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Abstract 7 

The seasonal pattern of sediment dynamics on an inner shelf characterized by the presence 8 

of sediment delivered by a small, mountainous river (with a “flash-flood” regime) was 9 

investigated. Near-bottom suspended sediment fluxes across the shelf (i.e. 20, 30 and 40 m 10 

water depth) were estimated using observations from three benthic tripods deployed from 11 

September 2007 to June 2008. Near-bottom sediment resuspension is controlled by wave-12 

induced currents and river-born sediment availability, whereas the shelf currents play a 13 

secondary role. Fourteen sediment transport events were identified (eight in autumn, two in 14 

winter and four in spring), with transport rates according to storm intensity and sediment 15 

availability. These few energetic events induced a large percentage of the cumulative 16 

sediment transport near the bottom. However, the lack of proportionality between suspended 17 

sediment transport rates and the combined wave-current bottom shear stress in some events 18 

highlights the importance of the sequence of events in sediment dynamics. Since wave 19 

activity, hydrography and river discharges display a strong seasonal pattern in the NW 20 

Mediterranean, the resulting sediment dynamics across the shelf also correspond to a 21 

seasonal cycle. This seasonal variability leads to a temporal evolution of the bottom grain 22 

size (coarser in winter) and the near-bottom sediment transport rates (higher in spring and 23 

autumn) which is consistent with the seasonal pattern of the hydrodynamic events and the 24 

river discharge load. 25 
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flood regime; mountainous river; Besòs River.  27 
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1. Introduction 28 

The influence of river floods and storms on sediment delivery and reworking has been 29 

recognized in many recent studies of river-dominated continental shelves, where river inputs 30 

and storm waves have been found to be the dominant forcing mechanisms of sediment 31 

dynamics (e.g. Cacchione et al., 1995; Ogston and Stemberg, 1999; Sherwood et al., 1994). 32 

In small-river systems (drainage basins <104 km2), where most of the annual sediment load 33 

is discharged during episodic events, the short duration of floods can lead synoptic-scale 34 

(days to weeks) meteorological forcing to have a more important role in the fate of the 35 

sediment discharged onto the continental shelf (Bever et al., 2011; Geyer et al., 2000). 36 

Discharged sediment from small-river floods can remain close to the river mouth on shelves 37 

with micro-tidal conditions and moderate significant wave heights. In these cases, sediments 38 

that are deposited nearshore can be subsequently resuspended and transported to distal 39 

portions of the system when shear stresses become sufficiently high (Grifoll et al., 2014; 40 

Guillén et al., 2006). The suspended load is then the main sediment transport mechanism 41 

resulting in sediment winnowing and erosion across the shelf (Allison et al. 2000; Grifoll et 42 

al., 2013_1).  43 

The NW Mediterranean Sea is a micro-tidal and low-energy system from the wave climate 44 

perspective. Floods and storm-generated wave effects on coastal sediment resuspension 45 

and transport on the shelf have been emphasized by several studies on the Ebro continental 46 

shelf (Guillén et al., 2002; Jiménez et al., 1999; Palanques et al., 2002; Puig et al., 2001) and 47 

on other shelves of the northwestern Mediterranean (Dufois et al., 2014; Ferré et al., 2005; 48 

Guillén et al., 2006; Palanques et al., 2011; Roussiez et al., 2005; Ulses et al., 2008). These 49 

investigations revealed that wave-induced bottom shear stress is generally the main stirring 50 

factor for sediment resuspension and transport and is mainly effective in the inner shelf 51 

region. However, strong storm waves could also resuspend fine-grained sediments from the 52 

mid-shelf and transport them off-shelf (Puig et al., 2001; Simarro et al., 2015). The along-53 

shelf sediment fluxes are dominant during most of the time on NW Mediterranean continental 54 

shelves (Grifoll et al., 2013_1; Palanques et al., 2002), although it has been reported that 55 

extreme floods and storms in the Gulf of Lions can lead to across- and along-shelf sediment 56 

transport of about the same order of magnitude (Bourrin et al., 2008; Palanques et al., 2011; 57 

Ulses et al., 2008). The resulting surface sediment distribution and the location of the 58 

prodeltaic mud deposits have been observed to be coherent with the hydrodynamic 59 

processes and induced near-bottom sediment fluxes. The finest sediment accumulates 60 

mainly on the mid-shelf, where the lowest mean combined wave-current shear stresses 61 

occur, whereas on the inner shelf some mud accumulates but is frequently resuspended due 62 
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to the high combined wave-current shear stresses occurring in this region (Grifoll et al., 2014; 63 

Palanques et al., 2002).  64 

As yet, few studies have addressed sediment dynamics on continental shelves off a “small” 65 

Mediterranean river system (e.g. the Têt River in the Gulf of Lions: Bourrin et al., 2008; 66 

Guillén et al., 2006). Guillén et al. (2006) differentiated episodes of sediment dispersal on the 67 

inner shelf of the Têt River during “wet storms”, when storm conditions coincide with local 68 

precipitation and elevated river discharge, and “dry storms”, when storm waves occur in the 69 

absence of significant river discharge. The main differences between the wet and dry storms 70 

arose after the storm. This “small” Mediterranean river system allows the deposition of fine-71 

grained particulate material near the river mouth during flood events as ephemeral layers. 72 

Their location above the storm wave base make them subjected to regular resuspension 73 

events that transport these fine materials further offshore. Further, Bourrin et al. (2008) 74 

analysed sediment dynamics from a flood event with a five-year return interval in the Têt 75 

River basin and on the adjacent inner shelf of the Gulf of Lions. Their results show that floods 76 

with a few-year return interval in small coastal rivers can play a significant role in the 77 

transport of sediments on microtidal continental margins and their export from the shelf 78 

through canyons. However, no study has been published on seasonal characterization of 79 

sediment dynamics in a “small” Mediterranean river system.  80 

The present study investigates sediment dynamics in the shelf and quantifies sediment 81 

transport on a micro-tidal inner shelf influenced by a small Mediterranean river, the Besòs 82 

River (Barcelona, NW Mediterranean Sea – Figure 1). In particular, this study focuses on the 83 

effect of floods and storms on sediment dynamics over a year, emphasizing in the 84 

characteristics of the forcing conditions during sediment transport events and their frequency 85 

and distribution along the seasons of the year (i.e. the seasonal variability of near-bottom 86 

sediment transport).  87 

The paper is organized as follows. Section 2 introduces the study area characteristics and 88 

the methods used to obtain the data analysed thereafter. Section 3 includes the analysis of 89 

the meteo-oceanographic forcing conditions and the momentum terms in both along- and 90 

across-shelf directions; we examine the seasonal variation at a point where water velocity 91 

data are available (near-bottom at 20, 30 and 40 m water depth) and the variability of the 92 

bottom sediment grain size and seabed level in response to these meteo-oceanographic 93 

conditions throughout the study period. Section 4 considers the representativeness of the 94 

results, and in particular the way in which sediment dynamics respond to different forcing 95 
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mechanisms and the role played by stratification. Finally, in Section 5, we present some 96 

conclusions on the seasonal sediment dynamics patterns off a small Mediterranean river 97 

system obtained from the analysis in Section 4.  98 
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2. Methods 99 

