This is more likely to occur in
the asynchronous mode because an action then can experience
some delay during which the status of the queue may change.
Once OJ is reallocated, the updated list of nodes is gathered
and used in a call to MPI_Comm_spawn in order to create a
new set of processes.

2) Shrink: The shrinking mechanism is slightly more com-
plex than its expansion counterpart because Slurm will have
to kill all processes executing in the released nodes. To pre-
vent premature process termination, we need a synchronized
workflow to guide the job shrinking. Hence, the RMS sets a
management node in charge of receiving an acknowledgment
from all other processes. These ACKs will signal that they
finished their offloading tasks and the node is ready to be
released.

After a scheduling is complete, the DMR call returns
the expand-shrink action to be performed and the resulting

1 vo id main (i n t argc , c h a r **argv) {
2 . . .
3 i n t t = 0 ;
4 MPI_Comm_get_parent(&parentComm) ;
5 i f (parentComm == MPI_COMM_NULL) {
6 init (data) ;
7 } e l s e {
8 MPI_Recv (parentComm , data , myRank) ;
9 MPI_Recv (parentComm , &t , myRank) ;

10 }
11 compute (data , t) ;
12 . . .
13 }
14
15 vo id compute (data , t0) {
16 f o r (t=t0 ; t<timesteps ; t++) {
17 nodeList = get_new_nodelist_somehow () ;
18 i f (nodelist != NULL) {
19 MPI_Comm_spawn (myapp .bin , nodeList , &newComm) ;
20 MPI_Send (newComm , data , myRank) ;
21 MPI_Send (newComm , t , myRank) ;
22 exit (0) ;
23 }
24 compute_iter (data , t) ;
25 }
26 }

Listing 1. Pseudo-code of job reconfiguration using bare MPI.

number of nodes. The application is responsible for stating
the appropriate data dependencies and triggering the tasks
offloading to the new set of processes (see Section VI next).

VI. PROGRAMMING MODEL

In this section we review our programming model approach
to address dynamic reconfiguration coordinated by the RMS.
The programmability of our solution benefits from relying the
OmpSs offload semantics versus directly using MPI. Next, we
illustrate this via a practical example.

A. Benefits of the OmpSs Offload Semantics

To showcase the benefits of the OmpSs offload semantics,
we review the specific case of migration. This analysis allows
us to focus on the fundamental differences between program-
ming models because it does not involve data redistribution
among a different number of nodes (which is of similar
complexity in both models). We show a complete example
in Section VI-B.

a) MPI Migration: Listing 1 contains an excerpt of
pseudo-code with a program which directly uses MPI calls.
In this case, we assume some mechanism is available to
determine the new node list in line 17.

b) OmpSs-based Migration: The same functionality is
attained in Listing 2 by leveraging our proposal on top of
the OmpSs offload semantics. This includes a call to our
extended API in line 11. At a glance, our proposal exposes
higher-level semantics, increasing code expressiveness and
programming productivity. In addition, communication with
the RMS is implicitly established in the call to the runtime in
line 11, which pursues a potential increase in overall system
resource utilization. Data transfers are managed by the runtime
with the directive in line 13. Last, the “taskwait” (line 15)
follows the original semantics of the clause and with it, the

1 vo id main (vo id) {
2 . . .
3 i n t t = 0 ;
4 init (data) ;
5 compute (data , t) ;
6 . . .
7 }
8
9 vo id compute (data , t0) {

10 f o r (t=t0 ; t<timesteps ; t++) {
11 action = dmr_check_status(&newNnodes , &handler) ;
12 i f (action) {
13 #pragma omp task inout (data) onto (newComm ,

myRank)
14 compute (data , t)
15 #pragma omp taskwait
16 } e l s e
17 compute_iter (data) ;
18 }
19 }

Listing 2. Pseudo-code of job reconfiguration using OmpSs.

#0 #1

Comm 1

(a) Expand.

#0 #1
Comm 2

(b) Shrink.

Fig. 2. Data transfers.

initial processes terminate, letting the execution continue in
the processes of the new communicator.

B. A Practical Example

The excerpt in Listing 3 is derived from that showcased
in Section VI-A to discuss malleability. In this case the
application must drive the task redistribution according to the
resizing action. The mapping factor indicates the number
of processes in the current set that are mapped to the processes
in the new configuration (see Figure 2). This example imple-
ments homogeneous distributions, where we always resize to
a multiple or divisor of the current number of processes. Our
model, however, supports arbitrary distributions.

