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Abstract

This project is focused on studying conditions under which a given set of points has a

spanning path that is compatible with a Hamiltonian cycle. We prove that being mono-

tone or self-approaching paths is enough condition to ensure there will be a compatible

Hamiltonian cycle. Moreover, we study the condition of being a path that coincides

with the MST of the set of points and prove some interesting results in order to help

future research to prove that this is enough condition.

Resum

Aquest projecte està centrat en estudiar condicions que fan que un conjunt de punts tin-

guin un camı́ d’expansió que sigui compatible amb un cicle Hamiltonià. Hem demostrat

que ser un camı́ monòton o self-approaching és condició suficient per asegurar que hi ha

un cicle Hamiltonià compatible. A més, hem estudiat la condició de ser un camı́ que

coincideix amb el MST del conjunt de punts i demostrat alguns resultats interessants

per ajudar en futurs investigacions per demostrar que aquesta condició és suficient.

Resumen

Este proyecto está centrado en estudiar condiciones que hacen que un conjunto de puntos

tengan un camino de expansión que sea compatible con un ciclo Hamiltoniano. Hemos

probado que ser un camino monótono o self-approaching es condición suficiente para ase-

gurar que hay un ciclo Hamiltoniano compatible. Además, hemos estudiado la condición

de ser un camino que coincida con el MST del conjunto de puntos y probado algunos

resultados para ayudar en futuras investigaciones para probar que ésta condición es

suficiente.
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Chapter 1

Introduction

Imagine that you are the president of a country that wants to connect with trails all

the cities using the cheapest way, now imagine that some business company wants to go

through all the cities without visiting them twice and finally imagine that these trails

can use the same paths but cannot intersect each other. In graph theory, your first

problem is called finding the minimum spanning tree of a set of points (in your case

cities), your second problem is one of the most important problems in this field, which

is finding a Hamiltonian path of a set of points. The requirement that the paths cannot

intersect is wanting them to be compatible.

This project is focused on studying conditions under which a given set of points has

a spanning tree that is compatible with a Hamiltonian cycle. See Figure 1.1 for an

example. To simplify this problem, instead of using a generic spanning tree, we have

considered a spanning path, and have started studying the problem for some known

types of paths such as the monotone paths, self-approaching paths and a path that

coincides with an MST of the set of points; we call these paths MST paths.

Figure 1.1: The image on the left shows a given spanning path, and the image on
the right shows the given path, using blue dashed edges, and a Hamiltonian cycle

compatible with it, using red edges.

In this chapter we will introduce the basic concepts needed to understand the work

done, a summary of the state of the art related with it and the way we will approach

the above-mentioned problem.
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Introduction 2

A graph is a pair G = (V,E) where V is a finite set of objects, which are called vertices,

and E is a set of relations between pairs of vertices, which are called edges. If these

relations have no orientation (i.e. the edge (x, y) is identical to the edge (y, x)) then the

graph is called undirected. In this work, we will abuse of this term using it to refer to a

Euclidean undirected geometric graph, which is a graph with the particularity that every

vertex is associated to a point in the Euclidean plane and every edge is associated to a

straight line segment. Placing it in an Euclidean space allows us to define the weight of

an edge as its Euclidean length. We will also consider all vertices in general position,

which means that there are no three vertices on the same straight line.

A graph is called plane if it has no intersection points (crossings) lying in the interior

of its edges. Moreover, two plane graphs G1 and G2 are said to be compatible if their

union, removing the duplicated edges, is also a plane graph. In this case, G1 will be

called G2-compatible and G2 will be called G1-compatible.

Taking into consideration the above-mentioned concepts, a graph of the form V =

{x0, x1, ..., xk} and E = {x0x1, x1x2, ..., xk−1xk} where the xi are all distinct is called

path, and a path where the initial and final vertices are the same is called cycle. Moreover,

a Hamiltonian cycle is a cycle that goes through all the vertices in a graph.

Another concept which is really close to that of a path is the concept of tree, which

is a graph where any two vertices are connected by exactly one path (i.e., it has no

cycles). Furthermore, a spanning tree is a tree which includes all of the vertices of G,

and a spanning tree which has the minimum possible total edge weight will be called

minimum spanning tree (MST for short).

Minimum spanning trees are a type of proximity graph. Moreover, an MST is included in

a more generic type of graphs called Relative Neighborhood Graphs (RNG), which are the

graphs that connect two points p and q by an edge whenever there does not exist a third

point r that is closer to both p and q than they are to each other. At the same time,

these RNG are included inside the Gabriel Graphs (GG), which are the graphs that

connect two points p and q by an edge whenever the circle which has pq as the diameter

is empty. Finally, the GG’s edges are a subset of the Delaunay triangulation (DT)’s

edges, which is a triangulation in the plane such that no point is inside the circumcircle

of any triangle in the triangulation. Note that MST are the most restrictive of the

hierarchy, while DT are the least.

Our proofs are focused on finding an algorithm which, given a monotone, self-approaching

or MST path P , creates a plane Hamiltonian cycle compatible with it. The algorithm

studied is based on that of J. van Leeuwen and A.A. Schoone [32], which proves that a

non-plane Hamiltonian cycle can be transformed to a plane one using O(n3) operations
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called flips (Figure 1.2). This way to solve crossings maintains the connectivity of the

graph and from now on we will use it as the way to solve intersections between two edges.

As the reader will notice, the input to our problem is a path P that is Hamiltonian but

not a cycle. To solve this, we will add an edge from the path’s initial vertex to the

final vertex, converting our Hamiltonian path to a Hamiltonian cycle which may not be

plane.

Figure 1.2: Flip to remove an intersection from a cycle in the algorithm in [32]

Our algorithm is divided in three main steps. Although we have proved that such

algorithm is useful for the monotone paths and the self-approaching paths, we have

found that the algorithm can generate non-compatible results for some RNG paths

(and also for GG and DT paths), but we haven’t found a counterexample for the MST

paths. In the case of an MST , we have proved two of the three main steps of the

algorithm not having been able to prove the third one, although we conjecture that it

can also be proved. This step will be left as an open problem for future studies.

This problem belongs to a conjecture that has been present for a while, which says

that given a set of points in the plane, there is always a spanning tree compatible with a

Hamiltonian cycle. Very recently, the more generic conjecture which said that given a set

of points in the plane, for all spanning trees, there is a compatible Hamiltonian cycle, was

disproved by Mareke Van Garderen, Wouter Meulemans, Bettina Speckmann and Csaba

Tóth [31] (Figure 1.3). Their counterexample uses extremely acute angles and shapes

with an almost closed triangle with more points inside, which reduces considerably the

amount of compatible Hamiltonian cycles that can be created. But, as the reader will

note, these distributions are not present in a Gabriel graph and obviously neither in

MST graphs nor the other types of paths that we will study in the next chapters. The

fact that the example in Figure 1.3 uses edges that could never be MST is the motivation

to consider MST edges in this work.

1.1 Previous related research

The topic of this work is closely related to three different topics which have been studied

extensively: augmentation problems, Hamiltonian problems and minimum spanning tree
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Figure 1.3: This image from [31] shows a schematic picture of a counterexample to
the conjecture which says that given a set of points in the plane, for all spanning trees,
there is a compatible Hamiltonian cycle. No Hamiltonian cycle compatible with the

tree shown exists.

problems.

1.1.1 Augmentation problems

Given a graph G = (V,E), we say that a second graph G′ = (V,E′) obtained by adding

(or replacing) a set of edges to G is an (edge) augmentation of G. The goal of this

operation is to ensure that the augmented graph G′ has some desired property. Note

that in general we could augment a graph with both new vertices and edges, or even

subdivide an edge (by replacing an edge with a path). To follow the state of the art of

the augmentation problems we refer to the survey written by Ferran Hurtado and Csaba

D. Tóth [23].

Another way to focus on compatibility could be by considering G as a set of disjoint

segments. Then we may want to add new segments among the endpoints in order to

obtain a crossing-free spanning tree with certain desirable properties. Alternatively, we

may be given an arbitrary plane geometric graph G and we might want to add the

minimum number of edges to increase its vertex or edge-connectivity, where the vertex-

connectivity (resp. edge-connectivity) is the minimum number of vertices (resp. edges)

whose deletion from a graph G disconnects G. In a third example, we may consider

whether from any given plane spanning tree G we can construct an augmentation G′

containing a Hamiltonian cycle or, when V is even, a perfect matching, which is a

matching (i.e., an independent edge set) where every vertex of the graph is incident to

exactly one edge of the matching.

The augmentation problem can be stated in general terms as: given a plane straight-line

graphG and a property P, the goal is to find an augmentationG′ with property P. In our

case, the plane straight-line graph G is a plane MST, monotone or self-approaching path

and our goal is to find an augmentation G′ that is a G-compatible plane Hamiltonian

cycle.
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1.1.2 Hamiltonian problems

The Hamiltonian problem is generally considered to be determining conditions under

which a graph contains a spanning cycle. Named after Sir William Rowan Hamilton

(and his Icosian game), this problem traces its origins to the 1850s. To follow the

current state of the art of this problem there are many surveys that provide ample

background of previous work [16–18].

Another related problem that has been present for a while is the problem of finding an

efficient algorithm to determine whether a given graph G is Hamiltonian. However, it

seems to be quite difficult and so no one has succeeded yet and it still is now considered

one of the most popular NP-complete problems. Nevertheless, for certain (non-trivial)

classes of restricted graphs, there are polynomial-time algorithms that solve it [3, 6, 7].

The best known example of a problem of this type is the travelling salesman problem, in

which one is interested in finding a Hamiltonian cycle (or path) G of minimum possible

length on a given set of points in the plane. It is well-known that this problem is NP-

hard [28], and there are numerous results on approximating the optimal solution and

on the properties of such solution. Including some heuristics to approximate it using

non-plane graphs. See, e.g., [25, 32].

Another branch of this type of problems is focused on counting the number of Hamil-

tonian cycles given a set of n vertices. Over the past few years there have been some

research, some of it still ongoing, trying to improve the upper and lower bounds on this

number [5, 9].

Related to Hamiltonian cycles but fitting on another type of problems called matching

problems, there is the Disjoint compatible matching conjecture which was proved as true

a few years ago [24] and says: “Let S be a set of points in the plane in general position

such that |S| is divisible by 4. Then for every perfect matching M of S there is another

perfect matching, N , of S such that no segment of M crossings a segment of N”.

1.1.3 Minimum Spanning tree problem

The minimum spanning tree problem is one of the most typical and well-known problems

of combinatorial optimization, and methods for its solution have played a central role

in the design of computer algorithms [1, 12, 19, 22, 30]. It is a standard practice to

refer to Kruskal [26] and Prim [29] as the sources of the problem and its first efficient

solutions, even though both of these papers refer to Bor̊uvka [8]. The problem has a lot

of importance and popularity due to its efficient algorithms, which makes it practical to

solve it for large graphs [4].
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The main applications of this problem are in the design of computer and communica-

tion networks, power and leased-line telephone networks, wiring connections, links in

a transportation network, piping in a flow network, etc. [10, 14, 15, 27, 29]. It often

appears as a subproblem in a solution of another problem, and MST algorithms are used

in several exact and approximation algorithms for the traveling salesman problem, the

multiterminal flow problem, the matching problem, etc. [11, 13, 20, 21]

1.2 Contributions

This project studies conditions under which a set of points has a spanning path that is

compatible with a Hamiltonian cycle and proves that being monotone or self-approaching

are enough conditions. These proofs are based on an algorithm, which given a spanning

path that satisfies one of these conditions finds a plane Hamiltonian path that is com-

patible with it. This algorithm tries to provide a way to prove that the condition of

being a path that coincides with an MST of the set of points is also enough, which is

only partially proved.

The project also provides an implementation in C++ of a program that determines if

an MST path is compatible with a Hamiltonian cycle obtained with our algorithm and

an implementation in Unity (C#) of a program that gives an easy way to study if a

spanning path is compatible with a Hamiltonian cycle. This latest implementation done

in Unity is portable for different types of devices like Android mobiles and tablets or

PCs.

1.3 Structure of the project

This project starts with an experimental chapter that gives some intuition on how to

first approach the problem. The third chapter explains the defined algorithm and how

it proves that a spanning path with certain conditions is compatible with a Hamiltonian

cycle, and in the Chapters 4 and 5 we prove that being a monotone path or a self-

approaching path are enough conditions. In the sixth chapter we partially prove that

our algorithm gives a Hamiltonian cycle compatible with a given MST path to give a

way to prove that they are compatible for future research. The seventh chapter presents

the conclusions of this project and some directions for future research.



Chapter 2

Preliminary computational study

about MST paths

Before trying to prove different conditions that determine whether a path is compatible

with a Hamiltonian cycle or not, we have decided to write two programs to help us

see if the condition of being an MST is enough to make sure there will always exist a

compatible Hamiltonian cycle. Our programs are based on J. van Leeuwen and A.A.

Schoone’s algorithm [32] that we have mentioned in the introduction and try to give us

a first intuition on whether the condition of being an MST path is enough.

To reach this first intuition we have created an automatic case generation program and a

graphical application used to generate particular cases. Based on that input the program

runs our algorithm and determines whether the final Hamiltonian cycle is compatible

with the initial path. We should note that these programs have been created to serve as

support for the project and they are not intended to be a final result, that’s why they

can be efficiently and graphically improved.

In this chapter we are going to provide further details about these programs and comment

the obtained results. The code can be found in the appendices of this work.

2.1 Automated case generator

This program is written in C++ and is in charge of generating a huge amount of cases.

Every case creates an MST path, applies the algorithm of J. van Leeuwen and A.A.

Schoone [32] and checks if the resulting Hamiltonian plane cycle is compatible with the

initial MST path.

7



Preliminary computational study about MST paths 8

To execute this program we will need to specify certain parameters like the amount of

cases that we want to generate and how many points do we want on it. The results of

this program are saved in a folder with subfolders for every case that has already been

generated, which are named after the case number and, in case the resulting Hamiltonian

cycle is not compatible, they are named #case INTERSECTING. Before running the

program, it checks the last case generated and starts counting from it. In every iteration,

it creates a new subfolder with three files containing the initial MST points ”input.dat”,

the edges of the initial MST path ”mst.dat” and the edges of the resulting Hamiltonian

cycle ”resulting cycle.dat”.

This has been done this way in order to run as many cases as we want even if the

program stops in the middle of the execution and to easily see all the non-compatible

cases filtering the subfolders by their name with the word INTERSECTING. To see the

results graphically we recommend the program gnuplot (Figure 2.1) which you can use

with the following commands:

Set axis range: set xrange[0:1000] set yrange[0:1000]

Plot initial MST path: plot ”mst.dat” u 1:2 with line lw 2 lt 3 lc rgb ”green” title

’MST’, ”input.dat” u 1:2:(3) with circles fill solid lc rgb ”red” notitle

Plot result: plot ”resulting cycle.dat” u 1:2 with line lw 3 title ’resulting cycle’,

”mst.dat” u 1:2 with line lw 2 lt 3 lc rgb ”green” title ’MST’, ”input.dat” u 1:2:(3)

with circles fill solid lc rgb ”red” notitle

An example can be seen in Figure 2.1.

Figure 2.1: The image on the left shows the initial MST path and the image on
the right shows the initial MST path in green and the resultant Hamiltonian cycle in

purple.
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After generating 400,000 cases with at most 200 points, every case resulted as compatible.

This suggested that counterexamples, if any, would be hard to find in random inputs,
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thus this has encouraged us to create another program to check specific cases to keep

looking into this.

2.2 Graphical application

This application is focused on finding specific cases by testing handmade paths, mainly

MST, that can be given the shape you want. It has been programmed with Unity, so it

can be run either on a Windows computer or a mobile or tablet device.

Figure 2.2: The image on the left shows the blank canvas and the image on the right
shows the canvas with the points added.

Figure 2.3: These images show the MST path and the possibility of moving edges.

This application works as follows: starting from a blank canvas, you can add the vertices

that will form the initial path you want to investigate. This blank canvas is tactile and

allows you to add the vertices by double clicking on it wherever you want them to

be (Figure 2.2) or using the random vertices generator ”Generate Points” button and

move any already created vertex around the canvas (Figure 2.3). Once the vertices have

already been added, we can see the initial cycle upon which the algorithm will be applied

using the button ”Generate polygon” (Figure 2.4). This cycle will be created following

the order the vertices have been added in. You can also check if this cycle is formed by

an MST path and an added edge between the initial and the final vertices by clicking on

the button ”Generate MST” and checking for any differences. Finally, you can apply the

J. van Leeuwen and A.A. Schoone’s algorithm [32] to the initial cycle using the button

”Generate Simple Plgn” (Figure 2.4).
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Figure 2.4: The image on the left shows the initial cycle and the image on the right
shows the resultant Hamiltonian cycle. Finally, the image on the bottom shows in red
the resultant Hamiltonian cycle and in blue the edges of the MST path that are not

shared with the resultant Hamiltonian cycle.

In the tests done with this application using MST paths we haven’t either been able to

find any reasons to make us believe that being an MST is not enough to determine if a

path has a compatible Hamiltonian cycle. That’s why we decided to try to prove it.
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The Algorithm

J. van Leeuwen and A.A. Schoone [32] proved that a non-plane Hamiltonian cycle can

be transformed to a plane one using O(n3) operations called flips, which consist on

removing the crossing edges and replacing them with a new couple of edges that don’t

cross, maintaining the cycle unique. The interesting part of this algorithm is the fact

that it works no matter the order used to solve the crossings. In our case, we will apply

the algorithm by J. van Leeuwen and A.A. Schoone by using an initial Hamiltonian cycle

composed of a plane path P = (p1, p2, ..., pn) and the edge p1pn. The resulting plane

Hamiltonian cycle after applying the algorithm by Van Leeuwen and Schoone [32] may

not be P -compatible. Our algorithm gives an order to solve the crossings, for which we

can guarantee that the resulting Hamiltonian cycle is P -compatible for certain types of

paths. In the following chapters we will prove it for monotone paths and self-approaching

paths, and we will do a first attempt to prove it for MST-paths. In other words, we will

prove the following theorems:

Theorem 4.1. Given a monotone path P, there is always a Hamiltonian cycle that is

P-compatible.

Theorem 5.1. Given a self-approaching path P, there is always a Hamiltonian cycle

that is P-compatible.

And we will do a first attempt to prove the following one:

Conjecture 6.1. Given an MST path P, there is always a Hamiltonian cycle that is

P-compatible.

The algorithm is divided in three phases that will transform an initial non-plane Hamil-

tonian cycle, composed by a plane path P = (p1, p2, ..., pn) and an edge p1pn, to a plane

Hamiltonian cycle. To do the explanation more readable, the edges from P will be re-

ferred to as green edges, the additional edges created by the algorithm will be referred

11
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to as blue edges and the removed green ones will be referred to as red edges. Note that

p1pn is the first blue edge.

Figure 3.1: These images show how a crossing between two blue edges is created after
solving a crossing in the first phase.
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The first phase consists in iteratively solving the furthest crossing from pn in the blue

edge that has pn as end point and finishes once there are no crossings in the blue edge

connected to pn. On every iteration, the algorithm will remove the blue edge between a

vertex pi and pn, will turn a green edge pjpj+1 to a red one, and will create two new blue

edges, which will be pipj+1 and pjpn, or pipj and pj+1pn (Figure 3.1 and 3.2). Every time

the algorithm solves a crossing in this phase two types of crossings can appear in the

new blue edge that doesn’t connect with pn: a crossing between two blue edges (Figure

3.1) and a crossing between a green edge and a blue one (Figure 3.2). The crossings

from the first type will be solved in the second phase, and those from the second one

will be solved in the third phase.

Figure 3.2: These images show how a crossing between a blue edge that is not con-
nected with pn and a green one is created after solving a crossing in the first phase.
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The second phase solves all the crossings between blue edges that have been generated as

a consequence of solving a previous crossing in the first or second phases, and does it in

the same order they have been generated. On each iteration, the algorithm will remove

two blue edges pipj and pkpl and will create two blue edges pipk and pjpl, or pipl and

pjpk (Figure 3.3). In case they are consecutive (i.e. one red edge shares endpoints with

both edges), instead of creating two blue edges, the algorithm can create only one blue

edge and turn the red edge connected with both edges to a green one (Figure 3.4). Every

time the algorithm solves a crossing in this phase two types of crossings can appear in

the new blue edges: a crossing between two blue edges and a crossing between a green
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edge and a blue one. The crossings from the first type will be solved in the current

phase, and those from the second one will be solved in the third phase.

