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Abstract. In this work the problem of overcoming local minima in the solution of nonlinear 
optimisation problems is addressed.  As a first step, the existing nonlinear local and global 
optimisation methods are reviewed so as to identify their advantages and disadvantages. 
Then, the major capabilities of a number of successful methods such as genetic, deterministic 
global optimisation methods and simmulated annealing, are combined to develop an 
alternative global optimisation approach based on a Stochastic-Probabilistic heuristic.   

The capabilities, in terms of robustness and efficiency, of this new approach are validated 
through the solution of a number of nonlinear optimisation problems. A well know 
evolutionary technique (Differential Evolution) is also considered for the solution of these 
case studies offering a better insight of the possibilities of the method proposed here. 
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1 INTRODUCTION 
Many everyday problems in engineering, decision sciences and operations research may 

be formulated as optimisation problems. Three are the key components of an optimisation 
problem: a mathematical model which describes the phenomena as a set of constraints on a 
number of unknown decision variables, and a measure of quality, the objective function, 
whose maximum (or the minimum of its negative or inverse) corresponds to the optimal 
solution. Some examples include the calculation of a set of unknowns to obtain an optimal 
design, maximum production, minimum environmental impact, maximum quality etc…  

The nature of the decision variables, the objective function and the constraints determine 
the type of optimisation problem and the different levels of complexity. The cases to be 
considered in this work are of continuous and non-linear nature. For this type of problems, if 
the objective function turns out to be smooth and differentiable, analytical methods will 
produce the exact solution, if not, for example in the design of aerodynamic components and 
systems, the use of suitable techniques to explore the entire search space are then required. 
Moreover, many real world optimisation problems, are not only non-linear, but constrained 
and large scale which makes their solution really complex.  

Except for very simple cases, non-linear optimisation problems can not be solved 
analytically. Therefore during the last decades a number of different methods have been 
proposed for the their numerical solution. 

Local optimisation methods 
       Can be applied to the solution of linear and non-linear optimisation problems. Some of 
these techniques, such as Downhill Simplex and Powell's method do not require the 
derivatives of the objective function. Although very popular, due to its easy applicability, it 
has been demonstrated that the use of extra information regarding the search space in terms 
of, at least, the gradient, as in the steepest-descent or quasi-Newton methods, can considerably 
speed up the optimisation process. Newton   strategies   additionally   require   the   second   
partial derivatives, thus building a quadratic internal model, and achieving up to quadratic 
convergence propertiesi-ii.  
 Although very efficient in the solution of uni-modal and/or large scale optimisation 
problems, in a multi-modal environment these algorithms move "downhill" from their 
respective starting points, hence,  converging to the closest local optimum. 

Global optimisation methods. 
 In many engineering optimisation problems, it will be rarely possible to write down the  
objective function in a closed form, and a simulation model is often required so as to 
reproduce reality iii.  In general, these models will not behave  smoothly and the objective 
function may contain numerous local optima with corresponding function values varying 
significantly.  
 These difficulties motivated the development of the so called global optimisation 
methods. Among the different possibilities, stochastic optimisation methods will be 
considered in this work as they are quite easy to use and implement and present the ability to 
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escape from local solutions. However, global optimality can not be guaranteed except in an 
asymptotic probabilistic sense as the number of iterations tends to infinite. 

These strategies can be classified in two main groups: adaptive sequential methods, that 
generate a new point in each iteration, as for example the Simulated Annealing iv, which takes 
analogies form physical systems.  And  population based methods, which generate a set of 
points in each iteration. Many of the methods in this last group are somehow inspired in 
biological processes. For example, the evolutionary algorithms (EAs) and genetic algorithms 
(GAs) introduced in the early 70s by Holland and applied for the first time to practical 
problems by Goldbergv, mimic the concept of the natural selection and survival of the fittest.  

Although adaptive sequential methods have very good properties, population based 
strategies are becoming more a more popular as they are able to build up an overall picture of 
the search space. In any case, the successful methodologies combine effective mechanisms 
of exploration of the search space and exploitation of the previous knowledge obtained by the 
search.  

2   NEW PROBABILISTIC-STOCHASTIC OPTIMISATION METHOD 

     This work presents the recent experiences on the development of a new alternative for the 
solution of general multi-modal problems which is based on a probabilistic-stochastic 
approach and which takes advantage of different elements from other successful methods, 
both local and global, reviewed above.    

