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Abstract. The goal of this thesis is to explore the basic axiomatic theory of Syn-
thetic Differential Geometry (SDG). This field aims to put the study of smooth
manifolds, and geometry therein, in a topos-theoretic framework. Though the full
depth of application and consequences of SDG require knowledge of topos theory to
comprehend, a large part of the theory can be appreciated with only some notions
of basic category theory (as well as with a standard undergraduate mathematics
syllabus). In this work we look at this part of SDG, called the “axiomatic” the-
ory because it is indeed developed axiomatically. Specifically, under the axiomatic
theory of SDG we look at differential calculus, then “manifolds” (their analogue in
SDG), vector bundles (the tangent bundle as a particular case), and vector fields
(and Lie algebras thereof).

Resum. L’objectiu d’aquest treball és el d’explorar la teoria axiomàtica bàsica
de l’anomenada Geometria Diferencial Sintètica (GDS). La GDS es refereix a un
camp que té l’objectiu d’enquadrar l’estudi de les varietats diferenciables i la seva
geometria dins el marc de la teoria de topos. Malgrat que l’apreci complet de les
aplicacions i conseqüències d’aquesta teoria requereixen conèixer la teoria de topos,
una gran part de la teoria es pot tractar amb només unes nocions bàsiques de teoria
de categories (juntament amb una educació en matemàtiques a nivell de grau). En
aquest treball visitem aquesta part de la teoria, que s’anomena “axiomàtica” perqué
efectivament ho és. En particular sota la teoria axiomàtica de la GDS tractem el
càlcul diferencial, varietats (el seu anàleg), fibrats vectorials (el fibrat tangent en
especial), i finalment camps vectorials (amb la seva estructura d’àlgebra de Lie).
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Preface

The title of this work may sound strange if one is unfamiliar with the topic. Of
course, that is true of anything in life, but my experience in particular when stating
the phrase “Synthetic Differential Geometry” to my mathematician colleagues (stu-
dents and professors) is of being met immediately with a confused look, albeit one of
intrigue. If they are a classmate of mine then they also will have likely not seen any
category theory (what’s that?) as it is not covered in the curriculum. I was in the
same position when I did perchance upon the topic, and I was sufficiently intrigued
so as to explore it myself and compile my findings into a short document that would
hopefully serve as a light introduction for undergraduate students of mathematics.

What is synthetic about synthetic differential geometry (SDG)? Quite simply, it
means that it is an attempt to study, or at times simply describe the behavior of
smooth manifolds (and smooth functions) from an axiomatic framework. To help
explain this, we’ll make an analogy with modern Euclidean planar geometry (R2 with
a scalar product) vs. “synthetic Euclidean geometry”, which is the name we give
to the study of geometry as the Greeks did, from axioms concerning the elemental
objects of geometry: points and lines, and relations between them. Euclides’ five
axioms were not completely rigorous by today’s standards, but in that case we simply
refer to any modern revisiting of axiomatic Euclidean geometry, such as the works
of Hilbert or Tarski. The important point is the contrast with doing geometry with
an analytic backdrop (R2), from which we define lines and points set-theoretically.
In axiomatic geometry one begins directly with lines and points and describes how
they interact.

A highly similar approach is taken with synthetic differential geometry. Nat-
urally, there is a considerable complexity gap between flat 2-space, and general
smooth manifolds. In accordance with the jump in complexity between the objects
we wish to study there accompanies such a jump in the type of axioms we need.
In particular, synthetic differential geometry begins by describing requirements for
a certain category. If the reader is not familiar, I would highly recommend they
read one or both of [7] and [6]. One wouldn’t have to read the entirety of either
to understand most of what I write here, but I would certainly say that readers
will find themselves completely comfortable with anything encountered here, having
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x PREFACE

read the first five chapters of [6]. From here on this knowledge is assumed, to the
aim of avoiding highly verbose detours into purely category theoretic details.

After parsing what is meant (in informal terms) by “synthetic” differential ge-
ometry as we have done, the immediate reaction is to ask why we’d like to do that
(other than for pure interest, which is not a bad answer). One practical answer is
that it can give a rigorous foundation to certain ways that geometers would like to
think, such as the notion of “infinitesimals” (this is one of the first constructions
in SDG here and in many sources), or higher order concepts such as the interpre-
tation of vector fields as “infinitesimal flows”. I am not a geometer, and my own
motivation for studying SDG was in large part out of an interest in any modern
category-theoretic construction, but we could say that “thinking synthetically” in
differential geometry was an idea that held much appeal, whatever I believed it
meant at the time. I quote Anders Kock, quoting Sophus Lie in [3], should it spark
the same intrigue it did in me some time ago:

What is meant by “synthetic” reasoning? Of course, we do not
know exactly what Lie meant, but the following is the way we
would describe it: It deals with space forms in terms of their struc-
ture, i.e. the basic geometric and conceptual constructions that can
be performed on them. Roughly, these constructions are the mor-
phisms which constitute the base category in terms of which we
work; the space forms themselves being objects of it.



SECTION 1

Introduction

This principal objective of this thesis was to research the topic of synthetic
differential geometry, both for the sake of learning about the discipline itself, as
well as to gain practical experience in the realization of mathematical research.
With regards to the former, from the outset the goal was to examine what could
be meant by “an axiomatic treatment of differential geometry”, and to discern in
which way this treatment could reproduce what was already known from “standard”
geometry. We found that in many ways SDG does accomplish this (without meaning
to imply that the original authors of SDG intended for it to exactly replicate classical
geometry); we have seen differential calculus, manifolds, tangent spaces and vector
fields in their synthetic form. Many other classical constructions are also possible
as will be described below.

In second place we would also note that before this research preceded an inde-
pendent study of category theory (and to some extent topos theory), as it is the
basic language of the theory of SDG. Conversely, in studying a practical application
of category theory - SDG - a greater degree of fluency in the basics of category
theory was gleaned (and we could say this was a secondary objective).

1.1. Overview

The written work is organized as follows. Section two begins by laying down
(a reduced version of) the axiomatic framework in which the rest of the text takes
place. As mentioned, we can summarize that framework as to say “there exists a
category with these properties”. Again, the reader with a basic grasp of category
theory will get along fine. Strictly speaking one should be familiar with the notion of
a topos, but we do not dedicate any large portion to the details, instead taking what
“high-level” properties we need for the rest of our discourse. Those abstract (and
convenient) properties of toposes will be detailed. The end result is that we end up
with an object R, the smooth line, which is more or less the synthetic version of R,
the reals. Particularly, there is a subset of R, called D throughout, which are to be
the embodiment of “first order infinitesimals”. In analysis we may sometimes like
to think of “infinitesimal increments”, but of course there exists no such a thing.
We have suggestive notation such as f(x + h) = f(x) + f ′(x)h + O(h2), and we
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2 1. INTRODUCTION

may even think of the last term as “negligible” for small enough h. Perhaps not in
analysis proper anyway, but it is known as a useful technique for rough estimations
in, say, numerics. With our object D this is made a reality. Elements of d are “so
small” that their square is actually 0. Using D and a strong axiom about their
behavior it is possible to revisit single and multivariable calculus, and such is done.
By introducing further axioms one can speak of integration as well, but this is not
covered here, and instead we refer the reader to [5] for a discussion on this.

In the third section further (and final) axiomatics are given. In this way we mimic
the style of many sources of SDG, which introduce successively stronger axioms until
reaching the desired general statement. It is “general” in the sense that every axiom
up till that point becomes a particular case. The reasons for going about it this way
are twofold. One, because as an introductory text it’s appropriate to ease the reader
in. Though mentioned that category theory is required, the first axiom and the entire
first section are very much palpable for any student of mathematics (this may sound
confusing or contradictory but it becomes clear upon reading). Secondly, the nature
of studying SDG itself often takes the same approach. Axioms are introduced as
they are needed, and attention is given to which theories are possible within one
set of axioms or another. In fact, this is indicated as the method for studying SDG
in [1]. In any case, the second section of this text arrives at the general axiomatics
and employs them henceforth.

Until the mentioned point the main object of study is R. As classical geometry
moves from R (or Rn) to smooth manifolds, so do we explore “manifolds” in the
fourth section. Instead of manifolds they are called microlinear objects, because that
is what they are. That is, “microlinearity” is a property of certain objects which
essentially demands that they behave “similar to R”, in a way that is made precise.
And, as it will result, microlinearity is a sufficient condition for effectively carrying
out the constructions we’d desire in differential geometry, namely the tangent bundle
and vector fields. Furthermore, microlinear objects are sufficiently well-behaved
under typical constructions such as the Cartesian product, yet they are necessarily
more general than classical manifolds, for one because “function sets” NM where
M,N are microlinear, are too microlinear, something which cannot be said if we
replaced “microlinear” with “smooth manifold”.

Having said that microlinear objects are “more general” than manifolds, section
five deals with ways in which they are very similar. Taking advantage of the prop-
erties of microlinear objects we can define tangent spaces in an eminently geometric
way. In classical geometry tangent vectors can be defined as equivalence classes of
curves passing through a point, parametrized by some interval. Here a tangent vec-
tor is literally a single infinitesimal curve, a map t : D →M , from the infinitesimal
interval to the space in question. The collection of such curves (through a fixed
point) exhibits a vector space structure, promptly named the tangent space at a
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point. The tangent bundle follows, and so do vector fields as sections of it. Finally,
the set of vector fields on a space will be found to form a Lie algebra.

The last section dedicates just a few paragraphs to outlining the subject of models
of SDG. As with any list of axioms, if we eventually wish to relate the resulting theory
to the rest of existing mathematics, then we must produce a model (the term has
many technical definitions - in the mentioned section it will be clearly defined) which
verifies those axioms. Concerning SDG in particular, we are interested in models
that allow us to compare results in SDG to those in classical geometry. These are
called well-adapted models and are also commented on briefly.

1.2. Concluding remarks and further study

The focus of this thesis was foremostly on taking a first look at the theory of
SDG, as well as gaining practice with the application of category theory in modern
mathematics (particularly as relates to geometric fields). We were able to find that
one can start from purely axiomatic foundations, and arrive at the “same” familiar
world of manifolds and smooth maps from classical geometry.