Study area 100 

The Besòs River is a short river with a mountainous basin of 1029 km2 and its main course 101 

flows north-south along 52 km from the Catalan Coastal Ranges to the Mediterranean Sea. 102 

Its water discharge is variable, with higher values in spring and autumn and minimum values 103 

in summer (Liquete et al., 2009; Palanques and Díaz, 1993). Mean water discharge between 104 

1968 and 2008 was 6.8 m3/s at the gauging station located 2.8 km upstream from the river 105 

mouth, where the maximum water discharge of 270 m3/s was measured on 9 May 1991 106 

(Liquete et al., 2009). The sediment load in the lower part of this river is affected seasonally 107 

by relatively intense rains (Palanques, 1994). The sandy sediment developed a small delta 108 

plain and the fine sediment developed the prodelta (Checa et al., 1988). The Besòs River 109 

annual sediment discharge, averaging 15000 t/year, forms a delta of 8.3 km2 with a coastal 110 

development of 7.6 km shifted southwestwards from the river mouth as a result of the 111 

dominant littoral circulation (Liquete et al., 2007).  112 

Statistical analysis of wave conditions in the region from 1984 to 2004 showed a mean 113 

significant wave height value (Hs) of 0.70 m, an Hs maximum of 4.61, a maximum wave 114 

height of 7.80 m and an averaged mean period of 4.29 s (Gómez et al., 2005). Storms occur 115 

mainly from October to April and the most important ones are those coming from the east, 116 

due to the combination of the coastal orientation and the Mediterranean climate (Bolaños et 117 

al., 2008; Sánchez-Arcilla et al., 2008). The winds are characterized by little inter-annual 118 

variability (Cerralbo et al., 2015; Font, 1990). The predominant winds come primarily in 119 

autumn and winter from the north and northwest, where their energy is concentrated in low 120 

frequencies associated with low-pressure systems, which in this area of the NW 121 

Mediterranean Sea corresponds to 3-12 days. In summer and spring, the dominant winds are 122 

southwesterly, with the dominant frequencies being the low-pressure systems and diurnal 123 

(sea breeze) bands (Cerralbo et al., 2015; Font, 1990). On the inner part of the shelf, the 124 

frictional forces tend to prevail, leading to a predominance of depth-averaged along-shelf 125 

flows over depth-averaged across-shelf flows; the depth-averaged along-shelf flow variability 126 

is driven basically by local wind-forcing and remote sea level gradients, and is influenced by 127 

water column stratification and rapid pulses of river discharge (Grifoll et al., 2012; 2013_2). 128 

The tidal range is lower than 0.2 m. 129 

The Barcelona continental shelf is a narrow shelf (6–20 km) with the shelf break at 110–120 130 

m depth (ITGE, 1989). The Llobregat and Besòs Rivers provide the main sediment supply, 131 
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which tends to be transported southwestward due to the action of the dominant along-shelf 132 

current (Flexas et al., 2002; Font et al., 1995; Rubio et al., 2005). The monitoring of sediment 133 

dynamics in the coastal zone of Barcelona reveals frequent resuspension of bottom sediment 134 

caused by waves during storms (Antonijuan et al., 2012; Grifoll et al., 2013_1), and only the 135 

finest fractions can be transferred to the slope and beyond through permanent nepheloid 136 

layers (Palanques et al., 2008; Puig and Palanques, 1998). The sediment distribution 137 

therefore has the same characteristics as other Mediterranean shelves that receive 138 

significant discharges from rivers (Liquete et al., 2010; Palanques et al 1990; Palanques and 139 

Díaz, 1994; Puig et al., 1999): (1) medium- to well-sorted sand (0.25 mm) in less than 15 to 140 

20 m water depth; (2) mostly silt and clay (0.0078 to 0.0039 mm) distributed to the south 141 

from the mouth of the Besòs River between 20 and 60 m depth; and (3) biogenic relict silty 142 

sand (0.0625 to 0.125 mm), which covers the shelf from 60 m depth to the continental slope. 143 

Liquete et al. (2007) recognized two main morphosedimentary domains: a modern, river-144 

influenced area and a relict, sediment-depleted area. The modern, river-influenced shelf 145 

includes the Llobregat and Besòs adjacent prodeltas, which represent the main Holocene 146 

depocenter in the area located between 30 and 60 m water depth. 147 

  148 

 149 

Figure 1. Maps of the Barcelona continental shelf showing the study area and the position of the benthic tripods 150 
deployed: T20 at 20 m water depth, T30 at 30 m depth and T40 at 40 m depth. The map projection is UTM zone 151 
31N datum ED50. 152 

Data collection 153 

Three benthic tripods were deployed on the Barcelona continental shelf at 20, 30 and 40 m 154 

water depths (Figure 1) during the four SEDMET field cruises carried out from September 155 

2007 to June 2008 aboard the R/V García del Cid and the R/V Sarmiento de Gamboa. Each 156 

tripod was equipped with several sensors and instruments: an Aanderaa Doppler current 157 

meter (RCM-9) coupled with a pressure sensor and an Aanderaa optical backscatter 158 

Formatat: anglès (EUA)

Comentari [LL1]: Es demasiado 
pequeña? 
No se apreciaba todo en una figura y he 
hecho dos y como mejor quedan es de lado 
pero quizás es muy pequeña!! 
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turbidimeter placed at 0.53 metres above bottom (mab) and a NKE ALTUS altimeter placed 159 

at 0.22 mab. In addition, a set of vertical hydrographic profiles, surficial and near-bottom 160 

water samples and bottom sediment samples were obtained along the tripod transect during 161 

the deployments. The hydrographic profiles were made using a Sea-Bird SBE 9 CTD 162 

coupled with a Seapoint turbidimeter and a set of Niskin bottles. Data collection was carried 163 

out in one day in order to obtain a quasi-simultaneous picture of the hydrographic and 164 

nepheloid structures. Sediment samples were collected with a small box corer with one 165 

acrylic cylindrical core tube (inner diameter = 135 mm) designed to obtain an undisturbed 166 

sediment core with a maximum length of 30 cm. 167 

The first deployment was carried out at the beginning of autumn (27–29 September 2007) to 168 

define the initial conditions of the system in terms of hydrography and bottom sediment 169 

characteristics. The second and third deployments (28–30 November 2007 and 28–29 170 

February 2008, respectively) were scheduled to perform equipment maintenance tasks and 171 

to collect representative samples of the bottom sediment and the hydrographic structure of 172 

autumn and winter, respectively. Finally, on 19 June 2008 the equipment was recovered and 173 

the bottom sediment sampling and hydrographic profiles were performed to characterize the 174 

area at the end of the spring season, which corresponded to the end of the study period. The 175 

field data recovered in each deployment are listed in Table 1.  176 
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FIELD DATA SEDMET-I  
(27/09/07) 

SEDMET-II 
(28/11/07) 

SEDMET-III 
(28/02/08) 

SEDMET-IV 
(19/06/08) 

