
Adaptive and Architecture-Independent Task
Granularity for Recursive Applications

Antoni Navarro1 Sergi Mateo1 Josep Maria Perez1 Vicenç Beltran1
Eduard Ayguadé1,2

1 Barcelona Supercomputing Center 2 Universitat Politècnica de Catalunya
{antoni.navarro,sergi.mateo,josep.m.perez,vbeltran,

eduard.ayguade}@bsc.es

Abstract. In the last few decades, modern applications have become
larger and more complex. Among the users of these applications, the
need to simplify the process of identifying units of work increased as
well. With the approach of tasking models, this want has been satisfied.
These models make scheduling units of work much more user-friendly.
However, with the arrival of tasking models, came granularity manage-
ment. Discovering an application’s optimal granularity is a frequent and
sometimes challenging task for a wide range of recursive algorithms. Of-
ten, finding the optimal granularity will cause a substantial increase in
performance.
With that in mind, the quest for optimality is no easy task. Many as-
pects have to be considered that are directly related to lack or excess of
parallelism in applications. There is no general solution as the optimal
granularity depends on both algorithm and system characteristics. One
commonly used method to find an optimal granularity consists in ex-
perimentally tuning an application with different granularities until an
optimal is found. This paper proposes several heuristics which, combined
with the appropriate monitoring techniques, allow a runtime system to
automatically tune the granularity of recursive applications. The solution
is independent of the architecture, execution environment or application
being tested. A reference implementation in OmpSs — a task-parallel
programming model — shows the programmability, ease of use and com-
petitive performance of the proposed solution. Results show that the
proposed solution is able to achieve, for any scenario, at least 75% of the
performance of optimally tuned applications.

Keywords: OmpSs, Cost, Autotuning, Threshold, Granularity, Cutoff

1 Introduction

The optimal unit of work in a parallel code depends on many factors. To name
a few; input data, resources allocated or the current load of a machine are some

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-65578-9_12

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87660660?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

of the most important ones to take into account. Statically setting a certain
granularity for an application in a specific environment, machine and/or input
may cause a dramatic decrease of performance when that same application runs
with other parameters or on different machines. Once the granularity is set,
often, it will be immutable for the entire execution. Static granularities then,
are too rigid and cause applications to suffer a decrease in performance when
executed with different configurations.

granularity

performance

Excess Lack

Ψ Φ

Fig. 1: Effects of different granularities in performance

Figure 1 generically illustrates the consequences of choosing incorrect
granularities. When a certain limit Ψ of granularity is not met, fine-grained
tasks are generated and that leads to an excess of parallelism. This is worsened
by stressing runtime libraries with the management of an excessive amount of
tasks. On the other hand, once a certain threshold Φ on granularities is surpassed,
tasks are too coarse, which leads to a lack of parallelism and load imbalance.
These granularity thresholds are highly dependent on a large number of factors.
Some are linked to the hardware architecture, and some others are related to
the dynamic behavior of the application and the system on which it runs.

Offline tuning is an extensively used technique when searching for good
granularities. It is based on executing applications with different input param-
eters and granularity cutoffs until an optimal performance is reached. Negative
impacts on performance caused by choosing inadequate granularities can be
softened by limiting the number of tasks from a runtime’s point of view. This
is done in order not to stress the runtime with the creation and handling of
fine-grained tasks that would not payoff in computation. The latter approach
behaves as expected when tasks are fine grained and thus the creation of too
many of these would expose too much parallelism. However, for coarse-grained
tasks this technique prevents a level of parallelism which is needed.

Visible flaws from the aforementioned techniques and the difficulty of
writing architecture-independent code raise interest for a way to auto-tune ap-
plications and to detect optimal granularities, taking into account factors such



Adaptive Task Granularity for Recursive Applications 3

as input sizes or resources. These techniques could improve if precise information
about the computation being performed by the tasks is known. Simultaneously,
this interest creates a demand for task-based programming models [1] that are
able to manage themselves through monitoring. By monitoring, these would have
access to certain metrics, which could be used to take scheduling decisions.

This paper presents the OmpSs Autofinal Module. Its purpose is to en-
able the automatic detection of the optimal granularity of recursive applications,
regardless of the architecture, input size or execution environment being used. It
consists of a monitoring infrastructure, several heuristics and language support
through clauses. The monitoring infrastructure provides precise execution met-
rics that combined with the heuristics and usage of language constructs, provide
information to the runtime to decide when it is worth to instantiate tasks. In
addition, this paper shows what kind of language support is recommended to pro-
vide useful information to the monitoring infrastructure. Results show that the
usage of this technique achieves performance that is competitive in comparison
to manually tuned applications on several architectures and diverse applications.