For the “expand” action (line 8), the original processes
must partition the dataset. For instance, in Figure 2a, the
processes split the dataset into two subsets, mapping each
half to a process in the new configuration. The data transfers
are performed by the runtime according to the information
included in the task offloading directive (line 12).

The “shrink” action, on the other hand, involves preliminary
explicit data movement. The processes in the original set
are grouped into “senders” and “receivers”. This initial data
movement is illustrated in the example in Figure 2b.

VII. EXPERIMENTAL SETUP

A. Platform

Our evaluation was performed on the Marenostrum Super-
computer at Barcelona Supercomputing Center. Each compute
node in this facility is equipped with two 8-core Intel Xeon
E5-2670 processors running at 2.6 GHz with 128 GB of RAM.

1 vo id compute (data , t0) {
2 f o r (t=t0 ; t<timesteps ; t++) {
3 action = dmr_check_status(&newNnodes , &handler) ;
4 i f (!action)
5 compute_iter (data) ;
6 e l s e {
7 i f (action == ” expand ”) {
8 factor = newNnodes / worldRanks ;
9 f o r (i=0; i<factor ; i++) {

10 dest = myRank * factor + i ;
11 subdata = part_data (factor , data) ;
12 #pragma omp task inout (subdata) onto (handler ,dest)
13 compute (subdata , t) ;
14 #pragma omp taskwait
15 } / / End f o r
16 } e l s e i f (action == ” s h r i n k ”) {
17 factor = worldRanks / newNnodes ;
18 sender = (myRank % factor) < (factor − 1) ;
19 i f (sender) {
20 dst = factor * (myRank / factor + 1) − 1 ;
21 MPI_Isend (comm , data , dst) ;
22 } e l s e { / / R e c e i v e r
23 f o r (i=1; i<=factor ; i++) {
24 src = myRank − factor + i ;
25 MPI_Irecv (comm , &alldata , src) ;
26 } / / End f o r
27 } / / End i f (s e n d e r)
28 MPI_Waitall () ;
29 i f (!sender) {
30 dest = myRank / factor ;
31 #pragma omp task inout (alldata) onto (handler ,dest)
32 compute (alldata , t) ;
33 #pragma omp taskwait
34 } / / End i f (! s e n d e r)
35 } / / End i f (a c t i o n == . . .)
36 } / / End i f (a c t i o n)
37 } / / End f o r
38 } / / End compute ()

Listing 3. Pseudo-code of a malleable application.

The nodes are connected via an InfiniBand Mellanox FDR10
network. For the software stack we used MPICH 3.2, OmpSs
15.06, and Slurm 15.08.

Slurm was configured with the backfill job scheduling
policy. Furthermore, we also enabled job priorities with the
policy multifactor. Both were configured with default values.

B. Flexible Applications

For our experimentation we used one synthetic and three
real applications, described below:

1) Flexible Sleep (FS): This iterative synthetic application
performs a sleep in each step (iteration). The time of the
step depends on the number of processes deployed in that
iteration, so if the job is resized, the sleep time is modified
assuming perfect linear scalability. Apart from the sleep that
simulates the computation time, the application also manages
an array of doubles, distributed among the ranks. This array
conforms the data-dependency for OmpSs, redistributed in
each reconfiguration.

2) Conjugate Gradient (CG): The CG method1 is an itera-
tive algorithm for the numerical solution of sparse systems of
linear equations that produces a solution after a finite number
of steps. For our experimentation the method will perform a
specific number of iterations in order to have control of the
execution time.

1https://en.wikipedia.org/wiki/Conjugate gradient method

The data of the application propagated in each iteration step
of CG is constrained to a matrix flat-stored and four vectors.
This version is implemented using OpenMP+MPI, and each
MPI process works on a block of rows of the matrix and the
corresponding elements from the vectors. The local matrix-
vector products are parallelized with OpenMP.

We have applied our OmpSs-based extensions in order
to ease the creation of new processes while maintaining
the data dependencies after the resizing procedure. The five
data structures in CG conform the data-dependencies between
iterations in the OmpSs programming model, and they are
redistributed when a rescaling is necessary.

During a resize, the data in the matrix and vectors must be
redistributed according to the new number of MPI processes.