HYDROGRAPHY Hydrographic 
Profiles 3 3 3 3 

SEDIMENT 
SAMPLES Sediment Cores 3 3 3 3 

TRIPODS 

T2
0 

Current Velocity 

D
EP

LO
Y

M
EN

T 

Ok Ok Ok 

Pressure Ok Ok Ok 
Turbidity 

(0-20 NTU range) Ok Ok Ok 

Seabed Level Failed Partly Ok 

T3
0 

Current Velocity Ok Ok Partly 

Pressure Ok Ok Partly 
Turbidity 

(0-20 NTU range) Ok Ok Partly 

Seabed Level Failed Partly Ok 

T4
0 

Current Velocity Ok 

Not recovered Not recovered 
Pressure Ok 
Turbidity 

(0-20 NTU range) Ok 

Seabed Level Failed 

Table 1. Available field data summary during the study period. 177 

Wave measurements from the Llobregat directional buoy were used as wave conditions 178 

during the study period. This buoy was located at 45 m water depth (Figure 1) and recorded 179 

data every hour. Interruptions in the buoy time series were filled in with data from the WANA 180 

model (50 m water depth, Figure 1), which provides directional wave information every three 181 

hours. The WANA data have been computed by the Spanish National Institute of 182 

Meteorology using the HIRLAM and WAM numerical model since 1991 (Spanish Port 183 

Authority). Wave height and period data from the WANA model were calibrated through 184 

linear regression using the buoy observations from October 2001 to December 2008 185 

(Sancho-García et al., 2013). Winds were also obtained from the WANA data set and rotated 186 

following the orientation of the isobaths (42º) to obtain the across and along components. 187 

The Besòs River daily discharge was obtained from the Catalan Water Agency water 188 

discharge gauging station located 2.8 km upstream from the Besòs River mouth. 189 

Data processing 190 

Shallow-water effects in the swell: The shoaling and refraction coefficients were calculated to 191 

correct wave height as waves move from the 45 m depth (buoy location) to the 20 m, 30 m 192 

and 40 m sites, where the instruments were deployed. The shoaling (ks) and refraction (kr) 193 

coefficients were approximated with a MATLAB function following the manual computation 194 

methods taken from WMO (1998): 195 
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where C0 is the phase velocity in deep water (√g/k0), k0 is the wavenumber in deep water 196 

and H0 is the wave height in deep water.  197 

𝑘𝑘𝑟𝑟= 
𝐻𝐻
𝐻𝐻0

= �
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼0

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  

where α0 is the angle between a wave crest and a local isobath in deep water.  198 

Shear velocities and the total maximum shear stress: A one-dimensional (1D) sediment 199 

transport model (Harris and Wiberg, 1997; 2002; Wiberg and Smith, 1983; Wiberg et al., 200 

1994) was used to predict the wave and current near-bottom velocity profiles, values of 201 

boundary shear stress and compute suspended sediment concentration, which presented 202 

good agreement with the observational data during times of elevated wave shear velocity 203 

(data not shown).The model represented the frictional momentum balance in the bottom 204 

boundary layer using an eddy viscosity profile enhanced by wave-current interaction. Then, 205 

the total shear stress is computed in such a way as to account for differences in direction 206 

between the waves and the current: 207 

𝜏𝜏𝑐𝑐𝑐𝑐  =  ��𝜏𝜏𝑐𝑐𝑐𝑐 + 𝜏𝜏𝑤𝑤�2 +  𝜏𝜏𝑐𝑐𝑐𝑐
2 �

1
2�

;  𝜏𝜏𝑤𝑤 =  𝜌𝜌𝑈𝑈∗𝑤𝑤
2  , 𝜏𝜏𝑐𝑐𝑐𝑐 =  𝜌𝜌𝑈𝑈∗𝑐𝑐

2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 ,  𝜏𝜏𝑐𝑐𝑛𝑛 =  𝜌𝜌𝑈𝑈∗𝑐𝑐
2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑   

where, τw is the boundary shear stress associated with the waves, τcp and τcn are the wave-208 

parallel and wave-normal components of the mean current boundary shear stress, 209 

respectively; ρ is the water density; U*c and U*w are the shear velocities for the current and 210 

waves, respectively; and φ is the difference in the direction of the waves and the current. 211 

The time series of current velocities measured at 0.53 cm above bottom, wave period and 212 

direction and the near-bottom wave-orbital velocity were used as inputs to the model, along 213 

with the bed characteristics: the average measured bed sediment size distribution, bed 214 

sediment concentration (1 – porosity) and the resuspension parameter (γ0), based on grain-215 

size and geotechnical analysis. The sediment size distribution represents 6 sediment 216 

fractions for the upper centimetre at each location and for each deployment with the 217 

corresponding critical shear stress for initiation of motion and settling velocity, estimated 218 

using the methodology of Soulsby (1997). The bottom wave-orbital velocity was calculated 219 

using the method implemented by Wiberg and Sherwood (2008), which consist in a MATLAB 220 
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function for calculating the representative bottom orbital velocity (Ubr) from Hs and Tp using a 221 

parametric spectrum. 222 

Calibration of turbidimeters and grain size analysis: Turbidimeters express the light scattering 223 

intensity as an equivalent of Formazin turbidity Units (FTU). This calibration was conducted 224 

by the manufacturer using Formazin (turbidity calibration standards). In order to convert FTU 225 

units into concentration units (mg/L), turbidity sensors were transformed using the 226 

measurements obtained by Guillén et al. (2000) from 25 northwestern Mediterranean 227 

samples taken in a nearby area. The intensity of the light backscattered by particles was 228 

calibrated with a Formazin solution to calculate the suspended sediment concentration (SSC) 229 

with the equation: 230 

𝑺𝑺𝑺𝑺𝑺𝑺(𝒎𝒎𝒎𝒎 𝑳𝑳⁄ ) = 𝟏𝟏. 𝟐𝟐𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟎𝟎. 𝟒𝟒𝟒𝟒                             (𝒓𝒓𝟐𝟐 = 𝟎𝟎. 𝟒𝟒𝟒𝟒) 

  231 

The sediment grain size distribution from the sediment samples was determined by a settling 232 

tube for the fraction >50 µm and by a Sedigraph 5100D (Micrometrics) for the fraction <50 233 

µm following the method described by Giró and Maldonado (1985).  234 

Along- and across-shelf currents and near-bottom suspended sediment fluxes: Aanderaa 235 

current meters (0.58 mab) output the module of the current intensity and direction measured 236 

from the north. These were decomposed to u and v components with positive values towards 237 

the N and E, respectively. The along- and across-shelf components were then defined 238 

following the orientation of the isobaths (42º for all sites), with positive values towards the NE 239 

and offshore, respectively. Assuming that the output of the backscatter sensors was largely 240 

attributable to suspended particles and that particles move with the velocity of the water 241 

within which they are suspended (Wright, 1995), the instantaneous near-bottom sediment 242 

flux q in g/m2s at the height of the instrument is obtained as the product of the velocity 243 

module c and the SSC, in mg/L: 244 

𝑞𝑞(𝑡𝑡) =  𝑐𝑐(𝑡𝑡)𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) 