The rest of the paper is structured as follows. Section 2 overviews the
related work and introduces the most frequent techniques on granularity man-
agement. Section 3 introduces the idea of the cost clause from a programming
model’s point of view. Section 4 thoroughly explains an implementation of Aut-
ofinal on OmpSs. Section 5 presents a case study and evaluates its performance
and lastly, Section 6 concludes this work.

2 Related Work

In most task-based recursive codes, the overhead of task creation and manage-
ment causes the overall performance of the code to decrease at a certain recursion
depth. Because of this, runtime libraries provide techniques to ensure limits on
these depths. Managing and limiting granularities have previously been con-
sidered in task-based programming models. For instance, OpenMP [2] provides
several clauses to tune the task granularity. Below are some of the clauses that
are most related to this paper.

– final : For recursive problems it may be beneficial for performance to stop
task creation at certain depths to expose enough parallelism and reduce
overhead. That is, the task will not instantiate children. Instead the code is
executed on a single unit of work. Its syntax is

final (expression)

where expression evaluates into a boolean value that determines whether
the task is final .



4 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

– if : Its syntax is the following:

if (expression)

Before instantiating the task, the expression is evaluated. If its value is false,
the task is not instantiated and instead its code runs as part of the current
task.

– mergeable: In certain scenarios, if this clause is present, the task’s parent will
share its data environment with the task.

Autotuning is often described as a general technique to automatically
adapt the execution of a program to a given parallel computer. This adaptation
is done in order to optimize one or more runtime performance metrics such as
execution time [3]. Other works, such as the one conducted by Ray S. Chen [4] or
the one conducted by Chung & Hollingsworth [5], researched ways to autotune
applications. Their works rely on running applications several times by differing
parameters until an optimal configuration or granularity is found. This paper fo-
cuses on dynamically autotuning applications without a previous training phase.
The tuning determines the granularity to apply to the final clause.

Other works such as the one conducted by Alejandro Duran [6] discussed
a similar way of autotuning granularity, however without the usage of the final
clause nor the cost clause. It made use of bare execution times in order to deter-
mine when a granularity is fine enough, regardless of the type of the task. This
approach might work as expected with some specific architectures, applications
and input sizes, however introducing variability in any of these three factors
might trigger wrong cutoff decisions, resulting in decreases of performance. This
paper however, focuses on precisely determining the computational weight of
the tasks and make accurate predictions of execution times, regardless of the
architecture, input size or application.

3 Language Support

To make the most of the OmpSs Autofinal module, application developers have
to provide additional hints to the runtime. First, the developer must express
the intention to use Autofinal. This is necessary in order for task monitoring to
happen. Therefore, one could extend the final clause to accept keywords like the
following:

final (auto)

where auto is the keyword that expresses the desire to automatically establish
final cutoffs.



Adaptive Task Granularity for Recursive Applications 5

Furthermore, the accuracy of the data obtained by monitoring can be
improved by normalizing it. This is done through information about the com-
putational weight of tasks. For this purpose, the cost clause is introduced with
the following syntax:

cost (expression)

where expression corresponds to a single or a combination of algebraic functions
that evaluate into a positive real number.

4 Implementation

The OmpSs Autofinal implementation consists of the following parts: a moni-
toring infrastructure, several heuristics and a collection of constructs used by
the runtime and provided by the programming model. Each of these parts is
explained in the next sections.

The following work was implemented in the OmpSs [7] programming
model. OmpSs — OpenMP Superscalar — is a task-based, data-flow aware par-
allel programming model developed at the Barcelona Supercomputing Center.
Its proximity to OpenMP makes it relevant to runtime developers working on
similar implementations.

4.1 Task Monitoring

A monitoring infrastructure was added to give the runtime the ability to decide
when a task’s granularity is fine enough. The infrastructure is capable of pro-
viding a histogram of task execution times. Once a task has been executed, its
metrics are aggregated per task type. However, this information is not used as-is,
the metrics are first normalized. This is explained in the next subsection. Some
of the metrics provided are execution time, runtime execution time, number of
leaf tasks and number of tasks that have at least created one task.