3) Jacobi: The Jacobi method2 is an iterative and
embarrassingly-parallel algorithm for the solution of a system
of linear equations.

Our OpenMP+MPI version of this solver is based on the
implementation presented in [21]. The program layout is
similar to the CG implementation. In this application, we also
have a flat matrix, but only two vectors. These three structures
conform the data-dependencies for OmpSs and they are all
distributed among the processes.

4) N-body: The N-body problem3 simulates the individual
motions of a group of objects interacting with each other by
means of a given force.

We have used an OmpSs+MPI version of this simulator
where each process stores a subset of particles, while the intra-
node parallelism is exploited by OmpSs.

The amount of work of N-body per iteration is considerably
larger than that present in the remaining two real applications
described in this section. Apart from computing the position
and forces of its own particles, each process exchanges its
local subset of particles with the other processes. At the end
of the iteration, all the processes have worked with the whole
set of particles.

The data-dependency in this particular case is dictated by
an array of particles with information about position, velocity,
mass and weight. This array is split or merged when an scale-
up or down is respectively scheduled.

C. Workload Configuration

The workloads were generated using the statistical model
proposed by Feitelson [6], which characterizes rigid jobs based
on observations from logs of actual cluster workloads. These
include the distribution of job sizes in terms of number of
processors, the correlation of runtime with parallelism, and
the number of repeated runs. Among others, we found four
customizable parameters to be especially relevant:
• Jobs: Number of jobs to be launched.
• Job size: Number of nodes determined by a complex

discrete distribution.
• Runtime: Fixed following a hyperexponential distribu-

tion based on the job size.

2https://en.wikipedia.org/wiki/Jacobi method
3https://en.wikipedia.org/wiki/N-body problem

TABLE I
CONFIGURATION PARAMETERS FOR THE APPLICATIONS

Number of Processes
Application Iterations Minimum Maximum Preferred Scheduling period

FS 25 1 20 - -
CG 10000 2 32 8 15 seconds

Jacobi 10000 2 32 8 15 seconds
N-body 25 1 16 1 -

0

5

10

15

20

25

0

10000

20000

30000

40000

50000

60000

70000

80000

10 25 50 100 200 400

G
ai

n
 (

%
)

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Number of jobs

Fixed Flexible Gain

Fig. 3. Comparison between fixed and flexible workloads with different
number of jobs.

• Arrival: Inter-arrival times of jobs modeled using a
Poisson distribution.

For every job the shrink-expand factor was set to 2.

VIII. PRELIMINARY STUDY

In this section we present an in-depth analysis of the
framework’s features using synthetic flexible jobs. For this
purpose, we used the FS application configured to perform 2
steps and to transfer 1 GB of data during the reconfiguration.

In order to test thoroughly the features of our solution, we
performed 4 different experiments comprising: synchronous
and asynchronous scheduling, heterogeneous workload, and
micro-steps.

A. Testbed

For this study we only used the FS application; we gen-
erated several workloads of different size (number of jobs),
assigning up to 20 nodes to each job (the number of available
nodes in this experiment) with the parameter job size; the
maximum runtime was set to 60 seconds for each step; and
the average arrival time was 10 seconds. Table I details
the rest of the FS parameters for the reconfigurations. The
array was determined to have 1 GB of data transferred in each
iteration. Furthermore, by not giving a preferred value the
RMS has more freedom to reallocate resources.

B. Synchronous Reconfiguration Scheduling

For the first test, we launched workloads of different sizes
in terms of number of jobs. Figure 3 depicts the execution time
for this experiment. Each workload has both a fixed as well as
a flexible version. The line “Gain” in that chart indicates the
reduction of the execution time (in %) attained by the flexible
workload with respect to the fixed workload.

Fig. 4. Evolution in time for the 10-job workload.

Fig. 5. Evolution in time for the 25-job workload.

Except for the 10-job workload, we can appreciate a gain in
the interval 10-15% for the execution time, though the benefit
decreases as the workload grows. Nonetheless, this occurs
because we are evaluating a finite workload. Under these
conditions, the scheduler is able to backfill jobs and fulfill
resources, but malleability cannot bring a higher resource uti-
lization. In a more realistic scenario, involving a much larger
workload, the throughput is always higher for the flexible
workloads. For instance, bottom plots in Figures 4 and 5
show that the productivity attained by the flexible workload is
always higher than that offered by the fixed workload.