Figure 3.3: These images show the case in which the algorithm generates two new
blue edges. The image on the left shows the crossing before being solved and the image
on the right shows the crossing after being solved. The dotted blue edges represent the

removed ones.
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Figure 3.4: These images show the case in which the algorithm generates one new
blue edge and turns a red edge to a green one. The image on the left shows the crossing
before being solved and the image on the right shows the crossing after being solved.

The dotted blue edges represent the removed ones.

pi

pj

pj+1

pk

pi

pj

pj+1

pk

Finally, the third phase removes all the crossings between green and blue edges generated

by the first and the second phases applying the same procedure used in the first phase,

and in the second one if needed, on every intersected blue edge. After this phase, there

will be no crossings between two blue edges nor between a blue edge and a green one.

In case the initial path is self-approaching, the order in which the crossings are solved

doesn’t matter. However, we haven’t been able to prove whether the order matters or

not in case the initial path is an MST path.

After applying the algorithm to a path P , we get a Hamiltonian cycle created by the

blue edges and the green ones, and a set of red edges. These red edges represent the

edges that have been removed from the initial path and the only ones that could not be

compatible with the resulting Hamiltonian cycle. The green and red edges represent the

initial path, so they have to be compatible. In conclusion, when the algorithm finishes,
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if there are no intersections between red and blue edges, the resulting Hamiltonian cycle

will be P -compatible.



Chapter 4

Monotone Path

In this chapter we are going to prove the following theorem by proving that the already

mentioned algorithm transforms an initial monotone path P to a Hamiltonian cycle that

is P -compatible:

Theorem 4.1. Given a monotone path P , there is always a Hamiltonian cycle that is

P -compatible.

A path P = p1p2...pn is monotone if there is a straight line L such that every line per-

pendicular to L intersects the path at most once (Figure 4.1). Without loss of generality,

we assume in this chapter that L is horizontal (i.e., P is a so-called x-monotone path).

Figure 4.1: The image shows a monotone path and a straight line L, such that every
line perpendicular to L intersects the path at most once.

L

p1

p2

pn

First of all, note that given an initial monotone path P = p1p2...pn, if a green edge

pjpj+1 intersects a blue edge pipn then i < j < j + 1 < n. We can use it to prove the

following lemma:

Lemma 4.2. (Figure 4.2) Given a monotone path P = p1p2...pn, the way the algorithm

solves every crossing between a blue edge of the shape pipn and a green one of the shape

pjpj+1 in the first phase consists in removing the blue edge, turning the green edge to a

red one and creating two new blue edges pipj+1 and pjpn.

15
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Figure 4.2: The image shows the crossing after being solved. The dotted black curves
represent the monotone subpaths that connect p1 and pn with the crossing edges. The

dashed blue edge represents the removed one.

p1

pi

pn

pj

pj+1

Note that in the generic case of the algorithm there is also the possibility to create the

two new blue edges pipj and pj+1pn instead of pipj+1 and pjpn.

Proof. If we are solving this crossing, we know that pi is connected to pn through a

subpath that contains pj and pj+1, in such order. So, removing the edges pjpj+1 and

pipn, we will have two subpaths that are disconnected, one of them going from pi to

pj and the other one going from pj+1 to pn, and the only way to connect these paths

subpaths again using two compatible edges is adding the blue edges pipj+1 and pjpn.

Now, we are going to prove that this type of path is transformed to a P -compatible

Hamiltonian path after applying the first phase of the algorithm. To do this we will

prove the following lemma:

Lemma 4.3. All intersections created during the first phase are placed on the blue edge

pipn of the current iteration.

Proof. Let the green edge pjpj+1 and the blue edge pipn be the crossing that is going

to be solved on the current iteration (i.e. the furthest crossing from pn in the blue edge

that has pn as the endpoint), applying Lemma 3.2, the new blue edges will be pipj+1

and pjpn and we will only need to prove that pipj+1 doesn’t intersect any green or blue

edges, which we will do by contradiction.

Suppose there is an edge pkpl, where k < l, which intersects pipj+1 (Figure 4.3). Then,

since k < j, the edge pkpl is in the monotone subpath that connects p1 and pj . Further-

more, to be an intersection, k must be less than j and l must be greater than i and less

or equal than j. With these facts, we note that there must be a green monotone subpath

from pk to pl that includes pl and intersects with the blue edge pipn, which contradicts
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the fact that the solved green edge was the furthest crossing from pn in the blue edge

pipn. In conclusion, pipj+1 doesn’t intersect any green or blue edge.

Figure 4.3: The image shows the crossing after being solved. The dotted black curves
represents the monotone subpaths that connect p1 and pn with the crossing edges and
the dotted green curve represent the monotone subpath that connects pl and pj . The

dashed blue edge represents the removed one.

p1

pi

pn

pj

pj+1

pk

pl

Now we know that the algorithm solves all crossings after the first phase, but we want to

prove that the resulting plane Hamiltonian cycle is compatible with the initial monotone

path P = p1p2...pn. To prove that, we can divide the edges from the resulting plane

Hamiltonian cycle in order to create two monotone disjoint paths Q = p1pi1pi2 ...pn and

R = p1pj1pj2 ...pn by the following way:

As all used points are from the initial monotone path, there is a straight line L such

that every line perpendicular to L intersects the initial monotone path at most once.

Using this and Lemma 4.2, it’s immediate that every line perpendicular to L between p1

and pn crosses the resultant plane Hamiltonian cycle twice, so we can divide the edges

between the ones that contain the uppermost crossings of these perpendicular lines and

the other ones (Figure 4.4).

Now we can use the following lemma to prove that the resulting plane Hamiltonian cycle

is compatible with the initial monotone path P = p1p2...pn:

Lemma 4.4. Given two monotone disjoint and compatible paths Q = q1q2...qm and

R = r1r2...rl, where all points are different but the first and the last one (i.e. q1 = r1

and qm = rl), any monotone path P whose points are the union of the points of Q and

R, will be compatible with Q and R.
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Figure 4.4: This image shows the two monotone disjoint paths created by the above-
mentioned procedure.

��

��

Proof. ∀pipi+1 ∈ P we have 4 possibilities depending on which monotone path they are

in:

1. If pi, pi+1 ∈ Q, then pipi+1 ∈ Q and since Q is compatible with R, pipi+1 is

compatible with Q ∪R.

2. If pi, pi+1 ∈ R, then pipi+1 ∈ R and since R is compatible with Q, pipi+1 is

compatible with Q ∪R.

3. If pi ∈ Q, pi+1 ∈ R, we can prove by contradiction that pipi+1 is compatible with

Q∪R. Imagine there is an edge of the shape pjpk ∈ Q that is not compatible with

pipi+1. Then, j must be less than i, and k must be greater than i+ 1, which is a

contradiction with the fact that Q is monotone because the point pi ∈ Q, the edge

pjpk ∈ Q and j < i < k. In case there is an edge of the shape pjpk ∈ R the proof

is analogous to the previous one. In conclusion, pipi+1 is compatible with Q ∪R.

4. If pi ∈ R, pi+1 ∈ Q, we can prove by contradiction that pipi+1 is compatible with

Q ∪R, and this prove is analogous to the previous one.

In conclusion, all the edges in P are compatible with Q and R.



Chapter 5

Self-approaching Path

In this chapter, we are going to prove the following theorem proving that the already

mentioned algorithm transforms any initial self-approaching path P to a Hamiltonian

cycle that is P -compatible:

Theorem 5.1. Given a self-approaching path P , there is always a Hamiltonian cycle

that is P -compatible.

A curve from s to t is self-approaching if for any three points a, b, c appearing in that

order along the curve, the Euclidean distance between a and c is greater or equal than

the distance between b and c.

Another way to define this type of path is as follows:

Lemma 5.2. [2] A piecewise-smooth curve is self-approaching iff for each point a on

the curve, the line perpendicular to the curve at a does not intersect the curve at a later

point.

Figure 5.1: Given two points u and v, let luv be the line that passes through v and is
perpendicular to the line passing through u and v, let l+uv denote the closed half-plane

not containing u with boundary luv and let l−uv be the complementary half-plane.

vu l
+

uv

luv
l
−

uv
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Given two points u and v, let luv be the line that passes through v and is perpendicular

to the line passing through u and v, let l+uv denote the closed half-plane not containing

u with boundary luv and let l−uv be the complementary half-plane (Figure 5.1). Using

this notation, we can restate the lemma as follows:

Corollary 5.3. [2] Let P = (v1, v2, ..., vn) be a directed path embedded in R2 via straight

line segments. Then, P is self-approaching iff for all 1 < i < j ≤ n, the point vj lies in

l+vi−1vi.

In the next sections we will prove the following lemmas, which show that the algorithm

creates a plane Hamiltonian cycle (green and blue edges) that is compatible with all the

red edges. Such resulting plane Hamiltonian cycle will be compatible with our initial

self-approaching path (green and red edges) and the theorem will be proved.

Figure 5.2: The image on the top-left shows an initial self-approaching path in green
and the p1pn edge in blue that creates a Hamiltonian cycle (n = 14) and the image on
the top-right shows the Hamiltonian cycle after solving the first crossing. The image on
the bottom shows the plane Hamiltonian cycle, built by blue and green edges, and red
edges showcasing the edges that have been removed from the initial self-approaching

path. We show the previously removed blue edges in a dotted edge.
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Lemma 5.8. The blue edges remaining at the end of phase 1 do not cross any red edges.

Lemma 5.13. The blue edges remaining at the end of phase 2 do not cross any red

edges.
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Lemma 5.15. The blue edges remaining at the end of phase 3 do not cross any red

edges.

Note that having all blue edges compatible with the red edges is equivalent to being

compatible with the initial self-approaching path.

5.1 Phase 1

First of all, we observe the following:

Lemma 5.4. The only edges of the initial self-approaching path P = (p1, p2, ..., pn) that

can cut the edge pipn are edges of the shape pjpj+1 where i < j.

Figure 5.3: This image shows the construction used to prove Lemma 5.4.

pi pn

pj

pj+1

C

pi:::pn

Proof. (Figure 5.3) Suppose that there is an edge pjpj+1 of the initial self-approaching

path P that cuts the edge pipn and j < i. Given this, we can draw a circumfer-

ence C with radius dist(pi, pn) and center at pn and, using the fact that dist(pj , pn) >

dist(pj+1, pn) > dist(pi, pn), given by the definition of self-approaching, we know that

pj , pj+1 /∈ C and the sub-path pi...pn ∈ C. If pjpj+1 cuts pipn then pjpj+1 divides C

in two parts C1 and C2 where pi ∈ C1 and pn ∈ C2. Note that in this situation, the

sub-path pi...pn cuts pjpj+1, which is a contradiction with the fact that P is plane.

With this lemma we can prove the following corollaries:

Corollary 5.5. Given a self-approaching path P = p1p2...pn, the way the algorithm

solves every crossing between a blue edge of the shape pipn and a green one of the shape

pjpj+1 in the first phase consists in removing the blue edge, turning the green edge to a

red one and creating two new blue edges pipj+1 and pjpn (Figure 5.4).
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Figure 5.4: The image shows the crossing after being solved. The dotted black curves
represent the subpaths that connect p1 and pn with the crossing edges and the dashed

blue edge represents the removed one.
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Proof. If we are solving this crossing, we know that pi is connected to pn through a

subpath that contains pj and pj+1 in such order. So, removing the edges pjpj+1 and

pipn, we will have two subpaths that are disconnected, one of them going from pi to pj

and the other one going from pj+1 to pn, and the only way to connect these subpaths

again using two compatible edges is adding the blue edges pipj+1 and pjpn.

Corollary 5.6. Given P = (p1, p2, ..., pn) as the initial self-approaching path, after all

the iterations in phase 1 the blue edges will be of the shape p1pi1+1, pi1pi2+1, pi2pi3+1,

..., pikpn and the red ones will be of the shape pi1pi1+1, pi2pi2+1, ..., pikpik+1 where

1 < i1 < i2 < i3 < ... < ik < n and k is the number of crossings solved.

Proof. In the initial state of the algorithm, there is a blue edge p1pn and there aren’t

red edges. If there is a crossing between it and an edge of the shape pi1pi1+1, which is

the furthest crossing from pn, after the algorithm has solved it there will be two blue

edges p1pi1+1 and pi1pn and a red one pi1pi1+1.

In the r-th step of the algorithm, there are r blue edges p1pi1+1, pi1pi2+1, pi2pi3+1, ...,

pirpn and r − 1 red ones pi1pi1+1, pi2pi2+1, ..., pirpir+1 where 1 < i1 < i2 < i3 < ... <

ir < n. If there is a crossing between pirpn and an edge of the shape pir+1pir+1+1, which

is the furthest crossing from pn, after the algorithm has solved it there will be r+ 1 blue

edges p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pirpir+1+1, pir+1pn and r red ones pi1pi1+1, pi2pi2+1,

..., pirpir+1, pir+1pir+1+1 where 1 < i1 < i2 < i3 < ... < ir < ir+1 < n.

So after k crossings solved, the blue edges will be of the shape p1pi1+1, pi1pi2+1, pi2pi3+1,

..., pikpn and the red ones will be pi1pi1+1, pi2pi2+1, ..., pikpik+1 where 1 < i1 < i2 <

i3 < ... < ik < n.

Moreover, we can say something about the new crossings created between green and

blue edges that will be solved in the third phase:

Lemma 5.7. Given P = (p1, p2, ..., pn) as the initial self-approaching path, after solving

a crossing in phase 1 between two edges pipn and pjpj+1, the new blue edge pipj+1 could
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only be cut by a self-approaching edge pkpk+1 if i < k < j. If this happens, the subpath

pipi+1...pjpj+1 goes in and out of the area inside pipn, pjpj+1and pipj+1 through the edge

pipj+1, one or more times (Figure 5.5).

Figure 5.5: The image shows the possible intersection between green and blue edges
that will appear. In such graph, the black edges show edges that cannot be cut. The

green dashed curves are not in a real scale.
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Proof. Using the same reasoning behind Lemma 5.4 but changing pn for pj+1, it’s im-

mediate that k should be greater than i. Now, to prove that k should be smaller than j,

we can draw a circumference C with radius dist(pj+1, pn) and center at pn and note that

pj /∈ C, which implies that pi /∈ C because pipn∩pjpj+1 6= ∅. In other words, pipj+1 /∈ C
and the sub-path pj+1...pn ∈ C, which implies that these edges cannot intersect each

other and k must be smaller than j.

To prove the second part just note that the phase 1 took the farthest cut in pipn, so there

will be no crossings with green edges between pi and the intersection point between pipn

and pjpj+1. Furthermore, pjpj+1 cannot intersect with any other green edge because

they would both belong to the self-approaching path.

Lemma 5.8. The blue edges remaining at the end of phase 1 do not cross any red edges.

Proof. Let P = (p1, p2, ..., pn) be the initial self-approaching path. Taking into account

Corollary 5.6, the blue edges after all the iterations in phase 1 will be of the shape

p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn, and, on the other hand, all red edges after all the

iterations in phase 1 will be of the shape pi1pi1+1, pi2pi2+1, pi3pi3+1, ...

According to the previous lemma, the only red edge that can intersect pijpij+1+1 is

pij+1pij+1+1, which is impossible.
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5.2 Phase 2

Taking into account Corollary 5.6, two blue edges can be defined as consecutive if they

are of the shape pipk+1 and pkpj where i < k < j.

Lemma 5.9. If all the blue edges are of the shape p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn

and the red ones are of the shape pi1pi1+1, pi2pi2+1, ..., pikpik+1 where 1 < i1 < i2 <

i3 < ... < ik < n, then if two of these blue edges intersect each other, they must be

consecutive (Figure 5.6).

Figure 5.6: Construction explained at the proof of Lemma 5.9
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Proof. Given P = (p1, p2, ..., pn) as the initial self-approaching path, if the blue edges

are of the shape p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn and the red ones are of the shape

pi1pi1+1, pi2pi2+1, ..., pikpik+1 where 1 < i1 < i2 < i3 < ... < ik < n, we can take two

non-consecutive blue edges papb+1 and pcpd+1 and a red edge pbpb+1 where a < b < c < d.

By Corollary 5.2, pc, pd+1 and pn lie in the half-plane l+pbpb+1
and pb lies in the other

half-plane l−pbpb+1
, which implies that pa ∈ l−pjpj+1

too, meaning papb+1 ∩ pcpd+1 = ∅. In

conclusion, if two blue edges intersect each other, they must be consecutive.

Now, like in the first phase we will prove the following lemma about how the crossing

are solved in the second phase:

Lemma 5.10. If the blue edges are of the shape p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn

and the red ones are edges of the shape pi1pi1+1, pi2pi2+1, ..., pikpik+1 where 1 < i1 <

i2 < i3 < ... < ik < n, then if there is a crossing between two consecutive blue edges

papb+1 and pbpc+1 where a < b < c, the way the algorithm solve this crossing is removing

these blue edges, adding a new blue edge papc+1 and turning the red edge pbpb+1 to a

green one.

Proof. First of all, note that the initial green edges were the edges of the initial self-

approaching path and at the r-th state the only way to not be in the set of green edges

is if they have been turned to red ones. In other words, in the r-th state the initial green
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path has been divided into a set of green subpaths that have the endpoints of the red

edges as their endpoints. So after k crossings solved, these green subpaths will be p1pi1 ,

pi1+1pi2 , pi2+1pi3 , ..., pik+1pin where 1 < i1 < i2 < i3 < ... < ik < n, with some of them

of length 0 if pij+1 is the same point as pij+1 .

Figure 5.7: This image shows a crossing between two consecutive blue edges papb+1

and pbpc+1 where a < b < c, and two subpaths (black dashed curves) defined by a
union of blue and green edges that go from pa to pb and from pb+1 to pc+1 and have no

points in common. Note that these subpaths are not scaled.
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If there is a crossing between two consecutive blue edges papb+1 and pbpc+1 where a <

b < c, there are two subpaths defined by a union of blue and green edges that go from pa

to pb and from pb+1 to pc+1 and have no points in common (Figure 5.7). Furthermore,

the union of these subpaths with the two consecutive blue edges papb+1 and pbpc+1 is the

Hamiltonian cycle of the current step of the algorithm. So, to solve a crossing between

papb+1 and pbpc+1 while keeping the unique cycle, the algorithm removes these edges,

adds the new blue edge papc+1 and turns the red edge pbpb+1 to a green one.

And like in the previous phase,

Corollary 5.11. Given P = (p1, p2, ..., pn) as the initial self-approaching path, after

all the iterations in phase 2, the blue edges will be edges of the shape p1pi1+1, pi1pi2+1,

pi2pi3+1, ..., pikpn and the red ones will be edges of the shape pi1pi1+1, pi2pi2+1, ...,

pikpik+1 where 1 < i1 < i2 < i3 < ... < ik < n.

Proof. First of all we need to prove that we can apply the lemmas 5.9 and 5.10 every time

we solve a crossing in the second phase and thanks to Corollary 5.6 we know that we can

apply it on the first time we solve a crossing in this phase. So, we need to prove that if we

are solving a crossing between piα−1piα+1 and piαpiα+1+1 while all the blue edges are of

the shape p1pi1+1, pi1pi2+1, ..., pikpn and the red ones are of the shape pi1pi1+1, pi2pi2+1,

..., pikpik+1 where 1 < i1 < i2 < i3 < ... < ik < n, then after solving the crossing, all

the blue edges will be of the shape p1pj1+1, pj1pj2+1, ..., pjmpn and the red ones will be

of the shape pj1pj1+1, pj2pj2+1, ..., pjmpjm+1 where 1 < j1 < j2 < j3 < ... < jm < n and

m = k − 1. This is immediate using Lemma 5.10 if we notice that solving a crossing
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between piα−1piα+1 and piαpiα+1+1 removes these two blue edges and adds another one

piα−1piα+1+1 that maintains the blue edges’ pattern and removes the red edge piαpiα+1,

which also maintains the red edges’ pattern.