Additionally, what is written here is only a small portion. In the literature
one will find still more topics from classical geometry in their synthetic form. To
name a few, these are differential forms - the exterior differential, integration of
forms, leading up to De Rham theory [5]; connections - covariant differentiation,
torsion, curvature [5], metrics - Riemannian and pseudo-Riemannian metrics, the
Levi-Civita connection [4]; and Hamiltonian mechanics [5,8]. The approach taken
for those topics is of varying complexity, but altogether in line with the types of
reasoning employed in this thesis and are excellent candidates for us to study in the
future.

Right alongside, or inseparable from the depth of geometric material that’s pos-
sible to explore from here, are the subjects of category theory, categorical logic,
sheaf theory, topos theory, etc. To say that those are worthy of multiple theses in
their own right would be a criminal understatement. However, in researching the
matter of this thesis, a solid ground has been laid on which to continue building.
For any interested readers, a very recent publication in SDG can be found in [1], in
which topos theory and categorical logic, in contrast to the present text, are at the
forefront of discourse.

1.3. Bibliographical remarks

Much of the main matter in this thesis is drawn in combination from [3] and [5],
and between those two the former plays a bigger part, at least in direct citations or
use of arguments. The two other main sources are [1] and [4], which are cited only
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a few times but were useful as resources, seeing as the four books cover much of the
same material in different ways, thus leading to a more complete understanding.

There are two books on category theory in the bibliography, [6] and [7]. Since the
material is common to any introductory category theory text, and the style of this
text is to take it as common knowledge, they are not cited anywhere directly. They
have a place in the bibliography simply because they were the main foundation of an
extensive previous study of category theory, and are recommended for any readers
who would like to do the same.

In the short section on constructive logic, [2] was consulted in order to complete
a particular argument. Lastly, [8], though consulted extensively at an earlier phase
of research, is mentioned only in the front matter as a reference for further study,
in particular that of Hamiltonian mechanics.

1.4. Historical note

The majority of the literature points to SDG originating with William Lawvere,
whose doctoral advisor was Samuel Eilenberg, co-founder of the theory of categories.
In particular, the subject is first introduced in Chicago 1967, in his seminar Cat-
egorical Dynamics. That is to say, dynamics, from the point of view of category
theory (as opposed to “the dynamics of categories”). From there the subject gained
collaborators, and the first book on SDG was published by Anders Kock in 1981
(here we consult the 2006 reprint of that book, [3]). During or after that time many
other works were published, by authors such as Belair, L.; Bunge, M.; Dubuc, E.J.;
Koszul, J.-L.; Lavendhomme, R.; Moerdijk, I.; Penon, J.; Reyes, G.E.; and Wraith,
G.E., among others. If one consults those sources they would find that, according
to them, they are picking up on the works left by mathematicians before them in
similar fields, notably Henri Cartan, Charles Ehresmann, Alexander Grothendieck,
and André Weil.



SECTION 2

The basic theory

The axiomatic theory of Synthetic Differential Geometry begins by assuming a
certain topos E exists. A topos is a category with certain properties which allow us
to to abstract the way in which the category of sets behaves. In fact, most naive
set theoretic and logical notions have meaningful interpretation in terms of objects
and morphisms of a topos. For example, comprehension by formulas such as

{x ∈ A | f(x) = 0}
is possible in a topos (at least for polynomial f , which is all that we need here), and
it behaves in the way we would expect it to. Some authors prefer to use different
notation for those types of constructions, to distinguish “internal” constructions in
the topos, from regular set theory. For example the above might be written as

[[x ∈ A | f(x) = 0]]

We will not make such distinctions here, but do mention it now so as to make
clear that the set-theoretic and logical constructions that appear throughout are
those internal to E . We will also use the terms set and object interchangeably,
though both refer to “objects of E”.

Another fundamental (defining) property of toposes is that of the existence of
exponential objects. Again, this is completely analogous to a familiar property of
sets. Given sets A,X, we can always form the exponential:

AX = {f | f : X → A}
and it satisfies the universal property that for any set B, giving a function

B → AX

is equivalent to giving a function

X ×B → A

In a topos we can always form exponential objects, and they too are characterized
by the mentioned universal property.

Thus, from this point on we will mainly omit the fact that we are working in
a topos, and use standard set theoretic notation, giving only brief reminders now
and then. There are of course limitations - not every formula in set theory can
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6 2. THE BASIC THEORY

be meaningfully interpreted as an internal formula of a topos, particularly when it
comes to logic. Notably, we do not have access to nonconstructive logic. However,
this will also be demanded by our geometric theory, as will be seen very shortly.

It is duly noted that a vast oversimplification has been made of the details of the
internal language of toposes. However there exists ample literature on the subject;
the reader is urged to consult [1] or [3] for topos theory preliminaries. There are
of course more primary sources, the cited works are simply those that discuss the
preliminaries in the context of SDG.

2.1. Axiomatics

We begin with an object R. We can think of R as an extension of the notion
of the standard continuum, R. Thus R should be a commutative ring with unit.
However, due to an axiom that we will shortly introduce, we cannot ask that R
be a field. Later on, we will need to strengthen this requirement to, for example
“2:=1+1 is invertible”. But later on we may need that “3 is invertible”. Instead
of introducing these small axioms successively, we will take care of them succinctly
with our:

Axiom 2.1. R is a Q-algebra.

With that out of the way, we proceed to introduce a central object of study, the
“infinitesimals”. These come in the form of nilpotent elements of R. To be precise,
let D = {d ∈ R | d2 = 0}. The (first version of the) defining axiom of SDG concerns
D, and as in all the literature we refer to it as the Kock-Lawvere axiom.

KL Axiom 1. For all f : D → R there exist unique a, b ∈ R such that f(d) =
a+ bd∀d ∈ D

Note that, in particular, a = f(0). Of course, this is a strong requirement. So
strong in fact, that we will have to weaken our logic in order for the theory to be
remotely interesting. This is because of the following proposition.

Proposition 2.1. R = {0}

Proof. Let f : D → R be defined by

f(d) =

{
1, d 6= 0

0, d = 0

By the KL axiom 1, there exist unique a, b ∈ R such that f(d) = a + bd for all d.
Since a = f(0) = 0, there exists b ∈ R such that f(d) = bd for all d. Thus for
non-zero d we have 1 = bd. Squaring both sides yields 1 = 0, and since R is a ring
this concludes the proof. �
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However, the above proof relies on the “fact” that, for any x ∈ R we have either
x = 0 or x 6= 0. Indeed the well-definedness of the function f depends on this
assertion. This is true in classical logic, as it is a simple application of the Law of
the Excluded Middle (LEM):

∀p p ∨ ¬p

To carry on with our theory, we see that we have to reject LEM. The above proof
then fails, but of course just because of that we cannot conclude that the theory
functions properly. To do so would by all means require exhibiting the category
E explicitly. For now we will continue ignoring this, and develop the naive theory,
knowing that we have to abstain from assuming LEM.

Without LEM, proposition 2.1 of course still contradicts (because we do want R
to be a Q-algebra) the statement

(2.1) ∀d ∈ D (d = 0) ∨ ¬(d = 0)

In other words, its negation is true. One may be inclined to “simplify” the negation
statement, leading to the apparent absurdity that

∃d ∈ D¬(d = 0) ∧ ¬¬(d = 0)

Note that we haven’t eliminated the double negation, since ¬¬p→ p is equivalent to
LEM. Still, the above would be a contradiction, since p∧¬p is still false in intuition-
istic logic. But, the first equivalence we used on the universally quantified statement
(2.1) also fails to be valid in intuitionistic logic (see [2, p. 248] for example).

So what are the elements of D? For one they are not all zero, for if they were
then every function d 7→ ad, a ∈ R would be equal to the constant 0, but since each
coefficient a is unique, we again reach the contradiction that every a ∈ R is the
same (equal to zero). The conclusion is the simple statement that

∃d ∈ D¬¬(d = 0)

The infinitesimalsD can thus be neither zero nor nonzero. This is a contradictory
statement in classical logic, but it is precisely of the type of phrases that we should
expect to appear if we weaken our logic to intuitionistic logic.

2.2. Elementary Calculus

With our basic axiom scheme in place we can begin revisiting the classical notion
of a derivative in this new context. We begin, as expected, with a function f : R→
R. Fix x ∈ R and define a new function g : D → R by

d 7→ f(x+ d)
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By the KL axiom 1 there are unique a, b ∈ R such that

∀d ∈ Df(x+ d) = f(x) + bd

(since g(0) = f(x)). This naturally leads to the following

Definition 2.2. Let f : R→ R. The derivative of f at x, denoted f ′(x), is the
unique b ∈ R such that f(x+ d) = f(x) + bd ∀d ∈ D.

Clearly this also allows us to define the derivative function f ′ : R → R. For
instance, let us calculate the derivative of a simple polynomial function. Let f :
x 7→ x2 + x then

f(x+ d) = x2 + 2xd+ d2 + x+ d

= x2 + x+ (2x+ 1)d

by which f ′(x) = 2x+1. So far our “formal” calculus agrees with standard calculus.
In fact, we have the following proposition:

Proposition 2.3. Let f, g : R→ R and let α ∈ R. The following hold:

(1) (f + g)′ = f ′ + g′

(2) (αf)′ = αf ′

(3) (fg)′ = f ′g + fg′

Proof. The proof is as simple as one could suspect, here we only prove the
third identity as an example. We have:

f(x+ d)g(x+ d) = (f(x) + f ′(x)d)(g(x) + g′(x)d)

= f(x)g(x) + (f ′(x)g(x) + f(x)g′(x))d+ f ′(x)g′(x)d2

= f(x)g(x) + (f ′(x)g(x) + f(x)g′(x))d

At a given x ∈ R, this clearly holds for all d ∈ D, giving us the result. �

Furthermore we have the Chain Rule:

Proposition 2.4. Let f, g : R → R be two functions. Then the derivative of
the composite g ◦ f is

(f ◦ g) = (f ′ ◦ g) · g′

Proof. Let x ∈ R. Then

(f ◦ g)(x+ d) = f(g(x)) + (f ◦ g)′(x)d

by definition. Meanwhile, if we expand g(x+ d) first:

(f ◦ g)(x+ d) = f(g(x+ d))

= f(g(x) + g′(x)d)
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Observe that g′(x)d ∈ D, since (g′(x)d)2 = g′(x)2d2 = 0. Now, f ′(g(x)) is the unique
coefficient satisfying

f(g(x) + g′(x)d) = f(g(x)) + f ′(g(x))g′(x)d

�

The reader may notice that these statements seem lazily worded. Normally, we
would include in the hypotheses something like “Let f, g : R → R be differentiable
functions. Then (some other function) is differentiable, and . . . etc.” We are not in
fact forgetting hypotheses. The Kock-Lawvere Axiom 1 actually implies that every
function from R to R is differentiable. This is easy to verify by noting that in the
definition of the derivative (2.2), no additional assumptions are made other than f
being a function. As a direct consequence, every function from R to R is infinitely
differentiable.

