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Abstract
Image retrieval in realistic scenarios targets large dynamic datasets of unlabeled

images. In these cases, training or fine-tuning a model every time new images are
added to the database is neither efficient nor scalable. Convolutional neural networks
trained for image classification over large datasets have been proven effective feature
extractors for image retrieval. The most successful approaches are based on encod-
ing the activations of convolutional layers, as they convey the image spatial informa-
tion. In this paper, we go beyond this spatial information and propose a local-aware
encoding of convolutional features based on semantic information predicted in the tar-
get image. To this end, we obtain the most discriminative regions of an image us-
ing Class Activation Maps (CAMs). CAMs are based on the knowledge contained
in the network and therefore, our approach, has the additional advantage of not re-
quiring external information. In addition, we use CAMs to generate object propos-
als during an unsupervised re-ranking stage after a first fast search. Our experiments
on two public available datasets for instance retrieval, Oxford5k and Paris6k, demon-
strate the competitiveness of our approach outperforming the current state-of-the-art
when using off-the-shelf models trained on ImageNet. Our code is publicly available
at http://imatge-upc.github.io/retrieval-2017-cam/.

1 Introduction
Content-based Image Retrieval (CBIR) and, in particular, object retrieval (instance search) is
a very active field in computer vision. Given an image containing the object of interest (visual
query), a search engine is expected to explore a large dataset to build a ranked list of images
depicting the query object. This task has been addressed in multiple ways: from learning
efficient representations [16, 19] and smart codebooks [2, 17], to refining a first set of quick
and approximate results with query expansion [6, 12, 27] or spatial verification [17, 26].

Convolutional neural networks trained on large scale datasets have the ability of trans-
ferring the learned knowledge from one dataset to another [29]. This property is specially
important for the image retrieval problem, where the classic study case targets a large and
growing dataset of unlabeled images. Therefore, approaches where a CNN is re-trained
every time new images are added does not scale well in a practical situation.
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Many works in the literature focus on using a pre-trained CNN as feature extractor and, in
some cases, enhancing these features by performing a fine-tuning step on a custom dataset.
For instance, [4] and [8] use the activations of the fully-connected layers while more re-
cent works have demonstrated that the activations of convolutional layers convey the spatial
information and thus, provide better performance for object retrieval [3]. Following this
observation, several works have based their approach on combining convolutional features
with regions of interest inside the image [3, 14, 21, 28]. More recent works have focused
on applying supervised learning to fine-tune CNNs using a similarity oriented loss such as
ranking [9] or pairwise similarity [20] to adapt the CNN and boost the performance of the
resulting representations. However, this fine-tuning step has the main drawback of having to
spend large efforts on collecting, annotating and cleaning a large dataset, which sometimes
is not feasible.

In this paper, we aim at encoding images into compact representations taking into ac-
count the semantics of the image and using only the knowledge built in the network. Se-
mantic information has been considered before in the context of image retrieval. For in-
stance, [30] proposed a method to combine semantic attributes and local features to compute
inverted indexes for fast retrieval. Similarly, in [7], the authors use an embedding of weak
semantic attributes. However, most of these methods do not associate image regions with
the objects in the image, as this process usually relies in other expensive approaches like ob-
ject detectors. Here, by contrast, we use convolutional features weighted by a soft attention
model over the classes contained in the image. The key idea of our approach is exploiting
the transferability of the information encoded in a CNN, not only in its features, but also
in its ability to focus the attention on the most representative regions of the image. To this
end, we use Class Activation Maps (CAMs) [31] to generate semantic-aware weights for
convolutional features extracted from the convolutional layers of a network.

The main contributions of this paper are: First, we propose to encode images based
on their semantic information by using CAMs to spatially weight convolutional features.
Second, we propose to use the object mappings given by CAMs to compute fast regions of
interest for a posterior re-ranking stage. Finally, we set a new state-off-the art in Oxford5k
and Paris6k using off-the-shelf features.

2 Related Work
Following the success of CNNs for the task of image classification, recent retrieval works
have replaced hand-crafted features for representations obtained from off-the-shelf CNNs.
For instance, in [4], the authors use features extracted from the fully-connected layers of
the networks. An extension to local analysis was presented in [25], where features were
extracted over a fixed set of regions at different scales defined over the image.