Averaging sediment flux over time produces the estimated magnitude of the advective flux 245 

and its direction from each sampling site during the experiment. The along-shelf and across-246 

shelf advective sediment flux components were obtained in the same manner as the product 247 

of the SSC and the along and across components of the velocity fields. From the resulting 248 
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vector (magnitude and direction) of the along and across-shelf suspended flux we can obtain 249 

the horizontal net flux for a selected interval. 250 

Definition of sediment transport events: The sediment transport events during the study 251 

period were defined as occurring whenever the magnitude of the instantaneous sediment flux 252 

(q) at 20 m water depth exceeded 1.5 g/m2s, whereas no-event intervals were defined as 253 

times when q < 0.3 g/m2s (background level). To delimit the beginning and end of the event, 254 

a q > 0.3 g/m2s was used. During an event, peaks of q < 0.3 g/m2s during less than 24 h 255 

were included in the same event. In this manner, sediment transport events were extended 256 

to include both resuspension and river sediment supply events along with events of 257 

increased current activity. 258 

Seabed erosion/deposition: The ALTUS altimeter is an autonomous 2-MHz acoustic 259 

transducer coupled with a pressure sensor. This device allows long term monitoring, but is 260 

also suitable for high-frequency surveys (sampling frequency up to 1 Hz) and has a data 261 

storage capacity of several weeks. The ALTUS provides bed elevation and water level 262 

measurements with a resolution of 0.2 and 20 mm, respectively. The transducer was 263 

positioned 22 cm above the bed, with a sampling frequency of one measurement every 15 264 

minutes. At all sites, the pressure record for each deployment was also analysed and any 265 

evidence of tripod sinking found was removed from the seabed variation record. Thereby, 266 

any variation of the distance between the sensor and the seabed can be taken as a seabed 267 

deposition/erosion event. However, the pressure sensors at the 30 and 40 m sites were out 268 

of range during the deployments and possible tripod sinking episodes could not be identified. 269 

Thus, at 30 and 40 m depth, seabed deposition was not taken into account and seabed 270 

erosion was treated as minimum erosion.   271 
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3. Results 272 

Physical oceanography 273 

Masses of water of the studied zone shows the evolution from summer stratified conditions of 274 

the water column in September 2007 (Figure 2 A) to the vertical mixing in November 2007 275 

and February 2008 (Figure 2 B and C), favoured by the cooling of surface waters and the 276 

mixing caused by storm episodes. The final situation of the study period, in spring 2008, 277 

corresponds to the onset of the water column stratification (Figure 2 D). The hydrographic 278 

structure was also modified by continental freshwater inputs from the Besòs River during the 279 

spring season, when the vertical stratification is disturbed in shallow waters (Figure 2 E). 280 

 281 
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Figure 2. Across-shelf sections of temperature (Degrees Celsius)  along the tripods transect in the deployments of 282 
(A) September 2007, (B) November 2007, (C) February 2008 and (D) June 2008 and (E) potential density 283 
anomaly (kg/m3) at June 2008.  284 

Waves, winds and river discharge 285 

Waves: According to wave measurements, more than 10 storm waves episodes (Hs over 2 286 

m and Tp over 9 s) were recorded between autumn 2007 and spring 2008 (Figure 3 A and 287 

B). Of the waves propagated, 50% were from the NE-SE, 20% from the SE-S and 28% from 288 

the S-SW (Figure 4 A1). The most energetic episode occurred between 15 and 18 December 289 

2007 and was characterized by a two-peak storm with a maximum peak of Hs of 3.38 m and 290 

a Tp of about 11 s, followed by a smaller storm (Hs > 2.5 m and Tp > 8 s) after less than 2 291 

days of relatively calm conditions. Both storm episodes had an eastern component in the 292 

direction of wave propagation. 293 

Winds: Wind reached speeds higher than 12 m/s during most of the storm episodes (Figure 3 294 

C), with a blowing direction similar to the direction of wave propagation but slightly rotated 295 

(Figure 4), i.e. NE-ENE in the majority of the cases, though a few were from the SW. 296 

Although about another 20% of the wind record fell into the third quadrant (Figure 4 B2), no 297 

significant events were associated with these wind directions. In addition, diurnal winds 298 

(breezes) were relatively common in early autumn and spring but not correlated with 299 

significant wave events, as shown in the across-shelf wind component in Figure 5 A.  300 

Besòs River discharge: The Besòs River water discharge measurements showed a typically 301 

episodic pattern, with discharge pulses occurring mainly in autumn and spring (Figure 3 D). 302 

Average river water discharge during the study period was 3.8 m3/s, with mean daily 303 

discharge peaks of 15 and 18 m3/s in October 2007 and May-June 2008, respectively. In 304 

October 2007, the increments in river water discharge were characterized by short, fast 305 

water pulses accompanied by increases in wave activity. River discharges lasted longer in 306 

spring 2008 than in autumn 2007, especially those of June 2008, which occurred under low-307 

energy wave conditions. 308 
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 309 

Figure 3. Meteo-oceanographic conditions during the experiment. (A) Significant wave height and (B) wave peak 310 
period at WANA point 2066051 calibrated with Llobregat buoy data; (C) wind speed at WANA point 2066051; (D) 311 
river water discharge at 2.8 km upstream from the Besòs River mouth; and (E) current speed at tripod site T20 312 
(20 m isobath). 313 
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 314 

Figure 4. Time series of wave directions at WANA point 2066051 calibrated with Llobregat buoy data (A1) and 315 
wind directions (B1) at WANA point 2066051 during the study period. (A2) and (B2) rose diagram of the relative 316 
frequency of the records of wave and wind directions, respectively. 317 

Near-bottom currents  318 

The time series of current speed measured at 0.58 mab from the T20 site (20 m water depth) 319 

is shown in Figure 3 E. At that site, near-bottom current speed averaged 0.071 m/s with 320 

peaks associated with storm wave events on the inner shelf. At the T30 and T40 sites, 321 

current speeds showed similar values (averaged value are 0.056 m/s and 0.067 m/s in T30 322 

and T40 respectively). In the three stations the standard deviation and the maximum current 323 

peaks are similar: 0.045 m/s in T20, 0.044 m/s T30 and 0.056 m/s in T40 for the standard 324 

deviation and peaks up to 0.279 m/s, 0.281 m/s and 0.309 m/s, respectively. In T20, the 325 

current intensity decreases in spring compared to autumn and winter observations (seasonal 326 

averaged intensity is 0.039 m/s).  327 

Across the inner shelf, both current components were variable in time during the study 328 

period, particularly the along-shelf component (Figure 5 A). The along-shelf current speed 329 

reached more than 0.20 m/s at all sites in autumn and winter and diminished in intensity in 330 

spring. However, across-shelf velocities were under 0.10 m/s throughout the study period at 331 

T20 and up to 0.15 m/s in autumn and winter at sites T30 and T40 (Figure 5 A). Therefore, 332 
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evident differences in near-bottom current velocities were found between the T20 site 333 

respect to the other sites, where the along-shelf variability was much larger than the across-334 

shelf variability with standard deviations of 0.067 m/s and 0.025 m/s, respectively. While, in 335 

the T30 and 40 m T40 sites the across-shelf velocities were stronger and presented more 336 

variability, with standard deviations of 0.068 m/s and 0.086 m/s in the along-shelf component 337 

and 0.037 and 0.041 in the across-shelf current, respectively. The progressive current 338 

vectors shown in Figure 5 B stressed the above-mentioned temporal and spatial variability 339 

across the shelf. In autumn (from Sep07 to Dec07 annotations in Figure 5 B), offshore flows 340 

controlled the across-shelf component at 20 m water depth, while in deeper waters (sites T30 341 

and T40), onshore flows were dominant in the across-shelf direction. At all sites, the resulting 342 

along-shelf flows were northeastward in early autumn and southwestward in late autumn. 343 

