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ABSTRACT

The sounds occurring in the noisy acoustical environment of a Neonatal Intensive Care Unit (NICU)
are thought to affect the growth and neurodevelopment of preterm infants. Automatic sound detection
in a NICU is a novel and challenging problem, and it is an essential step in the investigation of how
preterm infants react to auditory stimuli of the NICU environment. In this paper, we present our
work on an automatic system for detection of vocalization sounds, which are extensively present
in NICUs. The proposed system reduces the presence of irrelevant sounds prior to detection.
Several pre-processing techniques are compared, which are based on either spectral subtraction or
non-negative matrix factorization, or a combination of both. The vocalization sounds are detected
from the enhanced audio signal using either generative or discriminative classification models. An
audio database acquired in a real-world NICU environment is used to assess the performance of
the detection system in terms of frame-level missing and false alarm rates. The inclusion of the
enhancement pre-processing step leads to up to 17.54% relative improvement over the baseline.
Keywords: neonatal intensive care unit, vocalization detection, noise reduction, spectral subtraction,
non-negative matrix factorization.

1. Introduction

Most premature infants receive specialized medical care in
Neonatal Intensive Care Units (NICUs) during the first several
weeks or even months of life, which is crucial for their survival.
A typical NICU environment is acoustically very rich, with di-
verse sounds produced both by human activities and by multiple
biomedical equipment [1, 2] contributing to high sound levels
[3]. It has been recognized that such a noisy NICU environ-
ment may compromise normal growth and neurodevelopment
of preterm infants [4, 5, 6, 7, 8] as the immature brain may not
be able to adapt and respond normally to loud, randomly pro-
duced sounds of variable intensity taking place in a NICU [9].

The effects of a NICU acoustic environment on a preterm in-
fant could be revealed by the infant’s reactions to auditory stim-
uli from it, which can be investigated by relating the presence
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of particular sounds (i.e., sound identities and their situation
in time) with the preterm physiological variables. Note that in
such investigation the sounds are not produced artificially, but
occur naturally in the NICU environment and are the ones ac-
tually perceived by the preterm infant. A study of this kind can
complement greatly the work already reported in the literature,
in which only the sound pressure level is considered without
taking into account the spectro-temporal properties and iden-
tity of sounds (e.g., in [10]).

To carry out a statistical correlation study that uses the sound
identities, large amounts of labelled audio data are required,
which can only be obtained through automatic detection from
audio signals. In this paper, we address the detection of vo-
calizations, which encompass all sounds produced through a
vocal tract, either by infant or adult (i.e., speech, cries, laugher,
cough, etc.). These sounds are those most frequently occur-
ring in a NICU environment and that may affect a preterm baby
[11, 12]. For instance, newborns demonstrate a clear prefer-
ence for the maternal voice [4], which can have a calming ef-
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Fig. 1. Spectrogram of an audio sample with the typical ventilation noise.

fect, while shouts or cries may affect the newborn in a negative
manner. The aim of the detection system developed is to auto-
matically label temporal regions within the input audio where a
vocalization sound is present, i.e., to specify the start and end
time of each vocalization occurrence without specifying its par-
ticular type.

The acoustic analysis of the audio data collected in the
NICU shows that speech (i.e. foreground and background
voices) is the predominant type of vocalization in that environ-
ment. A multitude of studies dealing with the related task of
voice/speech activity detection have been reported in the lit-
erature, e.g., [13, 14, 15] to cite a few. However, there are
factors specific to this task in the NICU acoustic environment.
Due to the rich multisource nature of that environment, vari-
ous sound events usually take place simultaneously. Consider-
ing vocalizations, the temporal overlaps with other sounds are
even more probable due to their extensive presence. Moreover,
a specific type of noise produced by the ventilation equipment
that supports breathing in neonates which spreads over a wide
frequency range is strongly present in the recordings. A spec-
trogram of one of the typical samples of the ventilation noise
is given in Figure 1. There are several different types of ven-
tilation equipment in the NICU having noises with different
spectral characteristics. Depending on the particular needs of
a preterm infant from a recording session an appropriate type
of ventilation is used, and this fact introduces a great deal of
variability to the data. As the performance of the detection
systems is known to deteriorate significantly in the presence of
background noise or temporal overlaps between sound sources
[16, 17], the NICU environment makes vocalization detection
quite challenging.