This leads us to ask if we also have Taylor expansions of functions. In classical
calculus, a Taylor expansion of second order involves a second degree polynomial,
and “terms of order 3”. In our context, these are simply nilcube elements, i.e.
δ ∈ R : δ3 = 0. An example of such a nilcube is any d1 + d2 where d1, d2 are both
in D. In effect,

(d1 + d2)
3 = d31 + d32 + 3d21d2 + 3d1d

2
2 = 0

Furthermore, if f : R→ R is a function,

f(x+ d1 + d2) = f(x+ d1) + f ′(x+ d1)d2

= f(x) + f ′(x)d1 + f ′(x)d2 + f ′′(x)d1d2

and meanwhile,

(d1 + d2)
2 = 2d1d2

Joining the two together yields:

f(x+ d1 + d2) = f(x) + f ′(x)(d1 + d2) +
f ′′(x)

2
(d1 + d2)

2

What we have just proven is the following proposition.

Proposition 2.5. If f : R → R is a function and d1, d2 ∈ D, then δ = d1 + d2
satisfies

f(x+ δ) = f(x) + f ′(x)δ +
f ′′(x)

2
δ2

This justifies the earlier heuristic of considering nilcubes as candidates for second
order Taylor expansions. Unfortunately, there is no way to assert as of now that
any nilcube must be of the form d1 + d2 with d1, d2 ∈ D. It is a partial result. In
section 2.2 we will introduce Taylor expansions for every nilpotent element by way
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of an axiom that generalizes the KL axiom 1. Still, it serves as a nice exercise to
prove the following, more general, Taylor formula.

Proposition 2.6. Let f : R → R be a function. Then for all n ∈ N and
δ = d1 + · · ·+ dn

f(x+ δ) = f(x) + f ′(x)δ +
f ′′(x)

2!
δ2 + · · ·+ f (n)

n!
δn

where x ∈ R, d1, . . . , dn ∈ D

Proof. To begin with, let us look at the powers of δ, that is, the usual multi-
nomial formula:

δk = (d1 + · · ·+ dn)k =
∑

i1+···+in=k

(
k

i1, . . . , in

) n∏
r=1

dirr

Recall that the dr are in D, so only the only non-zero summands will be those with
each dr raised to either 1 or 0. That is, choosing a subset of the ir to be 1, and the
rest 0. In that case the multinomial coefficients are simply k!, giving us

δk =
∑

I⊂{1,...,n}
|I|=k

k!
∏
t∈I

dt

in other words, the k-th elementary symmetric polynomial of n variables (multiplied
by k!). Denote this by ek(X1, . . . , Xn), and convene e0 ≡ 1 and ek(X1, . . . , Xn) = 0
if k > n. We proceed inductively:

(2.2)

f(x+ δ) = f(x+ d1 + · · ·+ dn)

= f(x+ d1 + · · ·+ dn−1) + f ′(x+ d1 + · · ·+ dn−1)dn

=
n−1∑
i=0

f (i)(x)

i!
i!ei(d1, . . . , dn−1)

+ dn

n−1∑
i=0

f (i+1)(x)

i!
i!ei(d1, . . . , dn−1)

=
n−1∑
i=0

f (i)(x) (ei(d1, . . . , dn−1) + dkei−1(d1, . . . , dn−1))

+ dkf
(n)(x)ek−1(d1, . . . , dk−1)
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It’s now useful to use the following recursion that elementary symmetric polynomials
satisfy:

ek(X1, . . . , Xn) = ek(X1, . . . , Xn−1) +Xnek−1(X1, . . . , Xn−1)

Finally, observe that ek−1(d1, . . . , dk−1) is just d1d2 · · · dk−1, meaning that

dkek−1(d1, . . . , dk−1) = ek(d1, . . . , dk−1, dk)

With these two identities, 2.2 becomes:

n∑
i=0

f (i)(x)ei(d1, . . . , dk) =
n∑
i=0

f (i)(x)

i!
δj

�

We’d do well to note that, for n ≥ k+ 1, δn is 0. The above Taylor formula is of
course still valid for any k and n, but the terms are all zero after k + 1. We again
find a unique characterization of all functions on a certain set of nilpotents. This
property will be stated in section 3 as a general axiom.

2.3. Calculus of several variables

We now take the usual course in calculus, which is to generalize the previous
study to functions of more than one variable, i.e. Rn → R, and further on functions
E → V where E and V are “vector spaces” in a sense that will be made precise.

2.3.0.1. Scalar functions. Let f : Rn → R be a function, and r = (r1, . . . , rn) ∈
Rn. As one would expect, we calculate the partial derivatives by adding an infin-
itesimal increment along a single coordinate direction. That is, let g : D → R be
defined by

d 7→ f(r1 + d, . . . , rn)

By the KL axiom 1, there exists a unique b ∈ R such that

f(r1 + d, . . . , rn) = f(r) + bd

We define ∂f
∂x1

(r1, . . . , rn) as b, which simultaneously defines a function ∂f
∂x1

: Rn → R

Similarly, we define ∂f
∂x2
, . . . , ∂f

∂xn
. By iterating the process we obtain higher partial

derivatives, denoted

∂kf

∂xi1 · · · ∂xik
A nice result is a parallel of Schwarz’ theorem of the interchangeability of partial

derivatives.
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Proposition 2.7. Let f : Rn → R be a function. Then for any 1 ≤ i, j ≤ n

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

The previous result follows directly from the following lemma which generalizes
the second-order Taylor expansion to two dimensions.

Lemma 2.8. Let f : Rn → R be a function. Then for all (d1, d2) ∈ D ×D

f(r1, . . . , ri + d1, . . . , rj + d2, . . . , rn) = f(x1, . . . , xi, . . . , xj + d2, . . . , xn)+

+
∂f

∂xi
(x1, . . . , xi, . . . , xj, . . . , xn)d1 +

∂2f

∂xi∂xj
(x1, . . . , xn)d2d1

Proof. Apply the definition of the partial derivative in xi, and successively
in xj

f(r1, . . ., ri + d1, . . . , rj + d2, . . . , rn) =

= f(x1, . . . , xi, . . . , xj + d2, . . . , xn)

+
∂f

∂xi
(x1, . . . , xi, . . . , xj + d2, . . . , xn)d1

= f(x1, . . . , xn) +
∂f

∂xi
(x1, . . . , xn)d1 +

∂2f

∂xi∂xj
(x1, . . . , xn)d2d1

and f(x1, . . . , xn), ∂f
∂xi

(x1, . . . , xn), ∂f
∂xj

(x1, . . . , xn), ∂2f
∂xi∂xj

(x1, . . . , xn) are the unique

coefficients that satisfy this for universally quantified (d1, d2) ∈ D. �

On the other hand, exchanging d1 and d2 (and commuting products and sums)

in the above equations yields the same conclusion for ∂2f
∂xj∂xi

. Since they are unique

they must equal each other, proving (2.7). By induction we also obtain that the
order in which we differentiate higher partial derivatives does not matter.

2.4. Vector functions

We will now examine functions between R-modules. However, for a general R-
module V , it does not follow from the KL axiom (1) that a version of it holds for
functions D → V . In this case what we do is simply restrict our attention to those
R-modules where this is the case. This leads to the following definition:
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Definition 2.9. An R-module V is said to be a Euclidean R-module if the
vector form of the KL axiom holds. That is, for any function f : D → V ,

∃! a, b ∈ V such that f(d) = a+ db∀d ∈ D
(again a is evidently f(0))

This may seem like a very ad-hoc definition, but we will encounter many Eu-
clidean R-modules naturally. For example we have the following lemma.

Lemma 2.10.

(1) Rn is a Euclidean R-module.
(2) For any object X, and Euclidean R-module V , the exponential V X is a

Euclidean R-module.

Proof.

(1) This is evident since a function f : D → Rn is uniquely determined by each
of its component functions. We let fi = πi ◦ f where πi : Rn → R is the
i-th coordinate projection. Then a = (a1, . . . , an), b = (b1, . . . , bn) are the
unique coefficients in the claim. Here each ai, bi is obtained by applying the
KL axiom to fi.

(2) First of all, V X is an R-module by the pointwise sum of maps. Let f : D →
V X be a function. This defines, for each x ∈ X, a function g(x) : D → V
by

d 7→ f(d)(x)

since V is Euclidean, there exist unique a(x), b(x) such that

f(d)(x) = a(x) + db(x)∀d ∈ D
Evidently, varying x defines functions a, b : X → V , which are unique such
that f(d) = a+ db∀d ∈ D

�

Additionally, it’s clear that any V which is isomorphic to Rn as an R-module is
too Euclidean. In [4] for example, it begins directly with this notion, calling them
“finite dimensional vector spaces”. Another fundamental example of a Euclidean
R-module that we’ll study are tangent spaces, in section 5.

For now let us go back to doing calculus. The Euclidean structure allows one to
define directional derivatives, as is done in [5], for example.

Definition 2.11. Let V,E be Euclidean R-modules, f : V → E a function and
u, a ∈ V . The derivative of f at a in direction u is the unique b ∈ E such that

∀d ∈ D, f(a+ du) = f(a) + db

We denote this by ∂uf(a).
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We note that ∂(−)f(a) is a linear function. In other words, for all λ, µ ∈ R,

∂λu+µvf(a) = λ∂uf(a) + µ∂vf(a)

The proof is a straightforward exercise (one may consult [5, p. 13]).
If V is finitely generated, i.e. V = span {e1, . . . , en}, then one can define

∂f

∂xi
(a) = ∂e1f(a)

and if u =
∑n

i=1 uiei then by linearity

∂uf(a) =
n∑
i=1

∂f

∂xi
ui

Finally, the familiar total differential makes an appearance here too.