During winter (from Dec07 to Mar08 annotations in Figure 5 B), an evident reversal among 344 

the sites in current direction occurred, with the prevalent directed offshore at 20 m depth but 345 

southwestward (i.e. along-shelf) at 30 m depth. During this period, the main difference 346 

between the two sites was an increase in the along-shelf current intensity at 30 m depth in 347 

comparison with the previous period. In spring (from Mar08 to Jun08 in Figure 5 A), at the 20 348 

m site the across-shelf current intensity increased progressively, while the along-shelf current 349 

intensity decreased during this period. In relation to the direction of the current, both along 350 

and across components showed a reversion in the flow direction, northeastward and 351 

seaward, respectively.  352 

Although visual correspondence is observed between near-bottom along-shelf flow and the 353 

along-shelf wind direction (see wind decomposition in Figure 5 A) during some peaks of the 354 

time series, the current intensity is poorly correlated with the wind with correlation coefficients 355 

under 0.02 for both components at all three sites. The divergence between the wind and the 356 

near-bottom current observations may be originated by several factors such has the role that 357 

play the pressure gradient that may drive the flow under particular circumstances, the 358 

bathymetric effect that modify the flow direction, the role of the stratification that inhibit the 359 

momentum transfer from surface to bottom or the topographic coastal waves (see discussion 360 

in Grifoll et al., 2012; 2016).  361 
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 362 

Figure 5. (A) Times series of across-shelf and along-shelf near-bottom current and wind components and (B) 363 
current progressive vectors in those directions at the T20, T30 and T40 tripod sites, respectively. Positive values 364 
are northeastward (along-shelf) and offshore. 365 

Total maximum bottom shear stress 366 

Estimations of the bottom shear stress reveal that wave-induced stress dominated over 367 

current-induced stress at all sites (Figure 6 at T20 site. T30 and T40 data not shown), with 368 

wave shear velocities (U*w) generally 2 times larger than current shear velocities (U*c) at 20 m 369 

water depth. Comparing periods with available data across the shelf (i.e. October and 370 
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November 2007), wave shear stress averaged 0.11 N/m2, 0.06 N/m2 and 0.04 N/m2 and 371 

reached values of 1.02 N/m2, 0.43 N/m2 and 0.32 N/m2 at 20 m, 30 m and 40 m water 372 

depths, respectively. At all sites, autumn 2007 was characterized by a high frequency and 373 

intensity of bottom shear stress. The total maximum bed shear stress was reached during 374 

the 15–18 December 2007 episode, with a maximum peak of 1.77 N/m2 at T20 and of 0.99 375 

N/m2 at T30. The shear stress decreased significantly in winter and spring 2008, as shown in 376 

the time series at 20 m water depth (Figure 6). 377 

 378 

Figure 6. Time series at the T20 site (20 m water depth) of: (A) Current Shear Velocities, (B) Wave Shear Velocities 379 
and (C) Total Bottom Shear Stress.   380 

Bottom sediment 381 

The bottom sediment grain size displayed a general fining trend from the shallowest site 382 

towards the offshore sites, although a high spatial and temporal variability was observed 383 

during the study period (Figure 7). At the 20 m water depth site the bottom sediment became 384 

finer between September and November 2007 (with median grain sizes changing from 0.12 385 

to 0.02 mm) and coarsening during winter, ending in a uniform layer of fine sand (0.14 mm) 386 

in spring 2008. At the 30 m site, there was a coarsening trend of the 2-3 surface centimetres 387 
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from November 2007 to February 2008 (D50=0.06–0.14 mm), ending in a finer quasi-uniform 388 

median grain size distribution in the sediment column in spring 2008 (D50=0.02–0.04 mm). 389 

Finally, no major changes in grain size were observed at the deepest site (40 m depth) 390 

because the grain size variability was within a very fine sediment range (D50=0.015–0.025 391 

mm). However, the observed trend was also a coarsening towards the end of the record 392 

(spring 2008), when the thin layers of clayey sediment detected in previous sampling surveys 393 

(<0.01 mm) disappeared (Figure 7).  394 

 395 

Figure 7. Temporal variability of median grain size (d50 in mm) between 0 and 10 cm depth of the cores sampled 396 
at 20, 30 and 40 m water depth. White arrows indicate the date when the samples were taken. The colorbar 397 
indicates median grain size in mm. 398 

Near-bottom suspended sediment concentration 399 

The near-bottom suspended sediment concentration (SSC) during the recording period 400 

showed a high temporal and spatial variability. At the 20 m water depth site, noticeable SSC 401 

was observed in autumn 2007 and spring 2008, with maximum peaks of up to 80 mg/L (25–402 

26 October 2007) and 100 mg/L (9–10 May 2008), whereas the SSC decreased significantly 403 

in winter, with limited peaks under 40 mg/L. In general, the near-bottom SSC decreased with 404 

depth, with maximum SSC peaks below 70 and 40 mg/L at 30 and 40 m water depth, 405 
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respectively. However, SSC was higher at 30 than at 20 m depth during the strongest 406 

storms. The 15–18 December 2007 episode generated a SSC of about 70 and 50 mg/L at 30 407 

and 20 m water depth, respectively, and the 3–5 January 2008 episode generated an SSC of 408 

40 and 20 mg/L at 30 and 20 m water depth, respectively. 409 

 410 

Figure 8. Time series of SSC at the three tripod sites: (A) T20 at 20 m depth, (B) T30 at 30 m depth, and (C) T40 at 411 
40 m depth. 412 

Seabed level 413 

Altimeter data showed a very dynamic seabed, with significant seabed level variability across 414 

the inner shelf. Throughout the study period, the shallowest site (20 m depth) showed more 415 

dynamism in terms of frequency of erosion/deposition episodes than the 30 m site. However, 416 

the net seabed variation during the monitoring period was an erosion of about 4 and 10 cm at 417 

20 and 30 m water depth, respectively (Figure 9 A and B). Two major seabed 418 

erosion/accumulation episodes related to the strongest storms were recorded at both sites: 419 

a) the 15–18 December 2007 episode caused a deposition of a 3 cm layer that was rapidly 420 

eroded at the 20 m site and an erosion of more than 6 cm at the 30 m site; and b) the 3–5 421 

January 2008 episode caused an erosion of more than 2 and 3 cm at 20 and 30 m depth, 422 

respectively. 423 
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 424 

Figure 9. Seabed evolution at (A) the T20 site and (B) the T30 tripod site, at 20 and 30 m water depth, 425 
respectively. 426 

Sediment transport events 427 

Fourteen sediment transport events were identified (Table 2 and Figure 10, see criteria in 428 

Methods): eight in autumn 2008, two in winter 2007-2008 (January–February) and four in 429 

spring 2008 (May–June). Sediment transport events contributed 54% of the total near-bottom 430 

sediment transport and appeared to be roughly proportional to the number of events in each 431 

season. Between September 2007 and June 2008, sediment transport during events ranged 432 

from 70% in autumn, when the majority of the events occurred, to 34% in winter and 53% in 433 

spring. Similar percentages were observed for the along-shelf transport, which represented 434 

70%, 44% and 58% of the total near-bottom transport for these seasons. Indeed, during the 435 

selected events, sediment transport intensity increased in the along-shelf component, 436 

predominantly southwestward, while during no-event intervals the offshore component 437 

prevailed (Figure 11).  438 

  439 
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Event 

Date:                 
Start / Peak 

Duration 
(h) 

Sediment 
flux 

(g/m2s) 

Ubr 
(m/s) 

Wave 
dir 

River 
water 
dis. 

