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Abstract:  
Poly(ethylene succinate) (PES) with weight-average molecular weight above 60,000 g·mol

-1
 was 

efficiently obtained by enzymatic ring opening polymerization of cyclic oligo(ethylene succinate)s 

c(ES)n, which in turn were prepared by lipase-catalysed cyclocondensation in solution of dimethyl 

succinate and ethylene glycol. The methodology was demonstrated to be also applicable to the 

synthesis of high molecular weight PES-copolyesters containing butylene succinate, -

hydroxycaproate or L-lactate units with a random distribution. 
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1. Introduction 
 

Sustainable polymers coming from renewable feedstocks and able to be 

biodegraded at convenient periods of time constitute nowadays a distinguished group 

of materials with high industrial potential and high interest in the biomedical field. [1,2] 

Among them, aliphatic polyesters of both AA-BB and A-B types, are by far the most 

studied and commercially used. [3,4] The easy accessibility to the bio-based blocks 

suitable for building these polyesters, their notable susceptibility to biodegradation, 

and their favourable basic properties, are good reasons accounting for their 

outstanding position. 

Ring opening polymerization (ROP) of strained lactones is the method of choice 

for the synthesis of poly(hydroxyalkanoate)s whereas poly(alkylene alkanedioate)s 

are preferably produced by polycondensation of alkanediols with dicarboxylic acids or 

their esters. [5,6] ROP usually takes place at milder conditions than polycondensation 
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with less generation of undesirable by-products. [7,8] Furthermore, the ROP reaction 

is efficiently catalysed by enzymes making feasible the preparation of metal-free 

polymers. [9-11] Additional advantages of ROP are the low viscosity of the reaction 

medium and the absence of volatiles therein produced. These features are largely 

appreciated when polymerization has to be performed in situ as it is the case of 

nanocomposite manufacture and reactive injection moulding.  

In 2004, the US Department of Energy declared bio-based succinic acid (SA) as 

a high-potential chemical platform for the synthesis of compounds able to replace 

those currently in use but coming from fossil resources. [12] This is one of the main 

reasons explaining why poly(alkylene succinate)s, and in particular poly(butylene 

succinate) (PBS) and poly(ethylene succinate (PES), are ahead of bio-based 

polyesters of AA-BB type. [13] The industrial synthesis of PBS is currently performed 

by polycondensation of SA (or its dimethyl ester, DMS) with 1,4-butanediol (BDO) 

assisted by tin or titanium organometallic catalysts. In 2006 Matsamura et al. [14,15] 

reported the synthesis of PBS by enzymatically catalysed ROP (e-ROP) of cyclic 

di(butylene succinate). This dilactone may be isolated in large amounts as a 

subproduct of the polycondensation process industrially used for the manufacture of 

PBS. [16] PES is also commercially accessible although it has not achieved 

production at the ton-scale yet. The synthesis of PES is carried out by reaction of 

succinic acid either with ethylene glycol or ethylene oxide. PES is more biodegradable 

than PBS, melts slightly above 100 ºC, and displays fair mechanical properties. [17-

19] This polyester is currently under vigorous investigation addressed to create PES-

copolyesters suitable for new demanding biomaterial applications. [20-22] 

 The polycondensation methods usually provide polyesters with moderate 

molecular weights and they all require the concourse of organometallic catalysts. In 

this communication we wish to report on a new strategy for the synthesis of PES that 
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combines the enzymatic production of cyclic oligo(ethylene succinate)s, c(ES)n, with 

their enzymatic polymerization to render polymers with high molecular weight and 

absent of metallic impurities. It is the first time that the synthesis of c(ES)n and its use  

tfor the preparation of PES is reported. This procedure has been found to be readily 

extensible to the preparation of random PES-copolyesters by enzymatic 

copolymerization of c(ES)n with other cyclic esters either commercially available or 

easily accessible by synthesis. The proposed strategy is depicted in Scheme 1.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Route to PES homopolyester and copolyesters by e-ROP. 

 

 

Experimental 

 A detailed account of the materials and measuring methods used in this work is 

provided in the Electronic Supplementary Information (ESI) associated with this 

communication. Novozyme 435 (lipase B Candida antarctica, CALB, 40%) was a kind 

gift of Novozymes. Acording to the information provided by Novozymes Data Sheet, 

the nominal activity of Novozyme 435 is >10,000 PLU/g. PLU is the amount of 

enzyme activity which generates 1 mol of propyl laurate per minute under defined 
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standard conditions. This enzyme was chosen for this work since it has been reported 

to render very high molecular weight PBS.[14] Furthermore Novozyme 435 is known 

to display remarkable stability and catalytic efficiency, as well as a broad substrate 

specificity compared to other lipases.[23] 

 The cyclic oligomers c(ES)n were synthesized by applying the methodology recently 

reported by us for the preparation of their butylene succinate analogues c(BS)n. [20] Briefly, 

a three-necked round bottom flask was charged with 250 mL of toluene, 4.97 mmol (0.73 g) 

of DMS, 4.97 mmol(0.31 g) of EG and CALB (100% w/w of the total monomer 

concentration), and the mixture was left to react for 48 h at 90 °C under a nitrogen flow. 4 Å 

molecular sieves were placed at the top of the flask in order to absorb the remained 

methanol. The reaction mixture was then diluted with 70 mL of CHCl3 and the enzyme was 

removed by filtration. The residue recovered upon solvent evaporation was subjected to 

flash chromatography to eliminate the acyclic species and to render the c(ES)n mixture in 

approximately 70% yield. 1H NMR (ppm, CDCl3, 300 MHz): 4.30 (m, 4H), 2.68 (m, 4H). 