Later, it was observed that features from convolutional layers convey the spatial informa-
tion of images making them more useful for the task of retrieval. Based on this observation,
recent approaches focus on combining convolutional features with different methods to es-
timate areas of interest within the image. For instance, R-MAC [28] and BoW [15] use a
fixed grid of regions, [25] considers random regions, and SPoC [3] assumes that the relevant
content is in the center of the image (dataset bias). These approaches show how focusing on
local regions of the image improves performance. However, the computation of these regions
is based on heuristics and randomness. By contrast, in this paper we focus on obtaining local
regions based on image contents.
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Figure 1: Our image encoding pipeline. An image I is used as input to a convolutional
neural network. After a forward pass, feature maps are spatially weighted by each CAM,
sum-pooled and then, weighted by channel as detailed in Eq. 3. Then, normalized class
vectors Fc are generated by applying PCA and l2 normalization. Finally, these class vectors
are aggregated and normalized to build the final compact image representation DI .

In this work, we aim at extracting features with focus on local areas that depend on the
contents of the image, as other authors have explored in the past. For instance, in [9, 24],
a region proposal network is trained for each query object. However, this solution does not
scale well as it is a computational intensive process that must be run at query time, both for
the training, and for the analysis of a large scale dataset at search time. Other approaches
use an additional model to predict regions of interest for each image. For example, the work
in [22] uses saliency maps generated by an eye gaze predictor to weight the convolutional
features. However, this option requires additional computation of the saliency maps and
therefore duplicates the computational effort of indexing the database. Yet another approach
is proposed by the CroW model [14]. This model estimates a spatial weighting of the features
as a combination of convolutional feature maps across all channels of the layer. As a result,
features at locations with salient visual content are boosted while weights in non-salient
locations are decreased. This weighting scheme can be efficiently computed in a single
forward pass. However, it does not explicitly leverage semantic information contained in the
model. In the next section, we present our approach based on Class Activation Maps [31]
to exploit the predicted classes and obtain semantic-aware spatial weights for convolutional
features.

3 Class-Weighted Convolutional Features

In this section, we first review Class Activation Maps and then outline our proposed pipeline
for encoding images into compact representations.

3.1 Class Activation Maps

Class Activation Maps (CAMs) [31] were proposed as a method to estimate relevant pixels of
the image that were most attended by the CNN when predicting each class. The computation
of CAMs is a straightforward process in most state-of-the-art CNN architectures for image
classification. In short, the last fully-connected layers are replaced with a Global Average
Pooling (GAP) layer and a linear classifier. Optionally, an additional convolutional layer
can be added before the GAP (CAM layer) to recover the accuracy drop after removing the
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Input Image VGG-16-CAM DecomposeMe ResNet-50 DenseNet-161

Figure 2: Qualitative CAMs obtained using several network architectures such as VGG-16-
CAM [31], DecomposeMe [1], ResNet-50 [10] or DenseNet-161 [11]. Each example shows
the top predicted class and the probability assigned by the model to that class. For the input
image, we show the ground truth assigned to that particular image.

fully-connected layers. In architectures where the layer before the classifier is a GAP layer,
CAMs can be directly extracted without any modification.

Given an output class c, its CAM is computed as a linear combination of the feature maps
in the last convolutional layer, weighted by the class weights learned by the linear classifier.
More precisely, the computation of the CAM for the c-th class is as follows:

CAMc =
K

∑
k=1

convk ·wk,c, (1)

where convk is the k-th feature map of the convolutional layer before the GAP layer, and
wk,c is the weight associated with the k-th feature map and the c-th class. Notice that, as we
are applying a global average pooling before the classifier, the CAM architecture does not
depend on the input image size.

Given a CAM it is possible to extract bounding boxes to estimate the localization of
objects [31]. The process consists of setting a threshold based on the normalized intensity of
the CAM heat map values and then set to zero all values below that threshold. The region of
of interest is defined as the bounding box that covers the largest connected element.

3.2 Image Encoding Pipeline
The image encoding pipeline is depicted in Figure 1 and consists of three main stages: Fea-
tures and CAM extraction, feature weighting and pooling and descriptor aggregation.