Lemma 5.12. (Figure 5.8). Given P = (p1, p2, ..., pn) as the initial self-approaching

path, after solving a crossing in phase 2 between two blue edges pips+1 and pspj+1 where

i < s < j, the new blue edge pipj+1 can only be cut by a self-approaching edge pkpk+1 if

i < k < j. The transformed green edge can only go out of the closed area defined by pi,

the intersection point between pipn and psps+1, ps, the intersection point between pspn

and pjpj+1, pj+1 and pi through the blue edge pipj+1.

Figure 5.8: The top image shows an intersection between two blue edges. The bottom
image shows the solution of such intersection and the next intersection between green
and blue edges that will appear. In such graph, the black edges show edges that cannot

be cut. The green dashed curves are not in a real scale.
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Proof. The proof of the first part is analogous to that of Lemma 5.7.

To prove the second part, just note that phase 1 took the farthest cut in pipn and pspn,

so there will be no crossings with green edges between pi and the intersection point

between pipn and psps+1 nor between ps and the intersection point between pspn and

pjpj+1. Furthermore, psps+1 and pjpj+1 cannot intersect with any other green edges

because they both belong to the self-approaching path.

This phase doesn’t create any red edges, it only removes some of them to make them

green again so it’s immediate that:

Lemma 5.13. The blue edges remaining at the end of phase 2 do not cross any red

edges.
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Proof. Let P = (p1, p2, ..., pn) be the initial self-approaching path. Taking into account

Corollary 5.11, the blue edges after all the iterations in phase 2 will be of the shape

p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn, and, on the other hand, all red edges after all the

iterations in phase 1 will be of the shape pi1pi1+1, pi2pi2+1, pi3pi3+1, ...

According to Lemma 5.12, the only red edge that can intersect pijpij+1+1 is pij+1pij+1+1,

which is impossible.

5.3 Phase 3

Thanks to Corollary 5.11, it’s known that all blue edges right before starting this phase

will be of the shape p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn where i1 < i2 < ... < in.

Furthermore, the lemmas 5.7 and 5.12 prove that every crossing placed in a blue edge

pipj+1 belongs to the sub-path pipi+1...pjpj+1 and this will be true as well through the

third phase because such phase is an iteration of the phases 1 and 2 over all the blue

edges with intersections. Note that blue edges intersections can come from solving the

crossings from different blue edges, but the proof of Lemma 5.9 can be applied anyway

if the blue edges keep following the pattern p1pi1+1, pi1pi2+1, pi2pi3+1, ..., pikpn.

So, if the way to solve a crossing between two edges pipj+1 (blue) and pkpk+1 (green)

where i < k < j is the same as phase 1, the new blue edges will be pipk+1 and pkpj+1.

Moreover, if the way to solve a crossing between two consecutive blue edges is the same

as in phase 2, the new blue edge will be pipj+1. In other words:

Lemma 5.14. Given P = (p1, p2, ..., pn) as the initial self-approaching path, the blue

edges after all the iterations in phase 3 will be of the shape p1pi1+1, pi1pi2+1, pi2pi3+1,

..., pikpn and will not intersect any other blue or green edges.

Finally, by the same way we proved Lemma 5.8, we can prove that:

Lemma 5.15. The blue edges remaining at the end of phase 1 do not cross any red

edges.



Chapter 6

MST Path: towards a proof

In this chapter we are going to present a few conjectures that in case they are proved,

they are enough to prove that the already mentioned algorithm transforms our initial

MST path P to a Hamiltonian cycle that is P -compatible (Figure 6.1), which would

prove the main conjecture in this work:

Conjecture 6.1. Given an MST path P, there is always a Hamiltonian cycle that is

P-compatible.

The conjectures mentioned above are:

Conjecture 6.2. The blue edges remaining at the end of phase 1 do not cross any red

edges.

Conjecture 6.3. The blue edges remaining at the end of phase 2 do not cross any red

edges.

Conjecture 6.4. The blue edges remaining at the end of phase 3 do not cross any red

edges.

Note that having all blue edges not crossing with the red edges is equivalent to being

compatible with the initial MST path.

First of all, notice that on every iteration during the first phase the algorithm removes a

blue edge, turns a green edge to a red one and adds two blue edges, which are connected

by the red one. The union of the blue edges and the red one is a subpath of length three

that has the same endpoints as the removed blue edge. Furthermore, note that on every

iteration during the second phase there are two possibilities: the algorithm can remove

two blue edges and add two new ones, which connect the same endpoints, or can remove

two blue edges, turn a red edge to a green one and add a blue edge, which connect the

28
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Figure 6.1: The image on the top-left shows an initial MST path in green and the
p1pn edge in blue, which creates a non-plane Hamiltonian cycle and the image on the
top-right shows the state of the graph after solving the first iteration. Finally, the
image on the bottom shows a plane Hamiltonian cycle built by blue and green edges
and the red edges defining the removed edges from the initial MST path. We show the

previously removed blue edges in a dotted edge.

endpoints of the subpath defined as the union of the red edge and the removed blue

edges. With these facts, we can realize that right after iteration i there is a polyline

Qi = bi0a
i
1b
i
1...a

i
m−1b

i
m−1a

i
m where m ≤ n/2, p1 = bi0 and pn = aim, which is formed by

the red and the blue edges of the i-th iteration (Figure 6.2). Note that the edges of the

shape bija
i
j+1 are the blue ones and the edges of the shape aijb

i
j are the red ones.

6.1 Phase 1

We have simplified the proof of Conjecture 6.2 in one lemma that we are going to prove

and a new simpler conjecture:

Lemma 6.5. During phase 1 a red edge cannot intersect a previous blue edge. In other

words, a red edge aijb
i
j cannot intersect a blue edge bika

i
k+1 if k < j.

Conjecture 6.6. During phase 1 a blue edge cannot intersect a previous red edge. In

other words, a blue edge bija
i
j+1 cannot intersect a red edge aikb

i
k if k ≤ j.
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Figure 6.2: This image shows the polyline Q formed by the red and blue edges.

To prove Lemma 6.5 we will begin proving that:

Lemma 6.7. During phase 1, if a red edge aijb
i
j intersects a blue edge bika

i
k+1, then

min{dist(aij , pn), dist(bij , pn)} > min{dist(aik+1, pn), dist(bik+1, pn)}

(note that aik+1b
i
k+1 is the next red edge of the mentioned blue edge).

Before starting to prove it, we need the following definitions:

Definition 6.8. Given two points a and b, we define Circ(a, b) as the circle that has ab

as the diameter.

Definition 6.9. Given two points a and b, we define Len(a, b) as the union of all

points whose distance from a and b is smaller than the distance between a and b (i.e.

{x ∈ R2 : max(dist(x, a), dist(x, b)) < dist(a, b)}).

With this definition we can announce the following property of MST edges that has been

inherited from the RNG edges: Given any edge ab of an MST, Len(a, b) = ∅.

Definition 6.10. Given three points a, b and c, the region Ωa
b,c is the unbounded region

defined by the ray from a through b, the ray from a through c and the edge bc (Figure

6.3).

Note that when we are solving a crossing between a green edge pkpk+1 and a blue edge

bij−1pn, we create the two new blue edges bij−1a
i
j and bijpn, where aij = pk and bij = pk+1,
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Figure 6.3: Image of Ωab,c.

c

b

a

�
a
b�c

and turn the green edge pkpk+1 to a red one that we are going to call aijb
i
j . With this,

it’s immediate to see that the blue edge bij−1a
i
j is inside the region Ωpn

aijb
i
j

of his next red

edge aijb
i
j in Qi (Figure 6.4). So if any red edge aikb

i
k intersects a blue edge, this red edge

has to be inside Ωpn
aijb

i
j
, or at least part of it (Figure 6.5). Furthermore, the situation

where the edge aikb
i
k intersects the ray from aij in the same direction but with opposite

sense of pn and the ray from bij in the same direction but with opposite sense of pn

cannot happen because then the crossing between aijb
i
j and bij−1pn, which turned aijb

i
j

to a red edge, was not the furthest crossing from pn on the edge bij−1pn. So, Lemma 6.7

is proved just proving the following lemma:

Lemma 6.11. During the first phase, given two red edges bc and de and the point pn

where e ∈ Ωpn
b,c, then b or c are closer to pn than d or e (Figure 6.6):

min{dist(pn, b), dist(pn, c)} < min{dist(pn, d), dist(pn, e)}

Proof. If d ∈ Ωpn
b,c then is immediate that the minimum value between dist(pn, b) and

dist(pn, c) is smaller than the minimum value between dist(pn, d) and dist(pn, e).

So we just need to prove that the lemma is true if d /∈ Ωpn
b,c.
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Figure 6.4: The image on the left shows the crossing we are going to solve and the
image on the right shows that after solving the crossing, bij−1a

i
j is inside the region

Ωpn
aijb

i
j

pn

pk�1

pk

��j�1

pn

pk�1 � b�j

pk � ��j

b�j�1

�
pn
��jb

�
j

Figure 6.5: This image shows that if a red edge aikb
i
k intersects a blue edge, this red

edge has to be inside Ωpn
aijb

i
j
, or at least part of it.

pn

b�j

��j

b�j��

�
pn
��jb

�
j

��k b�k

From now on, polar coordinates with origin in pn will be used, so ∀q, dist(pn, q) = rq.

Furthermore, without loss of generality, we can fix rB < rC and αB < αC , so we only

need to prove that rb < min{rd, re}.

Note that, since the red edges are edges from the MST path, Len(b, c) = ∅, Len(d, e) = ∅
and bc∩de = ∅ and, if the angle between bd and be is greater than π

2 , then b ∈ Circ(d, e)
by the Thales’ Theorem1, which implies b ∈ Len(d, e) (Figure 6.7).

1Thales’ theorem: If A, B and C are distinct points on a circle where the line AC is the diameter
of the circle, then the angle between BA and BC is a right angle.



MST Path: towards a proof 33

Figure 6.6: This image shows two red edges bc and de and the point pn where e ∈ Ωpnb,c.
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Before starting, observe that if we define two halfplanes using a line perpendicular to

the segment pne that contains pn, d and e have to be in the same halfplane, because if

not, pn ∈ Len(e, d).

Figure 6.7: This image shows that if the angle between bd and be is greater than π
2 ,

then b ∈ Circ(d, e) and the circumferences with center pn and radius rb and rc.

c

d

e

b
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bc

Circ�d	 e)

Now, if rd < rb, we can divide the possibilities depending on the angle: αd < αb,

αb < αd < αc and αc < αd. If αd < αb then, the angle between bd and be is greater

than π
2 , which implies that b has to be in Len(d, e), which is not possible because

Len(d, e) = ∅. If αb < αd < αc then, taking into account the lemma’s hyphotesis, d has
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to be outside Ωpn
b,c, which implies that d has to be inside the triangle pnbc. Note that

this cannot be possible because de ∩ bc 6= ∅. And finally, if αc < αd and rd < rb < rc,

either the angle between cd and ce is greater than π
2 , which implies that c has to be in

Len(d, e), which is not possible because Len(d, e) = ∅, or ed ∩ bc 6= ∅, which is also a

contradiction of the lemma’s hyphotesis. In conclusion, rd must be greater than rb.

Note that if rb < rc, then if e ∈ Ωpn
b,c/Len(b, c), it’s immediate that re > rb. And so on,

rb < min{rd, re}.

Once Lemma 6.7 is proved we need to prove this lemma:

Lemma 6.12. Given two red edges aijb
i
j and aikb

i
k if j < k then

min{dist(aij , pn), dist(bij , pn)} > min{dist(aik, pn), dist(bik, pn)}

Proof. First of all, note that if we have two red edges aijb
i
j and aij+1b

i
j+1 with only one

blue edge between them, then the second red edge is created because previously we

solved the crossing between bijpn and aij+1b
i
j+1, so bij ∈ Ωpn

aij+1b
i
j+1

. Now, taking into

account Lemma 6.10 we know that

min{dist(aij , pn), dist(bij , pn)} > min{dist(aij+1, pn), dist(bij+1, pn)}

And with that it’s immediate to conclude the following:

Given two red edges aijb
i
j and aikb

i
k if j < k, then min{dist(aij , pn), dist(bij , pn)} >

min{dist(aij+1, pn), dist(bij+1, pn)} > ... > min{dist(aik, pn), dist(bik, pn)}.

Now, with the lemmas 6.7 and 6.12 in place, it’s immediate that Lemma 6.5 holds.

Observing Conjecture 6.6 we have tried to create a blue edge bija
i
j+1 that intersects a

red edge aikb
i
k where k ≤ j and have noticed that to get to this situation, the polyline

of red and blue edges needs to do a full rotation around pn. We have also noticed that

the above-mentioned situation needs a notorious distance from pn, which goes against

Lemma 6.12. (Figure 6.8). Since this seems difficult to achieve with MST edges, we

believe that the conjecture is true.



MST Path: towards a proof 35

Figure 6.8: This image shows how the distance between the red edges and pn is
reduced on every iteration and how the existence of the blue edge bjaj+1 that intersects

a1b1 needs a previous red edge with notorious distance from pn.

6.2 Phase 2

Assuming Conjecture 6.2 is true, we present a way to divide Conjecture 6.3 in one proved

lemma and three new conjectures:

Lemma 6.13. Given a crossing between two consecutive blue edges bij−1a
i
j and bija

i
j+1,

created while applying phase 1, and a red edge aikb
i
k, if j < k then this red edge will not

intersect any of the three new possible blue edges bij−1b
i
j, b

i
j−1a

i
j+1 and aija

i
j+1 generated

when solving the crossing.
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Proof. To prove that we are going to prove that bij−1b
i
j , b

i
j−1a

i
j+1 and aija

i
j+1 are inside

Ωpn
aij+1b

i
j+1

. If a red edge aikb
i
k intersects one of these blue edges, this red one has to

be inside Ωpn
aijb

i
j

or at least part of it has to, so we can apply Lemma 6.11 to know

that min{dist(pn, aj+1), dist(pn, bj+1)} < min{dist(pn, bik), dist(pn, aik)}. Comparing

this with the result of Lemma 6.12 we can realize that if j < k then this red edge

will not intersect any of the three new possible blue edges bij−1b
i
j , b

i
j−1a

i
j+1 and aija

i
j+1

generated when solving the crossing.

Now we are going to prove that the blue edges bij−1b
i
j , b

i
j−1a

i
j+1 and aija

i
j+1 are inside

Ωpn
aij+1b

i
j+1

. First of all note that Ωpn
aij+1b

i
j+1

is a convex polygon so we only need to prove

that bij−1, a
i
j , b

i
j , a

i
j+1 ∈ Ωpn

aij+1b
i
j+1

, and we can easily see that the vertex aij+1 is inside

Ωpn
aj+1bj+1

by definition and the vertex bij is inside Ωpn
aij+1b

i
j+1

by construction, so we only

need to see that aij and bij−1 are in Ωpn
aij+1b

i
j+1

If bij−1a
i
j and bija

i
j+1 intersect each other, then aij is inside the triangle pnb

i
ja
i
j+1 (Figure

6.9). This triangle is divided into regions by the red edge aij+1b
i
j+1 with the fact that

one region is inside Ωpn
aij+1b

i
j+1

and the other one is outside it. The vertex aij cannot

be in the region outside Ωpn
aij+1b

i
j+1

because bij is in Ωpn
aij+1b

i
j+1

and aijb
i
j cannot intersect

aij+1b
i
j+1 because they are both edges of the initial MST path. In conclusion, aij is inside

Ωpn
aij+1b

i
j+1

.

Figure 6.9: This image shows how if bij−1a
i
j and bija

i
j+1 intersect each other, then aij

is inside the triangle pnb
i
ja
i
j+1.

b�j�1 pn

b�j

��j

b�j�1

��j�1

bij−1 is in Ωpn
aijb

i
j

and since aij and bij are in Ωpn
aij+1b

i
j+1

, bij−1 is also in Ωpn
aij+1b

i
j+1

.

In conclusion, bij−1, a
i
j , b

i
j , a

i
j+1 ∈ Ωpn

aij+1b
i
j+1

so bij−1b
i
j , b

i
j−1a

i
j+1 and aija

i
j+1 are inside

Ωpn
aij+1b

i
j+1

and this is what we needed to prove.

Conjecture 6.14. Given a crossing between two consecutive blue edges bij−1a
i
j and

bija
i
j+1, created while applying phase 1, and a red edge aikb

i
k, if j > k then this red edge

will not intersect any of the three new possible blue edges bij−1b
i
j, b

i
j−1a

i
j+1 and aija

i
j+1

generated when solving the crossing.

Note that this conjecture is the same as Lemma 6.13 with the exception that the red

edges are previous to the intersecting blue edges. And together we get:
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Given a crossing between two consecutive blue edges bij−1a
i
j and bija

i
j+1, created while

applying phase 1, any red edge will not intersect any of the three new possible blue edges

bij−1b
i
j, b

i
j−1a

i
j+1 and aija

i
j+1 generated when solving the crossing.

Moreover, during our studies, we have noticed that the following conjecture could be

true:

Conjecture 6.15. If two blue edges intersect each other, either they are consecutive or

there exists another blue edge between them that intersects one of them.

Which increases the value of the previous lemma and conjecture because gathering them

together we get:

Given a crossing between two blue edges, created while applying phase 1, any red edge

will not intersect any of the three new possible blue edges generated when solving the

crossing.

Note that in the previous lemma and conjectures we didn’t say anything about the new

blue edges created through this second phase that intersect another blue edge. The

following conjecture covers this point:

Conjecture 6.16. After solving a crossing between two blue edges generated while ap-

plying the second phase of the algorithm, the new blue edges don’t intersect any red edges

and in case they do, they also intersect a blue edge generating a crossing that is going

to be solved during the second phase of the algorithm.

6.3 Phase 3

In this phase we are solving all the crossings between blue and green edges that the

algorithm created during the previous two phases and the new ones that will be created

during this phase. To solve all green crossings in our blue edges of the shape bija
i
j+1,

the algorithm uses the phases 1 and 2 with the difference that instead of starting from

the edge p1pn, it starts from bija
i
j+1. Assuming the conjectures 6.2 and 6.3 are true,

our problematic situation is with the crossings between the blue edges created while

applying the first and second phases to different blue edges.

This situation is hard to find so we have tried to find a similar one with more relaxed

conditions using a path where all edges were from the Relative Neighborhood Graph (i.e.

every edge ad, Len(a, d) = ∅), and in fact we have found one example (Figures 6.10,

6.11, 6.12). Observing it, we have noticed that the structure that caused the fact that

the algorithm didn’t work cannot be present in the MST path, due to some edges that
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Figure 6.10: This image shows a path with edges from a Relative Neighborhood Graphs
where the algorithm doesn’t work.

Figure 6.11: This image shows the final state after applying the algorithm on the
graph of the Figure 6.10.

are not in the path formed by green and red edges that should be in the minimum

spanning tree and some others that shouldn’t (Figure 6.13), and for this reason we have

introduced our last conjecture:

Conjecture 6.4 The blue edges remaining at the end of phase 3 do not cross any red

edges.

Note that the path used is not a path coinciding with an RNG of a set of points, only

a path using a subset of the edges of the RNG of a set of points. So the conjecture can

still be true for this case.
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Figure 6.12: This image shows a zoom in of the Figure 6.11.

Figure 6.13: This image shows that in the example 6.11 there are some positions that
cannot belong to an MST path.



Chapter 7

Conclusions

This project was focused on studying conditions under which a given set of points has

a spanning path that is compatible with a Hamiltonian cycle. We have proved that

being monotone or self-approaching paths is enough condition to ensure there will be a

compatible Hamiltonian cycle. Moreover, we have studied the condition of being a path

that coincides with the MST of the set of points and we have proved some interesting

results in order to help future research to prove that this is enough condition.

Our proofs have been focused around an algorithm that, given a path P of the above-

mentioned types of paths, creates a plane Hamiltonian cycle compatible with it. The

algorithm studied is based on that of J. van Leeuwen and A.A. Schoone [32], which

proves that a non-plane Hamiltonian cycle can be transformed to a plane one using

O(n3) operations called flips.

Throughout the project we have proved the following theorems:

Theorem 4.1. Given a monotone path P = p1p2...pn, there is always a Hamiltonian

path that is P -compatible.

Theorem 5.1. Given a self-approaching path P = p1p2...pn, there is always a Hamilto-

nian path that is P -compatible.