In this paper, in order to obtain a more robust detection,
we address the above-mentioned factors by including a pre-
processing step that is based on the following techniques:

1) spectral subtraction, to attenuate the stationary ventilation
noise;

2) non-negative matrix factorization, which is more suitable
for audio enhancement in case of non-stationary noises, to
segregate vocalizations from the other interfering sounds

and noise.

This study compares the performance of the detection sys-
tem when different pre-processing schemes based on the tech-
niques and their combinations are applied prior to detection,
and selects the scheme yielding the best detection results. The
usefulness of the pre-processing step is evaluated when either
a generative or a discriminative classification approach is used.
To our knowledge, this is the first work where the employed
enhancement techniques are applied in the context of a NICU
acoustic environment.

The rest of the paper is organised as follows. Section 2 pro-
vides details on how the pre-processing step of the detection
system is implemented and briefly describes the enhancement
techniques used, and Section 3 contains description of the de-
tection system itself. The evaluation setup and experimental
results are presented in Section 4 and Section 5, respectively.

2. Enhancement techniques

2.1. Spectral subtraction
Spectral Subtraction (SS) algorithm is the classical tool used

for audio denoising where an additive model is assumed, i.e.
the noise-corrupted input signal y(n) is composed of the clean
signal x(n) and the additive noise signal d(n); that is y(n) =

x(n) + d(n). Then, the clean signal spectrum X̂(n, k) can be esti-
mated by subtracting an estimate of the noise spectrum D̂(n, k)
from the noisy signal spectrum Ŷ(n, k) as follows [18]:

|X̂(n, k)|γ =


|Ŷ(n, k)|γ − α|D̂(n, k)|γ,

if |Ŷ(n, k)|γ > (α + β)|D̂(n, k)|γ

β|D̂(n, k)|γ, otherwise
(1)

where n and k are, correspondingly, the frame and the frequency
bin index, γ = 1 yields magnitude and γ = 2 yields power
spectrum subtraction, α is the subtraction factor, which controls
the amount of noise to be subtracted, and 0 < β � 1 is the
spectral floor parameter, which controls the amount of residual
and perceived musical noise. This approach is referred to as SS
using oversubtraction (because usually α ≥ 1) [19].

The use of a proper noise estimate D̂(n, k) is crucial for the
quality of the enhanced signal. Often, it is obtained once from
the first frames of the input audio. But since the annotation
data are not available, it is not guaranteed that there are no vo-
calization sounds present in that beginning segment. On the
other hand, since ventilation noise is stationary and is present
throughout the recording, we propose using the average spec-
trum of the whole input signal as noise estimate.

Alternatively, the noise estimate can be obtained and updated
throughout the input signal, taking into account the probability
of the presence of speech. Such an approach is able to bet-
ter deal with highly non-stationary noise environments. In this
work, we employ the Minima-Controlled Recursive-Averaging
(MCRA) algorithm [19], so the mean-square estimate of the
noise power spectrum is obtained recursively as follows:

|D̂(n, k)|γ = αd(n, k)|D̂(n − 1, k)|γ+

(1 − αd(n, k))|Ŷ(n, k)|γ,
(2)
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where αd(n, k) is a smoothing factor defined as

αd(n, k) = α + (1 − α)p(n, k). (3)

Here, p(n, k) is the speech-presence probability which is calcu-
lated using the ratio of the smoothed (with a smoothing factor
αs) noisy signal spectrum to its local minimum. This ratio is
compared to a threshold δ yielding a binary speech-presence
probability estimate, which is further smoothed over time with
a smoothing factor αp.

In this study, the following parameter setup is used: the
processing is performed on Hann-windowed half-overlapped
64 ms frames with γ = 2. For standard SS, α = 0.01 {0...3}1,
β = 0 {0...1} and the noise estimate is obtained from the
first 7 frames of the audio recording (which roughly cor-
responds to 200 ms); for SS with the average spectrum
noise estimate, α = 0.2 {0...1} and β = 0 {0...1}; for SS
with MCRA, α, β, αd, αs, αp are equal to, correspondingly,
1 {0...1}, 0.01 {0...0.1}, 0.2 {0.2...0.95}, 0.9 {0.7...0.95} and
0.1 {0.01...0.7}.