Features and CAMs Extraction: Input images are feed-forwarded through the CNN
to compute, in a single pass, convolutional features of the selected layer with K feature
maps (χ) with a resolution of W ×H. In the same forward pass, we also compute CAMs
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Figure 3: Examples of regions of interest generated using CAMs. The ground truth is shown
in green while the rest of colors refer to bounding boxes generated using different thresholds.

to highlight the class-specific discriminative regions attended by the network. These CAMs
are normalized to fall in the range [0,1] and resized to match the resolution of the selected
convolutional feature maps.

Feature Weighting and Pooling: In this stage, a compact representation is obtained by
weighting and pooling the features. For a given class c, we weight its features spatially, mul-
tiplying element-wise by the corresponding normalized CAM. Then, we use sum-pooling to
reduce each convolutional feature map to a single value producing a K-dimensional feature
vector. In our approach, our goal is to cover the extension of the objects rather than their
most discriminative parts. Therefore, we consider sum-pooling instead of max-pooling. In
addition, as also noted in [3, 14], sum-pooling aggregation improves performance when PCA
and whitening is applied. Finally, we include the channel weighting proposed in CroW [14]
to reduce channel redundancies and augment the contribution of rare features. More pre-
cisely, we first compute the proportion of non zero responses for each channel with respect
to the feature map area Qk as

Qk =
∑i, j 1 [χ

(k)
i, j > 0]

WH
. (2)

Then, the channel weighting CWk is computed as the logarithm of the inverse channel spar-
sity [14]:

CWk = log(
∑

K
n=1(Qn)

Qk
). (3)

Finally, the fixed length class vector Fc = [ f c
1 , f c

2 , ..., f c
K ] is computed as follows,

f (c)k =CWk

W

∑
i=1

H

∑
j=1

χ
(k)
i, j CAM(c)

i, j . (4)
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Method Oxford5k Paris6k
B

as
el

in
es Raw Features 0.396 0.526

Raw + Crow 0.420 0.549
Raw Features + PCA 0.589 0.662
Raw + Crow + PCA 0.607 0.685

N
et

w
or

k

VGG-16 (Raw) 0.396 0.526
VGG-16 (64CAMs) 0.712 0.805
Resnet-50 (Raw) 0.389 0.508
Resnet-50 (64CAMs) 0.699 0.804
Densenet-161 (Raw) 0.339 0.495
Densenet-161 (64CAMs) 0.695 0.799

Aggregation Time (s) mAP

Raw + PCA 0.5 0.420
1 CAM 0.5 0.667
8 CAMs 0.6 0.709
32 CAMs 0.9 0.711
64 CAMs 1.5 0.712

(a) (b)
Table 1: a) Mean average precision comparison on Oxford5k and Paris6k for baseline meth-
ods not including CAM weighting and several network architectures used to extract CAMs.
b) Actual computational cost added by using the proposed CAM weighting scheme.

Descriptor Aggregation: In this final stage, a descriptor DI for each image I is obtained
by aggregating NC class vectors. In particular, following [14, 28], we perform l2 normaliza-
tion, PCA-whitening [13] and l2 normalization. Then, we combine the class vectors into a
single one by summing and normalizing them.

The remaining is selecting the classes to aggregate the descriptors. In our case, we are
transferring a pre-trained network into other datasets. Therefore, we define the following
two approaches:

• Online Aggregation (OnA): The top NC predicted classes of the query image are
obtained at search time (online) and the same set of classes is used to aggregate the
features of each image in the dataset. This strategy generates descriptors adapted to
the query. However, it has two main problems limiting its scalability: First, it requires
extracting and storing CAMs for all the classes of every image from the target dataset,
with the corresponding requirements in terms of computation and storage. Second,
the aggregation of weighted feature maps must also be computed at query time, which
slows down the retrieval process.

• Offline Aggregation (OfA): The top NC semantic classes are also predicted individ-
ually for each image in the dataset at indexing time. This is done offline and thus, no
intermediate information needs to be stored, just the final descriptor. As a result, this
process is more scalable than the online approach.