Figure 4 reports an almost-full allocation of resources
during the flexible execution, exposing that the remarkable
gain is due to the augment in resource usage.

In contrast, Figure 5 depicts the behavior of a workload of
25 jobs, for which we observe a narrower gain. The problem
here arises on the last job (LJ) just in the vertical black line
in that figure. Specifically, in that instant LJ is using 4 nodes

Fig. 6. Asynchronous scheduling of the 10-job workload.

-7

-5

-3

-1

1

3

5

7

0

10000

20000

30000

40000

50000

60000

70000

80000

10 25 50 100 200 400

G
ai

n
 (

%
)

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Number of jobs

Fixed

Flexible

Gain

Fig. 7. Comparison between fixed and flexible workloads using asynchronous
selection of action.

while the penultimate job (PJ) before completion, owns the
rest of resources. When PJ finishes, 16 nodes are released, but
until the next check, LJ cannot be expanded. At that point,
the scheduler decides to expand the job to its maximum, in
this experiment 16 nodes. At the end of the timeline, no more
jobs can use the spare resources. This is the same situation that
appears in the fixed workload. The consequence is that there
is no further improvement, as the flexible policy had already
obtained the gain from the first reallocation of resources.

C. Asynchronous Reconfiguration Scheduling

In this test we evaluated the asynchronous version of the
scheduling. Again, we compare a fix workload and its flexible
counterpart, but now the decision is made asynchronously.
Here, we remind that the asynchronous scheduling takes a
decision in a specific step but the action takes place in the next
step. In the meantime, the status of the system may change.
Therefore, the conditions found when the action is applied in
the next step might not be the same that were present when
the RMS decided the future action. In this situation, enforcing
outdated actions may result in an inefficient use of resources.

Let us analyze the effect of adopting outdated decisions for
the asynchronous scheduling in the 10-job workload. In this

24599

23875

22048 22210

21442

19000

20000

21000

22000

23000

24000

25000

0 25 50 75 100

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Rate of flexible jobs (%)

Fig. 8. Execution times of workloads of 100 jobs with different rates of
flexible (Showing the top of the chart, Y axis is not starting in 0).

example the flexible workload performs worse than the fixed
execution. We can explain the cause analyzing Figure 6. If we
focus on the resource allocation evolution (top of Figure 6),
two relevant gaps can be identified between seconds 2000-
3000 and 3000-4000. At the beginning of the first gap in
Figure 6, there are 3 jobs in execution that occupy a total
of 19 nodes: one (J1) with 16, one (J2) with 2, and a last
one (J3) with 1. Moreover, the RMS has decided to expand
J3 to 2 nodes in the next step. Now, J1 is finished, leaving the
other 2 active jobs using 3 nodes (J3 has not expanded yet). J2
is resolved to expand and acquires 16 nodes (around second
2500). J3 experiences a longer step, carrying out its pending
action of expanding to 2, yielding an overall of 18 allocated
nodes. If J3 had checked the resources at that moment, it
would have been expanded to 4 nodes, but the asynchronous
scheduling was negotiated earlier, when the conditions were
different. In addition to realizing the expansion, the scheduler
decides that J3 will expand to 4 nodes in the next step.

The beginning of the second gap indicates the completion
of J2. A few seconds later J3 expands to 4 nodes (instead of
doing it to 16 if the scheduling had been synchronous).

Despite the lack of good results for small workloads, the
larger workload completion times reveal a higher gain. In that
type of situation the malleability overcomes the initial problem
described above.

As we did in the synchronous benchmark (Figure 3), if we
dismiss the small executions (10-to-50-job workloads), we can
observe around a 6%-gain, with the improvement decreasing
as we add more jobs to the workload.

This test reveals that so far, there is no need of using an
asynchronous scheduling. Hence, the rest of the experiments
will exclusively use the synchronous mode.