2.2. Non-negative matrix factorization
Non-negative matrix factorization (NMF) was first presented

in its basic form in [20] and since then it has proven to be useful
in various pattern recognition areas, such as automatic speech
recognition [21] and acoustic event detection [22]. Basically,
NMF is a linear decomposition technique that attempts to ap-
proximate an input non-negative matrix V as a product of two
non-negative matrices, i.e.

VF×N ≈ WF×R · HR×N , (4)

where R ≤ F controls the rank of the approximation. In audio
signal processing, NMF is usually applied to the spectrogram of
the signal [23], and F and N correspond to the number of fre-
quency bins and number of frames, respectively. The columns
of W are usually referred to as bases, and the rows of H as their
corresponding weights or activations in time.

The optimization problem of minimizing the divergence be-
tween the input matrix and its approximation needs to be
solved:

arg min
W,H

D(V ||WH) + λ|H|1 W,H ≥ 0 (5)

where D is a cost function (in this work, the Kullback-Leibler
divergence), and the parameter λ ≥ 0 is used to impose a spar-
sity constraint on the activations, thus favouring solutions with
fewer bases activated at a given time. The minimization is
achieved by updating W and H with multiplicative factors (de-
rived using the gradient descent algorithm) until convergence
[24].

A supervised NMF approach is used where the bases matrix
Wt is trained beforehand on the training data. In the general

1The range of values on which each parameter was optimized using grid
search is shown in curly brackets. Note that the parameter tuning was not ex-
haustive and there may be more optimal parameter configurations, but, as ob-
served during tuning, no large improvement should be expected and the general
relation between the technique performance will hold.

case, when S sound sources are considered, a bases matrix is
trained for each source separately and a global bases matrix is
constructed via concatenation Wt = [W1; ...; WS ]. At the source
separation step the bases matrix is fixed and only the activa-
tions matrix is estimated H = [H1; ...; HS ], i.e. the optimization
problem is:

arg min
H

D(V ||WtH) + λ|H|1 H ≥ 0 (6)

In the basic case, the spectrum of each source can be obtained
by multiplication of the source bases by the corresponding ac-
tivations, i.e.

V̂i = WiHi, i ∈ [1..S ]. (7)

Commonly, an approach similar to Wiener filtering is applied
to reconstruct each source:

V̂i =
WiHi∑
i WiHi

⊗ V, (8)

where multiplication ⊗ and division operations are element-
wise [23].

The considered binary vocalization detection is, in princi-
ple, a two-source problem with the two sources corresponding
to vocalization and non-vocalization classes. The global bases
matrix Wtrain = [WV ; WNV ] consists of the bases trained for each
class, respectively. The enhanced audio signal is then recon-
structed using only the vocalization spectra V̂V and the phase of
the original input audio.

In our work, the implementation of NMF described in [24] is
used, with the following parameter setup: the input matrix V is
a magnitude spectrogram computed on Hann-windowed frames
of 32 ms length with 16 ms shift. We train R = 25 {25...100}
bases per class, where each base corresponds to a vector of di-
mension F × 1. The sparsity parameter λ is set to 0.01 {0...2}.
At training and testing time we use up to 25 iterations.

2.3. Combined approach

We want to exploit the complementarity that may exist be-
tween the SS and NMF algorithms, by investigating several
combinations of the techniques.

Firstly, we try the combination in which SS and NMF are ap-
plied consecutively. In this case, the audio data are previously
processed by SS in order to attenuate the ventilation noise, and
then this enhanced audio is used as training data for NMF. Al-
ternatively, NMF is applied prior to SS processing.

Secondly, we employ NMF to obtain the noise spectrum es-
timate |D̂(n, k)|γ for SS technique. Contrary to NMF based pre-
processing, where the spectrum is reconstructed for vocaliza-
tions, here we obtain the reconstructed spectrum V̂NV for non-
vocalizations or, in other words, the irrelevant sounds. Each
column n of the reconstructed non-vocalization spectral matrix
V̂NV , which corresponds to the time frame n, is assigned to the
vector |D̂(n, k)|γ in (1). The advantage of this approach is that
the noise estimate is assumed to be more accurate.
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3. Detection system

The input signal is split into frames using a Hamming win-
dow with the frame length of 30 ms and the frame shift of
10 ms. 16 Frequency-Filtered Logarithmic FilterBank Energy
(FF-LFBE) features [25] along with their 16 first temporal
derivatives were extracted from each frame. Therefore, the di-
mension of the feature vector is 32.