To do so, we have used the fact that, in these particular cases, if a green edge of the

shape pkpk+1 intersects a blue edge of the shape pipj where i < j, then i < k. This

fact is also present in some others paths, like spiral paths, so we propose the following

conjecture:

Conjecture 7.1. Given a spiral path P , there is always a Hamiltonian path that is

P -compatible.

40
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In addition, in light of the results achieved in the computational studies presented in

the second chapter and based on the insights gained proving the different results in this

work, we have announced the following conjecture for which we have proposed in the

sixth chapter a potential way to prove it:

Conjecture 6.1. Given an MST path P , there is always a Hamiltonian path that is

P-compatible.

If this conjecture holds, it can be extended to a path that coincides with the Relative

Neighborhood Graph of the set of points and even to a path that coincides with the

Gabriel Graph of the set of points.

Finally, note that the algorithm defined in the third chapter and used to find a Hamilto-

nian cycle compatible with a given monotone or self-approaching path is the algorithm

of J. van Leeuwen and A.A. Schoone [32], but solving crossings with a particularly de-

fined order. Due to this and the fact that the algorithm of J. van Leeuwen and A.A.

Schoone transforms a given cycle to a plane one no matter the order used to solve all

the crossings, we propose the following conjectures for future research:

Conjecture 7.2. Applying the J. van Leeuwen and A.A. Schoone’s algorithm to any

monotone path P , without any defined order to solve crossings, we always find a Hamil-

tonian cycle compatible with it.

Conjecture 7.3. Applying the J. van Leeuwen and A.A. Schoone’s algorithm to any

self-approaching path P , without any defined order to solve crossings, we always find a

Hamiltonian cycle compatible with it.
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Appendix A: Code of the

Automated case generator

Listing 1: main.cpp

#include <iostream >

#include <fstream >

#include <boost/lexical_cast.hpp >

#include <sys/stat.h>

#include <sys/types.h>

#include "Graph.h"

#include "Point.h"

#include <algorithm >

#include <cstdlib >

using namespace std;

// number of attemps of adding a new edge when the randomly generated poins are

not MST

#define INPUT_ATTEMPTS 500000

// defines the screen as [0:1000][0:1000]

#define MAX_SCREEN 1000

// defines the jump of the next added point [x-100:x+100][y-100:y+100]

#define MAX_JUMP 100

bool areInline(Point a, Point b, Point c) {

return a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y) == 0;

}

bool isMSTPath(const vector <Point >& inputPoints , Point p, int n) {

if (n < 2) return true;

// checks if the point is already used

if (p.isEquals(inputPoints[n-1])) return false;

double newEdgeLength = p.distTo(inputPoints[n-1]);

double maxEdgeLength = -1;

for (int i = n-2; i>=0; --i) {

double edgeLength = inputPoints[i]. distTo(inputPoints[i+1]);

maxEdgeLength = max(maxEdgeLength , edgeLength);

// checks if the point is already used

if (p.isEquals(inputPoints[i])) return false;

// checks if the path after adding a new point is also the MST of the

set of points

45
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if (edgeLength >= p.distTo(inputPoints[i]) && edgeLength >=

p.distTo(inputPoints[i+1])) return false;

if (p.distTo(inputPoints[i]) <= newEdgeLength) return false;

if (newEdgeLength >= inputPoints[n-1]. distTo(inputPoints[i]) &&

newEdgeLength >= p.distTo(inputPoints[i])) return false;

if (p.distTo(inputPoints[i]) <= maxEdgeLength) return false;

// checks if points are in general positions

if (areInline(p, inputPoints[i], inputPoints[i+1])) return false;

}

return true;

}

Point getHalfDistancePoint(Point source , Point target) {

return Point(source.x + (target.x - source.x) / 2, source.y + (target.y -

source.y) / 2);

}

vector <Point > generateInitialMST(int NUM_POINTS) {

vector <Point > inputPoints(NUM_POINTS);

int i = 0;

while(i < NUM_POINTS) {

Point p;

if(i==0) p = Point :: generateRandomPoint (0, MAX_SCREEN , 0, MAX_SCREEN);

else p = Point :: generateRandomPoint( max(0, inputPoints[i-1].x-MAX_JUMP),

min(MAX_SCREEN , inputPoints[i-1].x+MAX_JUMP),

max(0, inputPoints[i-1].y-MAX_JUMP), min(MAX_SCREEN ,

inputPoints[i-1].y+MAX_JUMP));

if (i > 0) {

while (p.isEquals(inputPoints[i-1])) {

p = Point:: generateRandomPoint(

max(0, inputPoints[i-1].x-MAX_JUMP), min(MAX_SCREEN ,

inputPoints[i-1].x+MAX_JUMP),

max(0, inputPoints[i-1].y-MAX_JUMP), min(MAX_SCREEN ,

inputPoints[i-1].y+MAX_JUMP));

}

int num_tries = 0;

while (! isMSTPath(inputPoints , p, i)) {

Point nextPoint = getHalfDistancePoint(inputPoints[i - 1], p);

if (nextPoint.isEquals(p)) {

p = Point:: generateRandomPoint(

max(0, inputPoints[i-1].x-MAX_JUMP), min(MAX_SCREEN ,

inputPoints[i-1].x+MAX_JUMP),

max(0, inputPoints[i-1].y-MAX_JUMP), min(MAX_SCREEN ,

inputPoints[i-1].y+MAX_JUMP));

} else {

p = nextPoint;

}

if (num_tries < INPUT_ATTEMPTS) ++ num_tries;

else {

inputPoints.resize(i);

return inputPoints;

}

}

}

inputPoints[i++] = p;
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}

return inputPoints;

}

bool fileExists(const std:: string& fileName) {

std:: fstream file;

file.open(fileName.c_str(), std::ios::in);

if (file.is_open () == true)

{

file.close();

return true;

}

file.close();

return false;

}

int getNextTestIndex(int i) {

while (fileExists("cases/" + boost:: lexical_cast <std::string >(i) +

"/input.dat")

|| fileExists("cases/" + boost:: lexical_cast <std::string >(i) +

"_INTERSECTING/input.dat")) ++i;

return i;

}

int main(int argc , char* argv []) {

if(argc == 2 || argc == 3){

int numIntersecting = 0;

int numNOTIntersecting = 0;

int NUM_POINTS = atoi(argv [1]);

int NUM_CASES = 1;

if(argc == 3)

NUM_CASES = atoi(argv [2]);

int case_index = getNextTestIndex (0);

for (int i = 0; i < NUM_CASES; ++i) {

string dir = "cases/" + boost:: lexical_cast <std::string >( case_index);

mkdir("cases", 0777);

mkdir(dir.c_str (), 0777);

string vertices_filename = dir + "/input.dat";

string simple_polygon_filename = dir + "/resulting_cycle.dat";

string mst_filename = dir + "/mst.dat";

vector <Point > inputPoints = generateInitialMST(NUM_POINTS);

Graph graph(inputPoints);

graph.generateVerticesFile(vertices_filename);

Graph mst = graph.createMSTGraph ();

Graph simplePolygon = graph.createSimplePolygon ();

simplePolygon.generateFile(simple_polygon_filename);

mst.generateFile(mst_filename);

if (simplePolygon.isIntersecting(mst)) {

++ numIntersecting;

graph.paintPolygon(vertices_filename , simple_polygon_filename ,

mst_filename , MAX_SCREEN);
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mkdir((dir + "_INTERSECTING").c_str(), 0777);

rename(vertices_filename.c_str(), (dir +

"_INTERSECTING/input.dat").c_str ());

rename(simple_polygon_filename.c_str(), (dir +

"_INTERSECTING/simple_polygon.dat").c_str());

rename(mst_filename.c_str(), (dir +

"_INTERSECTING/mst.dat").c_str());

rmdir(dir.c_str());

cout << "Case " << case_index << "("<< inputPoints.size()

<<")"<< ": INTERSECTING" << endl;

} else {

++ numNOTIntersecting;

cout << "Case " << case_index << "("<< inputPoints.size()

<<")"<< ": NOT INTERSECTING" << endl;

}

case_index = getNextTestIndex(case_index + 1);

}

cout <<endl;

cout <<"SUMMARY"<<endl;

cout <<"-----------------------"<<endl;

cout <<"Intersecting: "<<numIntersecting <<endl;

cout <<"NOT Intersecting: "<<numNOTIntersecting <<endl;

} else {

cerr << "Invalid number of parameters: TFG (NUM_POINTS) (NUM_CASES)"

<<endl;

}

}

Listing 2: Graph.h

#ifndef GRAPH

#define GRAPH

#include <vector >

#include <queue >

#include "Point.h"

using namespace std;

class Graph {

public:

Graph(vector <Point > inputPoints);

Graph(vector <Point > inputPoints , vector <pair <int , int > > inputEdges);

~Graph();

vector <Point > getVertices ();

vector <pair <int , int > > getEdges ();

void printVertices ();

void generateVerticesFile(string fileName);

void generateFile(string fileName);

Graph createMSTGraph ();

Graph createSimplePolygon ();

bool isIntersecting(Graph& graph);

static void paintPolygon(string points_file_name , string

polygon_file_name , string mst_file_name , int screenSize);
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private:

vector <Point > vertices;

vector <pair <int , int > > edges;

const static int INF = 100000000;

queue <pair <int , int > > getAllCross(vector <Point >& vertices ,

vector <pair <int , int > >& edges);

bool doIntersect(vector <Point >& vertices , pair <int , int > edge1 ,

pair <int , int > edge2);

bool onSegment(Point p, Point q, Point r);

int orientation(Point p, Point q, Point r);

void getCicleSize(int currentEdge , vector <bool >& visitedEdges ,

vector <pair <int , int > >& edges , int& cicle_size);

void resolveCross(pair <int , int > cross , queue <pair <int , int > >&

list_of_cross , vector <Point >& vertices , vector <pair <int , int > >&

edges);

static bool isSameEdge(pair <int , int > edge1 , pair <int , int > edge2);

};

#endif // !

Listing 3: Graph.cpp

#include "Graph.h"

#include "gnuplot -iostream.h" // Gnuplot class handles POSIX -Pipe -communikation

with Gnuplot

#include <iostream >

#include <queue >

#include <vector >

#include <algorithm >

Graph::Graph(vector <Point > inputPoints) {

int num_points = inputPoints.size();

vertices = inputPoints;

edges = vector <pair <int ,int > > (num_points);

for (int i = 0; i < num_points; ++i) {

edges[i] = pair <int ,int > (i, (i + 1) % num_points);

}

}

Graph::Graph(vector <Point > inputPoints , vector <pair <int , int > > inputEdges) {

vertices = inputPoints;

edges = inputEdges;

}

Graph ::~ Graph()

{

}

vector <Point > Graph :: getVertices () {

return vertices;

}

vector <pair <int , int > > Graph:: getEdges () {

return edges;

}
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void Graph:: printVertices () {

if (vertices.size()) {

printf("Points (%d):\n", (int)vertices.size());

for (int i = 0; i < vertices.size(); ++i) {

cout <<vertices[i]. toString ()<<endl;

}

}

else {

printf("There are no points.");

}

}

void Graph:: generateVerticesFile(string fileName) {

ofstream input_data;

input_data.open (fileName.c_str());

int num_points = vertices.size();

for(int i = 0; i < num_points; ++i) {

input_data << vertices[i].x << " " << vertices[i].y << endl;

}

input_data.close ();

}

void Graph:: generateFile(string fileName) {

ofstream input_data;

input_data.open (fileName.c_str());

int num_edges = edges.size();

for(int i = 0; i < num_edges; ++i) {

input_data << vertices[edges[i].first ].x << " "

<< vertices[edges[i].first ].y << endl

<< vertices[edges[i]. second ].x << " "

<< vertices[edges[i]. second ].y << endl << endl;

}

input_data.close ();

}

Graph Graph:: createMSTGraph () {

int num_points = vertices.size();

priority_queue < pair <double , pair <int , int > > > q;

vector <double > dist(num_points , INF);

vector <int > father(num_points , -1);

for(int i = 0; i < num_points; ++i) {

q.push(pair <double , pair <int , int > >(-dist[i], pair <int ,int >(i, i)));

}

int first_node = q.top().second.first;

dist[first_node] = 0;

while( !q.empty () ) {

int node = q.top().second.first;
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int nodes_father = q.top().second.second;

q.pop();

if (father[node] == -1) {

father[node] = nodes_father;

for(int i = 0; i < num_points; ++i) {

if (i != node && father[i] == -1 && dist[i] >

vertices[i]. sqDistTo(vertices[node])) {

dist[i] = vertices[i]. sqDistTo(vertices[node]);

q.push(pair <double , pair <int , int > >(-dist[i],

pair <int ,int >(i, node)));

}

}

}

}

vector <pair <int , int > > edges(num_points - 1);

for(int i = 0; i < num_points; ++i) {

if ( i != father[i] ) {

edges[i] = pair <int ,int > (i, father[i]);

}

}

return Graph(vertices , edges);

}

bool Graph:: onSegment(Point p, Point q, Point r) {

if (q.x < max(p.x, r.x) && q.x > min(p.x, r.x) &&

q.y < max(p.y, r.y) && q.y > min(p.y, r.y))

return true;

return false;

}

int Graph:: orientation(Point p, Point q, Point r) {

// See http ://www.geeksforgeeks.org/orientation -3-ordered -points/

// for details of below formula.

float val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);

if (val == 0) return 0; // colinear

return (val > 0)? 1: 2; // clock or counterclock wise

}

bool Graph:: doIntersect(vector <Point >& vertices , pair <int , int > edge1 , pair <int ,

int > edge2) {

Point p1 = vertices[edge1.first ];

Point q1 = vertices[edge1.second ];

Point p2 = vertices[edge2.first ];

Point q2 = vertices[edge2.second ];

// Find the four orientations needed for general and

// special cases

float o1 = orientation(p1, q1, p2);
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float o2 = orientation(p1 , q1, q2);

float o3 = orientation(p2 , q2, p1);

float o4 = orientation(p2 , q2, q1);

// General case

if (o1 != o2 && o3 != o4 && o1 != 0 && o2 != 0 && o3 != 0 && o4 != 0)

return true;

// Special Cases

// p1 , q1 and p2 are colinear and p2 lies on segment p1q1

if (o1 == 0 && onSegment(p1 , p2 , q1)) return true;

// p1 , q1 and p2 are colinear and q2 lies on segment p1q1

if (o2 == 0 && onSegment(p1 , q2 , q1)) return true;

// p2 , q2 and p1 are colinear and p1 lies on segment p2q2

if (o3 == 0 && onSegment(p2 , p1 , q2)) return true;

// p2 , q2 and q1 are colinear and q1 lies on segment p2q2

if (o4 == 0 && onSegment(p2 , q1 , q2)) return true;

return false; // Doesn’t fall in any of the above cases

}

void Graph:: getCicleSize(int currentEdge , vector <bool >& visitedEdges ,

vector <pair <int , int > >& edges , int& cicle_size) {

if (visitedEdges[currentEdge ])

return;

visitedEdges[currentEdge] = true;

cicle_size ++;

for (int i = 0; i < edges.size(); ++i) {

if ((edges[i].first == edges[currentEdge ]. first || edges[i].first ==

edges[currentEdge ]. second ||

edges[i]. second == edges[currentEdge ]. first || edges[i]. second ==

edges[currentEdge ]. second)

&& !visitedEdges[i]) {

getCicleSize (i, visitedEdges , edges , cicle_size);

}

}

}

void Graph:: resolveCross(pair <int , int > cross , queue <pair <int , int > >&

list_of_cross , vector <Point >& vertices , vector <pair <int , int > >& edges) {

int edge1_index = cross.first;

int edge2_index = cross.second;

pair <int , int > edge1 = edges[edge1_index ];

pair <int , int > edge2 = edges[edge2_index ];

int p1 = edge1.first;

int q1 = edge1.second;

int p2 = edge2.first;

int q2 = edge2.second;

if (doIntersect (vertices , edge1 , edge2)) {

edges[edge1_index] = pair <int , int > (p1, p2);
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edges[edge2_index] = pair <int , int > (q1, q2);

vector <bool > visitedEdges(edges.size());

int cicle_size = 0;

getCicleSize (edge1_index , visitedEdges , edges , cicle_size);

if (cicle_size < edges.size()) {

edges[edge1_index] = pair <int , int > (p1, q2);

edges[edge2_index] = pair <int , int > (q1, p2);

}

for (int i = 0; i <edges.size(); ++i) {

if (edge1_index != i && doIntersect (vertices , edges[i],

edges[edge1_index ])) {

list_of_cross.push (pair <int , int > (i, edge1_index));

}

}

for (int i = 0; i <edges.size(); ++i) {

if (edge2_index != i && doIntersect (vertices , edges[i],

edges[edge2_index ])) {

list_of_cross.push (pair <int , int > (i, edge2_index));

}

}

}

}

queue <pair <int , int > > Graph :: getAllCross(vector <Point >& vertices ,

vector <pair <int , int > >& edges) {

queue <pair <int , int > > list_of_cross;

for(int i = 0; i < edges.size(); ++i) {

for(int j = i + 1; j < edges.size(); ++j) {

if (doIntersect (vertices , edges[i], edges[j])) {

list_of_cross.push(pair <int , int > (i, j));

}

}

}

return list_of_cross;

}

Graph Graph:: createSimplePolygon () {

vector <pair <int ,int > > new_edges(edges);

queue <pair <int , int > > list_of_cross = getAllCross (vertices , new_edges);

while (! list_of_cross.empty()) {

pair <int , int > cross = list_of_cross.front();

list_of_cross.pop();

resolveCross (cross , list_of_cross , vertices , new_edges);

}

return Graph(vertices , new_edges);

}

bool Graph:: isSameEdge(pair <int , int > edge1 , pair <int , int > edge2) {

return (edge1.first == edge2.first && edge1.second == edge2.second)

|| (edge1.second == edge2.first && edge1.first == edge2.second);

}
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bool Graph:: isIntersecting(Graph& graph) {

vector <pair <int , int > > extra_edges = graph.getEdges ();

for (int i = 0; i < edges.size(); ++i) {

for (int j = 0; j < extra_edges.size(); ++j) {

pair <int , int > edge1 = edges[i];

pair <int , int > edge2 = extra_edges[j];

if (! isSameEdge(edge1 , edge2) && doIntersect(vertices , edge1 ,

edge2)) {

return true;

}

}

}

return false;

}

void Graph:: paintPolygon(string points_file_name , string polygon_file_name ,

string mst_file_name , int screenSize) {

Gnuplot gp;

gp << "set xrange [0:"<<screenSize <<"]\nset yrange [0:"<<screenSize <<"]\n";

gp << "plot ’"<< polygon_file_name <<"’ using 1:2 with line lw 3 title

’resulting cycle ’, "

<< "’"<< mst_file_name <<"’ using 1:2 with line lw 2 lt 3 lc rgb

\"green \" title ’MST ’, "

<< "’"<< points_file_name <<"’ using 1:2:(3) with circles fill solid lc

rgb \"red\" notitle , "

<< std::endl;

}

Listing 4: Point.h

#ifndef POINT

#define POINT

#include <string >

using namespace std;

class Point {

public:

int x;

int y;

public:

Point();

Point(int x, int y);

~Point();

static Point generateRandomPoint(int minX , int maxX , int minY , int maxY);

string toString ();

bool isEquals(const Point & p) const;

double sqDistTo(const Point & p) const;

double distTo(const Point & p) const;

};

#endif // !
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Listing 5: Point.cpp

#include "Point.h"

#include <cstdlib >

#include <sys/time.h>

#include <string >

#include <sstream >

#include <cmath >

Point::Point () {

x = 0;

y = 0;

};

Point::Point(int x, int y) {

this -> x = x;

this -> y = y;

};

Point ::~ Point() {}

Point Point:: generateRandomPoint(int minX , int maxX , int minY , int maxY){

// getting current timestamp in microseconds

struct timeval tp;

gettimeofday (&tp, NULL);

long int seed = tp.tv_sec * 1000000 + tp.tv_usec;

srand(seed);

int x = rand() % (maxX + 1 - minX) + minX;

int y = rand() % (maxY + 1 - minY) + minY;

return Point(x, y);

}

string Point :: toString () {

stringstream sstm;

sstm << "( " << x << ", " << y << " )";

return sstm.str();

}

bool Point:: isEquals(const Point & p) const {

return x == p.x && y == p.y;

}

double Point :: sqDistTo(const Point & p) const {

return (x - p.x) * (x - p.x) + (y - p.y) * (y - p.y);

}

double Point :: distTo(const Point & p) const {

return sqrt(this ->sqDistTo(p));

}

Listing 6: gnuplot-iostream.h

// vim:foldmethod=marker

/*
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Copyright (c) 2013 Daniel Stahlke (dan@stahlke.org)

Permission is hereby granted , free of charge , to any person obtaining a copy

of this software and associated documentation files (the "Software "), to deal

in the Software without restriction , including without limitation the rights

to use , copy , modify , merge , publish , distribute , sublicense , and/or sell

copies of the Software , and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR

IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER

LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

*/

/* A C++ interface to gnuplot.