D. Heterogeneous Workloads

In this benchmark we mixed flexible and fixed jobs in
the same workload in order to study their interaction. The
workloads were composed of 100 jobs and the percentage of
flexible jobs determined the probability of a job being flexible.
We raised the ratio of flexible jobs between 0% and 100% in
steps of 25%. Figure 8 depicts the execution times for these
configurations. In general, we can appreciate that the execution

-6.80%

9.71%

5.83%

5.83%

-0.97%

1.96%

8.50%

10.78%

10.13%

9.48%

4.40%

11.01%

13.36%

11.79%

7.23%

4.62%

10.39%

12.17%

11.28%

8.70%

0 200 400 600 800 1000

Flexible

Sched 2

Sched 5

Sched 10

Sched 20

Execution TIme (s)

W
o

rk
lo

ad
 C

o
n

fi
gu

ra
ti

o
n

10 Jobs 25 jobs 50 Jobs 100 Jobs

Fig. 9. Execution time for the different inhibition periods (bars) and the gain
respect the fixed workload (percentage on the right of the bars).

time decreases as the ratio of flexible jobs grows. The results
show a 10%-gain with only a 50%-rate of flexible jobs, and
up to a 12%-improvement when all of them are flexible.

E. Checking Period Inhibitor in Micro-steps Applications

For this test we reduced the time step in the model to an
average of 2 seconds in order to investigate the importance
of the overhead incurred by the scheduling process. Again,
we generated workloads with a different number of jobs
and executed them as both fixed and flexible workloads. For
the flexible workloads, we enabled the checking inhibitor
(see Section V-A) to prevent that each iteration triggers a
check. Figure 9 depicts the variation of malleability for a
fixed execution. The group at the top (“Flexible”), represents
an execution without the checking inhibitor mechanism. The
rest of the groups in the chart (bellow “flexible”), show the
execution time when configuring the inhibitor period to: 2, 5,
10 and 20 seconds (from top to bottom). The conclusion is that
this gain is virtually negligible or even negative in some cases.
Hence, enabling periods of checking inhibition can avoid a
burst of communications between the runtime and the RMS,
reducing the overhead. In this particular example, setting a
period of 5 seconds between scheduling, not only offers better
results than the fixed workload, but also outperforms a simple
flexible workload.

IX. EXPERIMENTAL RESULTS

A. Testbed

For the experiments, we have generated workloads of dif-
ferent sizes, configuring the job submissions to the queue at
their best performance.

We first evaluate the individual scalability of the three real
applications. These tests identify two parallel behaviors:
• High scalability (CG and Jacobi). In this case both appli-

cations have a similar behavior, with the highest speed-up
attained for 32 processes. However, from 8 processes on,
the difference gain between tests drops below 10%, so
we consider 8 processes as a “sweet configuration spot”
for these two applications.

• Constant performance (N-body). In contrast, this applica-
tion reaches its maximum performance for 16 processes.

However, in this case, the gain does not exceed 10%
with respect to the sequential run, so a single process
is considered as the “sweet spot”.

From the perspective of computational cost, CG and Jacobi
comprise “short” iterations that complete in less than 2 sec-
onds, while N-body executes costly iterations, in the scale of
minutes. For this reason, for CG and Jacobi we enabled the
scheduling period inhibitor featured by the runtime, in order
to reduce the amount of communications with the RMS.

Table I displays the configuration employed in the experi-
mentation. The job submission of each application is launched
with its “maximum” value, reflecting the user-preferred sce-
nario of a fast execution. Each workload is composed of
a set of randomly-sorted jobs (with a fixed seed) which
instantiate one of the three real applications (33% of jobs
of each application class). Furthermore, the inter-arrival time
among submissions is generated using the statistical model
proposed by Feitelson [6], which characterizes rigid jobs based
on observations from logs of actual cluster workloads.

B. Results

Figure 10 depicts the execution time of each workload
size comparing both configuration options: fixed and flexible.
The labels at the end of the “flexible” bars report the gain
compared with the fixed version. Table II details the measures
extracted from the executions. In the first row, we compare the
average resource utilization for fixed and flexible workloads.
This rate corresponds to the average time when a node has
been allocated by a job compared to the workload execution
time. These results indicate that the flexible workloads reduce
the allocation of nodes around 30%, offering more possibilities
for queued jobs.

The second row of Table II shows the average waiting time
of the jobs for each workload. These times are illustrated in
Figure 11, together with the gain rate for flexible workloads.
The reduction around 60% makes the job waiting time a
crucial measure to keep in mind from the perspective of
throughput. In fact, this time is responsible for the reduction
in the workload execution time.