Definition 2.12. Let f : V → E be a function. The differential of f at a ∈ V
is the function df(a) : V → E defined by

u 7→ ∂uf(a)

As noted before, df(a) defines a linear map V → E, for each a ∈ V . It will also
be useful to prove that, if f is linear, it is equal to its own differential. First we need
a

Lemma 2.13. Let V be an R-module, and E a Euclidean R-module. Let f : V →
E be such that

f(λa) = λf(a)

for all a ∈ V and λ in R (f is homogeneous). Then ∀a ∈ V, df(a) = df(0).

Proof. Let a ∈ V . Since E is Euclidean, we have

f(x+ du) = f(x) + d∂uf(x)

for all d ∈ D and x, u ∈ V . Letting x = λa and d = λd for some d ∈ D, we find that

f(λa+ λdu) = f(λa) + λd∂u(λa)

At the same time, since f is homogeneous,

f(λa+ λdu) = λf(a+ du)

= λ(f(a) + d∂uf(a))

Putting together the two equalities, we see that for all d ∈ D,

λd∂uf(λa) = λd∂uf(a)⇒
⇒ λ∂uf(λa) = λ∂u(a)
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Finally, we differentiate both sides with respect to λ, which results in

∂uf(λa) + λ
∂

∂λ
(∂uf(λa)) = ∂uf(a)

Letting λ = 0 concludes the proof. �

With that, we can quickly prove the following

Proposition 2.14. Let V be an R-module, and E a Euclidean R-module. Let
f : V → E be homogeneous. Then f is linear and f = df(0).

Proof. Since E is Euclidean, for all u ∈ V and d ∈ D,

d∂uf(u) = f(u+ du)− f(u)

= (1 + d)f(u)− f(u)

= d · f(u)

by which
f(u) = ∂uf(u) = ∂u(0) = df(0)(u)

�





SECTION 3

The general KL axiom

3.1. A closer look at the first axiom

Let (a, b) ∈ R×R. To this pair we can associate the function

f : D → R

d 7→ a+ bd

In this manner we obtain a map

α : R×R→ RD

Axiom 1 can then be succinctly stated by demanding that α be bijective. Note
that theR-module structure is also preserved, so that α is anR-module isomorphism.
Furthermore, RD has a natural R-algebra structure given by the pointwise product
of maps:

(a1 + b1d)(a2 + b2d) = a1a2 + (a1b2 + b1a2)d+ b1b2d
2(3.1)

= a1a2 + (a1b2 + b1a2)d(3.2)

As such, R × R does not possess an R-algebra structure, but if we define a
product by the above formula, that is

(a1, b1) · (a2, b2) = (a1a2, a1b2 + b1a2)

then α is an R-algebra isomorphism.
It will be helpful for motivating the forthcoming definitions to state this in yet

another way. The previous structure on R × R is nothing more than the natural
R-algebra on

W = R[X]/(X2)

thus there is an isomorphism of R-algebras

W
α∼= RD

In the following section we will generalize this idea.

17
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3.2. Weil Algebras

The infinitesimals D are one among many other “small objects” in SDG, called
Weil algebras, due to André Weil. We will use the general definition as per [1].

Definition 3.1. A Weil algebra W is a Q-algebra together with a morphism

π : W → Q
such that W is a local ring with maximal ideal I = π−1(0) with I nilpotent and
such that W is finite dimensional as a Q vector space. A homomorphism of Weil
algebras f : W1 → W2 is thus an algebra homomorphism sending the maximal ideal
of W1 to that of W2.

It will do to explore some simple consequences of this definition.

Lemma 3.2. Any Weil algebra W may be finitely presented, that is, W is iso-
morphic to

Q[X1, . . . , Xn]/(P1, . . . , Ps)

where P1, . . . Ps are polynomials of Q[X1, . . . , Xn].

Proof. Let e1, . . . , en be a Q-basis of W . The algebra structure is then deter-
mined by the constants γkij given by

ei · ej =
n∑
k=1

γkijek

in other words, the kernel of the surjection

E : Q[X1, . . . , Xn]→ W

given by Xk 7→ ek is the ideal generated by the polynomials

XiXj −
n∑
k=1

γkijXk

With 1 ≤ i, j ≤ n. Thus W is isomorphic to Q[X1, . . . , Xn]/ kerE with kerE finitely
generated. �

Naturally, there is no reason for X1, . . . , Xn to be a minimal set of generators.
In [5], this minimal number of generators is referred to as the breadth of a Weil
algebra, and the smallest power that annihilates the maximal ideal as the height.

That a Weil algebra W is finite dimensional over Q means that it is isomorphic
to Qn with a certain product given by γkij, for some n. If A is any other Q-algebra,

then so can An be endowed with a product by letting eiej = γkijek where el = (0, (l). . .
, 1, . . . , 0), making An an A-algebra. This structure is manifestly dependent on the
el. However, it does not depend on the presentation of W . This algebra structure
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on An is denoted A[W ]. For instance, the R-algebra on R × R from (3.2) arises in
this way as R[W ], where

W = Q[X]/(X2)

If we repeat the steps that we took to obtain a presentation of a Weil algebra
W ∼= Q[X1, . . . , Xn]/(P1, . . . , Ps) then it’s clear that for any other Q-algebra A, the
algebra A[W ] is also presented as A[X1, . . . , Xn](P1, . . . , Ps).

It’s worth mentioning that in [5], the author defines Weil algebras directly as
objects which according to our definition arise as R[W ] with W a Weil algebra as
defined above. The distinction is that R[W ] need not be a local ring (for instance,
(3.2) has the ideal ((0, a)) with a ∈ R which is not maximal since any element (d, 0)
with d ∈ D is in its complement, but it is not a unit. However this only changes the
phrasing involved for the general KL axiom (the goal of this section), and not the
content.

3.3. Spectra of Weil Algebras

The final piece involved in the statement of the general KL axiom is that of the
spectrum of a Weil algebra.

Definition 3.3. Let W be a Weil algebra, and C be an R-algebra. If W is
presented as

Q[X1, . . . , Xn]/(P1 . . . , Ps)

the spectrum of W in C is

SpecCW = {(a1, . . . , an) ∈ Cn | Pj(a1, . . . , an) = 0, j = 1, . . . , s}

It is not difficult but it is prudent to check that this is well defined. In fact we
shall prove that SpecC(−) is functorial. Note that elements of SpecC(W ) can be
“evaluated” at by classes in W , since two representatives differ by an element of
I = (P1, . . . , Pj), but every polynomial in I is zero on SpecC(W ) by definition. We
shorten such an evaluation, (P + I)(a), simply to P (a).

Let W1,W2 be Weil algebras, with

W1
∼= Q[X1, . . . , Xn]/I

W2
∼= Q[Y1, . . . , Yn]/J

Now let f : W1 → W2 be a homomorphism of Weil algebras. Define

SpecC(f) : SpecC(W2)→ SpecC(W1)

by
SpecC(f)(b1, . . . , bm) = (a1, . . . , an)

where
ai = f(Xi)(b1, . . . , bm)
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We have

(1) SpecC(−) preserves identities. In effect, the identity on a Weil algebra idW
sends Xi to Xi, and since Xi(b1, . . . , bm) = bi so is SpecC(idW ) the identity
on SpecC(W ).

(2) SpecC(g ◦ f) = SpecC(f) ◦ SpecC(g), where defined. The proof is a simple
verification.

By virtue of the (contravariant) functoriality we get as a corollary that isomor-
phic Weil algebras induce a bijection on their spectra. With these definitions in
place we may state the complete version of the KL axiom.

3.4. The KL Axiom

Let W ∼= Q[X1, . . . , Xn]/I be a Weil algebra. Earlier we observed that we can
evaluate (classes of) polynomials in W at elements of SpecR(W ) (just replace C
with R). In other words each element of W defines a mapping SpecR(W )→ R

W → RSpecR(W )

In the same manner we also obtain a mapping

α : R[W ]→ RSpecR(W )

again given by sending (p + I) ∈ R[W ] to the map a 7→ p(a). It is of course an
algebra homomorphism. The KL Axiom asserts that it is bijective.

Axiom 3.1 (KL). Let W ∼= Q[X1, . . . , Xn]/I be a Weil algebra. Then the map

α : R[W ]→ RSpecR(W )

given by p+ I 7→ (a 7→ p(a)) is an R-algebra isomorphism.

By asserting this axiom we obtain many of the propositions in the first part of this
monograph in a stronger version, and further generalizations. But before looking
at those examples we’ll note that the first KL axiom given is too a consequence
of axiom 3.1. This can be seen simply by applying the axiom to the Weil algebra
Q[X]/(X2). The result is the equivalent version of axiom 1 that we had already
observed in section 3.1.

What the general KL axiom provides is essentially, given a particular set of
“small” elements of R, a correspondence between functions from that set to R with
a particular finite dimensional R-algebra. These “small” elements are the objects
SpecR(W ) for some Weil algebra W . We refer to them as “small” because they are
meant to be a rigorization of the historically nebulous concept of “infinitesimals”.
We first introduced nilsquares (SpecR(Q[X]/(X2))), on which all functions are affine,
giving us first order derivatives. The Taylor formulas that came afterwards were
restricted, however, to sums of elements of D and not any nilpotent element of R.
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Since other nilpotents are too spectra of certain Weil algebra, we now have Taylor
formulae for these, given by axiom 3.1. We’ll look at a few such spectra, study
the KL axiom in regards to them and at the same time introduce their common
nomenclature.

• Dk := SpecR(Wk+1) with Wk+1 = Q[X]/(Xk+1). These are elements of R
whose (k + 1)-th power is zero (in particular D2 = D). One can check
that Wk+1 is isomorphic to the the set {a0 + a1ε + · · · + akε

k | ai ∈ R}
with ε denoting the equivalence class of X in Wk+1. By axiom 3.1 the set
of functions Dk → R are isomorphic as an R-algebra to the algebra Wk+1.
Another way of saying this is that:

Proposition 3.4. For all functions g : Dk → R there exist unique
coefficients a0, . . . , ak ∈ R such that

g(δ) = a0 + a1δ + · · ·+ akδ
k ∀δ ∈ Dk

And as an immediate consequence we have that, for any f : R → R
there exist unique coefficients a0, . . . , ak ∈ R such that

f(x+ δ) = a0 + a1δ + · · ·+ akδ
k ∀δ ∈ R : δk+1 = 0

That is, we have Taylor formulas of all orders (and one can check that the
ai are precisely the Taylor coefficients).
• (Dk)

n := SpecR((Wk+1)
n) where (Wk+1)

n just means the Cartesian product
with itself n times (and so does taking the spectrum of the product of Wk

coincide with the product of Dk). This is a Weil algebra, and it is presented
by Q[X1, . . . , Xn](Xk+1

1 , . . . , Xk+1
n ) . The general KL axiom applied to this

particular algebra is what yields higher dimensional Taylor formulae. We
state it now without proof (a tedious but simple combinatorial exercise).