13C NMR (ppm, CDCl3, 75.5 MHz): 172.62, 172.05, 171.55, 62.48, 62.33, 62.15, 29.33, 

28.96, 28.80.  

 Polymerization of c(ES)n was performed by ROP using Sn(Oct)2 and CALB 

catalysts. For the first case, c(ES)n and 1% (w/w) of tin catalyst were placed in a 

three-necked round bottom flask and dissolved in CHCl3. Then, the solvent was 

evaporated and the mixture left to react at 125 °C for 24 h under a nitrogen 

atmosphere. For e-ROP the oligomeric fraction was mixed with CALB and the 

reaction left to proceed under the same conditions as before. The temperature 

chosen for polymerization is certainly high provided that it is enzymatically 

catalysed. Nevertheless, the capacity of Novonzyme 435 to retain its enzymatic 

activity at temperatures up to 150 ºC has been reported by different authors.[24-26] 

For following the reaction progress, aliquots of the reaction mass were removed at 
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progressive periods of time and analysed by GPC. Copolyesters coP(ES52BS48), 

coP(ES49CL51) and coP(ES72LA28) were prepared applying the same procedure to 

comonomeric pairs of c(ES)nand c(BS)n, CL or LA in a 50:50molar ratio. 

 

Results and discussion 

 Graphical data obtained in the characterization of the cyclic c(ES)nmixture are 

shown in Fig. 1, and a detailed account of numerical data is provided in the ESI file. 

The NMR spectra (Fig. 1a) were in full agreement with the constitution expected for 

the c(ES)n mixture, and they did not show any signal indicative of the presence of 

linear oligomers. The MALDI-TOF spectrum (Fig. 1b) contained the m/z signal 

sequence arising from the 144 molar mass attributable to the ethylene succinate 

MALDI-TOF results could be reasonably attributed to the trimer and tetramer species. 

A comparison of these results with those reported for c(BS)n is given in Table 1. The 

two fractions were obtained in similar yields although the c(ES)n appears to be more 

homogenous with trimer and tetramer species being clearly predominant in this 

fraction. The fact that the c(BS)n fraction is composed of smaller cycle sizes (dimer 

and trimer) is fully reasonable by taking into account the longer length of the butylene 

unit. 

 

 

 

 

 

 

 

 

 



  

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Characterization of c(ES)n. a) 
13

C (top) and 
1
H (bottom) NMR; b) MALDI-TOF; c) HPLC. 
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  Thermal properties of c(ES)n and c(BS)n are not very different. Both fractions 

melt around 100 ºC and display the same thermal decomposition pattern although 

c(ES)n starts to lose weight almost 50 ºC lower than c(ES)n. The TGA traces of c(ES)n 

show two weight falls centred around 250 ºC and 400 ºC which are made to 

correspond to partial volatilization of the cycles and decomposition of the polymer 

formed in situ upon heating, respectively. Comparison of GPC and NMR data 

recorded from c(ES)n before and after being heated at 200 ºC gave support to this 

interpretation (see Fig.SI-1 in ESI). 

 e-ROP of c(ES)n was performed in the bulk at 125 ºC with 40% of CALB added 

to the molten cycles. The evolution of the polymerization reaction was followed by 

GPC of aliquots drawn at scheduled times which revealed a continuous increasing of 

the average molecular weight of the formed polymer with time. Data recorded from 

these measurements are plotted in Fig. 2 which shows an exponential chain growing 

at the earlier stages that becomes asymptotic after one day of reaction to finally 

attains a molecular weight about 65,000 g·mol-1 with a Ð of 1.7. For comparison, 

c(ES)n was polymerized under the same conditions but replacing the enzyme by 1% 

of tin dioctanoate. The Mw-t profile resulting in this case was also asymptotic but the 

finally attained Mw was around 50,000 g·mol-1. A parallel polymerization assay 

performed at 125 ºC in the absence of catalyst revealed that ROP of c(ES)n induced 

Table 1 
Alkylene Succinate Cyclic Oligomers c(ES)n and c(BS)n.  