(m3/s) 

SSC 
(mg/l) 

Current (m/s) Wind (m/s) Type of 
Event 

Speed Dir Speed Dir 

A1 

11-Oct-07 00:18 

29 

1.7 
0.11

6 
96º 4.3 16.7 0.11 128º 10.0 43º 

Wet Storm 

11-Oct-07 21:18 6.1 
0.33
17 

82º 9.1 39.3 0.18 220º 11.1 46º 

A2 

12-Oct-07 05:38 

194 

0.6 
0.10

06 
100º 4.7 5.4 0.13 49º 6.3 56º 

Wet Storm 

12-Oct-07 23:58 2.1 
0.27
14 

101º 15.8 10.2 0.26 43º 10.4 44º 

B 

20-Oct-07 18:38 

35 

1.7 
0.25

48 
78º 2.8 10.5 0.17 180º 6.3 69º 

Ephemeral 

21-Oct-07 07:38 5.6 
0.40
72 

77º 2.8 22.3 0.24 213º 14.4 59º 

C 

25-Oct-07 19:38 

36 

0.9 
0.22

39 
88º 4.2 26.3 0.03 143º 5.8 68º 

Ephemeral 

26-Oct-07 07:38 4.4 
0.60
35 

76º 7.7 82.3 0.08 232º 8.8 30º 

D 

31-Oct-07 12:58 

72 

2.4 
0.13

24 
100º 2.8 16.6 0.16 43º 4.6 49º 

Ephemeral 

01-Nov-07 00:58 12.3 
0.39
22 

132º 2.9 58.0 0.28 56º 8.7 32º 

E 

16-Nov-07 01:38 

29 

2.0 
0.26

45 
95º 2.9 19.1 0.10 202º 4.5 69º 

Ephemeral 

16-Nov-07 12:18 4.4 
0.37
62 

92º 3.0 27.5 0.21 217º 8.3 9º 

F 

20-Nov-07 09:58 

56 

0.8 
0.15

30 
98º 3.0 15.9 0.05 175º 3.0 217º 

Dry Storm 

22-Nov-07 10:38 3.9 
0.21
40 

87º 3.0 57.7 0.15 221º 7.5 202º 

G 

26-Nov-07 00:18 

90 

0.7 
0.12

24 
100º 2.9 8.5 0.08 103º 6.9 77º 

Dry Storm 

27-Nov-07 16:58 1.8 
0.20
40 

83º 3.0 21.6 0.23 216º 13.3 37º 

H1 

15-dec-07 15:38 

93 

1.0 
0.26

43 
89º 3.0 13.0 0.06 167º 7.3 52º 

Dry Storm 

15-dec-07 22:58 9.1 
0.59
91 

87º 3.0 48.9 0.24 224º 13.5 60º 

H2 

20-dec-07 16:38 

74 

0.5 
0.20

34 
84º 3.1 3.5 0.14 222º 10.3 58º 

Dry Storm 

21-dec-07 11:58 1.8 
0.28
49 

109º 3.1 7.8 0.27 217º 13.8 86º 

I 

03-jan-08 17:18 

61 

0.8 
0.19

33 
104º 3.7 8.0 0.10 187º 5.4 264º 

Dry Storm 

04-jan-08 08:18 3.0 
0.29
48 

55º 6.1 24.1 0.24 219º 8.9 351º 
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J 

03-Feb-08 22:37 

21 

1.3 
0.13

22 
205º 3.8 6.9 0.19 49º 8.9 250º 

Dry Storm 

04-Feb-08 03:17 4.0 
0.19
32 

191º 5.7 17.8 0.25 51º 10.9 202º 

K 

09-May-08 12:39 

48 

2.3 
0.21

40 
129º 15.0 36.2 0.08 208º 8.8 79º 

Wet Storm 

10-May-08 23:38 15.2 
0.36

7 
131º 18.4 103.7 0.15 201º 13.0 78º 

L 

25-May-08 22:19 

86 

0.6 
0.24

12 
121º 7.2 15.5 0.04 168º 4.1 227º 

Wet Storm 

27-May-08 10:18 2.4 
0.23
41 

111º 11.8 38.0 0.12 182º 7.7 241º 

M 

03-Jun-08 19:39 

157 

0.6 
0.02

3 
171º 10.6 17.5 0.03 158º 3.6 159º 

River 

Discharge 
04-Jun-08 07:59 6.9 

0.07
14 

150º 17.3 47.8 0.13 143º 7.7 240º 

N 

12-Jun-08 04:39 

129 

0.7 
0.01

2 
159º 6.7 20.5 0.04 113º 3.4 164º 

River 

Discharge 
15-Jun-08 13:59 7.2 

0.04
5 

212º 10.4 82.1 0.14 53º 7.2 222º 

 440 

Table 2. Characteristics of sediment transport events at 20 m water depth from September 2007 to June 2008. 441 
Italic and bold numbers correspond to mean and maximum values, respectively. Note that events A and H were 442 
divided into two sub-events due to the occurrence of significant changes in the hydrodynamics during these 443 
events.  444 
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 445 

Figure 10. Time series of near-bottom sediment flux magnitude at the three tripod locations. (A) 20 m depth, (B) 446 
30 m depth and (C) 40 m depth. Grey lines and Lletters indicate the selected sediment flux events defined at the 20 447 
m depth site. 448 

 449 

Figure 11. Along-shelf and across-shelf cumulative sediment transport near the bottom for the recording period at 450 
(A) the 20 m site, (B) the 30 m site and (C) the 40 m site. Positive values northeastward in the along-shelf 451 
direction and in the offshore direction. Grey lines and Lletters inside the plots represent the selected events. 452 
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4. Discussion 453 

SSC and shear stress: Influence of fresh sediment availability 454 

The magnitude of sediment fluxes depends on the across-shelf gradient in wave energy and 455 

current speed but also on the availability of suspendable sediment (Harris and Wiberg, 456 

2002). On the Barcelona inner shelf, the magnitude of sediment fluxes was clearly influenced 457 

by the availability of river-derived fresh sediment and was associated with increases in river 458 

discharges, wave and current energy (dry storms), and the coupling of the two processes 459 

(wet storms). This is the reason for the higher SSC at 30 m than a 20 m water depth 460 

observed during some events (see section 3). The influence of sediment availability on the 461 

magnitude of sediment fluxes can be analysed qualitatively by plotting the relation between 462 

the SSC and shear stress during different types of events (Figure 12). An overall relation is 463 

derived from the plot, although several conclusions can be drawn when types of sediment 464 

flux events are considered. Four types of sediment flux events were differentiated (Table 2): 465 