4.2 Final Clause

This sections explains the implementation of the final clause in OmpSs. The
compiler first makes use of closures and duplicates every function of the user
application which creates tasks. Once those functions are executed and if the
final clause evaluates to true, the task enters in final mode. This mode prevents
the task from generating any other task.



6 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

4.3 Cost Clause

Predictions on execution times could be done by simply using the metrics ob-
tained by the monitoring infrastructure. This approach is exactly the one taken
if no other information is available. Nonetheless, the information provided by
the cost clause can be used to normalize the predicted execution time of a task.
The normalization and the contents of the cost clause are important because
the execution time of a task does not depend only on the type of the task. The
contents of the cost clause allow comparing the expected execution time with
other tasks of the same type. When a task does not rely on any algorithmic func-
tion, and thus does not contain the cost clause, the normalized cost will simply
be the average execution time and thus the clause will not have any negative
impact on the decision. However if the task’s computation follows an algorithmic
function, the normalized average will provide much more veracious information
towards the runtime’s decision. For the OmpSs implementation of Autofinal, this
normalization consists on dividing the expected execution time by the contents
of the cost clause. Figure 2 shows the normalization under the assumption that
cost is available for the task.

This clause however is not bound to be the computational weight of a
task, as it could evaluate other kinds of expressions. As an example, an I/O
intensive task could use the cost clause by giving hints about the I/O operations
it is going to perform. Other tasks such as memory bound tasks, could make use
of the cost clause by specifying the number of load/stores it is going to perform.

Function normalize_cost(task):
expected_time = get_prediction(task->get_type());
normalized_cost = expected_time / task->get_cost();
return normalized_cost;

end

Fig. 2: Normalization of cost for a task.

The usefulness of the clause then, relies on acting as a hint given to
the runtime library. This hint is mostly used as information about the relative
computational weight of a task — In other words, the algorithmic cost. However,
it may be used for other purposes such as the ones discussed previously and in
Section 6. Figure 3 shows the usage of this clause applied to a few well known
algorithms.

In order to achieve an adaptive strategy, OmpSs’ implementation of Aut-
ofinal has an average normalized cost . This cost , also referred in this document
as unitary cost, is seen by the runtime as the expected execution time for a unit
of cost extracted from the clause. That is, taking into account that the cost
evaluates into a positive real number, as explained in Section 3. The average



Adaptive Task Granularity for Recursive Applications 7

1#pragma oss task cost (N∗N)
2 void I n s e r t i o nSo r t ( int ∗ src , int ∗ dst , s i ze_t N) ;
3
4#pragma oss task cost (N∗N∗N)
5 void MatMul( int N, double ∗ A, double ∗ B, double ∗ C) ;
6
7#pragma oss task cost (N∗ l og (N) )
8 void MergeSort ( int ∗ src , int ∗ dst , s i ze_t N) ;

Fig. 3: A few algorithms showcased using the cost clause.

unitary cost is obtainable by having a window of measurements of unitary cost.
By using this strategy, normalized costs are adapted throughout the execution
of the application and its changes of behavior. In other words, the average is
obtained using the ’N’ latest measurements.

OpenMP’s final clause, as shown previously in Section 2, allows users to
manually set a threshold on task granularities. To use it, the developer must
have knowledge of application behaviors and the computation being done by the
affected tasks. All of this forces the developer to study said applications and to
execute them with different thresholds and figure out their behavior on the given
hardware and software setup.

Hence why it is interesting for the runtime to monitor the behavior of
tasks and automatically activate the final clause when desired. It is from this idea
that Autofinal was created. Autofinal uses task monitoring in order to estimate
the execution time of future tasks and determine whether they should be final
or not. Figure 4 shows a pseudo code with the heuristics that have been chosen
to be taken into account in the decisions of automatic final appliance. These are
thoroughly explained immediately after.

Function is_automatically_final(task):
arity = children_tasks / parent_tasks;
if no_cost_available(task) then

current_tasks = pow(arity, recursive_depth);
maximum_tasks = total_cpus × TASKS_PER_CPU ;
return current_tasks > maximum_tasks;

end
else

expected_time = cost × unitary_cost;
return expected_time < THRESHOLD ;

end
end

Fig. 4: Pseudo code of heuristics used to determine if a task should be final .