A Gaussian Mixture Model (GMM) based detector was used,
consisting of a model for vocalization and a model for non-
vocalization. Each model is a single Gaussian probability den-
sity function with diagonal covariance matrix as, in our exper-
iments, this provided better detection performance than using
more mixture components. With the likelihoods obtained from
the two models, each frame is classified either as vocalization
or non-vocalization. The decision threshold is chosen based on
the Equal Error Rate (EER) criterion, assuming that both types
of errors are equally important at the frame level.

In addition to GMMs, which is a generative classification ap-
proach, we also perform experiments employing a discrimina-
tive Support Vector Machines (SVM) based classifier. SVMs
aim at maximizing the margin between the classes and have the
advantage of using only the training samples that are closest to
the decision surface, which can be beneficial when a limited
amount of training data is available [26]. In this work, both
linear and Radial Basis Function (RBF) kernels are employed.
Before being fed to the classifier, the input features are mean-
variance normalized; the mean and variance values calculated
on the training data are also applied to the testing data.

Optionally, smoothing (via majority voting) is applied to the
string of output labels. The length of the smoothing window
was optimized with regards to the detection performance and is
equal to 31 frames.

4. Evaluation setup

The presented experimental evaluations were performed us-
ing an audio database acquired in the NICU of Hospital Sant
Joan de Déu Barcelona. The database contains ten recording
sessions carried out both in the morning and in the afternoon
(later recordings were not possible). The recordings were made
in a NICU room designated for intensive care of very preterm
newborns, which is equipped with four incubators. The num-
ber of sessions recorded in each incubator site was roughly
the same. Each recording session was made with a different
newborn, which allowed us to capture the variability due to
the equipment used (including ventilation equipment). As the
amount of activities that take place in the NICU can be very
large, a set of acoustic scenarios, which mostly correspond to
the daily nursery care related activities (e.g. changing a diaper,
measuring temperature), was selected for recording. A given
session contains a subset of those selected scenario recordings,
each around 1-2 min long.

Two electret unidirectional microphones connected to a lin-
ear PCM recorder were used to make recordings. One micro-
phone was placed inside the incubator, close to the infant’s ear,
and the other one outside the incubator, approximately 50 cm

Table 1. Vocalization detection performance obtained by the baseline sys-
tem. In bold are the best scores for each column.

Number of
Gaussians

No post-processing Smoothing

Evaluation metrics (%)
MR = FAR MR FAR

1 32.90 29.64 29.68
2 35.40 31.19 31.23
4 36.55 32.17 32.49
8 39.33 34.15 37.23

above it, usually pointing to the centre of the room. More in-
formation about the database acquisition, as well as a general
acoustic description of the NICU can be found in [27].

The experiments were carried out with the part of the
recorded database that was annotated and has a total duration
of 40.2 min. The vocalization sounds are present 56.7% of this
time. Only the recordings acquired with the microphone out-
side the incubator were used to keep homogeneous experimen-
tal conditions, and also because this microphone is closer to the
vocalization sources. The original 44.1 kHz recordings were
downsampled to 16 kHz.

A 10-fold cross-validation scheme was applied in order to
obtain more statistically relevant results, where on each fold
9 recording sessions were used for training and 1 session for
testing. The overall metric scores were obtained by aggregat-
ing the results over all 10 folds. Note that a cross-validation
scheme was also applied for NMF processing, where 9 sessions
were used for bases training, which were applied to perform
separation over 1 testing session.

For every pre-processing scheme, the classification models
were re-trained on the data obtained after that pre-processing.

The detection performance was evaluated at the frame level.
The Missing Rate (MR) and the False Alarm Rate (FAR) met-
rics were used, which are defined as:

MR =
NM

NV
, FAR =

NFA

NNV
, (9)

where NM and NFA are the number of misclassified frames
for vocalization and non-vocalization class, respectively, and
NV and NNV are the total number of vocalization and non-
vocalization frames, respectively.