     The main characteristics of this approach are the following: 

 Population based, as in Genetic Algorithms:  the well known Monte Carlo method is used 
to generate the populations and extract statistical information of the search space. It also takes 
advantage of the typical GAs operators: 

- Regarding the selection process, the probabilistic stochastic method proposed 
successively choose the search area for the next generation using a probabilistic greedy 
criterion. Thus, giving a higher probability of exploration to the areas where the current 
best information is being extracted from.  
- Regarding the re–combination, in evolutionary algorithms components of the design 
variable vector are randomly exchanged between parents to try and maintain the diversity 
within the population. This is being done implicitly in the stochastic method by taking 
random values of the design variables in relation to their probability density functions.  
- Finally, mutation in evolutionary algorithms is used to generate individuals outside of 
the range of  the existing population to explore new areas of the search space. This 
happens in the new approach method when the initial uniform distribution is changed to a 
normal distribution. Thus, values of the design variable are allowed to be generated 
outside the range of the initial distribution with a correspondingly lower probability.  

   Gradient-like information, as in local and also global deterministic methods. It has been 
largely demonstrated that the use of gradient information clearly enhances the convergence 
properties of minimisation methods. Considering that many of the problems to be solved 
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might not be differentiable the use of gradient-like information which provides a measure of 
the closeness to a solution, is proposed in this method. 

  Uphill movements, as in simulated annealing: in order to avoid getting trapped in local 
solutions. 
    Probabilistic-stochastic method main elements are described in the following sections. 

3    MONTE CARLO SIMULATION (MCS)  
     Monte Carlo (MC) methods are stochastic techniques, based on the use of random 
numbers and probability statistics, which allow the simulation of processes under a large 
number of different conditions so as to obtain a statistical measure of the outputs.  
     If a variable X can take a real value in the interval a ≤ X ≤ b, and if the upper limit b, is a 
deterministic real value, x. Then the probability density function will describe the expected 
concentration and  spread of the random variable X within the range [a, b].  

[ ] dxxpxFxxFxxXxP )()()( =−∆+=∆+≤≤  (1)

where:  
dx

xFxxFxp )()()( −∆+=  and F(x) is the probability that X is less than or equal to x. 

    As ∆x approaches zero, p(x) approaches dF(x)/dx, the first derivative of the cumulative 
distribution function usually called the probability density function, hereafter referred to as 
PDF. The cumulative distribution frequency is therefore recoverable from the PDF as: 

∫=
x

a

dxxpxF )()(  (2)

    The MCS works by producing a random uniform number, U(0,1), then inverting the PDF 
describing the design variable parameters to obtain the corresponding random deviatevi-vii.  
    This process is carried out for every design variable until all design variables have been 
assigned a random deviate in accordance with their PDF. The input variables are then entered 
into the mathematical model and the values of the output variables are recorded. The process 
is known as taking a shot and the amount of shots has to be sufficient to ensure the Monte 
Carlo simulation has converged from a statistical point of view. This is done by considering 
the confidence intervals on the mean as described below. 
     With a given set of observation of values the true mean and a range that includes the mean 
true value with a high level of certainty are estimated.  

4    PROBABILISTIC - STOCHASTIC HEURISTIC (PSH) 

     The PDF of the decision variables, as described above, is the main guide for the 
optimisation process, as it dictates the area of the search space to be explored and with what 
frequency. Different probabilistic transition conditions were established to alter the 
probability density functions so as to  examine the search space.  
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     The population is initialized so that the entire search space is explored. This is done by 
defining the input design vectors, x, PDF as uniform within the feasible design space. 

ab
xp

−
= 1)(     a ≤ x ≤ b (3)

     The following iterations were defined by sampling the fittest P% of the current generation, 
G, and taking the mean, µG+1, and the standard deviation, σG+1, of each design variable to 
define a normal distribution as the input PDF for the next generation, G+1: 
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     This basic process is illustrated in Figure 1 for a very simple unidimensional function: 

1) 3) 

2) 

 

4) 

 
Figure 1: Schematic behavior of the PSh method for an unidimensional multimodal function. 