The decision has two well-differentiated heuristics. When executing a cer-
tain task, if the runtime does not have timing information of its type it can be
due to two reasons. The first occurs when a task is the first of its type to be



8 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

executed. The second occurs when all previous tasks from the same type have
not finalized their execution and therefore have not contributed to task moni-
toring yet. For better understanding of the second scenario, one could think of
recursive algorithms like mergesort or fibonacci in which non-leaf tasks contain
a taskwait, which waits for its children to finish. In these, there is no complete
timing information available until one of the recursive branches of the algorithm
reaches a leaf task.

When either of the previous scenarios is met and therefore no timing
information is available, it is still useful to limit the number of instantiated and
not finalized tasks. Otherwise, tasks with very fine granularity end up being
created. The best way to do this is limiting the maximum number of tasks
of a certain type at a certain moment and, in order to do this, some metrics
are needed. In OmpSs, these metrics are the recursive depth of tasks from the
same type — recursive_depth — and the average number of tasks created
by a certain type or, as referred in the pseudocode, the arity of a task. The
arity is computed taking into account the number of tasks from a certain type
which have at least a children task (parent_tasks) and the number of leaf tasks
(children_tasks). If at a task’s creation point the average (current_tasks)
surpasses a limit, the task is created as a final task. This limit is calculated using
a configurable number of tasks per CPU and the total number of CPUs.

In the event that the runtime has timing information for a certain type of
task, it can estimate the execution time for future tasks of that type. This esti-
mation can be more precise if the developer provides computational information
about the task through the cost clause. If the execution time estimation does
not meet a certain configurable threshold, the task is generated as a final task.

5 Results

To test Autofinal’s effectiveness, four very different recursive benchmarks were
used.

– The Fibonacci sequence: Fibonacci was chosen because it is a benchmark
with very fine granularity. The computation of tasks at the end of recursivity
is as simple as returning an integer. The sequence of the first 35 Fibonacci
numbers was chosen as the size for this benchmark.

– Mergesort: The mergesort algorithm was chosen to test a wide range of
granularities. The computation of a task can be as simple as a comparison
between two numbers or as coarse as sorting and merging two big chunks of
an array. An array of 108 doubles was used as this benchmark’s input.

– NQueens problem: In the NQueens benchmark, granularities grow expo-
nentially. Testing this attribute challenges effectiveness and accuracy of pre-
dictions. The board size used for this benchmark is 15 rows by 15 columns.



Adaptive Task Granularity for Recursive Applications 9

– Strassen Matrix Multiply: The Strassen matrix multiplication algorithm
was chosen to evaluate a data intensive compute-bound benchmark. The size
of the matrixes was 213.

5.1 Autofinal heuristics

– Cost: For this heuristic, a warmup iteration was executed for every bench-
mark. That is, a whole execution of the benchmark was performed to fill
histograms with timing information. By doing this, in the second iteration,
even the first tasks to be executed will be compared against a prediction.
This heuristic covers the scenario of having previous timing information of
tasks.

– Hybrid: This heuristic cuts recursive depth early to avoid fine-grained tasks.
Once the histograms are filled with timing information, this heuristic aban-
dons the first technique and continues by using the cost heuristic. Hence
why this heuristic is named hybrid. This heuristic covers the scenario of not
having previous timing information of tasks.

5.2 System configuration

Benchmark results were obtained on four different architectures in order to test
variability of performance in different architectures and configurations. Results
were always obtained in a single node using all the available CPUs in the node.
Next is a list of all the machines used and the number of cores used in each.

– MinoTauro: Contains a cluster with 39 R421-E4 Servers, each with 2 Intel
Xeon E5-2630v3 (Haswell) 8-core processors, each @ 2.4 GHz. 16 cores were
used.

– ThunderX: Contains 4 Nodes each equipped with 2 Cavium ThunderX
sockets, each of them with 48 ARMv8-A cores, each @ 1.8 GHz. 96 cores
were used.

– KNL: Each KNL machine contains an Intel Xeon Phi socket @ 1.40 GHz,
with 68 cores in each socket and 4 threads per core. 68 cores were used with
1 thread per core.

– Power8: Contains 2 Machines with 2 sockets Power8 10C @ 3.49 GHz, 8
threads each core. 20 cores were used.

5.3 Performance results

The obtained measurements demonstrate how a statically chosen granularity for
one architecture does not perform well on others and how Autofinal improves



10 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

this situation. For each benchmark, the best granularity was manually found
on four different architectures. After that, the benchmarks were ran in every
machine with the best granularities of all four machines and with autofinal with
two different heuristics.