5. Experimental results

The baseline GMM-based system performance is presented
in Table 1 as a function of the number of Gaussian components
used. The EER, which corresponds to both MR and FAR met-
rics having the same value, is reported when no post-processing
(i.e. smoothing) is applied. It can be seen that the increase in the
number of Gaussians seems to be detrimental to detection per-
formance; therefore only one Gaussian was used in subsequent
experiments. Furthermore, in all cases smoothing the classifier
output improved the detection results in terms of both metrics,
yielding up to 12% relative improvement in the best case. Tak-
ing into account the temporal context using a number of adja-
cent frames, smoothing discards sporadic miss and false alarm
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Table 2. Vocalization detection performance obtained by the GMM-based
system with a pre-processing step. In bold are the best scores for each
column.

Pre-processing

No post-processing Smoothing

Evaluation metrics (%)
MR = FAR MR FAR

None 32.90 29.64 29.68

SS standard 33.92 30.75 31.44
SS average 31.20 27.46 27.82
SS + MCRA 29.39 26.34 25.65

NMF basic 33.56 29.99 29.97
NMF Wiener 32.12 29.11 28.26

SS→ NMF 31.99 27.44 27.96
NMF→ SS 28.31 24.44 25.26
SS + NMF 33.80 30.54 30.19

errors. The system performance will be further compared to the
smoothed baseline.

Table 2 shows the detection performance of the system when
different pre-processing schemes are applied prior to detection.
Several of the proposed schemes are able to improve the base-
line results.

First of all, the results for the SS and NMF techniques ap-
plied separately are presented. It can be seen that applying the
standard SS leads to a performance loss (by 3.74% and 5.93%,
relatively, in terms of MR and FAR, respectively). This may
be explained by the fact that some of the recordings contain
vocalization sounds at the beginning and the obtained noise es-
timate is not accurate, which may have caused distortion of vo-
calizations. This explanation is also justified by the optimal
parameter values obtained (α = 0.01, β = 0) which basically
corresponds to doing almost no subtraction.

On the other hand, SS using the average spectrum noise es-
timate (SS average) and SS with the MCRA algorithm for the
noise estimation (SS + MCRA) are both able to improve the
baseline result due to the better noise estimate obtained. In
the case of SS average the relative improvement is 7.35% and
6.27% in terms of MR and FAR, respectively, showing that the
average noise estimate is able to represent the ventilation noise.
It is also reflected in the higher optimal value of α = 0.2. And
as SS + MCRA pre-processing results in a more accurate noise
estimate, it yields even higher relative improvement: 11.13%
in terms of MR and 13.58% in terms of FAR metric scores.
While the noise estimate in SS average mainly captures venti-
lation noise, the noise estimate in SS + MCRA, due to its con-
tinuous updating, is able also to capture some non-stationary
non-vocalization sounds, and hence SS + MCRA provides bet-
ter results.

As for NMF-based pre-processing the gain is not so obvious.
Employing the basic technique for vocalizations reconstruction
(NMF basic) doesn’t bring any improvement to the baseline re-
sult; conversely, a relative loss of 1.18% in terms of MR and of
0.98% in terms of FAR is obtained. On the other hand, NMF
with Wiener-like reconstruction (NMF Wiener), which provides
better sound quality [28], improves the results, but to a small

Fig. 2. The DET graphs for the three best performing setups. Circles cor-
respond to EER points.

extent: by 1.79% and 4.78%, relatively, in terms of MR and
FAR, respectively. The reason for NMF not performing well
may be the fact that strong ventilation noise and other sounds
are present in the training data of both vocalizations and non-
vocalizations, thus reducing the discriminative power of the
trained bases.

As mentioned above, the two techniques target different
types of noises: SS is more suitable for reduction of station-
ary noises, while NMF may deal with non-stationary noises.
The fact that SS showed better results on our data correlates
well with the observation that the stationary ventilation noise is
vastly present in all the recordings and, therefore, influences the
detection performance more strongly than do other interfering
sounds.