* Web page: http :// www.stahlke.org/dan/gnuplot -iostream

* Documentation: https :// github.com/dstahlke/gnuplot -iostream/wiki

*

* The whole library consists of this monolithic header file , for ease of

installation (the

* Makefile and *.cc files are only for examples and tests).

*

* TODO:

* What version of boost is currently required?

* Callbacks via gnuplot ’s ’bind’ function. This would allow triggering user

functions when

* keys are pressed in the gnuplot window. However , it would require a PTY

reader thread.

* Maybe temporary files read in a thread can replace PTY stuff.

*/

#ifndef GNUPLOT_IOSTREAM_H

#define GNUPLOT_IOSTREAM_H

// {{{1 Includes and defines

#define GNUPLOT_IOSTREAM_VERSION 2

#ifndef GNUPLOT_ENABLE_CXX11

# define GNUPLOT_ENABLE_CXX11 (__cplusplus >= 201103)

#endif

// C system includes

#include <cstdio >

#ifdef GNUPLOT_ENABLE_PTY

# include <termios.h>

# include <unistd.h>

#ifdef __APPLE__
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# include <util.h>

#else

# include <pty.h>

#endif

#endif // GNUPLOT_ENABLE_PTY

// C++ system includes

#include <fstream >

#include <iostream >

#include <sstream >

#include <stdexcept >

#include <string >

#include <utility >

#include <iomanip >

#include <vector >

#include <complex >

#include <cstdlib >

#include <cmath >

#if GNUPLOT_ENABLE_CXX11

# include <tuple >

#endif

#include <boost/iostreams/device/file_descriptor.hpp >

#include <boost/iostreams/stream.hpp >

#include <boost/version.hpp >

#include <boost/utility.hpp >

#include <boost/tuple/tuple.hpp >

#include <boost/mpl/bool.hpp >

// This is the version of boost which has v3 of the filesystem libraries by

default.

#if BOOST_VERSION >= 104600

# define GNUPLOT_USE_TMPFILE

# include <boost/filesystem.hpp >

#endif // BOOST_VERSION

// This is used because VS2008 doesn’t have stdint.h.

#include <boost/cstdint.hpp >

// Note: this is here for reverse compatibility. The new way to enable blitz

support is to

// just include the gnuplot -iostream.h header after you include the blitz header

(likewise for

// armadillo).

#ifdef GNUPLOT_ENABLE_BLITZ

# include <blitz/array.h>

#endif

#ifdef BOOST_STATIC_ASSERT_MSG

# define GNUPLOT_STATIC_ASSERT_MSG(cond , msg) BOOST_STATIC_ASSERT_MSG ((cond),

msg)

#else

# define GNUPLOT_STATIC_ASSERT_MSG(cond , msg) BOOST_STATIC_ASSERT ((cond))

#endif
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// If this is defined , warn about use of deprecated functions.

#ifdef GNUPLOT_DEPRECATE_WARN

# ifdef __GNUC__

# define GNUPLOT_DEPRECATE(msg) __attribute__ (( deprecated(msg)))

# elif defined(_MSC_VER)

# define GNUPLOT_DEPRECATE(msg) __declspec(deprecated(msg))

# else

# define GNUPLOT_DEPRECATE(msg)

# endif

#else

# define GNUPLOT_DEPRECATE(msg)

#endif

// Patch for Windows by Damien Loison

#ifdef _WIN32

# include <windows.h>

# define GNUPLOT_PCLOSE _pclose

# define GNUPLOT_POPEN _popen

# define GNUPLOT_FILENO _fileno

#else

# define GNUPLOT_PCLOSE pclose

# define GNUPLOT_POPEN popen

# define GNUPLOT_FILENO fileno

#endif

#ifdef _WIN32

# define GNUPLOT_ISNAN _isnan

#else

// cppreference.com says std::isnan is only for C++11. However , this seems to

work on Linux

// and I am assuming that if isnan exists in math.h then std:: isnan exists in

cmath.

# define GNUPLOT_ISNAN std::isnan

#endif

// MSVC gives a warning saying that fopen and getenv are not secure. But they

are secure.

// Unfortunately their replacement functions are not simple drop -in

replacements. The best

// solution is to just temporarily disable this warning whenever fopen or getenv

is used.

// http :// stackoverflow.com/a/4805353/1048959

#if defined(_MSC_VER) && _MSC_VER >= 1400

# define GNUPLOT_MSVC_WARNING_4996_PUSH \

__pragma(warning(push)) \

__pragma(warning(disable :4996))

# define GNUPLOT_MSVC_WARNING_4996_POP \

__pragma(warning(pop))

#else

# define GNUPLOT_MSVC_WARNING_4996_PUSH

# define GNUPLOT_MSVC_WARNING_4996_POP

#endif

#ifndef GNUPLOT_DEFAULT_COMMAND

#ifdef _WIN32



Appendix A: Code of the Automated case generator 59

// "pgnuplot" is considered deprecated according to the Internet. It may be

faster. It

// doesn’t seem to handle binary data though.

//# define GNUPLOT_DEFAULT_COMMAND "pgnuplot -persist"

// On Windows , gnuplot echos commands to stderr. So we forward its stderr to

the bit bucket.

// Unfortunately , this means you will miss out on legitimate error messages.

# define GNUPLOT_DEFAULT_COMMAND "gnuplot -persist 2> NUL"

#else

# define GNUPLOT_DEFAULT_COMMAND "gnuplot -persist"

#endif

#endif

// }}}1

namespace gnuplotio {

// {{{1 Basic traits helpers

//

// The mechanisms constructed in this section enable us to detect what sort

of datatype has

// been passed to a function.

// This can be specialized as needed , in order to not use the STL interfaces

for specific

// classes.

template <typename T>

struct dont_treat_as_stl_container {

typedef boost::mpl::bool_ <false > type;

};

BOOST_MPL_HAS_XXX_TRAIT_DEF(value_type)

BOOST_MPL_HAS_XXX_TRAIT_DEF(const_iterator)

template <typename T>

struct is_like_stl_container {

typedef boost::mpl::and_ <

typename has_value_type <T>::type ,

typename has_const_iterator <T>::type ,

boost::mpl::not_ <dont_treat_as_stl_container <T> >

> type;

static const bool value = type::value;

};

template <typename T>

struct is_boost_tuple_nulltype {

static const bool value = false;

typedef boost::mpl::bool_ <value > type;

};

template <>

struct is_boost_tuple_nulltype <boost :: tuples ::null_type > {

static const bool value = true;

typedef boost::mpl::bool_ <value > type;

};
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BOOST_MPL_HAS_XXX_TRAIT_DEF(head_type)

BOOST_MPL_HAS_XXX_TRAIT_DEF(tail_type)

template <typename T>

struct is_boost_tuple {

typedef boost::mpl::and_ <

typename has_head_type <T>::type ,

typename has_tail_type <T>:: type

> type;

static const bool value = type::value;

};

// More fine -grained , but doesn ’t compile!

// template <typename T>

// struct is_boost_tuple {

// typedef boost ::mpl::and_ <

// typename boost ::is_class <T>::type ,

// typename boost ::mpl::and_ <

// typename has_head_type <T>::type ,

// typename boost::mpl::and_ <

// typename has_tail_type <T>::type ,

// typename boost::mpl::or_ <

// typename is_boost_tuple_nulltype <typename

T::tail_type >::type ,

// typename is_boost_tuple <typename T::tail_type >:: type

// >::type

// >::type

// >::type

// > type;

//};

//

// template <>

// struct is_boost_tuple <boost :: tuples ::null_type > {

// typedef boost ::mpl::bool_ <false > type;

//};

// }}}1

// {{{1 Tmpfile helper class

#ifdef GNUPLOT_USE_TMPFILE

// RAII temporary file. File is removed when this object goes out of scope.

class GnuplotTmpfile {

public:

GnuplotTmpfile () :

file(boost:: filesystem :: unique_path(

boost:: filesystem :: temp_directory_path () /

"tmp -gnuplot -%%%% -%%%% -%%%% -%%%%"))

{ }

private:

// noncopyable

GnuplotTmpfile(const GnuplotTmpfile &);

const GnuplotTmpfile& operator =(const GnuplotTmpfile &);



Appendix A: Code of the Automated case generator 61

public:

~GnuplotTmpfile () {

// it is never good to throw exceptions from a destructor

try {

remove(file);

}

catch (const std:: exception &) {

std::cerr << "Failed to remove temporary file " << file <<

std::endl;

}

}

public:

boost:: filesystem ::path file;

};

#endif // GNUPLOT_USE_TMPFILE

// }}}1

// {{{1 Feedback helper classes

//

// Used for reading stuff sent from gnuplot via gnuplot ’s "print" function.

//

// For example , this is used for capturing mouse clicks in the gnuplot

window. There are two

// implementations , only the first of which is complete. The first

implementation allocates a

// PTY (pseudo terminal) which is written to by gnuplot and read by us.

This only works in

// Linux. The second implementation creates a temporary file which is

written to by gnuplot

// and read by us. However , this doesn ’t currently work since fscanf

doesn’t block. It would

// be possible to get this working using a more complicated mechanism

(select or threads) but I

// haven’t had the need for it.

class GnuplotFeedback {

public:

GnuplotFeedback () { }

virtual ~GnuplotFeedback () { }

virtual std:: string filename () const = 0;

virtual FILE *handle () const = 0;

private:

// noncopyable

GnuplotFeedback(const GnuplotFeedback &);

const GnuplotFeedback& operator =( const GnuplotFeedback &);

};

#ifdef GNUPLOT_ENABLE_PTY

#define GNUPLOT_ENABLE_FEEDBACK

class GnuplotFeedbackPty : public GnuplotFeedback {

public:

explicit GnuplotFeedbackPty(bool debug_messages) :

pty_fn (),
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pty_fh(NULL),

master_fd (-1),

slave_fd (-1)

{

// adapted from http :// www.gnuplot.info/files/gpReadMouseTest.c

if (0 > openpty (&master_fd , &slave_fd , NULL , NULL , NULL)) {

perror("openpty");

throw std:: runtime_error("openpty failed");

}

char pty_fn_buf [1024];

if (ttyname_r(slave_fd , pty_fn_buf , 1024)) {

perror("ttyname_r");

throw std:: runtime_error("ttyname failed");

}

pty_fn = std:: string(pty_fn_buf);

if (debug_messages) {

std::cerr << "feedback_fn=" << pty_fn << std::endl;

}

// disable echo

struct termios tios;

if (tcgetattr(slave_fd , &tios) < 0) {

perror("tcgetattr");

throw std:: runtime_error("tcgetattr failed");

}

tios.c_lflag &= ~(ECHO | ECHONL);

if (tcsetattr(slave_fd , TCSAFLUSH , &tios) < 0) {

perror("tcsetattr");

throw std:: runtime_error("tcsetattr failed");

}

pty_fh = fdopen(master_fd , "r");

if (! pty_fh) {

throw std:: runtime_error("fdopen failed");

}

}

private:

// noncopyable

GnuplotFeedbackPty(const GnuplotFeedbackPty &);

const GnuplotFeedbackPty& operator =(const GnuplotFeedbackPty &);

public:

~GnuplotFeedbackPty () {

if (pty_fh) fclose(pty_fh);

if (master_fd > 0) ::close(master_fd);

if (slave_fd > 0) :: close(slave_fd);

}

std:: string filename () const {

return pty_fn;

}

FILE *handle () const {

return pty_fh;
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}

private:

std:: string pty_fn;

FILE *pty_fh;

int master_fd , slave_fd;

};

//#elif defined GNUPLOT_USE_TMPFILE

//// Currently this doesn’t work since fscanf doesn’t block (need something

like "tail -f")

//#define GNUPLOT_ENABLE_FEEDBACK

//class GnuplotFeedbackTmpfile : public GnuplotFeedback {

// public:

// explicit GnuplotFeedbackTmpfile(bool debug_messages) :

// tmp_file (),

// fh(NULL)

// {

// if(debug_messages) {

// std::cerr << "feedback_fn =" << filename () << std::endl;

// }

// GNUPLOT_MSVC_WARNING_4996_PUSH

// fh = std::fopen(filename ().c_str(), "a");

// GNUPLOT_MSVC_WARNING_4996_POP

// }

//

// ~GnuplotFeedbackTmpfile () {

// fclose(fh);

// }

//

// private:

// // noncopyable

// GnuplotFeedbackTmpfile(const GnuplotFeedbackTmpfile &);

// const GnuplotFeedbackTmpfile& operator =(const GnuplotFeedbackTmpfile &);

//

// public:

// std:: string filename () const {

// return tmp_file.file.string ();

// }

//

// FILE *handle () const {

// return fh;

// }

//

// private:

// GnuplotTmpfile tmp_file;

// FILE *fh;

//};

#endif // GNUPLOT_ENABLE_PTY , GNUPLOT_USE_TMPFILE

// }}}1

// {{{1 Traits and printers for entry datatypes

//

// This section contains the mechanisms for sending scalar and tuple data to

gnuplot. Pairs
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// and tuples are sent by appealing to the senders defined for their

component scalar types.

// Senders for arrays are defined in a later section.

//

// There are three classes which need to be specialized for each supported

datatype:

// 1. TextSender to send data as text. The default is to just send using

the ostream ’s ‘<<‘

// operator.

// 2. BinarySender to send data as binary , in a format which gnuplot can

understand. There is

// no default implementation (unimplemented types raise a compile time

error), however

// inheriting from FlatBinarySender will send the data literally as it is

stored in memory.

// This suffices for most of the standard built -in types (e.g. uint32_t or

double).

// 3. BinfmtSender sends a description of the data format to gnuplot (e.g.

‘%uint32 ‘). Type

// ‘show datafile binary datasizes ‘ in gnuplot to see a list of supported

formats.

// {{{2 Basic entry datatypes

// Default TextSender , sends data using ‘<<‘ operator.

template <typename T, typename Enable = void >

struct TextSender {

static void send(std:: ostream &stream , const T &v) {

stream << v;

}

};

// Default BinarySender , raises a compile time error.

template <typename T, typename Enable = void >

struct BinarySender {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "BinarySender class not

specialized for this type");

// This is here to avoid further compilation errors , beyond what the

assert prints.

static void send(std:: ostream &stream , const T &v);

};

// This is a BinarySender implementation that just sends directly from

memory. Data types

// which can be sent this way can have their BinarySender specialization

inherit from this.

template <typename T>

struct FlatBinarySender {

static void send(std:: ostream &stream , const T &v) {

stream.write(reinterpret_cast <const char *>(&v), sizeof(T));

}

};

// Default BinfmtSender , raises a compile time error.
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template <typename T, typename Enable = void >

struct BinfmtSender {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "BinfmtSender class not

specialized for this type");

// This is here to avoid further compilation errors , beyond what the

assert prints.

static void send(std:: ostream &);

};

// BinfmtSender implementations for basic data types supported by gnuplot.

// Types from boost/cstdint.hpp are used because VS2008 doesn’t have

stdint.h.

template <> struct BinfmtSender < float > { static void send(std:: ostream

&stream) { stream << "%float"; } };

template <> struct BinfmtSender <double > { static void send(std:: ostream

&stream) { stream << "%double"; } };

template <> struct BinfmtSender <boost::int8_t > { static void

send(std:: ostream &stream) { stream << "%int8"; } };

template <> struct BinfmtSender <boost::uint8_t > { static void

send(std:: ostream &stream) { stream << "%uint8"; } };

template <> struct BinfmtSender <boost::int16_t > { static void

send(std:: ostream &stream) { stream << "%int16"; } };

template <> struct BinfmtSender <boost::uint16_t > { static void

send(std:: ostream &stream) { stream << "%uint16"; } };

template <> struct BinfmtSender <boost::int32_t > { static void

send(std:: ostream &stream) { stream << "%int32"; } };

template <> struct BinfmtSender <boost::uint32_t > { static void

send(std:: ostream &stream) { stream << "%uint32"; } };

template <> struct BinfmtSender <boost::int64_t > { static void

send(std:: ostream &stream) { stream << "%int64"; } };

template <> struct BinfmtSender <boost::uint64_t > { static void

send(std:: ostream &stream) { stream << "%uint64"; } };

// BinarySender implementations for basic data types supported by gnuplot.

These types can

// just be sent as stored in memory , so all these senders inherit from

FlatBinarySender.

template <> struct BinarySender < float > : public FlatBinarySender < float > { };

template <> struct BinarySender <double > : public FlatBinarySender <double > { };

template <> struct BinarySender <boost::int8_t > : public

FlatBinarySender <boost::int8_t > { };

template <> struct BinarySender <boost::uint8_t > : public

FlatBinarySender <boost::uint8_t > { };

template <> struct BinarySender <boost::int16_t > : public

FlatBinarySender <boost::int16_t > { };

template <> struct BinarySender <boost::uint16_t > : public

FlatBinarySender <boost::uint16_t > { };

template <> struct BinarySender <boost::int32_t > : public

FlatBinarySender <boost::int32_t > { };

template <> struct BinarySender <boost::uint32_t > : public

FlatBinarySender <boost::uint32_t > { };

template <> struct BinarySender <boost::int64_t > : public

FlatBinarySender <boost::int64_t > { };
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template <> struct BinarySender <boost::uint64_t > : public

FlatBinarySender <boost::uint64_t > { };

// Make char types print as integers , not as characters.

template <typename T>

struct CastIntTextSender {

static void send(std:: ostream &stream , const T &v) {

stream << int(v);

}

};

template <> struct TextSender < char > : public CastIntTextSender <

char > { };

template <> struct TextSender < signed char > : public CastIntTextSender <

signed char > { };

template <> struct TextSender < unsigned char > : public CastIntTextSender <

unsigned char > { };

// Make sure that the same not -a-number string is printed on all platforms.

template <typename T>

struct FloatTextSender {

static void send(std:: ostream &stream , const T &v) {

if (GNUPLOT_ISNAN(v)) { stream << "nan"; }

else { stream << v; }

}

};

template <> struct TextSender < float > : FloatTextSender < float > { };

template <> struct TextSender < double > : FloatTextSender < double > { };

template <> struct TextSender <long double > : FloatTextSender <long double > { };

// }}}2

// {{{2 std::pair support

template <typename T, typename U>

struct TextSender <std::pair <T, U> > {

static void send(std:: ostream &stream , const std::pair <T, U> &v) {

TextSender <T>:: send(stream , v.first);

stream << " ";

TextSender <U>:: send(stream , v.second);

}

};

template <typename T, typename U>

struct BinfmtSender <std::pair <T, U> > {

static void send(std:: ostream &stream) {

BinfmtSender <T>:: send(stream);

BinfmtSender <U>:: send(stream);

}

};

template <typename T, typename U>

struct BinarySender <std::pair <T, U> > {

static void send(std:: ostream &stream , const std::pair <T, U> &v) {

BinarySender <T>:: send(stream , v.first);

BinarySender <U>:: send(stream , v.second);
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}

};

// }}}2

// {{{2 std:: complex support

template <typename T>

struct TextSender <std::complex <T> > {

static void send(std:: ostream &stream , const std::complex <T> &v) {

TextSender <T>:: send(stream , v.real());

stream << " ";

TextSender <T>:: send(stream , v.imag());

}

};

template <typename T>

struct BinfmtSender <std::complex <T> > {

static void send(std:: ostream &stream) {

BinfmtSender <T>:: send(stream);

BinfmtSender <T>:: send(stream);

}

};

template <typename T>

struct BinarySender <std::complex <T> > {

static void send(std:: ostream &stream , const std::complex <T> &v) {

BinarySender <T>:: send(stream , v.real());

BinarySender <T>:: send(stream , v.imag());