A) high river discharge and low waves (river discharges), B) high river discharge and storm 466 

waves (wet storms), C) storm waves with ephemeral bottom layer (ephemeral layers) and D) 467 

storm waves (dry storms). 468 

The SSC was high during increases in river discharges and very low shear stresses (Figure 469 

12 – River Discharges). Under these conditions, a temporal near-bottom nepheloid layer 470 

developed where the SSC reached high values (unrelated to shear stress) that lasted as long 471 

as the increase in river discharge. Sediment fluxes during these types of event were 472 

moderate but long-lasting and accounted for 9% of the total sediment transport during the 473 

analysed events. 474 

The maximum observed SSC was reached during periods of riverine inputs and moderate 475 

wave storms (Figure 12 – Wet Storms). This finding was interpreted as a result of the 476 

combination of resuspension processes and the maintenance of a near-bottom nepheloid 477 

layer with riverine and bottom particles. In these events, peaks of SSC and shear stress 478 

nearly matched. In many cases, an additional peak in the SSC was observed after the 479 

maximum peak of the storm (Figure 12 B) due to the advection of riverine sediment, as 480 

observed on other shelves (Ogston and Sternberg, 1999). Sediment fluxes during wet storms 481 

accounted for 38% of the total sediment transport during events. Indeed, the most 482 

noteworthy sediment transport event occurred under a wet storm that was not the most 483 

energetic event in terms of shear stress. 484 

25 
 



 

The availability of fresh sediment through the formation of ephemeral bottom layers also 485 

affected the magnitude of SSC and sediment fluxes during some intermediate-intensity 486 

storms during the study period. The formation of flood-derived fine deposits offshore of the 487 

Besòs River system previous to a storm passage could enhance the bottom sediment 488 

erodibility and SSC because of the higher porosity and water content of the fresh sediment 489 

(Grifoll et al., 2014; Guillén et al., 2006). During these events, the presence of ephemeral 490 

layers changed bottom sediment erodibility and SSC reached higher values than expected 491 

due to wave-current conditions (Figure 12 – Ephemeral). The influence of these ephemeral 492 

layers, and therefore of river-derived fresh sediment, was observed in both shallow and 493 

deeper inner shelf waters. Once the fresh sediment was eroded and transported offshore, 494 

the available fresh sediment, now in deeper areas, increased the SSC in comparison with 495 

shallow waters, changing the across-shelf gradient of sediment fluxes (higher sediment flux 496 

in deeper water during events H and I – Figure 10). Sediment fluxes during events influenced 497 

by ephemeral layers accounted for 29% of the total transport during events. 498 

Finally, the maximum shear stress occurred during dry storms events, in which SSC and 499 

shear stress peaks coincided (Figure 12 D), suggesting that resuspension of bottom 500 

sediment controls SSC. The near-bottom sediment flux during dry storms accounted for 24% 501 

of the total sediment transport during events. 502 

Actually, the proportionality between SSC and shear stress is observed when individual wave 503 

storms events are considered. However, this proportionality disappears when all events are 504 

taken into account, mainly because of changes in conditions of fresh sediment availability. 505 

The influence of fresh sediment availability in sediment dynamics can be evaluated in terms 506 

of the percentage of suspended sediment fluxes with or without available fresh sediment 507 

(river discharges or ephemeral layers), which accounted for 76% of the sediment transport 508 

events. In fact, only 5 of the 14 defined sediment transport events occurred without a direct 509 

influence of riverine inputs. 510 
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 511 

Figure 12. A) The relation between suspended sediment concentration (SSC) and bottom shear stress according to 512 
the four types of sediment transport events identified on the Barcelona inner shelf: high river discharge and low 513 
waves, wet storms, storms with ephemeral bottom layers, and dry storms. B1, B2, B3 and B4) Time series of SSC, 514 
shear stress and river discharge for one of each type of sediment transport events. 515 

Seasonality of sediment dynamics 516 

The resulting near-bottom sediment transport on the Barcelona inner shelf off the Besòs 517 

River was mainly directed southwestward (along-shelf) during the study period. This fact is 518 

consistent with previous observations on low-energy shelves, where along-shelf sediment 519 

flux is stronger than across-shelf flux, in contrast to high-energy shelves (Allison et al., 2000; 520 
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Fain et al., 2007; Ogston and Sternberg, 1999; Ogston et al., 2000; Palanques et al., 2002; 521 

Sherwood et al., 1994; Traykovski, et al., 2000;). The seaward component of sediment flux 522 

on the Besòs shelf was indeed low but favoured the segregation of coarse and fine sediment 523 

from the nearshore towards deeper waters, as observed in the temporal variability of the 524 

sediment grain size across the inner shelf (Figure 7). In fact, previous studies carried out in 525 

the area described a mud belt between 30 and 60 m water depth that was shifted 526 

southwestward by the dominant along-shelf transport (Checa et al., 1988; Liquete et al., 527 

2007; Grifoll et al., 2014; Palanques and Díaz, 1994).  528 

However, the sediment dynamics of “small” Mediterranean river systems such as the one 529 

studied show a seasonal variability (Guillén et al., 2006). In the Besòs River system, the 530 

temporal variation of the hydrographic structure, the magnitude of the forcing conditions, the 531 

observed SSC and fluxes, and the seabed evolution indicate strong seasonal variability in 532 

sediment dynamics controlled by the type, frequency and intensity of sediment transport 533 

events. Wet storms events occurred basically in autumn and spring while in winter, dry 534 

storms were the main forcing mechanism for sediment transport. Consequently, the 535 

averaged near-bottom sediment fluxes were higher in autumn and spring than in winter 536 

during the study period (Table 3). The seasonal variability is also evident in the distribution of 537 

the across-shelf magnitude of sediment fluxes, which decrease and increase between 20 538 

and 30 m water depth in autumn and winter, respectively. 539 

NEAR- 
BOTTOM 
FLUXES 

TYPE OF EVENTS SEASONS 

Wet 
storm 

Ephemeral Dry storm 
River 
Disch. 