Proposition 3.5. For any function f : Rn → R,

f(x+ δ) =
∑
α≤k

δ

α!
· ∂
|α|f

∂xα
(x) ∀δ : δk+1 = 0

where we’re using the usual multi-index notation - if α = (α1, . . . , αn)

then |α| = α1 + · · · + αn, α! = α1! · · · · · αn! and ∂|α|f
∂xα

= ∂|α|f
∂xα1 ...∂xαn

. The
partial derivatives are defined in the same way as before.
• D(n) := SpecR(W (n)) where

W (n) = Q[X1, . . . , Xn]/({XiXj}1≤i,j≤n)

A simpler way of writing this is

D(n) = {(d1, . . . , dn) ⊂ Rn | the product of any two di, dj is zero}



22 3. THE GENERAL KL AXIOM

• Dk(n) := SpecR(Wk(n)) where

Wk(n) = Q[X1, . . . , Xn]/({Xi1 · · ·Xik}1≤i1,...,ik≤n)

Again these are the elements of Rn such that the product of any k of their
components is equal to zero.

There are some notable inclusions:

Dk(n) ⊂ Dl(n) iff k≤ l

Dk(n) ⊂ (Dk)
n

(Dk)
n ⊂ Dn·k(n)



SECTION 4

Microlinearity

4.1. A simple example

We begin by observing a few specific cases. Let

D ×D → D

be the multiplication map, i.e. (d1, d2) 7→ d1d2. Nothing in our theory suggests that
this map should be surjective, but for many purposes it suffices to have the following
property:

Proposition 4.1. If f1, f2 : D → R verify that, for each d1, d2 ∈ D, f1(d1d2) =
f2(d1d2) then f1 = f2.

That is, it suffices to know any function f : D → R on products of elements of
D. This is referred to in [3] as “R thinks that the multiplication : D × D → D is
surjective”.

Proof. Define g = f1−f2. By our hypothesis g is identically zero on all elements
d1d2 with d1, d2 ∈ D. By the KL axiom (since the previous section this refers to
axiom 3.1, but in this case axiom 1 also suffices), there exist unique a, b ∈ R such
that

g(d) = a+ bd ∀d ∈ D
On the one hand a = g(0) = g(0 · 0) = 0, so that g(d) = bd. Thus, for all d1, d2 ∈ D
we have 0 = g(d1d2) = bd1d2, or in other words that bd1d2 = 0 for all d1, d2 ∈ D,
which means that b = 0. �

4.2. A slightly more interesting example

Consider two functions f, g : D → X such that f(0) = g(0), where X is some
set (object of E). Here there is no reason to assume that this will define a map
D(2)→ X. It will be the case, however, if X is R.

Proposition 4.2. Let f, g : D → R be functions such that f(0) = g(0). Then
there exists a unique function h : D(2)→ R such that h(d, 0) = f(d) and h(0, d) =
g(d) for all d ∈ D.

23
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Proof. Let a0 = g(0) = f(0). Then we have that for all d ∈ D,

f(d) = a0 + a1d

g(d) = a0 + b1d

Thus, we simply define h by

h(d1, d2) = a0 + a1d1 + b1d2

This clearly satisfies the existence requirements. The Uniqueness is a consequence
of the KL axiom. Let k be another function that satisfies the hypotheses. By the
KL axiom applied to D(2),

k(d1, d2) = α0 + α1d1 + α2d2

for unique αi. By k(d, 0) = f(d) we obtain α0 = a0 and α1 = a1. Similarly α2 = b1.
Since the αi are unique and determine k, we get k = h (if preferred we could have
concluded at the very definition of h, since the KL axiom asserts that functions on
D(2) are defined as such - the argument has simply been made explicit a bit further
here).

�

4.3. Perceived colimits

The previous examples can be stated in diagrammatic form, which will then lend
itself to a generalization in terms of (co)limits. We’ll focus on the second example.
Consider the following commutative diagram:

(4.1) {0}

0

��

0 // D

i2

��
D

i1
// D(2)

where i1 and i2 are the inclusion maps i1(d) = (d, 0), i2(d) = (0, d) and 0 is the
constant zero map. The previous observation that two maps f, g : D → X do not
have to define a map D(2) → X is equivalent to saying that diagram 4.1 is not a
pushout. But, if we apply the R(−) functor to it, the result is:
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R{0} RDR0
oo

RD

R0

OO

RD(2)

Ri2

OO

Ri2
oo

Proposition 4.3. Diagram 4.3 is a pullback.

Proof. First we will make the diagram a little neater. Firstly, R{0} is isomor-
phic to R. The map R0 Takes f : D → R and sends it to f ◦ 0, which we simply
identify with f(0) the same way we identified R{0} with R. Likewise, the map Ri1

sends g : D(2)→ R to g ◦ i1. Thus, for 4.3 to be a pullback, we’d need that the set
RD(2) be in bijection with the set of pairs f, g ∈ RD such that f(0) = g(0). But
this is precisely what we proved in proposition 4.2. �

How we refer to this phenomenon (or how it is often referred to) is “R perceives
diagram 4.1 as a pushout. This is of course generalizes, as we will see shortly. To
do so we will give a few definitions first.

Definition 4.4. Let W be the category of Weil algebras (a subcategory of the

category of Q-algebras Q-Alg). A good limit of Weil algebras is a limit
(
L

fi−→ Di

)
i∈I

in Q-Alg which is also a limit in W. That is, the morphisms in the diagram defining
L must be Weil algebra homomorphisms, and so must the projections fi.

Definition 4.5. A diagram in E is said to be a (finite) quasi colimit if it is the
image under the functor

SpecR(−) : W→ E

of a good finite colimit in W.

Definition 4.6. An object X is said to perceive a quasi colimit as a colimit if
the functor

X(−) : E → E

takes said quasi colimit into a limit (of E).
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Example 4.7. The following diagram is a good colimit of Weil algebras (it is a
pushout in Q-Alg, and the morphisms are Weil algebra homomorphisms).

(4.2) Q Q[X]/(X2)
0

oo

Q[X]/(X2)

0

OO

Q[X, Y ]/(X2, Y 2, XY )

p2

OO

p1
oo

where p1(X) = X, p1(Y ) = 0, p2(X) = 0, and p2(Y ) = X. Via the SpecR(−) functor
this is taken to

{0}

0

��

0 // D

i2

��
D

i1
// D(2)

which is the same as diagram 4.1. Thus, since diagram 4.2 is an example of a good
finite limit, diagram 4.1 is a finite quasi colimit. Furthermore, R perceives 4.1 as a
limit, as observed in proposition 4.3.

For plenty more examples, one should look at [5]. The objective of these defini-
tions are to state the upcoming proposition, which generalizes the previous observa-
tion that “R perceives. . . etc”. The result will be of use in section 5 as a smoothness
condition.

Proposition 4.8. R perceives finite quasi colimits as colimits. Conversely, if
R perceives a diagram as a colimit, it is a quasi colimit.

We’ll need a simple result previously, in the form of the following

Lemma 4.9. Let (
Wi

pi←− WL

)
i∈I

be any limit of Weil algebras. Then the diagram(
R[Wi]

pi←− R[WL]
)
i∈I

is a limit of R-algebras.

With that, we can prove the proposition.
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Proof of proposition 4.8. Let
(
L

fi←− Di

)
i∈I

be a finite quasi colimit.That

is, we may write the diagram as

(4.3)
(

SpecR(WL)
SpecR(pi)←− SpecR(Wi)

)
i∈I

where (
Wi

pi←− WL

)
i∈I

is some good finite limit of Weil algebras. We need to prove that diagram 4.3 is
taken to a limit by the functor R(−). Under this functor, the resulting diagram is

(4.4)

(
RSpecR(WL) R

SpecR(pi)−→ RSpecR(Wi)

)
i∈I

Now we invoke the general KL axiom, which says that this diagram is isomorphic
to (

R[Wi]
pi←− R[WL]

)
i∈I

By lemma 4.9, this is a limit, since by hypothesis(
Wi

pi←− WL

)
i∈I

is a limit of Weil algebras. �

4.4. Microlinear objects

The behavior of R studied above will be a fundamental requirement as we move
onto studying other objects of synthetic differential geometry. We call these objects
microlinear, and it can be said that they are a sort of generalized “manifold” in the
context of SDG. Let us state this precisely:

Definition 4.10. An object M is said to be microlinear if it perceives finite
quasi colimits as limits.

Thus, obviously R is microlinear. We’ll make two observations.

Proposition 4.11. If M is a microlinear object and X is any other object, then
MX is also microlinear.

Proposition 4.12. If (
M

fα−→Mα

)
α∈A

is a limit, with Mα microlinear for every α ∈ A, then M is microlinear.





SECTION 5

Tangency

At this point we have enough of the basic theory in place to begin doing actual
geometry on “manifolds” (microlinear objects).

5.1. The tangent bundle

Let M be a microlinear object and p ∈M . We make the following

Definition 5.1. A tangent vector to M at p is a mapping

t : D →M

such that t(0) = p.

We call the collection of all such tangent vectors TpM , the tangent space at p of
M . In resemblance to classical geometry, we of course expect each TpM to have a
vector space structure (and to justify calling them vectors in the first place). It will
not be so, since R is not a field in the classical sense, but we will prove that each
TpM is a Euclidean R-module. Let us begin by defining scalar multiplication:

R× TpM → TpM

(λ, t) 7→ λt

where the map λt : D →M is defined by

(λt)(d) = t(λd)

As for addition, consider two tangent vectors at p, t1, t2 : D → M . We now
use that M is microlinear. Recall from earlier that the diagram below is a quasi
pushout:

(5.1) {0}

0

��

0 // D

i2

��
D

i1
// D(2)

29
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Since M is microlinear, it perceives 5.1 as a pushout. As we studied in the case of
R, this means that the maps D(2)→M are in bijection with pairs of maps D →M
that are equal at 0. This is the case with t1 and t2, since t1(0) = p = t2(0). Thus,
there exists a unique map, which we call

st1,t2 : D(2)→M

allowing us to define
t1 + t2 : d 7→ st1,t2(d, d)

Finally, let us define 0 ∈ TpM as the constant map 0(d) = p ∀d ∈ D, and the
additive opposite of a vector t as −t, given by (−t)(d) = t(−d).