 Precursors  Yielda 

(%) 

Compositionb 

(n: 2/3/4/5) 

 Tm
c 

(ºC) 

Td,5%
c 

(ºC) 

Tmax
c 

(°C) 

c(ES)n 

c(BS)n 

DMS+ EG 
DMS+ BD 

 
 

70 
70 

0/45/55/<10  
   50/40/10/<10 

 100 
105 

200 
266 

300/400 
340/400 

a  
Yields obtained after removing the linear species by chromatography. 

b
 Oligomeric composition determined by HPLC. 

c
 Melting and decomposition temperatures (onset and maximum rate) determined by DSC and TGA. 
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exclusively by heating, progressed linearly with a small slope to produce a PES with 

Mw10,000 g·mol-1 after 24 h of reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Evolution of Mw of PES generated in the ROP of c(ES)n at 125 ºC using CALB, Sn(Oct)2 

and in the absence of catalyst. 
 

 

 

 The great attention that nowadays is receiving the development of aliphatic 

copolyesters containing alkylene succinate units has encouraged us to explore the 

feasibility of e-ROP for preparing such copolyesters from the c(ES)n fraction. With 

such purpose polymerization experiments of equimolar mixtures of c(ES)n and several 

selected lactones were carried out for 24 h under the same reaction conditions that 

were used for the synthesis of the homopolyester. c(BS)n synthesized by enzymatic 

cyclocondensation and displaying the features indicated in Table 1 (detailed 

characterization data are provided in Fig. SI-2 in the ESI file), commercial L-lactide 

(LA) and commercial -caprolactone (CL), were the cyclic comonomers of choice. 

Preliminary results obtained in these copolymerization experiments are compared in 

Table 2, and the 1H NMR spectra registered from PES and the three copolyesters are 

depicted in Fig. 3. A close examination of these spectra allowed ascertaining the 
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chemical constitution expected for the polyesters and determining their comonomeric 

compositions which were found to be very close to those used in their respective 

feeds for the copolyesters containing butylene succinate and -hydroxycaproate units. 

The lower content in LA units found for coPES72LA28 is attributed to partial sublimation 

of L-lactide taking place during the course of the reaction. On the other hand, the 

analysis of the signals multiplicity appearing in the 13C NMR spectra (see Fig. SI-3 in 

ESI for details) strongly suggested that the comonomeric units are randomly 

distributed along the polymer chain for the all three prepared copolyesters. 

 

 

 

 

 

 

 

 

 

 

 

 GPC measurements revealed that the molecular weights and dispersities of the 

PES-copolyesters were comparable to that obtained for the homopolyester. Finally, an 

exploratory estimation of the more substantial thermal properties of coPES52BS48 

carried out by TGA and DSC (Figs. SI-4 and SI-5 in ESI) brought into evidence the 

good coincidence of its thermal degradation and reversible transition parameters with 

those previously reported for similar copolyesters prepared by chemical methods.21,22 

Although the values measured for the copolyesters made from caprolactone and L-

lactide could not be contrasted in the same way because these copolyesters have not 

been described so far in the accessible literature, the behaviour observed for both 

Table 2 
PES copolyesters prepared by e-ROP. 

 

 

 
Yield 
(%) 

 Mw
b 

(g·mol-1) Đ 
 oTd, 5%

c 

(°C) 

maxTd
c
 

(°C) 
 

Tg
d 

(°C) 
Tm

d 
(°C) 

Hm
d 

(J·mol-1) 

PES 

 

90  65,000 1.7  310 385  -12 100 55 

coPES52BS48 85  60,000 1.9  300 400  -28 49 20 

coPES49CL51 80  60,000 1.8  295 401  -31 40 18 

coPES72LA28 76  50,000 1.8  332 390  -5 67 19 
a
Composition of copolyesters measured by 

1
H NMR. 

b
 Molecular weight measured by GPC. 

c
Decomposition temperatures (onset and maximum rate) determined by TGA. 

d
Glass-transition and melting temperatures and melting enthalpy determined by DSC.  
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coPES49CL51 and coPES72LA28 is in agreement with what one should be expected 

from their comonomeric constitution and composition. 
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 Fig. 3. 
1
H NMR of PES, coPES52BS48, coPES49CL51 and coPES72LA28. 

 

Conclusions 

 Ring opening polymerization catalysed by lipase has been demonstrated to be a 

convenient method for the preparation of both PES homopolyester and aliphatic 

copolyesters containing ethylene succinate units. The oligo(ethylene succinate)s 

cycles required for e-ROP could be efficiently prepared by enzymatic cyclization of 

two potentially bio-based compounds, i.e ethylene glycol and dimethyl succinate. 
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Since organometallic catalysts are fully avoided through the whole process, free-metal 

polymers could be prepared. The polymerization reaction of c(ES)n took place faster in 

the presence of lipase than when catalysed by organometallic compounds. 

Noteworthy the polymers resulting by e-ROP had molecular weights high enough as 

to make unnecessary the application of additional treatments (either post-

polycondensation or use of extenders) for increasing chain lengths. Cyclic esters 

including both AA-BB and A-B types with different ring strains were successfully used 

as comonomers of c(ES)n for the synthesis of PES copolyesters by e-ROP. The 

results attained in this piece of work demonstrate the suitability of the enzymatic route 

as a green alternative for the synthesis of PES homo- and co-polyesters, in particular 

when these materials are intended to be used in biomedical applications. 
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