The last two rows of Table II present two more aggregated
measures of all the jobs in the workload: The first one is
the average execution time; the second is this execution time
plus the waiting time of the job, referred to as completion
time. The experiments show that jobs in the flexible workload
are affected by the scale-down of their number of processes.
However, this is compensated by the waiting time which
benefits the completion time.

In order to understand the events during a workload ex-
ecution, we have chosen the smallest workload to generate
detailed charts and offer an in-depth analysis.

The top and the bottom plots in Figure 12 represent the
evolution in time of the allocated resources and the number of
completed jobs. It also shows the number of running jobs for
fixed and flexible workloads (blue and red lines respectively).
The figures demonstrate that the flexible workload utilizes
fewer resources; furthermore, there are more jobs running

46.48%

49.04%

41.42%

41.97%

0 10000 20000 30000 40000 50000 60000 70000 80000

50

100

200

400

Execution time (s)

N
u

m
b

e
r

o
f

jo
b

s

Flexible Fixed

Fig. 10. Workloads execution times (bars) and the gain of flexible workloads
(bar labels).

66.95%

69.33%

60.74%

56.40%

0 5000 10000 15000 20000 25000 30000 35000

50

100

200

400

Avg. job waiting time (s)
N

u
m

b
er

 o
f

jo
b

s

Flexible Fixed

Fig. 11. Average waiting time for all the jobs of each workload (bars) and
the gain of flexible workloads (bar labels).

concurrently (top chart). For both configurations, jobs are
launched with the “sweet spot” number of processes; the fixed
jobs obviously do not vary the amount of assigned resources,
while in the flexible configuration, they are scaled-down as
soon as possible. This explains the reduction on the utilization
resources. For instance, in the second half of the flexible shape
in Figure 12 (top), there are 5 jobs in execution which allocate
40 nodes. The next eligible job pending in the queue needs
32 nodes to start. Therefore, unless one of the running jobs
finishes, the pending job will not start and the allocation rate
will not be higher. When a job eventually finishes and releases
8 nodes, the scheduler initiates the job requesting 32 nodes.
Now, the allocated nodes are 64 (the green peaks in the chart);
however, as the job prefers 8 processes, it will be scaled-down.

At the beginning of the trace in the bottom of Figure 12,
the throughput of the fixed workload is higher, but this occurs
because the first jobs are completed earlier (they have been
launched with the best-performance number of processes).
Meanwhile, in the flexible workload, many jobs are initiated
(blue line) and, as soon as they start to finish, the throughput
experiences a boost.

X. CONCLUSIONS AND FUTURE WORK

We have improved the state-of-the-art in dynamic job re-
configuration by targeting the global throughput of a high
performance facility. For this purpose, we have taken ad-
vantage of first-class tools to design this new approach that
introduce a dynamic reconfiguration mechanism for malleable
jobs, composed of two modules: the runtime and the resource

TABLE II
SUMMARY OF MEASURES FROM ALL THE WORKLOADS.

50 jobs 100 jobs 200 jobs 400 jobs
fixed flexible fixed flexible fixed flexible fixed flexible

Avg. resource utilization rate 98.71 % 68.67 % 97.39 % 71.91 % 98.38 % 73.54 % 98.98 % 73.92 %
Avg. job waiting time 4115.02 s. 1359.92 s. 9750.34 s. 2990.6 s. 17466.2 s. 6856.8 s. 31788.39 s. 13861.03 s.
Avg. job execution time 620.26 s. 900.3 s. 586.64 s. 858.16 s. 520.58 s. 825.88 s. 532.14 s. 843.19 s.
Avg. job completion time 4735.28 s. 2260.22 s. 10336.98 s. 3848.76 s. 17986.78 s. 7676.67 s. 32320.53 s. 14704.22 s.

Fig. 12. Evolution in time for the 50-job workload. Blue and Red lines
represent the running jobs for fixed and flexible policies.

manager. Those two elements collaborate in order to resize
jobs on-the-fly to favor the global throughput of the system.

As we prove in this paper, our approach can significantly
improve resource utilization while, at the same time, reducing
the wait-time for enqueued jobs, and decrease the total execu-
tion time of workloads. In fact, resource utilization could still
be improved if the job submission was not rigid, but flexible by
giving a range of number of nodes required instead of a fixed
value. Although this is achieved at the expense of a certain
increase in the job execution time, we have reported that,
depending on the scalability of the application, this drawback
can be negligible.