}

};

// }}}2

// {{{2 boost:: tuple support

template <typename T>

struct TextSender <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

boost::mpl::not_ <is_boost_tuple_nulltype <typename T::tail_type > >

>

>::type

> {

static void send(std:: ostream &stream , const T &v) {

TextSender <typename T::head_type >:: send(stream , v.get_head ());

stream << " ";

TextSender <typename T::tail_type >:: send(stream , v.get_tail ());

}

};

template <typename T>

struct TextSender <T,

typename boost ::enable_if <
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boost::mpl::and_ <

is_boost_tuple <T>,

is_boost_tuple_nulltype <typename T::tail_type >

>

>::type

> {

static void send(std:: ostream &stream , const T &v) {

TextSender <typename T::head_type >:: send(stream , v.get_head ());

}

};

template <typename T>

struct BinfmtSender <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

boost::mpl::not_ <is_boost_tuple_nulltype <typename T::tail_type > >

>

>::type

> {

static void send(std:: ostream &stream) {

BinfmtSender <typename T::head_type >:: send(stream);

stream << " ";

BinfmtSender <typename T::tail_type >:: send(stream);

}

};

template <typename T>

struct BinfmtSender <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

is_boost_tuple_nulltype <typename T::tail_type >

>

>::type

> {

static void send(std:: ostream &stream) {

BinfmtSender <typename T::head_type >:: send(stream);

}

};

template <typename T>

struct BinarySender <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

boost::mpl::not_ <is_boost_tuple_nulltype <typename T::tail_type > >

>

>::type

> {

static void send(std:: ostream &stream , const T &v) {

BinarySender <typename T::head_type >:: send(stream , v.get_head ());

BinarySender <typename T::tail_type >:: send(stream , v.get_tail ());

}

};
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template <typename T>

struct BinarySender <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

is_boost_tuple_nulltype <typename T::tail_type >

>

>::type

> {

static void send(std:: ostream &stream , const T &v) {

BinarySender <typename T::head_type >:: send(stream , v.get_head ());

}

};

// }}}2

// {{{2 std::tuple support

#if GNUPLOT_ENABLE_CXX11

// http :// stackoverflow.com/questions /6245735/ pretty -print -stdtuple

template <std::size_t > struct int_ {}; // compile -time counter

template <typename Tuple , std:: size_t I>

void std_tuple_formatcode_helper(std:: ostream &stream , const Tuple *,

int_ <I>) {

std_tuple_formatcode_helper(stream , (const Tuple *)(0), int_ <I - 1>());

stream << " ";

BinfmtSender <typename std:: tuple_element <I, Tuple >::type >:: send(stream);

}

template <typename Tuple >

void std_tuple_formatcode_helper(std:: ostream &stream , const Tuple *,

int_ <0>) {

BinfmtSender <typename std:: tuple_element <0, Tuple >::type >:: send(stream);

}

template <typename ... Args >

struct BinfmtSender <std::tuple <Args...> > {

typedef typename std::tuple <Args...> Tuple;

static void send(std:: ostream &stream) {

std_tuple_formatcode_helper(stream , (const Tuple *)(0),

int_ <sizeof ...( Args) -1>());

}

};

template <typename Tuple , std:: size_t I>

void std_tuple_textsend_helper(std:: ostream &stream , const Tuple &v,

int_ <I>) {

std_tuple_textsend_helper(stream , v, int_ <I - 1>());

stream << " ";
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TextSender <typename std:: tuple_element <I, Tuple >::type >:: send(stream ,

std::get <I>(v));

}

template <typename Tuple >

void std_tuple_textsend_helper(std:: ostream &stream , const Tuple &v,

int_ <0>) {

TextSender <typename std:: tuple_element <0, Tuple >::type >:: send(stream ,

std::get <0>(v));

}

template <typename ... Args >

struct TextSender <std::tuple <Args...> > {

typedef typename std::tuple <Args...> Tuple;

static void send(std:: ostream &stream , const Tuple &v) {

std_tuple_textsend_helper(stream , v, int_ <sizeof ...( Args) -1>());

}

};

template <typename Tuple , std:: size_t I>

void std_tuple_binsend_helper(std:: ostream &stream , const Tuple &v, int_ <I>)

{

std_tuple_binsend_helper(stream , v, int_ <I - 1>());

BinarySender <typename std:: tuple_element <I, Tuple >::type >:: send(stream ,

std::get <I>(v));

}

template <typename Tuple >

void std_tuple_binsend_helper(std:: ostream &stream , const Tuple &v, int_ <0>)

{

BinarySender <typename std:: tuple_element <0, Tuple >::type >:: send(stream ,

std::get <0>(v));

}

template <typename ... Args >

struct BinarySender <std::tuple <Args...> > {

typedef typename std::tuple <Args...> Tuple;

static void send(std:: ostream &stream , const Tuple &v) {

std_tuple_binsend_helper(stream , v, int_ <sizeof ...( Args) -1>());

}

};

#endif // GNUPLOT_ENABLE_CXX11

// }}}2

// }}}1

// {{{1 ArrayTraits and Range classes

//

// This section handles sending of array data to gnuplot. It is rather

complicated because of

// the diversity of storage schemes supported. For example , it treats a
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// ‘std::pair <std::vector <T>, std::vector <U>>‘ in the same way as a

// ‘std::vector <std::pair <T, U>>‘, iterating through the two arrays in

lockstep , and sending

// pairs <T,U> to gnuplot as columns. In fact , any nested combination of

pairs , tuples , STL

// containers , Blitz arrays , and Armadillo arrays is supported (with the

caveat that , for

// instance , Blitz arrays should never be put into an STL container or you

will suffer

// unpredictable results due the way Blitz handles assignment). Nested

containers are

// considered to be multidimensional arrays. Although gnuplot only supports

1D and 2D arrays ,

// our module is in principle not limited.

//

// The ArrayTraits class is specialized for every supported array or

container type (the

// default , unspecialized , version of ArrayTraits exists only to tell you

that something is

// *not* a container , via the is_container flag). ArrayTraits tells you the

depth of a nested

// (or multidimensional) container , as well as the value type , and provides

a specialized

// sort of iterator (a.k.a. "range "). Ranges are sort of like STL

iterators , except that they

// have built -in knowledge of the end condition so you don’t have to carry

around both a

// begin() and an end() iterator like in STL.

//

// As an example of how this works , consider a std::pair of std:: vectors.

Ultimately this gets

// sent to gnuplot as two columns , so the two vectors need to be iterated in

lockstep.

// The ‘value_type ‘ of ‘std::pair <std::vector <T>, std::vector <U>>‘ is then

‘std::pair <T, U>‘

// and this is what deferencing the range (iterator) gives. Internally ,

this range is built

// out of a pair of ranges (PairOfRange class), the ‘inc()‘ (advance to next

element)

// method calls ‘inc()‘ on each of the children , and ‘deref ()‘ calls

‘deref()‘ on each child

// and combines the results to return a ‘std::pair ‘. Tuples are handled as

nested pairs.

//

// In addition to PairOfRange , there is also a VecOfRange class that can be

used to treat the

// outermost part of a nested container as if it were a tuple. Since tuples

are printed as

// columns , this is like treating a multidimensional array as if it were

column -major. A

// VecOfRange is obtained by calling ‘get_columns_range ‘. This is used by,

for instance ,

// ‘send1d_colmajor ‘. The implementation is similar to that of PairOfRange.

//
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// The range , accessed via ‘ArrayTraits <T>:: get_range ‘, will be of a

different class depending

// on T, and this is defined by the ArrayTraits specialization for T. It

will always have

// methods ‘inc()‘ to advance to the next element and ‘is_end ()‘ for

checking whether one has

// advanced past the final element. For nested containers ,

‘deref_subiter ()‘ returns a range

// iterator for the next nesting level. When at the innermost level of

nesting , ‘deref ()‘

// returns the value of the entry the iterator points to (a scalar , pair , or

tuple).

// Only one of ‘deref ()‘ or ‘deref_subiter ()‘ will be available , depending

on whether there are

// deeper levels of nesting. The typedefs ‘value_type ‘ and ‘subiter_type ‘

tell the return

// types of these two methods.

//

// Support for standard C++ and boost containers and tuples of containers is

provided in this

// section. Support for third party packages like Blitz and Armadillo is in

a later section.

// {{{2 ArrayTraits generic class and defaults

// Error messages involving this stem from treating something that was not a

container as if it

// was. This is only here to allow compiliation without errors in normal

cases.

struct Error_WasNotContainer {

// This is just here to make VC++ happy.

//

https :// connect.microsoft.com/VisualStudio/feedback/details /777612/ class -template -specialization -that -compiles -in -g-but -not -visual -c

typedef void subiter_type;

};

// Error messages involving this stem from calling deref instead of

deref_subiter for a nested

// container.

struct Error_InappropriateDeref { };

// The unspecialized version of this class gives traits for things that are

*not* arrays.

template <typename T, typename Enable = void >

class ArrayTraits {

public:

// The value type of elements after all levels of nested containers have

been dereferenced.

typedef Error_WasNotContainer value_type;

// The type of the range (a.k.a. iterator) that ‘get_range ()‘ returns.

typedef Error_WasNotContainer range_type;

// Tells whether T is in fact a container type.

static const bool is_container = false;

// This flag supports the legacy behavior of automatically guessing

whether the data should
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// be treated as column major. This guessing happens when ‘send()‘ is

called rather than

// ‘send1d ()‘ or ‘send2d () ‘. This is deprecated , but is still supported

for reverse

// compatibility.

static const bool allow_auto_unwrap = false;

// The number of levels of nesting , or the dimension of multidimensional

arrays.

static const size_t depth = 0;

// Returns the range (iterator) for an array.

static range_type get_range(const T &) {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "argument was not a

container");

throw std:: logic_error("static assert should have been triggered by

this point");

}

};

// Most specializations of ArrayTraits should inherit from this (with V set

to the value type).

// It sets some default values.

template <typename V>

class ArrayTraitsDefaults {

public:

typedef V value_type;

static const bool is_container = true;

static const bool allow_auto_unwrap = true;

static const size_t depth = ArrayTraits <V>:: depth + 1;

};

// This handles reference types , such as are given with boost::tie.

// It also allows for instance "ArrayTraits <T[N]>" to match "ArrayTraits <T

(&) [N]>".

// I think this is okay to do... The alternative is to use remove_reference

all over the place.

template <typename T>

class ArrayTraits <T&> : public ArrayTraits <T> { };

// FIXME - is this okay?

// It supports gp.send1d(std:: forward_as_tuple(x, std::move(y)));

#if GNUPLOT_ENABLE_CXX11

template <typename T>

class ArrayTraits <T&&> : public ArrayTraits <T> { };

#endif

// }}}2

// {{{2 STL container support

template <typename TI , typename TV>

class IteratorRange {

public:

IteratorRange () { }
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IteratorRange(const TI &_it , const TI &_end) : it(_it), end(_end) { }

static const bool is_container = ArrayTraits <TV >:: is_container;

typedef typename boost::mpl::if_c <is_container ,

Error_InappropriateDeref , TV >:: type value_type;

typedef typename ArrayTraits <TV >:: range_type subiter_type;

bool is_end () const { return it == end; }

void inc() { ++it; }

value_type deref() const {

GNUPLOT_STATIC_ASSERT_MSG(sizeof(TV) && !is_container ,

"deref called on nested container");

if (is_end ()) {

throw std:: runtime_error("attepted to dereference past end of

iterator");

}

return *it;

}

subiter_type deref_subiter () const {

GNUPLOT_STATIC_ASSERT_MSG(sizeof(TV) && is_container ,

"deref_subiter called on non -nested container");

if (is_end ()) {

throw std:: runtime_error("attepted to dereference past end of

iterator");

}

return ArrayTraits <TV >:: get_range (*it);

}

private:

TI it , end;

};

template <typename T>

class ArrayTraits <T,

typename boost ::enable_if <is_like_stl_container <T> >::type

> : public ArrayTraitsDefaults <typename T::value_type > {

public:

typedef IteratorRange <typename T:: const_iterator , typename

T::value_type > range_type;

static range_type get_range(const T &arg) {

return range_type(arg.begin (), arg.end());

}

};

// }}}2

// {{{2 C style array support

template <typename T, size_t N>

class ArrayTraits <T[N]> : public ArrayTraitsDefaults <T> {

public:
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typedef IteratorRange <const T*, T> range_type;

static range_type get_range(const T(&arg)[N]) {

return range_type(arg , arg + N);

}

};

// }}}2

// {{{2 std::pair support

template <typename RT , typename RU>

class PairOfRange {

template <typename T, typename U, typename PrintMode >

friend void deref_and_print(std:: ostream &, const PairOfRange <T, U> &,

PrintMode);

public:

PairOfRange () { }

PairOfRange(const RT &_l, const RU &_r) : l(_l), r(_r) { }

static const bool is_container = RT:: is_container && RU:: is_container;

typedef std::pair <typename RT::value_type , typename RU::value_type >

value_type;

typedef PairOfRange <typename RT:: subiter_type , typename

RU:: subiter_type > subiter_type;

bool is_end () const {

bool el = l.is_end ();

bool er = r.is_end ();

if (el != er) {

throw std:: length_error("columns were different lengths");

}

return el;

}

void inc() {

l.inc();

r.inc();

}

value_type deref() const {

return std:: make_pair(l.deref(), r.deref());

}

subiter_type deref_subiter () const {

return subiter_type(l.deref_subiter (), r.deref_subiter ());

}

private:

RT l;

RU r;

};
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template <typename T, typename U>

class ArrayTraits <std::pair <T, U> > {

public:

typedef PairOfRange <typename ArrayTraits <T>:: range_type , typename

ArrayTraits <U>:: range_type > range_type;

typedef std::pair <typename ArrayTraits <T>:: value_type , typename

ArrayTraits <U>:: value_type > value_type;

static const bool is_container = ArrayTraits <T>:: is_container &&

ArrayTraits <U>:: is_container;

// Don’t allow colwrap since it’s already wrapped.

static const bool allow_auto_unwrap = false;

// It is allowed for l_depth != r_depth , for example one column could be

’double ’ and the

// other column could be ’vector <double >’.

static const size_t l_depth = ArrayTraits <T>:: depth;

static const size_t r_depth = ArrayTraits <U>:: depth;

static const size_t depth = (l_depth < r_depth) ? l_depth : r_depth;

static range_type get_range(const std::pair <T, U> &arg) {

return range_type(

ArrayTraits <T>:: get_range(arg.first),

ArrayTraits <U>:: get_range(arg.second)

);

}

};

// }}}2

// {{{2 boost::tuple support

template <typename T>

class ArrayTraits <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

boost::mpl::not_ <is_boost_tuple_nulltype <typename T::tail_type > >

>

>::type

> : public ArrayTraits <

typename std::pair <

typename T::head_type ,

typename T:: tail_type

>

> {

public:

typedef typename T:: head_type HT;

typedef typename T:: tail_type TT;

typedef ArrayTraits <typename std::pair <HT , TT > > parent;

static typename parent :: range_type get_range(const T &arg) {

return typename parent :: range_type(

ArrayTraits <HT >:: get_range(arg.get_head ()),

ArrayTraits <TT >:: get_range(arg.get_tail ())

);
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}

};

template <typename T>

class ArrayTraits <T,

typename boost ::enable_if <

boost::mpl::and_ <

is_boost_tuple <T>,

is_boost_tuple_nulltype <typename T::tail_type >

>

>::type

> : public ArrayTraits <

typename T:: head_type

> {

typedef typename T:: head_type HT;

typedef ArrayTraits <HT> parent;

public:

static typename parent :: range_type get_range(const T &arg) {

return parent :: get_range(arg.get_head ());

}

};

// }}}2

// {{{2 std::tuple support

#if GNUPLOT_ENABLE_CXX11

template <typename Tuple , size_t idx >

struct StdTupUnwinder {

typedef std::pair <

typename StdTupUnwinder <Tuple , idx - 1>::type ,

typename std:: tuple_element <idx , Tuple >:: type

> type;

static typename ArrayTraits <type >:: range_type get_range(const Tuple

&arg) {

return typename ArrayTraits <type >:: range_type(

StdTupUnwinder <Tuple , idx - 1>:: get_range(arg),

ArrayTraits <typename std:: tuple_element <idx ,

Tuple >::type >:: get_range(std::get <idx >(arg))

);

}

};

template <typename Tuple >

struct StdTupUnwinder <Tuple , 0> {

typedef typename std:: tuple_element <0, Tuple >:: type type;

static typename ArrayTraits <type >:: range_type get_range(const Tuple

&arg) {

return ArrayTraits <type >:: get_range(std::get <0>(arg));

}
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};

template <typename ... Args >

class ArrayTraits <std::tuple <Args...> > :

public ArrayTraits <typename StdTupUnwinder <std::tuple <Args...>,

sizeof ...( Args) -1>::type >

{

typedef std::tuple <Args...> Tuple;

typedef ArrayTraits <typename StdTupUnwinder <Tuple ,

sizeof ...( Args) -1>::type > parent;

public:

static typename parent :: range_type get_range(const Tuple &arg) {

return StdTupUnwinder <std::tuple <Args...>,

sizeof ...( Args) -1>:: get_range(arg);

}

};

#endif // GNUPLOT_ENABLE_CXX11

// }}}2

// {{{2 Support column unwrap of container (VecOfRange)

//

// VecOfRange (created via ‘get_columns_range () ‘) treats the outermost level

of a nested

// container as if it were a tuple. Since tuples are sent to gnuplot as

columns , this has the

// effect of addressing a multidimensional array in column major order.

template <typename RT >

class VecOfRange {

template <typename T, typename PrintMode >

friend void deref_and_print(std:: ostream &, const VecOfRange <T> &,

PrintMode);

public:

VecOfRange () { }

explicit VecOfRange(const std::vector <RT> &_rvec) : rvec(_rvec) { }

static const bool is_container = RT:: is_container;

// Don’t allow colwrap since it’s already wrapped.

static const bool allow_auto_unwrap = false;

typedef std::vector <typename RT::value_type > value_type;

typedef VecOfRange <typename RT:: subiter_type > subiter_type;

bool is_end () const {

if (rvec.empty()) return true;

bool ret = rvec [0]. is_end ();

for (size_t i = 1; i<rvec.size(); i++) {

if (ret != rvec[i]. is_end ()) {

throw std:: length_error("columns were different lengths");

}

}
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return ret;

}

void inc() {

for (size_t i = 0; i<rvec.size(); i++) {

rvec[i].inc();

}

}

value_type deref() const {

value_type ret(rvec.size());

for (size_t i = 0; i<rvec.size(); i++) {

ret[i] = rvec[i].deref();

}

return ret;

}

subiter_type deref_subiter () const {

std::vector <typename RT:: subiter_type > subvec(rvec.size());

for (size_t i = 0; i<rvec.size(); i++) {

subvec[i] = rvec[i]. deref_subiter ();

}

return subiter_type(subvec);

}

private:

std::vector <RT> rvec;

};

template <typename T>

VecOfRange <typename ArrayTraits <T>:: range_type :: subiter_type >

get_columns_range(const T &arg) {

typedef typename ArrayTraits <T>:: range_type :: subiter_type U;

std::vector <U> rvec;

typename ArrayTraits <T>:: range_type outer =

ArrayTraits <T>:: get_range(arg);

while (!outer.is_end ()) {

rvec.push_back(outer.deref_subiter ());

outer.inc();

}

VecOfRange <U> ret(rvec);

return ret;

}

// }}}2

// }}}1

// {{{1 Array printing functions

//

// This section coordinates the sending of data to gnuplot. The ArrayTraits

mechanism tells us

// about nested containers and provides iterators over them. Here we make

use of this ,
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// deciding what dimensions should be treated as rows , columns , or blocks ,

telling gnuplot the

// size of the array if needed , and so on.

// If this is set , then text -mode data will be sent in a format that is not

compatible with

// gnuplot , but which helps the programmer tell what the library is

thinking. Basically it

// puts brackets around groups of items and puts a message delineating

blocks of data.

static bool debug_array_print = 0;

// This is thrown when an empty container is being plotted. This exception

should always

// be caught and should not propagate to the user.

class plotting_empty_container : public std:: length_error {

public:

plotting_empty_container () : std:: length_error("plotting empty

container") { }

};

// {{{2 Tags (like enums for metaprogramming)

// These tags define what our goal is, what sort of thing should ultimately

be sent to the

// ostream. These tags are passed to the PrintMode template argument of the

functions in this

// section.