Proposition 5.2. Let p ∈ M . With the operations defined above, TpM is an
R-module.

Proof. (1) Addition is commutative. Let t1, t2 ∈ TpM . Again, this defines

st1,t2 : D(2)→M

as the unique map satisfying st1,t2(d1, 0) = t1(d1) and st1,t2(0, d2) = t2(d2).
On the other hand, t1 and t2 also define the map

st2,t1 : D(2)→M

unique among maps satisfying st2,t1(d2, 0) = t2(d2) and st2,t1(0, d1) = t1(d1).
Therefore, we have that for all (d1, d2) ∈ D(2)

st1,t2(d1, d2) = st2,t1(d2, d1)

In particular, st1,t2 and st2,t1 are equal on the diagonal,

{(d, d) | d ∈ D} ⊂ D(2)

So, by definition of t1 + t2 and t2 + t1, these two are equal.
(2) Addition is associative. This requires a generalization of proposition 4.3,

that is, that R perceives the diagram

(5.2) {0}

0

��

0 // D(q)

i2

��
D(p)

i1
// D(p+ q)

as a pushout, for any p, q ≥ 1. Here the maps i1, i2 are

i1(d1, . . . , dp) = (d1, . . . , dp, 0, . . . , 0)

i2(d1, . . . , dq) = (0, . . . , 0, d1, . . . , dq)
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The proof is nearly identical to the case we have examined (p = q = 1), one
can refer to [5, p. 48] for details. That R perceives 5.2 as a pushout means
that M does as well, M being microlinear. In turn, this implies that the
diagram

M MD(2)M0
oo

MD

M0

OO

MD(3)

M i2

OO

M i1

oo

is a pullback. That is, any function

g : D(3)→M

(d1, d2, d3) 7→ g(d1, d2, d3)

is uniquely determined by the functions

g1 : D →M

d1 7→ g(d1, 0, 0)

and

g23 : D(2)→M

(d2, d3) 7→ g(0, d2, d3)

Now, by applying the characterization of maps D(2) → M on g23, we
obtain that g is the unique map satisfying g(d1, 0, 0) = g1(d1), g(0, d2, 0) =
g23(d2, 0), and g(0, 0, d) = g23(0, d3) for all (d1, d2, d3) ∈ D(3). In other
words, any map

g : D(3)→M

is uniquely determined by three maps g1, g2, g3 : D → M with g1(0) =
g2(0) = g3(0), and such that

g1(d1) = g(d1, 0, 0)

g2(d2) = g(0, d2, 0)

g3(d3) = g(0, 0, d3)

With that said, let t1, t2, t3 ∈ TpM be three tangent vectors. As before, t1
and t2 determine a unique map

st1,t2 : D(2)→M
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So that, together with t3, they determine a map gl : D(3)→M given by

gl(d1, 0, 0) = st1,t2(d1, 0)

gl(0, d2, 0) = st1,t2(0, d2)

gl(0, 0, d3) = t3(d3)

Likewise, we obtain a map gr by

gr(d1, 0, 0) = t1(d1)

gr(0, d2, 0) = st2,t3(d2, 0)

gr(0, 0, d3) = st2,t3(0, d3)

But these are the same map, since they both satisfy

gl(d1, 0, 0) = gr(d1, 0, 0) = t1(d1)

gl(0, d2, 0) = gr(0, d2, 0) = t2(d2)

gl(0, 0, d3) = gr(0, 0, d3) = t3(d3)

Now note that

((t1 + t2) + t3)(d) = st1+t2,t3(d, d) = gl(d, d, d)

(t1 + (t2 + t3))(d) = st1,t2+t3(d, d) = gr(d, d, d)

by which we conclude that ((t1 + t2) + t3) = (t1 + (t2 + t3)).
(3) The map 0 is the additive identity. Let t : D → M be a tangent vector at

p, and 0 : D →M be the constant p. The identities

st,0(d, 0) = t(d)

st,0(0, d) = 0(d) = p

uniquely determine st,0 : D(2) → M . But the function t ◦ π1 : D(2) → M ,
where π2 : D(2) → D is the projection onto the second coordinate, also
satisfies those equations, making st,0 = t ◦ π2. Therefore,

(t+ 0)(d) = st,0(d, d) = (t ◦ π2)(d, d) = t(d)

(4) The opposite of a vector, as defined, satisfies t + (−t) = 0. The function
st,−t : D(2) → M is unique such that st,−t(d, 0) = t(d) and st,−t(0, d) =
(−t)(d) = t(−d). Again, we explicitly exhibit the function

f : D(2)→M

(d1, d2) 7→ t(d1 − d2)
and f satisfies the same equations, making it equal to st,−t. Therefore, for
any d ∈ D

(t+ (−t))(d) = st,−t(d, d) = f(d, d) = t(d− d) = t(0) = p
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(5) We have the identities
(a) (α + β)t = αt+ βt
(b) α(t1 + t2) = αt1 + αt2
(c) α(βt) = (αβ)t
(d) 1 · t = t

With α, β ∈ R and t, t1, t2 ∈ TpM . The tangent vector αt+βt is the unique
map sαt,βt : D(2)→M satisfying

sαt,βt(d1, 0) = (αt)(d1) = t(αd1)

sαt,βt(0, d2) = (βt)(d2) = t(βd2)

On the other hand, the map c, defined by

c(d1, d2) = t(αd1 + βd2)

satisfies the equations, by which sαt,βt = c. So,

(αt+ βt)(d) = c(d, d) = t(αd+ βd) = t((α + β)d) = (α + β)t(d)

by definition. That proves 5a. To prove 5b we make an analogous argument,
this time considering

c(d1, d2) = st1,t2(αd1, αd2)

leaving 5c and 5d, which are immediate.
This concludes the proof that TpM is an R-module. We will now prove that it

is Euclidean. Recall that this means that, for any map ϕ : D → TpM , there should
be a unique vector t ∈ TpM such that, for all d ∈ D

ϕ(d) = ϕ(0) + d · t
This will again be a consequence of microlinearity. Define

τ : D ×D →M

(d1, d2) 7→ (ϕ(d1)− ϕ(0))(d2)

Note that ϕ(d1)− ϕ(0) is a tangent vector at p, so that

τ(d1, 0) = τ(0, d2) = τ(0, 0) = p

for all d1, d2 ∈ D. We’ll now need another lemma concerning a quasi colimit.

Lemma 5.3. M perceives the diagram

(5.3) D

i1 //
i2 //
0 //

D ×D µ // D

as a colimit (a “triple coequalizer”, if one wishes). Here the maps i1, i2 are defined
by i1(d) = (d, 0), i2(d) = (0, d), 0 is the zero map, and µ is the multiplication of
elements of R, restricted to elements of D.
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In other words, the diagram

MD MD×D
M i1oo

M i2oo

M0
oo

MDMµ
oo

is a limit (a triple equalizer). That is, if g ∈MD×D is such that

(5.4) g(d1, 0) = g(0, d2) = g(0, 0) ∀d1, d2 ∈ D

then there exists a unique mapping

t : D →M

such that

g(d1, d2) = (t ◦ µ)(d1, d2) = t(d1d2)

This is all we need, since the map τ verifies the equations 5.4. Therefore there exists
a unique t : D →M with

τ(d1, d2) = t(d1d2) ∀d1, d2 ∈ D

In other words for all d1, d2,

(ϕ(d1)− ϕ(0))(d2) = t(d1d2) = (d1t)(d2)

where the last equality is by definition of scalar multiplication of tangent vectors.
The above holds in particular for all d2 ∈ D, so that there is an equality of maps

ϕ(d1) = ϕ(0) + d1t

�

.
The proof of lemma 5.3 is fairly straightforward. Since M is microlinear, it

amounts to proving that diagram 5.3 is a quasi colimit.

Proof of lemma 5.3. The diagram of Weil algebras

(5.5) Q[X]/(X2) Q[X, Y ]/(X2, Y 2)
f1oo

f2oo

f3oo

Q[X]/(X2)
moo
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is a limit. Here the functions m, f1, f2, f3 are defined by

f1 :
X 7→ X
Y 7→ 0

f2 :
X 7→ 0
Y 7→ X

f3 :
X 7→ 0
Y 7→ 0

m : X 7→ XY

To begin with, the diagram obviously commutes. Now, let A be any object, and
g : A → Q[X, Y ]/(X2, Y 2) a map such that fi ◦ g = fj ◦ g for any i, j (g makes
a similar diagram commute). Let a ∈ A. Its image under g is an element of
Q[X, Y ]/(X2, Y 2), and such can be written, modulo (X2, Y 2) as

g(a) = c00 + c10X + c01Y + c11XY

The condition that g commutes with the fi force c10 = c01 = 0. Define

h(a) = c00 + c11X

By varying a this defines a map h : A → Q[X]/(X2). Since c00, c11 are unique
modulo (X2, Y 2), the map h is the unique map such that the following diagram
commutes:

Q[X]/(X2) Q[X, Y ]/(X2, Y 2)
f1oo

f2oo

f3oo

Q[X]/(X2)
moo

A

g

gg

h

OO

This concludes that diagram 5.5 is a limit. It is left to the reader to check that
diagram 5.3 is the result of applying the SpecR functor to 5.5, making it a quasi
colimit. Since M was microlinear, the lemma is proven. �

The natural next step is to define the differential (or derivative, or tangent map,
etc.) of a mapping between two microlinear objects. Let M,N be microlinear, and
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f : M → N a map. Let p ∈M . We define:

dfp : TpM → Tf(p)N

by

dfp(t) = f ◦ t
As we should expect, this map is linear. Since TpM is Euclidean, by proposition

2.14 it suffices to see that it is homogeneous. For d ∈ D, we have

dfp(αt)(d) = (f ◦ (αt))(d) = f(t(αd)) = (f ◦ t)(αd) = (α · dfp(t))(d)

Another desirable property is that if V is a Euclidean R-module, it is canonically
isomorphic to TpV at every p ∈ V . This is easy to see by presenting the isomorphism
explicitly. Define

λp : V → TpV

by sending v ∈ V to the map

d 7→ p+ dv

This is a bijection since, by virtue of V being Euclidean, every map t : D → V is
characterized by a unique b ∈ V such that

d 7→ t(0) + db

In TpV , each t(0) is equal to p, so the inverse of λp is λ−1p (t) = b. The map λp is
obviously homogeneous, so again by proposition 2.14 it is linear. As a short exercise,
one can prove that, under this identification, dfp corresponds to df(p) (definition
2.12) for maps of Euclidean R-modules f : V → E.