Figure 5 shows the results. It contains four plots, from top to bottom:
Fibonacci, Mergesort, NQueens & Strassen. The horizontal axis corresponds to
the execution of a host, and each host has six measurements. The first 4 cor-
respond to the best granularity of the benchmark in each host, and the last
two correspond to autofinal executions with two different heuristics. These are
explained in Section 5.1.

The first plot then, contains the comparison of the Fibonacci benchmark.
In the horizontal axis are the hosts where the benchmark is ran. That means
that the very first six bars in the plot correspond, from left to right to:
1. Executing Fibonacci on MinoTauro with MinoTauro’s optimal granularity.
Hence why the speedup is 1.
2. Executing Fibonacci on MinoTauro with ThunderX’s optimal granularity.
3. Executing Fibonacci on MinoTauro with KNL’s optimal granularity.
4. Executing Fibonacci on MinoTauro with Power8’s optimal granularity.
5. Executing Fibonacci on MinoTauro with Autofinal’s cost heuristic.
6. Executing Fibonacci on MinoTauro with Autofinal’s hybrid heuristic.

Sometimes, statically choosing a granularity for a certain architecture
causes a dramatic decrease on performance on every other. This is highly visible
when executing Fibonacci in the ThunderX system with KNL’s optimal granu-
larity. In this scenario, it barely achieves 20% of the performance of the optimal
granularity. Autofinal however, achieves at least 90% of ThunderX’s optimal
performance. Another scenario, but not the last, is when executing Strassen in
the KNL system with Power8’s optimal granularity. The performance obtained
is around 68% of the performance of the optimal granularity, while Autofinal
achieves more than 90%.

The cost heuristic is used with a previous warmup iteration of the appli-
cation and therefore can make timing predictions from the start of the execution.
These plots also exposed that the cost heuristic behaves better than the hybrid
heuristic because the cost heuristic is fed on a warmed up environment. It relies
on previous timing information. The loss of performance of the hybrid heuristic
due to not having previous timing information is at most 20%, while the penalty
for using a granularity from another architecture can be as high as 90%.

Autofinal then, achieves competitive performance regardless of the archi-
tecture and benchmark where it is tested. Results show that it achieves at least
75% of the optimal performance in every scenario and that using granularities
from other architectures can lead to only obtaining around 20% of the optimal
performance.



Adaptive Task Granularity for Recursive Applications 11

MinoTauro ThunderX KNL Power8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Fibonacci

Sp
ee
du

p

MinoTauro ThunderX KNL Power8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Mergesort

Sp
ee
du

p

MinoTauro ThunderX KNL Power8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

NQueens

Sp
ee
du

p

MinoTauro ThunderX KNL Power8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Strassen

Execution Host

Sp
ee
du

p

MinoTauro’s best Granularity ThunderX’s best Granularity
KNL’s best Granularity Power8’s best Granularity

Autofinal - Cost Autofinal - Hybrid

Fig. 5: Performance comparison of Heuristics vs. Optimal Granularities.



12 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

Results also show that in some cases, Autofinal is able to find an even
better granularity than the apparently optimal one. This is possible because
it does not just set a fixed granularity. Instead, it decides at execution time
whether a task should be final . Hence, in some cases it chooses a mix of gran-
ularities. This is visible when executing Mergesort on the KNL system or the
MinoTauro system, with any Autofinal heuristic. The results indicate that the
optimal granularity is a mixture of tasks with final granularity 107 and 106.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

Explicit Final on Matrix Block Size

Sp
ee
du

p
(A

ut
ofi

na
lv

s
E
xp

lic
it

F
in
al
)

Board Size: 5x5
Board Size: 7x7
Board Size: 10x10
Board Size: 12x12
Board Size: 15x15

Fig. 6: Autofinal vs Manual Tuning for the NQueens Benchmark with different
input sizes

Figure 6 shows the performance of Autofinal against manually tuning
the granularity of tasks for the NQueens Benchmark with the final clause. This
comparison is done by executing NQueens with different input sizes in order to
test Autofinal’s adaptiveness to an application’s settings. As shown, the optimal
granularity often comes linked to the input size of the application and Auto-
final is able to adapt to these settings. For completeness, this section includes
Figures 7 & 8. These show the speedup obtained by executing the previous
benchmarks with Autofinal versus executing them with a wide range of manual
cut-off depths. Each series corresponds to an architecture and the speedup is
computed comparing Autofinal’s cost heuristic’s performance against each cut-
off step’s performance. These plots show which are the appropriate granularities
for each benchmark in each architecture as well, and how Autofinal performs
against these. The best granularity for each benchmark then was chosen to plot
the performances seen in Figure 5.