//

// ModeText - Sends the data in an array in text format

// ModeBinary - Sends the data in an array in binary format

// ModeBinfmt - Sends the gnuplot format code for binary data (e.g.

"% double%double ")

// ModeSize - Sends the size of an array. Needed when sending binary data.

struct ModeText { static const bool is_text = 1; static const bool is_binfmt

= 0; static const bool is_size = 0; };

struct ModeBinary { static const bool is_text = 0; static const bool

is_binfmt = 0; static const bool is_size = 0; };

struct ModeBinfmt { static const bool is_text = 0; static const bool

is_binfmt = 1; static const bool is_size = 0; };

struct ModeSize { static const bool is_text = 0; static const bool is_binfmt

= 0; static const bool is_size = 1; };

// Whether to treat the outermost level of a nested container as columns

(column major mode).

struct ColUnwrapNo { };

struct ColUnwrapYes { };

// The user must give a hint to describe how nested containers are to be

interpreted. This is

// done by calling e.g. ‘send1d_colmajor ()‘ or ‘send2d () ‘. This hint is

then described by the

// following tags. This is passed to the OrganizationMode template argument.

struct Mode1D { static std:: string class_name () { return "Mode1D"; } };

struct Mode2D { static std:: string class_name () { return "Mode2D"; } };
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struct Mode1DUnwrap { static std:: string class_name () { return

"Mode1DUnwrap"; } };

struct Mode2DUnwrap { static std:: string class_name () { return

"Mode2DUnwrap"; } };

// Support for the legacy behavior that guesses which of the above four

modes should be used.

struct ModeAuto { static std:: string class_name () { return "ModeAuto"; } };

// }}}2

// {{{2 ModeAutoDecoder

//

// ModeAuto guesses which of Mode1D , Mode2D , Mode1DUnwrap , or Mode2DUnwrap

should be used.

// This is provided for reverse compatibility; it is better to specify

explicitly which mode to

// use. Since this is only for reverse compatibility , and shouldn ’t be

used , I’m not going to

// spell out what the rules are. See below for details.

template <typename T, typename Enable = void >

struct ModeAutoDecoder { };

template <typename T>

struct ModeAutoDecoder <T,

typename boost :: enable_if_c <

(ArrayTraits <T>:: depth == 1)

>::type >

{

typedef Mode1D mode;

};

template <typename T>

struct ModeAutoDecoder <T,

typename boost :: enable_if_c <

(ArrayTraits <T>:: depth == 2) &&

!ArrayTraits <T>:: allow_auto_unwrap

>::type >

{

typedef Mode2D mode;

};

template <typename T>

struct ModeAutoDecoder <T,

typename boost :: enable_if_c <

(ArrayTraits <T>:: depth == 2) &&

ArrayTraits <T>:: allow_auto_unwrap

>::type >

{

typedef Mode1DUnwrap mode;

};

template <typename T>

struct ModeAutoDecoder <T,

typename boost :: enable_if_c <
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(ArrayTraits <T>:: depth > 2) &&

ArrayTraits <T>:: allow_auto_unwrap

>::type >

{

typedef Mode2DUnwrap mode;

};

template <typename T>

struct ModeAutoDecoder <T,

typename boost :: enable_if_c <

(ArrayTraits <T>:: depth > 2) &&

!ArrayTraits <T>:: allow_auto_unwrap

>::type >

{

typedef Mode2D mode;

};

// }}}2

// The data is processed using several levels of functions that call each

other in sequence ,

// each defined in a subsection of code below. Because C++ wants you to

declare a function

// before using it, we begin with the innermost function. So in order to

see the sequence in

// which these are called , you should read the following subsections in

reverse order. Nested

// arrays are formated into blocks (for 2D data) and lines (for 1D or 2D

data), then further

// nesting levels are formatted into columns. Also tag dispatching is used

in order to define

// various sorts of behavior. Each of these tasks is handled by one of the

following

// subsections.

// {{{2 send_scalar ()

//

// Send a scalar in one of three possible ways: via TextSender ,

BinarySender , or BinfmtSender ,

// depending on which PrintMode tag is passed to the function.

template <typename T>

void send_scalar(std:: ostream &stream , const T &arg , ModeText) {

TextSender <T>:: send(stream , arg);

}

template <typename T>

void send_scalar(std:: ostream &stream , const T &arg , ModeBinary) {

BinarySender <T>:: send(stream , arg);

}

template <typename T>

void send_scalar(std:: ostream &stream , const T &, ModeBinfmt) {

BinfmtSender <T>:: send(stream);

}
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// }}}2

// {{{2 deref_and_print ()

//

// Dereferences and prints the given range (iterator). At this point we are

done with treating

// containers as blocks (for 2D data) and lines (for 1D or 2D data). Any

further levels of

// nested containers will at this point be treated as columns.

// If arg is not a container , then print it via send_scalar ().

template <typename T, typename PrintMode >

typename boost :: disable_if_c <T:: is_container >:: type

deref_and_print(std:: ostream &stream , const T &arg , PrintMode) {

const typename T:: value_type &v = arg.deref();

send_scalar(stream , v, PrintMode ());

}

// If arg is a container (but not a PairOfRange or VecOfRange , which are

handled below) then

// treat the contents as columns , iterating over the contents recursively.

If outputting in

// text mode , put a space between columns.

template <typename T, typename PrintMode >

typename boost :: enable_if_c <T:: is_container >:: type

deref_and_print(std:: ostream &stream , const T &arg , PrintMode) {

if (arg.is_end ()) throw plotting_empty_container ();

typename T:: subiter_type subrange = arg.deref_subiter ();

if (PrintMode :: is_binfmt && subrange.is_end ()) throw

plotting_empty_container ();

if (debug_array_print && PrintMode :: is_text) stream << "{";

bool first = true;

while (! subrange.is_end ()) {

if (!first && PrintMode :: is_text) stream << " ";

first = false;

deref_and_print(stream , subrange , PrintMode ());

subrange.inc();

}

if (debug_array_print && PrintMode :: is_text) stream << "}";

}

// PairOfRange is treated as columns. In text mode , put a space between

columns.

template <typename T, typename U, typename PrintMode >

void deref_and_print(std:: ostream &stream , const PairOfRange <T, U> &arg ,

PrintMode) {

deref_and_print(stream , arg.l, PrintMode ());

if (PrintMode :: is_text) stream << " ";

deref_and_print(stream , arg.r, PrintMode ());

}

// VecOfRange is treated as columns. In text mode , put a space between

columns.

template <typename T, typename PrintMode >
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void deref_and_print(std:: ostream &stream , const VecOfRange <T> &arg ,

PrintMode) {

if (PrintMode :: is_binfmt && arg.rvec.empty()) throw

plotting_empty_container ();

for (size_t i = 0; i<arg.rvec.size(); i++) {

if (i && PrintMode :: is_text) stream << " ";

deref_and_print(stream , arg.rvec[i], PrintMode ());

}

}

// }}}2

// {{{2 print_block ()

//

// Here we format nested containers into blocks (for 2D data) and lines.

Actually , block and

// line formatting is only truely needed for text mode output , but for

uniformity this function

// is also invoked in binary mode (the PrintMode tag determines the output

mode). If the goal

// is to just print the array size or the binary format string , then the

loops exit after the

// first iteration.

//

// The Depth argument tells how deep to recurse. It will be either ‘2‘ for

2D data , formatted

// into blocks and lines , with empty lines between blocks , or ‘1‘ for 1D

data formatted into

// lines but not blocks. Gnuplot only supports 1D and 2D data , but if it

were to support 3D in

// the future (e.g. volume rendering), all that would be needed would be

some trivial changes

// in this section. After Depth number of nested containers have been

recursed into , control

// is passed to deref_and_print (), which treats any further nested

containers as columns.

// Depth ==1 and we are not asked to print the size of the array. Send each

element of the

// range to deref_and_print () for further processing into columns.

template <size_t Depth , typename T, typename PrintMode >

typename boost :: enable_if_c <( Depth == 1) && !PrintMode ::is_size >:: type

print_block(std:: ostream &stream , T &arg , PrintMode) {

if (PrintMode :: is_binfmt && arg.is_end ()) throw

plotting_empty_container ();

for (; !arg.is_end (); arg.inc()) {

// print_entry(arg.deref());

deref_and_print(stream , arg , PrintMode ());

// If asked to print the binary format string , only the first

element needs to be

// looked at.

if (PrintMode :: is_binfmt) break;

if (PrintMode :: is_text) stream << std::endl;

}

}
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// Depth >1 and we are not asked to print the size of the array. Loop over

the range and

// recurse into print_block () with Depth -> Depth -1.

template <size_t Depth , typename T, typename PrintMode >

typename boost :: enable_if_c <(Depth >1) && !PrintMode ::is_size >:: type

print_block(std:: ostream &stream , T &arg , PrintMode) {

if (PrintMode :: is_binfmt && arg.is_end ()) throw

plotting_empty_container ();

bool first = true;

for (; !arg.is_end (); arg.inc()) {

if (first) {

first = false;

}

else {

if (PrintMode :: is_text) stream << std::endl;

}

if (debug_array_print && PrintMode :: is_text) stream << "<block >" <<

std::endl;

if (arg.is_end ()) throw plotting_empty_container ();

typename T:: subiter_type sub = arg.deref_subiter ();

print_block <Depth - 1>(stream , sub , PrintMode ());

// If asked to print the binary format string , only the first

element needs to be

// looked at.

if (PrintMode :: is_binfmt) break;

}

}

// Determine how many elements are in the given range. Used in the

functions below.

template <typename T>

size_t get_range_size(const T &arg) {

// FIXME - not the fastest way. Implement a size() method for range.

size_t ret = 0;

for (T i = arg; !i.is_end (); i.inc()) ++ret;

return ret;

}

// Depth ==1 and we are asked to print the size of the array.

template <size_t Depth , typename T, typename PrintMode >

typename boost :: enable_if_c <( Depth == 1) && PrintMode ::is_size >:: type

print_block(std:: ostream &stream , T &arg , PrintMode) {

stream << get_range_size(arg);

}

// Depth >1 and we are asked to print the size of the array.

template <size_t Depth , typename T, typename PrintMode >

typename boost :: enable_if_c <(Depth >1) && PrintMode ::is_size >:: type

print_block(std:: ostream &stream , T &arg , PrintMode) {

if (arg.is_end ()) throw plotting_empty_container ();

// It seems that size for two dimensional arrays needs the fastest

varying index first ,

// contrary to intuition. The gnuplot documentation is not too clear on

this point.
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typename T:: subiter_type sub = arg.deref_subiter ();

print_block <Depth - 1>(stream , sub , PrintMode ());

stream << "," << get_range_size(arg);

}

// }}}2

// {{{2 handle_colunwrap_tag ()

//

// If passed the ColUnwrapYes then treat the outermost nested container as

columns by calling

// get_columns_range (). Otherwise just call get_range (). The range

iterator is then passed to

// print_block () for further processing.

template <size_t Depth , typename T, typename PrintMode >

void handle_colunwrap_tag(std:: ostream &stream , const T &arg , ColUnwrapNo ,

PrintMode) {

GNUPLOT_STATIC_ASSERT_MSG(ArrayTraits <T>:: depth >= Depth , "container not

deep enough");

typename ArrayTraits <T>:: range_type range =

ArrayTraits <T>:: get_range(arg);

print_block <Depth >(stream , range , PrintMode ());

}

template <size_t Depth , typename T, typename PrintMode >

void handle_colunwrap_tag(std:: ostream &stream , const T &arg , ColUnwrapYes ,

PrintMode) {

GNUPLOT_STATIC_ASSERT_MSG(ArrayTraits <T>:: depth >= Depth + 1, "container

not deep enough");

VecOfRange <typename ArrayTraits <T>:: range_type :: subiter_type > cols =

get_columns_range(arg);

print_block <Depth >(stream , cols , PrintMode ());

}

// }}}2

// {{{2 handle_organization_tag ()

//

// Parse the OrganizationMode tag then forward to handle_colunwrap_tag () for

further

// processing. If passed the Mode1D or Mode2D tags , then set Depth=1 or

Depth =2. If passed

// Mode {1,2} DUnwrap then use the ColUnwrapYes tag. If passed ModeAuto

(which is for legacy

// support) then use ModeAutoDecoder to guess which of Mode1D , Mode2D , etc.

should be used.

template <typename T, typename PrintMode >

void handle_organization_tag(std:: ostream &stream , const T &arg , Mode1D ,

PrintMode) {

handle_colunwrap_tag <1>(stream , arg , ColUnwrapNo (), PrintMode ());

}

template <typename T, typename PrintMode >
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void handle_organization_tag(std:: ostream &stream , const T &arg , Mode2D ,

PrintMode) {

handle_colunwrap_tag <2>(stream , arg , ColUnwrapNo (), PrintMode ());

}

template <typename T, typename PrintMode >

void handle_organization_tag(std:: ostream &stream , const T &arg ,

Mode1DUnwrap , PrintMode) {

handle_colunwrap_tag <1>(stream , arg , ColUnwrapYes (), PrintMode ());

}

template <typename T, typename PrintMode >

void handle_organization_tag(std:: ostream &stream , const T &arg ,

Mode2DUnwrap , PrintMode) {

handle_colunwrap_tag <2>(stream , arg , ColUnwrapYes (), PrintMode ());

}

template <typename T, typename PrintMode >

void handle_organization_tag(std:: ostream &stream , const T &arg , ModeAuto ,

PrintMode) {

handle_organization_tag(stream , arg , typename

ModeAutoDecoder <T>:: mode(), PrintMode ());

}

// }}}2

// The entry point for the processing defined in this section. It just

forwards immediately to

// handle_organization_tag (). This function is only here to give a sane

name to the entry

// point.

//

// The allowed values for the OrganizationMode and PrintMode tags are

defined in the beginning

// of this section.

template <typename T, typename OrganizationMode , typename PrintMode >

void top_level_array_sender(std:: ostream &stream , const T &arg ,

OrganizationMode , PrintMode) {

handle_organization_tag(stream , arg , OrganizationMode (), PrintMode ());

}

// }}}1

// {{{1 FileHandleWrapper

// This holds the file handle that gnuplot commands will be sent to. The

purpose of this

// wrapper is twofold:

// 1. It allows storing the FILE* before it gets passed to the

boost:: iostreams :: stream

// constructor (which is a base class of the main Gnuplot class). This

is accomplished

// via multiple inheritance as described at

http :// stackoverflow.com/a/3821756/1048959
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// 2. It remembers whether the handle needs to be closed via fclose or

pclose.

struct FileHandleWrapper {

FileHandleWrapper(std::FILE *_fh , bool _should_use_pclose) :

wrapped_fh(_fh), should_use_pclose(_should_use_pclose) { }

void fh_close () {

if (should_use_pclose) {

if (GNUPLOT_PCLOSE(wrapped_fh)) {

std::cerr << "pclose returned error" << std::endl;

}

}

else {

if (fclose(wrapped_fh)) {

std::cerr << "fclose returned error" << std::endl;

}

}

}

int fh_fileno () {

return GNUPLOT_FILENO(wrapped_fh);

}

std::FILE *wrapped_fh;

bool should_use_pclose;

};

// }}}1

// {{{1 Main class

class Gnuplot :

// Some setup needs to be done before obtaining the file descriptor that

gets passed to

// boost:: iostreams :: stream. This is accomplished by using a multiple

inheritance trick ,

// as described at http :// stackoverflow.com/a/3821756/1048959

private FileHandleWrapper ,

public boost :: iostreams ::stream <boost:: iostreams :: file_descriptor_sink >

{

private:

static std:: string get_default_cmd () {

GNUPLOT_MSVC_WARNING_4996_PUSH

char *from_env = std:: getenv("GNUPLOT_IOSTREAM_CMD");

GNUPLOT_MSVC_WARNING_4996_POP

if (from_env && from_env [0]) {

return from_env;

}

else {

return GNUPLOT_DEFAULT_COMMAND;

}

}

static FileHandleWrapper open_cmdline(const std:: string &in) {

std:: string cmd = in.empty () ? get_default_cmd () : in;
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assert (!cmd.empty());

if (cmd [0] == ’>’) {

std:: string fn = cmd.substr (1);

GNUPLOT_MSVC_WARNING_4996_PUSH

FILE *fh = std:: fopen(fn.c_str(), "w");

GNUPLOT_MSVC_WARNING_4996_POP

if (!fh) throw(std:: ios_base :: failure("cannot open file " +

fn));

return FileHandleWrapper(fh, false);

}

else {

FILE *fh = GNUPLOT_POPEN(cmd.c_str(), "w");

if (!fh) throw(std:: ios_base :: failure("cannot open pipe " +

cmd));

return FileHandleWrapper(fh, true);

}

}

public:

explicit Gnuplot(const std:: string &_cmd = "") :

FileHandleWrapper(open_cmdline(_cmd)),

boost:: iostreams ::stream <boost :: iostreams :: file_descriptor_sink >(

fh_fileno (),

#if BOOST_VERSION >= 104400

boost:: iostreams :: never_close_handle

#else

false

#endif

),

feedback(NULL),

tmp_files (),

debug_messages(false)

{

*this << std:: scientific << std:: setprecision (18); // refer

<iomanip >

}

explicit Gnuplot(FILE *_fh) :

FileHandleWrapper(_fh , 0),

boost:: iostreams ::stream <boost :: iostreams :: file_descriptor_sink >(

fh_fileno (),

#if BOOST_VERSION >= 104400

boost:: iostreams :: never_close_handle

#else

false

#endif

),

feedback(NULL),

tmp_files (),

debug_messages(false)

{

*this << std:: scientific << std:: setprecision (18); // refer

<iomanip >

}
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private:

// noncopyable

Gnuplot(const Gnuplot &);

const Gnuplot& operator =(const Gnuplot &);

public:

~Gnuplot () {

if (debug_messages) {

std::cerr << "ending gnuplot session" << std::endl;

}

// FIXME - boost’s close method calls close() on the file

descriptor , but we need to

// use sometimes use pclose instead. For now , just skip calling

boost’s close and use

// flush just in case.

do_flush ();

// Wish boost had a pclose method ...

//close ();

fh_close ();

delete feedback;

}

void clearTmpfiles () {

// destructors will cause deletion

tmp_files.clear();

}

private:

void do_flush () {

*this << std::flush;

fflush(wrapped_fh);

}

std:: string make_tmpfile () {

#ifdef GNUPLOT_USE_TMPFILE

boost:: shared_ptr <GnuplotTmpfile > tmp_file(new GnuplotTmpfile ());

// The file will be removed once the pointer is removed from the

// tmp_files container.

tmp_files.push_back(tmp_file);

return tmp_file ->file.string ();

#else

throw(std:: logic_error("no filename given and temporary files not

enabled"));

#endif // GNUPLOT_USE_TMPFILE

}

public:

// {{{2 Generic sender routines.