5.2. Vector bundles; the tangent bundle

Definition 5.4. Let π : E → M be a mapping of microlinear objects. We say
that π is a (resp. Euclidean) vector bundle if each fiber πp = π−1({p}) of π is a
(resp. Euclidean) R-module.

As a prominent example, we have

Definition 5.5. Let M be a microlinear object. The tangent bundle on M is
given by

π : MD →M

t 7→ t(0)

The previous map indeed defines a Euclidean vector bundle. First, MD is mi-
crolinear by proposition 4.11, and second each fiber is just TpM , which we have just
seen to be a Euclidean R-module.
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We have defined vector bundles, so we should define what it means to be a
morphism of vector bundles. If

π1 : E1 →M1

π2 : E2 →M2

are two vector bundles, then a pair (ϕ, f) is said to be a morphism of the vector
bundles π1, π2 if the following diagram commutes:

E1

π1

��

ϕ // E2

π2

��
M1

f
// M2

Equivalently, ϕ takes the fiber at p ∈M1 to the fiber at f(p) ∈M2.
Again, an important example is provided by the tangent bundle to a microlinear

object. If M,N are microlinear objects, and f : M → N is a map, then (fD, f) is a
morphism of the tangent bundle at M to the tangent bundle at N , as evidenced by
the commutative diagram

MD

πM

��

fD // ND

πN

��
M

f
// N

Where πM , πN are the projections defining the tangent bundles of M,N , respectively.
If we define Mic to be the category of microlinear objects (with morphisms regular
maps), and Fib the category of vector bundles (with morphisms of vector bundles
as previously defined), then the association of each microlinear object to its tangent
bundle defines a functor

T : Mic→ Fib

with

TM = MD

Tf = (fD, f)
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which we call the tangent functor. Note that fiberwise, this is exactly the as-
sociation of each object to its tangent space at a point p, and each map f to its
differential dfp.

5.3. Vector Fields

As in classical differential geometry, we define a section of a vector bundle to
be a right inverse to the projection map of the bundle. That is, if π : E → M is a
vector bundle, then a section of π is a map s : M → E such that π ◦ s = idM . We
will write Γ(π) for the set of sections of π.

Let π : E → M be a vector bundle. It’s immediate that Γ(π) comes equipped
with an R-module structure, by the R-module structure on each fiber: define (s1 +
s2)(p) = s1(p) + s2(p), and so on (where s1, s2 are sections). Furthermore we have
the following proposition.

Proposition 5.6. The set Γ(π) is microlinear, and if π is a Euclidean vector
bundle, Γ(π) is a Euclidean R-module.

Proof. The objects E and M are microlinear by definition of a vector bundle,
and by proposition 4.11 so are EM ,MM microlinear. Now observe that the diagram

Γ(π) // // EM
ϕ //

I
// M

M

is an equalizer, where the first arrow is just the inclusion of Γ(π) into EM , ϕ(s) =
π ◦ s, and I(s) = idM . Thus Γ(π) is a limit of microlinear objects, meaning it is
microlinear by proposition 4.12. Now suppose that π is a Euclidean vector bundle,
and let f : D → Γ(π) be a map. For fixed p ∈M , the Euclidean R-module structure
on πp gives that there exists a unique b(p) ∈ πp (we make explicit the dependence
on p) such that for all d ∈ D

f(d)(p) = f(0)(p) + d · b(p)
Varying p thus gives a section b : M → E (it is a section, since b(p) ∈ πp = π−1(p))
which is unique such that

f(d) = f(0) + d · b
and so Γ(π) is Euclidean. �

We should also make the observation that Γ(π) is a module over RM , as well.
For f : M → R and s ∈ Γ(π) define

(f · s)(p) = f(p) · s(p)
We can now define what a vector field is, in a much expected way.
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Definition 5.7. Let M be a microlinear object. A vector field on M is a section
of the tangent bundle on M . We denote the set of vector fields by X(M).

Now since the tangent bundle is an exponential object, we can can automatically
establish a correspondence between three familiar conceptions of a vector field. On
the first hand a vector field is a map

X : M →MD

such that X(p)(0) = p for every p ∈M . But then X is equivalent to giving a map

X : M ×D →M

such that X(p, 0) = p. Thus, the notion of infinitesimal flow is recovered. Further-
more we have the principal of superposition.

Proposition 5.8. Let X : M×D →M be a vector field. Then for every p ∈M
and (d1, d2) ∈ D(2)

X(p, d1 + d2) = X(X(p, d1), d2)

Proof. By fixing p we obtain two maps f, g : D(2)→M , which are defined by

f(d1, d2) = X(p, d1 + d2)

g(d1, d2) = X(X(p, d1), d2)

Since X is a vector field we have the equalities

f(d, 0) = g(d, 0)

f(0, d) = g(0, d)

hence, since M is microlinear, f and g are the same map. �

Lastly, we also have the notion of a vector field as an “infinitesimal transforma-
tion of the identity”. That is, from a map

X : D ×M →M

there corresponds a map (which we’ll call by the same name)

(5.6) X : D →MM

and it is such that X(0) = idM .
From here on we will use the three ways of giving a vector field interchangeably.

As in [5] we refer to the image of an element d ∈ D by a map such as 5.6, as
Xd : M → M . For p ∈ M , we should visualize Xd(p) as the result of letting p flow
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along the vector field for d units of “time”. Whereas in classical differential geometry
the flow corresponding to a vector field need not define a group of transformations
(but it does a semi-group), it will be the case here.

Proposition 5.9. Let X : M →M be a vector field. Then for all d ∈ D, Xd is
a bijection and X−1d = X−d.

Proof. This is a simple consequence of proposition 5.8, since

X(X(p, d),−d) = X(p, 0) = p

for all p ∈M . �

The following proposition also establishes a strong parallel with classical Lie
algebras of vector fields (although the “Lie” part will be seen later).

Proposition 5.10. Let M be microlinear. Denote the set of invertible maps
from M to itself as Aut(M). This is a microlinear object, and X(M) is R-module
isomorphic to TidM Aut(M), the tangent space at the identity.

Proof. To prove that Aut(M) is microlinear, we proceed as usual to prove that
it is a limit of microlinear objects. To do this, note that Aut(M) is equal to the set

{(f, g) ∈MM ×MM | g ◦ f = f ◦ g = idM}

In other words, we have a diagram

Aut(M) //
i // MM ×MM

c1 //
c2 //
I //

MM

where i is the mapping f 7→ (f, f−1), c1 is the mapping (f, g) 7→ f ◦ g, c2 is (f, g) 7→
g ◦ f , and I is (f, g) 7→ idM . The diagram commutes, and any object mapping into
MM×MM in such a way will clearly be in bijection with (a subset of) Aut(M). And,
of course, MM×MM along with MM are microlinear, as per proposition 4.11. Now,
any element t of TidM Aut(M) is clearly associated with an element of TidM (MM),
namely the “same” map, extending the codomain. Thus, it is an element of X(M),
thanks to the last interpretation of vector fields we observed above. Conversely, by
proposition 5.9, any element of X(M) maps D to invertible maps in MM , in other
words elements of Aut(M). In summary, the map X(M)→ TidM Aut(M) given by

(t : D →MM) 7→ (t̄ : D → Aut(M))

is a bijection. It is trivially homogeneous (λt 7→ λt̄), which means it is linear, thanks
to proposition 2.14. �
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5.4. The Lie algebra of vector fields

In classical differential geometry, the Lie bracket of two vector fields is often
thought of a commutator of the “flows” induced by the vector fields (and in the case
of matrix Lie groups the Lie bracket is indeed represented by matrix commutators).
The “problem”, as noted earlier, is that classical flows may not correspond to per-
mutations of the manifold (again, in general only a semi-group of transformations).
That isn’t to say that differential geometers suffer greatly from this, but we again
take the opportunity to show how synthetic differential geometry actually behaves
how we would like to think about geometry behaving. That is, the Lie bracket will
be directly associated to the commutator of the bijections defined by their flows.

Let X, Y be vector fields on M . They each define bijections Xd, Yd : M → M
for all d ∈ D. Let d1, d2 ∈ D, and consider the commutator of Xd1 , Yd2 as a map
τ : D ×D →MM :

τ(d1, d2) = Y−d2 ◦X−d1 ◦ Yd2 ◦Xd1

Let us recall lemma 5.3, which, in summary, states that for any g : D×D →M
such that

g(d1, 0) = g(0, d2) = g(0, 0) ∀d1, d2 ∈ D

there exists a unique map t : D →M with the property

g(d1, d2) = t(d1d2)

The same conclusion applies when instead we have g : D × D → MM , as the
only property of M used in the proof is that it is microlinear. It will be the case
that τ satisfies those conditions:

τ(d1, 0) = Y0 ◦X−d1 ◦ Y0 ◦Xd1

= X−d1 ◦Xd1

= idM = τ(0, 0)

τ(0, d2) = Y−d2 ◦X0 ◦ Yd2 ◦X0

= Y−d2 ◦ Yd2
= idM = τ(0, 0)

Therefore there exists a unique t : D →M with τ(d1, d2) = t(d1d2) for all d1, d2.
This allows us make the following
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Definition 5.11. Let X, Y be vector fields on M (a microlinear object). The
Lie bracket of X and Y is the unique vector field, denoted [X, Y ], such that

[X, Y ](d1, d2) = Y−d2 ◦X−d1 ◦ Yd2 ◦Xd1

What we’ll be pleased to find is that this bracket is bilinear, antisymmetric, and
it satisfies the Jacobi identity. In short:

Proposition 5.12. The pair (X(M), [−,−]) is a Lie algebra.