Adaptive Task Granularity for Recursive Applications 13

0246810121416182022242628303234
0.5

1

2

4

8

16

32

64

128

256

512

1,024

Explicit Final on Sequence Index

Sp
ee
du

p
(A

ut
ofi

na
lv

s
E
xp

lic
it

F
in
al
) MinoTauro

ThunderX
Power8
KNL

100101102103104105106107108
0.5

1

2

4

8

16

32

64

128

256

512

1,024

2,048

Explicit Final on Array Chunk

Sp
ee
du

p
(A

ut
ofi

na
lv

s
E
xp

lic
it

F
in
al
) MinoTauro

ThunderX
Power8
KNL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.5

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

Explicit Final on Board Column

Sp
ee
du

p
(A

ut
ofi

na
lv

s
E
xp

lic
it

F
in
al
) MinoTauro

ThunderX
Power8
KNL

Fig. 7: Autofinal vs. Manual Tuning for Fibonacci (Top), Mergesort (Middle) &
NQueens (Bottom)



14 A. Navarro, S. Mateo, J. Perez, V. Beltran, et al.

20 21 22 23 24 25 26 27 28 29 210 211 212 213
0.5

1

2

4

8

16

32

Explicit Final on Matrix Block Size

Sp
ee
du

p
(A

ut
ofi

na
lv

s
E
xp

lic
it

F
in
al
) MinoTauro

ThunderX
Power8
KNL

Fig. 8: Autofinal vs Manual Tuning for the Strassen Benchmark

For the Fibonacci plot, each cutoff corresponds to the index number of the
sequence at which recursive depth is cut with the final clause. The Mergesort
plot’s cutoffs correspond to the array chunk size at which recursive depth is
cut. For the NQueens benchmark, the cutoff corresponds to the board’s column
index. Lastly, for the Strassen benchmark, the cutoff chosen is the matrix block
size at which recursive depth is cut.

6 Conclusion & Future Work

This paper presented how automatically detecting optimal granularity cutoffs
can be integrated into a task parallel programming model. Furthermore, it
showed which runtime features, as well as language support, are needed to al-
low using Autofinal. Having specific information about the computation of tasks
allows making precise predictions as well as offering a general solution to au-
tomatically find well performing granularities for applications. The evaluations
show that making the runtime aware of the computational weight of tasks and
monitoring them allows to predict with precision task execution times and hence
to find granularities that adapt to the architecture and the runtime environment.

The Autofinal technique raised interest in exploring its behavior with
processors that allow dynamic frequencies. With that in mind, it would also be
interesting to compare static granularities against the usage of Autofinal in the
aforementioned processors.



Adaptive Task Granularity for Recursive Applications 15

The introduction of the cost clause in the language also provides spe-
cific metrics to create new capabilities on the runtime library, like cost based
scheduling policies. This raised interest in using the cost clause with the taskloop
construct. The idea relies on having extra information about the computational
weight of iterations from a taskloop in order to better balance and schedule the
workload.

7 Acknowledgments

This work has been supported by the Spanish Ministry of Science and Innovation
(contract TIN2015-65316), the grant SEV-2015-0493 of Severo Ochoa Program
awarded by the Spanish Government, and by Generalitat de Catalunya (contract
2014-SGR-1051)

References

1. Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Fed-
erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The
Design of OpenMP Tasks. In IEEE Transactions On Parallel Distributed Systems,
Vol.20, No.3, pages 404–418, March 2009.

2. OpenMP Architecture Review Board. OpenMP Application Program Interface Ver-
sion 4.5, November 2015.

3. Vaidyeswaran Rajaraman and Chebiyyam Siva RamMurthy. In Parallel Computers:
Architecture and Programming, pages 378–380, August 2004.

4. Ray S. Chen. Finding Chapel’s Peak: Introducing Auto-Tuning to the Chapel Parallel
Programming Language. November 2012.

5. I-Hsin Chung and Jeffrey K. Hollingsworth. Using Information from Prior Runs to
Improve Automated Tuning Systems. November 2004.

6. Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. An adaptive cut-off for
task parallelism. In Proceedings of the 2008 ACM/IEEE conference on Supercom-
puting, November 2008.

7. Barcelona Supercomputing Center. OmpSs Specification, March, 30th 2017.