//

// These are declared public , but are undocumented. It is recommended

to use the functions in
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// the next section , which serve as adapters that pass specific values

for the OrganizationMode

// tag.

template <typename T, typename OrganizationMode >

Gnuplot &send(const T &arg , OrganizationMode) {

top_level_array_sender (*this , arg , OrganizationMode (), ModeText ());

*this << "e" << std::endl; // gnuplot ’s "end of array" token

do_flush (); // probably not really needed , but doesn ’t hurt

return *this;

}

template <typename T, typename OrganizationMode >

Gnuplot &sendBinary(const T &arg , OrganizationMode) {

top_level_array_sender (*this , arg , OrganizationMode (), ModeBinary ());

do_flush (); // probably not really needed , but doesn ’t hurt

return *this;

}

template <typename T, typename OrganizationMode >

std:: string binfmt(const T &arg , const std:: string &arr_or_rec ,

OrganizationMode) {

assert (( arr_or_rec == "array") || (arr_or_rec == "record"));

std:: string ret;

try {

std:: ostringstream tmp;

tmp << " format=’";

top_level_array_sender(tmp , arg , OrganizationMode (),

ModeBinfmt ());

tmp << "’ " << arr_or_rec << "=(";

top_level_array_sender(tmp , arg , OrganizationMode (), ModeSize ());

tmp << ")";

tmp << " ";

ret = tmp.str();

}

catch (const plotting_empty_container &) {

ret = std:: string(" format=’’ ") + arr_or_rec + "=(0) ";

}

return ret;

}

// NOTE: empty filename makes temporary file

template <typename T, typename OrganizationMode >

std:: string file(const T &arg , std:: string filename , OrganizationMode) {

if (filename.empty()) filename = make_tmpfile ();

std:: fstream tmp_stream(filename.c_str (), std:: fstream ::out);

top_level_array_sender(tmp_stream , arg , OrganizationMode (),

ModeText ());

tmp_stream.close ();

std:: ostringstream cmdline;

// FIXME - hopefully filename doesn’t contain quotes or such ...

cmdline << " ’" << filename << "’ ";

return cmdline.str();

}
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// NOTE: empty filename makes temporary file

template <typename T, typename OrganizationMode >

std:: string binaryFile(const T &arg , std:: string filename , const

std:: string &arr_or_rec , OrganizationMode) {

if (filename.empty()) filename = make_tmpfile ();

std:: fstream tmp_stream(filename.c_str (), std:: fstream ::out |

std:: fstream :: binary);

top_level_array_sender(tmp_stream , arg , OrganizationMode (),

ModeBinary ());

tmp_stream.close ();

std:: ostringstream cmdline;

// FIXME - hopefully filename doesn’t contain quotes or such ...

cmdline << " ’" << filename << "’ binary" << binfmt(arg , arr_or_rec ,

OrganizationMode ());

return cmdline.str();

}

// }}}2

// {{{2 Deprecated data sending interface that guesses an appropriate

OrganizationMode. This is here

// for reverse compatibility. Don’t use it. A warning will be printed

if

// GNUPLOT_DEPRECATE_WARN is defined.

template <typename T> Gnuplot GNUPLOT_DEPRECATE("use send1d or send2d")

&send(const T &arg) { return send(arg , ModeAuto ()); }

template <typename T> std:: string GNUPLOT_DEPRECATE("use binfmt1d or

binfmt2d")

binfmt(const T &arg , const std:: string &arr_or_rec = "array")

{

return binfmt(arg , arr_or_rec , ModeAuto ());

}

template <typename T> Gnuplot GNUPLOT_DEPRECATE("use sendBinary1d or

sendBinary2d")

&sendBinary(const T &arg) { return sendBinary(arg , ModeAuto ()); }

template <typename T> std:: string GNUPLOT_DEPRECATE("use file1d or

file2d")

file(const T &arg , const std:: string &filename = "")

{

return file(arg , filename , ModeAuto ());

}

template <typename T> std:: string GNUPLOT_DEPRECATE("use binArr1d or

binArr2d")

binaryFile(const T &arg , const std:: string &filename = "", const

std:: string &arr_or_rec = "array")

{

return binaryFile(arg , filename , arr_or_rec , ModeAuto ());

}
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// }}}2

// {{{2 Public (documented) data sending interface.

//

// It seems odd to define 16 different functions , but I think this ends

up being the most

// convenient in terms of usage by the end user.

template <typename T> Gnuplot &send1d(const T &arg) { return send(arg ,

Mode1D ()); }

template <typename T> Gnuplot &send2d(const T &arg) { return send(arg ,

Mode2D ()); }

template <typename T> Gnuplot &send1d_colmajor(const T &arg) { return

send(arg , Mode1DUnwrap ()); }

template <typename T> Gnuplot &send2d_colmajor(const T &arg) { return

send(arg , Mode2DUnwrap ()); }

template <typename T> Gnuplot &sendBinary1d(const T &arg) { return

sendBinary(arg , Mode1D ()); }

template <typename T> Gnuplot &sendBinary2d(const T &arg) { return

sendBinary(arg , Mode2D ()); }

template <typename T> Gnuplot &sendBinary1d_colmajor(const T &arg) {

return sendBinary(arg , Mode1DUnwrap ()); }

template <typename T> Gnuplot &sendBinary2d_colmajor(const T &arg) {

return sendBinary(arg , Mode2DUnwrap ()); }

template <typename T> std:: string file1d(const T &arg , const std:: string

&filename = "") { return file(arg , filename , Mode1D ()); }

template <typename T> std:: string file2d(const T &arg , const std:: string

&filename = "") { return file(arg , filename , Mode2D ()); }

template <typename T> std:: string file1d_colmajor(const T &arg , const

std:: string &filename = "") { return file(arg , filename ,

Mode1DUnwrap ()); }

template <typename T> std:: string file2d_colmajor(const T &arg , const

std:: string &filename = "") { return file(arg , filename ,

Mode2DUnwrap ()); }

template <typename T> std:: string binFmt1d(const T &arg , const

std:: string &arr_or_rec) { return binfmt(arg , arr_or_rec , Mode1D ());

}

template <typename T> std:: string binFmt2d(const T &arg , const

std:: string &arr_or_rec) { return binfmt(arg , arr_or_rec , Mode2D ());

}

template <typename T> std:: string binFmt1d_colmajor(const T &arg , const

std:: string &arr_or_rec) { return binfmt(arg , arr_or_rec ,

Mode1DUnwrap ()); }

template <typename T> std:: string binFmt2d_colmajor(const T &arg , const

std:: string &arr_or_rec) { return binfmt(arg , arr_or_rec ,

Mode2DUnwrap ()); }

template <typename T> std:: string binFile1d(const T &arg , const

std:: string &arr_or_rec , const std:: string &filename = "") { return

binaryFile(arg , filename , arr_or_rec , Mode1D ()); }
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template <typename T> std:: string binFile2d(const T &arg , const

std:: string &arr_or_rec , const std:: string &filename = "") { return

binaryFile(arg , filename , arr_or_rec , Mode2D ()); }

template <typename T> std:: string binFile1d_colmajor(const T &arg , const

std:: string &arr_or_rec , const std:: string &filename = "") { return

binaryFile(arg , filename , arr_or_rec , Mode1DUnwrap ()); }

template <typename T> std:: string binFile2d_colmajor(const T &arg , const

std:: string &arr_or_rec , const std:: string &filename = "") { return

binaryFile(arg , filename , arr_or_rec , Mode2DUnwrap ()); }

// }}}2

#ifdef GNUPLOT_ENABLE_FEEDBACK

public:

// Input variables are set to the mouse position and button. If the

gnuplot

// window is closed , button -1 is returned. The msg parameter is the

prompt

// that is printed to the console.

void getMouse(

double &mx, double &my , int &mb,

std:: string msg = "Click Mouse!"

) {

allocFeedback ();

*this << "set mouse" << std::endl;

*this << "pause mouse \"" << msg << "\\n\"" << std::endl;

*this << "if (exists (\" MOUSE_X \")) print MOUSE_X , MOUSE_Y ,

MOUSE_BUTTON; else print 0, 0, -1;" << std::endl;

if (debug_messages) {

std::cerr << "begin scanf" << std::endl;

}

if (3 != fscanf(feedback ->handle (), "%50lf %50lf %50d", &mx, &my,

&mb)) {

throw std:: runtime_error("could not parse reply");

}

if (debug_messages) {

std::cerr << "end scanf" << std::endl;

}

}

private:

void allocFeedback () {

if (! feedback) {

#ifdef GNUPLOT_ENABLE_PTY

feedback = new GnuplotFeedbackPty(debug_messages);

//#elif defined GNUPLOT_USE_TMPFILE

//// Currently this doesn’t work since fscanf doesn’t block

(need something like "tail -f")

// feedback = new

GnuplotFeedbackTmpfile(debug_messages);

#else

// This shouldn ’t happen because we are in an ‘#ifdef

GNUPLOT_ENABLE_FEEDBACK ‘
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// block which should only be activated if GNUPLOT_ENABLE_PTY is

defined.

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "No feedback

mechanism defined.");

#endif

*this << "set print \"" << feedback ->filename () << "\"" <<

std::endl;

}

}

#endif // GNUPLOT_ENABLE_FEEDBACK

private:

GnuplotFeedback *feedback;

#ifdef GNUPLOT_USE_TMPFILE

std::vector <boost ::shared_ptr <GnuplotTmpfile > > tmp_files;

#else

// just a placeholder

std::vector <int > tmp_files;

#endif // GNUPLOT_USE_TMPFILE

public:

bool debug_messages;

};

// }}}1

} // namespace gnuplotio

// The first version of this library didn’t use namespaces , and now this must

be here forever

// for reverse compatibility.

using gnuplotio :: Gnuplot;

#endif // GNUPLOT_IOSTREAM_H

// {{{1 Support for 3rd party array libraries

// {{{2 Blitz support

// This is outside of the main header guard so that it will be compiled when

people do

// something like this:

// #include "gnuplot -iostream.h"

// #include <blitz/array.h>

// #include "gnuplot -iostream.h"

// Note that it has its own header guard to avoid double inclusion.

#ifdef BZ_BLITZ_H

#ifndef GNUPLOT_BLITZ_SUPPORT_LOADED

#define GNUPLOT_BLITZ_SUPPORT_LOADED

namespace gnuplotio {

template <typename T, int N>

struct BinfmtSender <blitz:: TinyVector <T, N> > {

static void send(std:: ostream &stream) {



Appendix A: Code of the Automated case generator 96

for (int i = 0; i<N; i++) {

BinfmtSender <T>:: send(stream);

}

}

};

template <typename T, int N>

struct TextSender <blitz::TinyVector <T, N> > {

static void send(std:: ostream &stream , const blitz::TinyVector <T, N> &v)

{

for (int i = 0; i<N; i++) {

if (i) stream << " ";

TextSender <T>:: send(stream , v[i]);

}

}

};

template <typename T, int N>

struct BinarySender <blitz:: TinyVector <T, N> > {

static void send(std:: ostream &stream , const blitz::TinyVector <T, N> &v)

{

for (int i = 0; i<N; i++) {

BinarySender <T>:: send(stream , v[i]);

}

}

};

class Error_WasBlitzPartialSlice { };

template <typename T, int ArrayDim , int SliceDim >

class BlitzIterator {

public:

BlitzIterator () : p(NULL) { }

BlitzIterator(

const blitz::Array <T, ArrayDim > *_p,

const blitz::TinyVector <int , ArrayDim > _idx

) : p(_p), idx(_idx) { }

typedef Error_WasBlitzPartialSlice value_type;

typedef BlitzIterator <T, ArrayDim , SliceDim - 1> subiter_type;

static const bool is_container = true;

// FIXME - it would be nice to also handle one -based arrays

bool is_end () const {

return idx[ArrayDim - SliceDim] == p->shape()[ArrayDim - SliceDim ];

}

void inc() {

++idx[ArrayDim - SliceDim ];

}

value_type deref() const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "cannot deref a blitz

slice");
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throw std:: logic_error("static assert should have been triggered by

this point");

}

subiter_type deref_subiter () const {

return BlitzIterator <T, ArrayDim , SliceDim - 1>(p, idx);

}

private:

const blitz::Array <T, ArrayDim > *p;

blitz:: TinyVector <int , ArrayDim > idx;

};

template <typename T, int ArrayDim >

class BlitzIterator <T, ArrayDim , 1> {

public:

BlitzIterator () : p(NULL) { }

BlitzIterator(

const blitz::Array <T, ArrayDim > *_p,

const blitz::TinyVector <int , ArrayDim > _idx

) : p(_p), idx(_idx) { }

typedef T value_type;

typedef Error_WasNotContainer subiter_type;

static const bool is_container = false;

// FIXME - it would be nice to also handle one -based arrays

bool is_end () const {

return idx[ArrayDim - 1] == p->shape()[ArrayDim - 1];

}

void inc() {

++idx[ArrayDim - 1];

}

value_type deref() const {

return (*p)(idx);

}

subiter_type deref_subiter () const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "argument was not a

container");

throw std:: logic_error("static assert should have been triggered by

this point");

}

private:

const blitz::Array <T, ArrayDim > *p;

blitz:: TinyVector <int , ArrayDim > idx;

};

template <typename T, int ArrayDim >

class ArrayTraits <blitz ::Array <T, ArrayDim > > : public

ArrayTraitsDefaults <T> {

public:
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static const bool allow_auto_unwrap = false;

static const size_t depth = ArrayTraits <T>:: depth + ArrayDim;

typedef BlitzIterator <T, ArrayDim , ArrayDim > range_type;

static range_type get_range(const blitz::Array <T, ArrayDim > &arg) {

blitz:: TinyVector <int , ArrayDim > start_idx;

start_idx = 0;

return range_type (&arg , start_idx);

}

};

} // namespace gnuplotio

#endif // GNUPLOT_BLITZ_SUPPORT_LOADED

#endif // BZ_BLITZ_H

// }}}2

// {{{2 Armadillo support

// This is outside of the main header guard so that it will be compiled when

people do

// something like this:

// #include "gnuplot -iostream.h"

// #include <armadillo >

// #include "gnuplot -iostream.h"

// Note that it has its own header guard to avoid double inclusion.

#ifdef ARMA_INCLUDES

#ifndef GNUPLOT_ARMADILLO_SUPPORT_LOADED

#define GNUPLOT_ARMADILLO_SUPPORT_LOADED

namespace gnuplotio {

template <typename T> struct dont_treat_as_stl_container <arma::Row <T> > {

typedef boost::mpl::bool_ <true > type; };

template <typename T> struct dont_treat_as_stl_container <arma::Col <T> > {

typedef boost::mpl::bool_ <true > type; };

template <typename T> struct dont_treat_as_stl_container <arma::Mat <T> > {

typedef boost::mpl::bool_ <true > type; };

template <typename T> struct dont_treat_as_stl_container <arma::Cube <T> > {

typedef boost::mpl::bool_ <true > type; };

template <typename T> struct dont_treat_as_stl_container <arma::field <T> > {

typedef boost::mpl::bool_ <true > type; };

// {{{3 Cube

template <typename T>

class ArrayTraits <arma::Cube <T> > : public ArrayTraitsDefaults <T> {

class SliceRange {

public:

SliceRange () : p(NULL), col (0), slice (0) { }

explicit SliceRange(const arma::Cube <T> *_p, size_t _row , size_t

_col) :

p(_p), row(_row), col(_col), slice (0) { }
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typedef T value_type;

typedef Error_WasNotContainer subiter_type;

static const bool is_container = false;

bool is_end () const { return slice == p->n_slices; }

void inc() { ++ slice; }

value_type deref() const {

return (*p)(row , col , slice);

}

subiter_type deref_subiter () const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "argument was not a

container");

throw std:: logic_error("static assert should have been triggered

by this point");

}

private:

const arma::Cube <T> *p;

size_t row , col , slice;

};

class ColRange {

public:

ColRange () : p(NULL), row (0), col (0) { }

explicit ColRange(const arma::Cube <T> *_p, size_t _row) :

p(_p), row(_row), col (0) { }

typedef T value_type;

typedef SliceRange subiter_type;

static const bool is_container = true;

bool is_end () const { return col == p->n_cols; }

void inc() { ++col; }

value_type deref() const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "can’t call deref on

an armadillo cube col");

throw std:: logic_error("static assert should have been triggered

by this point");

}

subiter_type deref_subiter () const {

return subiter_type(p, row , col);

}

private:

const arma::Cube <T> *p;

size_t row , col;

};

class RowRange {
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public:

RowRange () : p(NULL), row (0) { }

explicit RowRange(const arma::Cube <T> *_p) : p(_p), row(0) { }

typedef T value_type;

typedef ColRange subiter_type;

static const bool is_container = true;

bool is_end () const { return row == p->n_rows; }

void inc() { ++row; }

value_type deref() const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "can’t call deref on

an armadillo cube row");

throw std:: logic_error("static assert should have been triggered

by this point");

}

subiter_type deref_subiter () const {

return subiter_type(p, row);

}

private:

const arma::Cube <T> *p;

size_t row;

};

public:

static const bool allow_auto_unwrap = false;

static const size_t depth = ArrayTraits <T>:: depth + 3;

typedef RowRange range_type;

static range_type get_range(const arma::Cube <T> &arg) {

//std::cout << arg.n_elem << "," << arg.n_rows << "," << arg.n_cols

<< std::endl;

return range_type (&arg);

}

};

// }}}3

// {{{3 Mat and Field

template <typename RF , typename T>

class ArrayTraits_ArmaMatOrField : public ArrayTraitsDefaults <T> {

class ColRange {

public:

ColRange () : p(NULL), row (0), col (0) { }

explicit ColRange(const RF *_p, size_t _row) :

p(_p), row(_row), col (0) { }

typedef T value_type;

typedef Error_WasNotContainer subiter_type;
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static const bool is_container = false;

bool is_end () const { return col == p->n_cols; }

void inc() { ++col; }

value_type deref() const {

return (*p)(row , col);

}

subiter_type deref_subiter () const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "argument was not a

container");

throw std:: logic_error("static assert should have been triggered

by this point");

}

private:

const RF *p;

size_t row , col;

};

class RowRange {

public:

RowRange () : p(NULL), row (0) { }

explicit RowRange(const RF *_p) : p(_p), row (0) { }

typedef T value_type;

typedef ColRange subiter_type;

static const bool is_container = true;

bool is_end () const { return row == p->n_rows; }

void inc() { ++row; }

value_type deref() const {

GNUPLOT_STATIC_ASSERT_MSG (( sizeof(T) == 0), "can’t call deref on

an armadillo matrix row");

throw std:: logic_error("static assert should have been triggered

by this point");

}

subiter_type deref_subiter () const {

return subiter_type(p, row);

}

private:

const RF *p;

size_t row;

};

public:

static const bool allow_auto_unwrap = false;

static const size_t depth = ArrayTraits <T>:: depth + 2;
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typedef RowRange range_type;

static range_type get_range(const RF &arg) {

//std::cout << arg.n_elem << "," << arg.n_rows << "," << arg.n_cols

<< std::endl;

return range_type (&arg);

}

};

template <typename T>

class ArrayTraits <arma::field <T> > : public

ArrayTraits_ArmaMatOrField <arma::field <T>, T> { };

template <typename T>

class ArrayTraits <arma::Mat <T> > : public

ArrayTraits_ArmaMatOrField <arma::Mat <T>, T> { };

// }}}3

// {{{3 Row

template <typename T>

class ArrayTraits <arma::Row <T> > : public ArrayTraitsDefaults <T> {

public:

static const bool allow_auto_unwrap = false;

typedef IteratorRange <typename arma::Row <T>:: const_iterator , T>

range_type;

static range_type get_range(const arma::Row <T> &arg) {

//std::cout << arg.n_elem << "," << arg.n_rows << "," << arg.n_cols

<< std::endl;

return range_type(arg.begin (), arg.end());

}

};

// }}}3

// {{{3 Col

template <typename T>

class ArrayTraits <arma::Col <T> > : public ArrayTraitsDefaults <T> {

public:

static const bool allow_auto_unwrap = false;

typedef IteratorRange <typename arma::Col <T>:: const_iterator , T>

range_type;

static range_type get_range(const arma::Col <T> &arg) {

//std::cout << arg.n_elem << "," << arg.n_rows << "," << arg.n_cols

<< std::endl;

return range_type(arg.begin (), arg.end());

}

};
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// }}}3

} // namespace gnuplotio

#endif // GNUPLOT_ARMADILLO_SUPPORT_LOADED

#endif // ARMA_INCLUDES

// }}}2

// }}}1

Listing 7: Makefile

LIBS = -lboost_filesystem -lboost_system -lboost_thread -lboost_iostreams

CC=g++

PROJECT_NAME=TFG

all:: Main

#GraphModule.o: GraphModule.cpp

# $(CC) -c GraphModule.cpp $(CFLAGS) $(DEFINES) $<

#GPSexercice: GraphModule.o main.cpp

# $(CC) main.cpp GraphModule.o -o GPSexercice $(CFLAGS) $(LIBS)

Point.o: Point.cpp Point.h

$(CC) -c Point.cpp

Graph.o: Graph.cpp Graph.h Point.h

$(CC) -c Graph.cpp

Main: Graph.o Point.o main.cpp

$(CC) main.cpp Graph.o Point.o -o $(PROJECT_NAME) $(LIBS)

clean:

rm -f *.o Main



Appendix B: Code of the

Graphical application

The code and the applications for Android (.apk) and Windows (.exe) can be found in

the following url:

https://drive.google.com/open?id=0B38snCnf398OS0NuN3pEQnl3dzA
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