Autumn Winter Spring 

20 m 20 m 30 m 40 m 20 m 30 m 20 m 20 m 30 m 20 m 30 m 20 m 

Mean 
along-
shelf 
flux 

1.63 1.79 0.94 0.84 0.69 0.91 0.40 0.47 0.38 0.14 0.19 0.22 

Mean 
across-

shelf 
flux  

0.88 0.39 0.49 0.34 0.15 0.43 0.37 0.14 0.22 0.04 0.08 0.16 

Averaged 
flux  

2.07 1.90 1.09 0.92 0.74 1.03 0.60 0.52 0.46 0.15 0.22 0.29 

Net 
flux 

320 268 109 45 379 795 200 425 694 61 822 114 

Net 
direction  

125 112 47 135 149 159 136 60 208 47 153 66 

 540 
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Table 3. Near-bottom sediment fluxes: Mean and averaged sediment flux  in (g/m2s) and net flux  magnitude (g/m2 541 
for the especific time interval) and direction (degrees) with respect to north at the tripod locations. for each type 542 
of event and by season. 543 

This temporal and spatial distribution of sediment fluxes on the Barcelona inner shelf is 544 

analysed as follows through the description of sediment dynamics in autumn, winter, spring 545 

and summer. 546 

Autumn 547 

The pattern of sediment dynamics in autumn 2007 was characterized by early riverine inputs 548 

that formed ephemeral sediment layers on the inner shelf, with subsequent resuspension 549 

and partial offshore transport at 20 m water depth, which mainly switched southwestward 550 

between 30 and 40 m water depth until resuspendable sediment was depleted. The along-551 

shelf transport was twice as high as the across-shelf transport but the predominant offshore 552 

component in late autumn favoured the dispersion of riverine sediments towards deeper 553 

water. At the beginning of this season, the strong stratification in the water column and the 554 

combined action of moderate waves and currents resulted in a convergence of the sediment 555 

flux between 20 and 30 m water depth. Thus, the spread of the riverine sediment was 556 

prevented, probably leaving a deposit of fresh sediment in shallow waters that allowed the 557 

instantaneous sediment flux to reach values of about 12 g/m2s at the shallowest site (20 m 558 

depth), while at 30 and 40 m water depths it was under 5 g/m2s (event D – Figure 10). In the 559 

subsequent storm events sediment fluxes were lower than expected considering bottom 560 

shear stress probably because the ephemeral sedimentary layer was already eroded.. 561 

Winter 562 

Winter conditions in 2008 were characterized by a homogeneous water column, low river 563 

water discharges and moderate wave activity. Two wave storm episodes with prevailing 564 

northeasterly winds that favoured stronger along-shelf over across-shelf flow (events I and J) 565 

lasted 2 days and 1 day, respectively. The pattern of sediment transport was similar to that in 566 

late autumn 2007, with limited fine-grained sediment in shallow waters and sediment 567 

transport predominantly towards the southwest. The variability in the intensity of sediment 568 

fluxes across the shelf is consistent with the seabed changes observed during this season, 569 

(Figure 7 and 9). The across-shelf bottom sediment distribution caused the excess of shear 570 

stress to increase offshore during this event and, consequently, sediment fluxes were higher 571 

at 30 than at 20 m water depth (7 g/m2s and 3 g/m2s, respectively), with a prevalent near-572 

bottom southwestward current at both sites.  573 
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Spring 574 

Spring 2008 was characterized by the onset of the stratified conditions of the water column, 575 

moderate winds and waves, and prolonged high river water discharge. The river discharge 576 

and wind regime were typical of those occurring during the Mediterranean spring season 577 

(Cerralbo et al., 2015; Font, 1990; Liquete et al., 2009;), with a predominant southeasterly 578 

wind direction during low-pressure system passages and sea breezes in the diurnal bands. 579 

However, the spring 2008 events were characterized by moderate wind energy in both 580 

frequency bands. Seabed variations and sediment flux measurements from May to June 581 

2008 suggest a multi-step deposition-erosion-transport pattern across the inner shelf. The 582 

mechanisms responsible for the high sediment transport at 20 m water depth (in relation to 583 

moderate shear stress) may be related to the high river flow (up to 5 m3/s) between May and 584 

June 2008, which could have contributed to the maintenance of high SSC in the water 585 

column and the formation of an ephemeral sediment layer progressively migrating offshore. 586 

In June 2008, the thermocline was around 30 m depth and was associated with high near-587 

bottom SSC (Figure 2 D). It could therefore be hypothesized, as suggested in previous 588 

studies (Puig et al., 2001; 2007; Urgelés et al., 2011), that processes linked to the 589 

thermocline such as internal waves favour bottom sediment remobilization and the 590 

maintenance of a bottom nepheloid layer. 591 

Summer 592 

Although no full observations were obtained in summer 2008, the Mediterranean climate is 593 

characterized by dry summers with well-developed sea breezes (Cerralbo et al., 2015; Font, 594 

1990) and relatively stable atmospheric conditions. In summer 2008, measured wave 595 

conditions below a significant wave height of 1.3 m and mean river water discharge (2.31 596 

m3/s) were consistent with the summer season in the area (Bolaños et al., 2008; Sánchez-597 

Arcilla et al., 2008). Thermal stratification developed on the shelf due to the increase in heat 598 

fluxes, as occurred seasonally (Grifoll et al, 2014; Salat et al. 2002). In consequence, under 599 

these conditions we can infer that significant sediment transport events were not expected 600 

during the summer period. 601 

5. Conclusions 602 

This study shows the complexity of “small” Mediterranean river systems in the sediment 603 

dispersal from the continent to the sea. This complexity gives rise to a set of sediment 604 

resuspension and transport mechanisms with a strong seasonal variability. In early autumn, 605 

evidence of the formation of temporal nepheloid layers and ephemeral sediment bottom 606 
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layers was found, indicating increased availability of fine sediment near the bottom to interact 607 

with resuspension and transport processes. In late autumn and winter events, high bed shear 608 

stresses and prevalent southwestern and offshore currents resuspended and winnowed the 609 

ephemeral layers previously deposited in shallow waters. In spring, large river discharge 610 

episodes were more frequent, and most of them occurred under low-energy wave conditions. 611 

In these cases additional processes such as diurnal winds and/or hydrographic conditions 612 

may have controlled sediment transport. This seasonal variability leads to a temporal 613 

evolution of the bottom grain size (coarser during winter) and the near-bottom sediment 614 

transport rates (higher in autumn and spring), which are consistent with the hydrodynamic 615 

seasonal events and the river discharge regime.  616 

In the Besòs River system, more than 50% of the total near-bottom suspended sediment 617 

transport from September 2007 to July 2008 occurred in 14 storm events, which represented 618 

the 54 % of the total sediment transport along the study period. The contribution of the 619 

events, however, differed along each season, which represented the 70 %, 34 % and 53 % in 620 

autumn, winter and spring, respectively. Of these events, about 75% were directly influenced 621 

by riverine inputs through temporal nepheloid layers and/or ephemeral bottom layers, 622 

highlighting the importance of the availability of fresh riverine sediment in near-bottom 623 

suspended sediment transport rates across the inner shelf. In general, sediment transport 624 

and seabed changes were lower when riverine fresh sediment was not available across the 625 

inner shelf. Nonetheless, when riverine sediment was available in the nearshore, sediment 626 

transport rates were enhanced in shallow waters (20 m water depth) and the across-shelf 627 

sediment transport rate decreased offshore. In contrast, when fresh sediment had been 628 

winnowed from shallow areas (20 m water depth) and deposited offshore (30 m water depth), 629 

sediment transport and seabed erosion were higher offshore as the sediment availability 630 

increased there.  631 

These results show that small rivers delivering sediment into the Mediterranean basin 632 

enhance near-bottom suspended sediment transport rates by increasing the SSC and 633 

decreasing threshold conditions for bottom sediment resuspension. In the Mediterranean 634 

almost tideless area with weak currents, river discharge and wave climate control the 635 

availability of sediment to be resuspended and transported to other parts of the inner-shelf. 636 

Both of these controlling factors are seasonal, so sediment dynamics on the inner shelf also 637 

displays seasonality.  638 
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