     The standard deviation is a measure by how much values within a sample differ from the 
mean and therefore implicitly information of the gradient For one generation there are NP 
population members, the standard deviation is defined as: 

( )∑ = −
−
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1

2

1
µσ  (5)

      If values for the design variables are produced outside the feasible space, they are 
penalised creating the effect of truncated normal distributions.  
     This process is repeated until convergence occurs, that is, when two consecutive iterations 
show less than one percent improvement in the objective function. This approach will be 
called from now PSh*. 
     Note that as the process follows the standard deviation is being reduced behaving as  the 
norm of the gradient vector in a gradient based optimization method providing extra 
information on the closeness of the solution.  
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    Additional conditions are also imposed when defining the normal distributions, in order to 
benefit from knowledge on where the top P% of the population is located in relation to the 
time spent searching in that area. This was done by considering the probability of where the 
mean µG+1  lies in relation to µG. The so called standard mean displacement is calculated as 
follows: 

Standard Mean Displacement
G

GG

σ
µµ −

= +1  (6)

    As the magnitude of the standard mean displacement increases the possibility of exploring 
a new area of the search space also increases, this is equivalent to a lower probability of re-
exploring already visited space with the corresponding computational cost reduction (this is 
illustrated in Figure 2 for one decision variable). 

 
Figure 2: Illustration of the standard mean displacement effect. 

     In order to avoid unnecessary  waste of search time the magnitude of the standard mean 
movement my be modified by a parameter G, ( ) GGGG G µµµµ +−= ++ 11 ,  so as to reduce the 
probability of re-exploring already visited space.  
    When the search is shifted in a given direction these conditions have the effect of giving the 
search a slight push in that direction. The magnitude of the push (G) indicates the greediness 
of the search. By increasing the search space we are taking into the account that the global 
minimum is not in the immediate region currently being searched and allowing the algorithm 
to take uphill steps. The method PSh* with these new conditions on the standard mean 
displacement will be called PSh.  

5    APPLICATION TO AERODYNAMIC SHAPE OPTIMISATION 

      Numerical optimisation methods have been largely applied in the aerodynamic sectorviii-x.. 
All solution approaches are based on some structural or fluid dynamic simulation method and 
are coupled with appropriate optimisation algorithms to adjust a first guess performance to 
shapes that perform according to specified targets.  
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.  The problems to be considered here are related to airfoil design. Typical targets include 
prescribed pressure or velocity distributions, lift range, maximum lift, minimal drag, etc.., 
under geometrical constraints that may include one or more of the following: thickness ratio, 
maximum slope, etc...  
    This section summarizes the results obtained in the solution of an inverse problem,  which 
consists on recovering  an aerofoil shape from a target coefficient of pressure distribution. The 
candidate aerfoil shapes were parameterized  using  two Bézier curvesxi, one for the mean 
camber line and one for the half thickness distribution (t) of the airfoil. By superimposing the 
half thickness  normal to the mean camber line a wide range of feasible airfoils can be 
produced. Regarding the numerical simulation of the aerodynamic problem the panel 
methodxii was considered. 
      In order to evaluate PSh* and PSh posibilities, a well know evolutionary method, 
Differential evolution (Dexiii-xiv), was selected as a basis for comparison. DE makes use of the 
evolution scheme and has demonstrated to be very robust and efficient for the solution of 
multimodal optimisation problems.      
    Figures 3 and 4 show the convergence curves for  DE, and the methods PSh* and PSh 
proposed here, for two different selected targets: 
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Figure 3-4: Comparison of convergence curves. 
 
     As it may be seen from the figures, all methods present the typical behaviour of stochastic 
approaches, fast convergence to the vicinity of the solution but very slow refinement till 
arriving to the global.  Note that for the first case PSh* converges to a local solution whereas 
PSh with further conditions on the standard mean deviation is able to escape and finally arrive 
quite rapidly to the same solution as DE. For the second case, although all methods have 
converged to almost the same solution, velocities of convergence were quite different. 
Particularly, both PSh* and PSh were faster than DE, arriving to the region of the optimal 
solution in around a half to three quarters the time required by DE. Remark that  imposing 
conditions on the standard deviation displacement makes PSh to converge at a quicker rate 
than PSh*.  
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6   CONCLUSIONS AND FUTURE WORK 
     The new probabilistic stochastic methods developed in this work, particularly PSh, 
presented good performance,  showing that is both robust and efficient, outperforming DE for 
the cases considered. One of the main characteristics of this method is its ability to arrive to 
the vicinity of the solution very rapidly, which qualifies it to implement possible hybrid 
methods which combine global optimisation techniques with local ones to improve 
convergence properties.  
      The authors feel that it is a combination of the properties described in section 3 that give 
the probabilistic–stochastic PSh a wide scope for future development. It is expected that large 
improvements could be made by directly linking the magnitude of the greediness to the 
standard mean movement. This would give a dynamic link between where the best 
information is being obtained in the search and the amount of time spent searching in that 
area, providing a more adaptive probabilistic self adaptation strategy parameter as opposed to 
the static one used in this work. 
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