The last part of the table contains the detection results for dif-
ferent technique combinations: when SS and NMF are applied
consecutively to the audio signal (SS→ NMF and NMF→ SS)
and, also, when NMF is used to obtain the noise estimate for
SS (SS + NMF). Note that the best setups of SS and NMF
techniques are used for the audio-based combinations, namely,
SS + MCRA and NMF Wiener. For SS + NMF pre-processing,
NMF Wiener is used for the noise estimation, the parameters
of SS are set to α = 0.2, β = 0 and the frame length is set to
64 ms. In the rest of the cases the optimal parameter setups
obtained for each technique separately are kept.

The best detection results are obtained when SS is applied
to the audio signal pre-processed with NMF (NMF → SS); in
this case the relative improvement achieved is 17.54% in terms
of MR and 14.89% in terms of FAR. This confirms the com-
plementarity of the techniques in terms of the types of sounds
they are targeting. The detection results for the alternative pre-
processing sequence (SS → NMF) are worse than using SS
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Table 3. Vocalization detection performance obtained by the SVM-based
system. In bold are the best scores for each column.

Pre-processing,
kernel

No post-processing Smoothing

Evaluation metrics (%)
MR FAR MR FAR

None, linear 30.65 37.60 27.83 36.59
None, RBF 30.67 37.24 27.93 36.08

NMF→ SS, RBF 25.09 35.2 22.07 33.94

alone (only 7.42% and 5.80% relative improvement in terms of
MR and FAR, respectively, compared to the baseline results).
This may be due to the fact that SS processing introduces a mu-
sical noise to the output audio which, as occurs with ventilation
noise, is not beneficial for bases training. It can also be seen
that the SS + NMF combination does not outperform the base-
line setup. This may be attributed in part to the fact that the
processing window length used in SS is not optimal for NMF.

The Detection Error Tradeoff (DET) graphs are presented in
Figure 2 for the best performing setups of SS, NMF, and their
combination when no post-processing is applied. It can be seen
that the combination of the two techniques outperforms each
one of them individually at all the operational points of the
curve except for the ones where FAR is very low.

In Table 3 we provide the detection results for the SVM-
based classification, with both linear and RBF kernels. Ei-
ther no pre-processing or the NMF → SS pre-processing,
which gave the best results for GMM-based classifier, is ap-
plied. For linear SVM, the parameter C, which controls the
trade-off between the training error and the margin, is set to
1e−4 {1e−5...1}. For SVM with RBF kernel, this parameter is
equal to C = 0.05 {1e−4...1}, and the parameter γ of RBF is set
to 0.001 {0.0001...0.25}.

It can be seen that there is no significant difference in the de-
tection results for the two types of SVM kernel functions on our
data, and the RBF kernel only slightly outperforms the linear
one. I.e., with smoothing post-processing, the total error (MR
+ FAR) for linear kernel is equal to 64.42%, while for RBF
kernel it is equal to 64.01%. Similarly to the GMM-based sys-
tem, these results are improved when the pre-processing step is
added, although the overall improvement is somewhat smaller
in this case. In particular, the relative improvement in terms of
MR and FAR is equal to 20.98% and 5.93%, respectively.

Comparing the results for the two types of classification mod-
els, a generative GMM and a discriminative SVM, it can be
seen that SVM-based system does not outperform the GMM-
based one. The total error for the GMM-based and SVM-based
systems is equal to 49.7% and 56.01%, respectively. Perhaps,
this is due to an observed strong overlap of the vocalization and
non-vocalization classes in the feature space.

6. Conclusions

This paper presents our work on vocalization sound detection
for a new and challenging application: automatic analysis of the
acoustic environment of a preterm infant in a NICU. The work

focused on the pre-processing step of non-vocalization sounds
reduction. It has been shown that the detection system benefits
from introducing the enhancement step, though the obtained de-
tection error is still relatively high due to the complexity of the
detection problem in a real-world NICU environment and the
scarcity of data.

Binary detection of vocalizations is the first step towards a
correlation study and shall be followed by detection of each
type of relevant vocalization sounds. Future work could entail
detecting higher intensity vocalizations (i.e., foreground speech
and shouts) or parental voices, as these sounds are supposed to
affect a preterm baby the most. Improvements could also be
made to other steps of the detection system, e.g. other feature
extraction schemes might allow better discrimination between
the vocalization and non-vocalization classes.
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