Proof. • The Lie bracket is antisymmetric. We only need to verify that
[X, Y ](d) = −[Y,X](d) for d = d1d2, for some d1, d2 ∈ D, by virtue of the
uniqueness property of [−,−].

[X, Y ]d1d2 = [X, Y ]−(−d1d2)

= ([X, Y ]−d1d2)
−1

= (Y−d2 ◦Xd1 ◦ Yd2 ◦X−d1)
−1

= Xd1 ◦X−d2 ◦X−d1 ◦ Yd2
= [Y,X]d2(−d1)

= (−[Y,X])d1d2

• Again we utilize that X(M) is Euclidean to prove linearity, by only proving
homogeneity (prop. 2.14). Let λ ∈ R. Then

λ[X, Y ]d1d2 = [X, Y ]λd1d2
= Y−d2 ◦X−λd1 ◦ Yd2 ◦Xλd1

= Y−d2 ◦ (λX)−d1 ◦ Yd2 ◦ (λX)d1

= [λX, Y ]d1d2

• It remains to prove the Jacobi identity:

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

for all vector fields X, Y, Z. We will not prove it here, but the idea is the
same as in the previous proofs. First note that it suffices to prove it on
elements d1d2d3. You then expand the left hand side to

Z−d3 ◦X−d1 ◦ Y−d2 ◦Xd1 ◦ Yd2 ◦ Zd3 ◦ Y−d2 ◦X−d1 ◦ Yd2 ◦Xd1

◦X−d1 ◦ Y−d2 ◦ Z−d3 ◦ Yd2 ◦ Zd3 ◦Xd1 ◦ Z−d3 ◦ Y−d2 ◦ Zd3 ◦ Yd2
◦ Y−d2 ◦ Z−d3 ◦X−d1 ◦ Zd3 ◦Xd1 ◦ Yd2 ◦X−d1 ◦ Z−d3 ◦Xd1 ◦ Zd3

and make a series of judicious manipulations to reach 0(d1d2d3 = idM . The
complete proof can be found in [5].
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5.5. Derivations

The final construction we’ll look at is that of the Lie derivative associated with
a vector field. Its definition is much the same as the classical one; we evaluate
functions M → R along the flow induced by a vector field. Recall from the previous
section that a vector field X is equivalent to giving a function

X : M ×D →M

Hence, given a function f : M → R the mapping

f(X(p,−) : D → R

is determined uniquely by f(X(p, 0)) = f(p), and some b ∈ R with

f(X(p, d)) = f(p) + b(p)d

Here p ∈ M is fixed, and b depends on it (and f , and X), as we’ve made explicit.
Varying p gives a function M → R, leading to this

Definition 5.13. Let f : M → R be a function, and X ∈ X(M). The Lie
derivative of f along X is the unique function

LXf : M → R

such that

f(X(p, d)) = f(p) + d · (LXf)(p)

The Lie derivative is a derivation, as we will see shortly. We should call to
memory that a derivation of an algebra A is a linear map D : A → A such that
D(fg) = D(f)g + fD(g) for all f, g ∈ A.

Proposition 5.14. The map given by associating each function f : M → R to
its Lie derivative along X is a derivation of R-algebras.

Proof. Homogeneity, and therefore linearity, is a given, since

(λLXf)(p) = λf(p) + d · λ(LXf)(p)

(LX(λf))(p) = (λf)(p) + d · (LX(λf))(p)

= λf(p) + d · (LX(λf))(p)

and by uniqueness ·λ(LXf)(p) = d · (LX(λf))(p). The “product rule” will follow
from the same proof we gave of the calculus version in section 2. Let f, g : M → R
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be functions. The Lie derivative along X is defined by the expression

(fg)(X(p, d)) = f(X(p, d))g(X(p, d))

= (f(p) + d · (LXf)(p))(g(p) + d · (LXg)(p))

= f(p)g(p) + d((LXf)(p)g(p) + f(p)(LXg)(p))

and the unique coefficient multiplying d is clearly the same as for LXf ·g+f ·LXg. �

In this manner we’ve recovered the interpretation of vector fields as deriva-
tions. One might suspect that furthermore the Lie structure given by the bracket
[−,−] of vector fields corresponds to the commutator of their respective derivations
(given D1, D2 derivations of RM , their commutator is [D1, D2](f) = D1(D2(f)) −
D2(D1(f)). If we define the Lie operator

L : X(M)→ Der(RM)

then we can phrase that suspicion as

Proposition 5.15. The Lie operator L is a homomorphism of R-algebras.

Proof. Homogeneity is easily established:

f((αX)(p, d)) = f(X(p, αd))

= f(p) + αd · (LXf)(p)

the unique coefficient multiplying d is, by definition (LαXf)(p). It remains to be
seen that

L[X,Y ]f = LX(LY f)− LY (LXf)

By definition of the Lie bracket, L[X,Y ]f is determined by f([X, Y ](p, d)) for those
d = d1d2 with d1, d2 ∈ D. So, we start with that:

f([X, Y ](p, d1d2)) = f(p) + d1d2 · (L[X,Y ]f)(p)

Meanwhile, the left hand side is also equal to

f([X, Y ](p, d1d2)) = f((Y−d2 ◦X−d1 ◦ Yd2 ◦Xd1)(p))
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Starting with the right hand side,

. . . = f((X−d1 ◦ Yd2 ◦Xd1)(p))− d2(LY f)((X−d1 ◦ Yd2 ◦Xd1)(p))

= f((Yd2 ◦Xd1)(p))− d1(LXf)((Yd2 ◦Xd1)(p))

− d2(LY f)((Yd2 ◦Xd1)(p))

+ d1d2(LX(LY f))((Yd2 ◦Xd1)(p))

= f(Xd1(p)) + d2(LY f)(Xd1(p))− d1(LXf)(Xd1(p))

− d2(LY f)(Xd1(p))− d22(LY f)(Xd1(p))

− d1d2(LY (LXf))(Xd1(p)) + d1d2(LX(LY f))((Yd2 ◦Xd1)(p))

= f(p) + d1(LXf)(p) + d2(LY f)(p) + d1d2(LX(LY f))(p)

− d1(LXf)(p)− d21(LX(LXf))(p)

− d2(LY f)(p)− d22(LY f)(Xd1(p))

− d1d2(LX(LY f))(p)− d1d2(LY (LXf))(p)

− d21d2(LX(LY (LXf)))(p) + d1d2(LX(LY f))(p)

− d1d22(LY (LX(LY f)))(p)

Cancelling out terms (recall that d1, d2 are nilsquares),

f([X, Y ](p, d1d2)) = f(p) + d1d2(LX(LY f)− LY (LXf))(p)

which proves the identity. �

Though we’ve established a homomorphism of Lie algebras

L : X(M)→ Der(RM)

we have not proved that it is an isomorphism, as would be the case for classical
(paracompact) manifolds. As it would turn out, it’s possible that for that to be true
require more of M than microlinearity. In [5], the author refers to such objects as
reflexive, and they are those that satisfy that the morphism

ev : M → alg(RM , R)
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(where alg(RM , R) is the set of R-algebra homomorphisms), given by sending each
point in M to the evaluation map f 7→ f(p), is bijective. In the mentioned book
it is shown that the Lie operator is bijective if M is reflexive (the converse is left
unattended to).



SECTION 6

A quick overview of models

The exposition of the material so far is, as the introduction states, axiomatic.
Consider the analogy with a first course in differential calculus; the real numbers
most likely simply “given” as some variation of “a complete Archimedean ordered
field” that exists (or nothing is stated, and properties are simply invoked when
needed). The task of actually exhibiting such an object is left until a later point
in time, presumably when the student has matured enough to grasp the necessary
material.

Here we have done the same, albeit in a much higher context. To carry on with
the theory we have instated a pair (E , R), where E is a topos and R is a Q-algebra
of E which satisfies the Kock-Lawvere axiom. Two concerns arise:

• Does there exist such a pair in the standard mathematical universe?
• If so, how do we associate results in SDG to their classical counterparts?

Naturally, both questions have been answered. For instance, in [3, §III] the
author constructs models which answer the first question (the answer is “yes”). The
nature of these models is outside the scope of the present work, but pose an excellent
subject for further study (in effect, it would be quite necessary if one were interested
in pursuing SDG at a professional level).

The second question is answered by what are referred to as well-adapted models
of SDG. More work has to be done to exhibit such a model, but again this has been
accomplished and one can find it in the literature, for example in the same [3]. Once
more, the details make heavy use of category theory at an advanced level, but we
can describe some of the attractive properties that well-adapted models possess, in
regards to comparing SDG with classical geometry.

Let Mf be the category of Hausdorff paracompact C∞ manifolds. To give a well-
adapted model of SDG is to exhibit a category E , and a full and faithful functor

i : Mf → E

which satisfies certain properties. We won’t go into detail about those properties
(see [3]), but we can look at some of the consequences of such a model. For instance,
E has an object i(R), and this will be our R. It satisfies the Kock-Lawvere axiom
for one, and furthermore there are such comparison results such as the following.

47
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Given a smooth map f : R→ R, through i we obtain a map i(f) : R→ R. It is the
case (if (i, E) is a well-adapted model), that

(i(f))′ = i(f ′)

In other words, derivatives in the standard sense correspond exactly with derivatives
in SDG. It’s also true that i preserves products, so that Rn gets taken to Rn, and
given a function f : Rn → R, then

i

(
∂f

∂xj

)
=
∂i(g)

∂xj

Another property of well-adapted models is that they preserve tangent bundles.
Formally, if M is a manifold in Mf , then there exists a natural isomorphism

i(TM)
αM→ (i(M))D = T (i(M))

With these properties one can now be assured that SDG is well suited to reason-
ing and drawing conclusions in “standard” differential geometry. One particularly
well detailed example of the procedure for doing so can be found in [1], where the
authors give a synthetic proof of the Ambrose-Palais-Singer theorem, along with
a synthetic treatment of (parts of) the calculus of variations - in particular the
characterization of geodesic curves as critical curves of the action integral.
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topology. Submitted manuscript, not yet published, 2017.

[2] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory, vol-
ume 67 of Studies in Logic and the Foundations of Mathematics. Elvesier Science
Publishers, B.V., 2nd edition, 1984.

[3] Anders Kock. Synthetic Differential Geometry. Cambridge University Press, 2nd
edition, 2006.

[4] Anders Kock. Synthetic Geometry of Manifolds. Cambridge University Press,
2010.
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