ACKNOWLEDGMENT

This work is supported by the Project TIN2014-53495-R
and TIN2015-65316-P from MINECO and FEDER. Antonio
J. Peña is cofinanced by MINECO under Juan de la Cierva
fellowship number IJCI-2015-23266. Special thanks to José I.
Aliaga for the conjugate gradient code.

REFERENCES

[1] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
utility for resource management,” in 9th International Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), 2003, pp. 44–60.

[2] “Slurm Workload Manager,” http://slurm.schedmd.com.
[3] “The Top500 List,” https://www.top500.org.
[4] Message Passing Interface Forum, “MPI: A message-passing interface

standard version 3.1,” http://mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf, Tech. Rep., Jun. 2015.

[5] F. Sainz, J. Bellon, V. Beltran, and J. Labarta, “Collective offload
for heterogeneous clusters,” in 22nd International Conference on High
Performance Computing (HiPC), 2015.

[6] D. G. Feitelson and L. Rudolph, “Toward convergence in job schedulers
for parallel supercomputers,” in Job Scheduling Strategies for Parallel
Processing, vol. 1162/1996, no. 5, 1996, pp. 1–26.

[7] J. Padhye and L. Dowdy, “Dynamic versus adaptive processor allocation
policies for message passing parallel computers: An empirical compari-
son,” in Job Scheduling Strategies for Parallel Processing (IPPS), 1996,
pp. 224–243.

[8] K. El Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
“Malleable iterative MPI applications,” Concurrency and Computation:
Practice and Experience, vol. 21, no. 3, pp. 393–413, Mar. 2009.

[9] P. Lemarinier, K. Hasanov, S. Venugopal, and K. Katrinis, “Architecting
malleable MPI applications for priority-driven adaptive scheduling,”
in Proceedings of the 23rd European MPI Users’ Group Meeting
(EuroMPI), 2016, pp. 74–81.

[10] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC10), Nov. 2010.

[11] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” International Journal of High Performance Computing Ap-
plications, vol. 27, no. 3, pp. 244–254, Jun. 2013.

[12] A. Gupta, B. Acun, O. Sarood, and L. V. Kalé, “Towards realizing the
potential of malleable jobs,” in 21st International Conference on High
Performance Computing (HiPC), 2014.

[13] F. S. Ribeiro, A. P. Nascimento, C. Boeres, V. E. F. Rebello, and A. C.
Sena, “Autonomic malleability in iterative MPI applications,” in Sym-
posium on Computer Architecture and High Performance Computing,
2013, pp. 192–199.

[14] G. Martı́n, D. E. Singh, M. C. Marinescu, and J. Carretero, “Enhancing
the performance of malleable MPI applications by using performance-
aware dynamic reconfiguration,” Parallel Computing, vol. 46, pp. 60–77,
Jul. 2015.

[15] G. Martı́n, M. C. Marinescu, D. E. Singh, and J. Carretero, “FLEX-
MPI: an MPI extension for supporting dynamic load balancing on
heterogeneous non-dedicated systems,” in Euro-Par Parallel Processing,
Aug. 2013, pp. 138–149.

[16] R. Sudarsan and C. J. Ribbens, “ReSHAPE: A framework for dynamic
resizing and scheduling of homogeneous applications in a parallel
environment,” in International Conference on Parallel Processing, 2007.

[17] R. Sudarsan and C. Ribbens, “Scheduling resizable parallel applica-
tions,” in International Symposium on Parallel & Distributed Processing.
IEEE, May 2009.

[18] R. Sudarsan, C. J. Ribbens, and D. Farkas, “Dynamic resizing of parallel
scientific simulations: A case study using LAMMPS,” in International
Conference on Computational Science (ICCS), 2009, pp. 175–184.

[19] R. Sudarsan and C. J. Ribbens, “Combining performance and priority
for scheduling resizable parallel applications,” Journal of Parallel and
Distributed Computing, vol. 87, pp. 55–66, 2016.

[20] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. V.
Kale, “A batch system with efficient adaptive scheduling for malleable
and evolving applications,” in 2015 IEEE International Parallel and
Distributed Processing Symposium, May 2015, pp. 429–438.

[21] E. Jajaga and J. Kllobocishta, “MPI parallel implementation of Jacobi,”
in ICT Innovations, 2012, pp. 449–458.