4 Experiments

4.1 Datasets and Experimental Setup
We conduct experiments on Oxford5k Buildings [17] and Paris6k Buildings [18]. Both
datasets contain 55 query images to perform the search, each image annotated with a re-
gion of interest. We also consider Oxford105k and Paris106k datasets to test instance-level
retrieval on a large-scale scenario. These two datasets extend Oxford5k and Paris6k with
100k distractor images collected from Flickr [17]. Images are resized to have a minimum
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Figure 4: Sensitivity of our descriptor as a function of NC for different number of classes
used to compute PCA, Npca, for the two aggregation strategies: Online (left) and Offline
(right). Straight and Dashed lines corresponds to Paris6k and Oxford5k dataset respectively.

dimension of 720, maintaining the aspect ratio of the original image. We follow the eval-
uation protocol using the convolutional features of the query’s annotated region of interest.
We compute the PCA parameters in Paris6k when we test in Oxford5k, and vice versa. We
choose the cosine similarity metric to compute the scores for each image and generate the
ranked list. Finally, we use mean Average Precision (mAP) to compute the accuracy of each
method.

4.2 Network Architecture
In this section, we explore the use of CAMs obtained using different network architectures
such as DenseNet-161 [11], ResNet-50 [10], DecomposeMe [1] and VGG-16 [31]. Figure 2
shows representative CAM results for these architectures and, in Table 1.a we summarize the
accuracy for each model. As shown in Figure 2, VGG-16 tends to focus on particular objects
or discriminative parts of these objects rather than in the global context of the image. In
addition, the length of the descriptor is 512 (compared to 2048 in ResNet-50). In addition,
VGG-16 outperforms the other architectures. Therefore, we based our model in VGG-16
pre-trained on the ILSVRC ImageNet dataset [23] for the rest of experiments. Using this
model, we extract features from the last convolutional layers (conv5_1, conv5_2, conv5_3)
and empirically determine that conv5_1 is the one giving the best performance. As men-
tioned in [31], the CAM-modified model performs worse than the original VGG-16 in the
task of classification, and we verify using a simple feature aggregation that the convolutional
activations are worse for the retrieval case too. For Oxford5k dataset the relative differences
are of 14.8% and 15.1% when performing max-pooling and sum-pooling, respectively.

4.3 Ablation Studies
The model presented in Section 3.2 requires two different parameters to tune: the number
of class vectors aggregated NC, and the number of classes used to build the PCA matrix,
NPCA. The input matrix to compute it has dimensions NImNpca ×K where NIm and K are the
number of images in the dataset and the number of feature maps of the convolutional layer
considered, respectively.

The Online (OnA) and Offline (OfA) Aggregations are compared in Figure 4 in terms
of mAP as a function of the amount of top NC classes and Npca classes used to compute
the PCA. As a reference, the baseline mAP values obtained just sum-pooling the features,
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(a) (b)

Figure 5: a) Appearance ratio of the selected classes for the 55 queries in Paris6k. b) Perfor-
mance sensitivity as a function of NC for different values of Npca for our Offline aggregation
strategy with a set of predefined classes. Interestingly, most selected classes are related
to landmarks (buildings). For instance, the first 16 classes correspond to: vault, bell cote,
bannister, analog clock, movie theater, coil, pier, dome, pedestal, flagpole, church, chime,
suspension bridge, birdhouse, sundial and triumphal arch

applying channel weighting and PCA can be observed in Table 1.a. Our technique improves
that baseline without adding a large computational overhead as can also be seen in Table 1.b.

For the offline aggregation, the optimal NC seems to be dataset dependent, Paris6k ben-
efits from having more classes aggregated while the performance on Oxford5k dataset re-
mains constant despite the number of classes. However, the patterns of online aggregation
show that aggregating few classes (< 10) we are able to obtain a good performance for both
datasets. Increasing the number of classes is also resulting in little benefit, mostly in Ox-
ford5k dataset. It can be observed that knowing the which content is relevant and building
the descriptors results accordingly in a reduction of the class vectors required, as well as a
performance boost. We observe that increasing the Npca value does not improve the perfor-
mance, suggesting that the randomness of the classes (of the target dataset) is not adding
valuable information.

To improve the performance of the offline aggregation without the practical limitations
of aggregating online, we suggest restricting the total number of classes used to the most
probable classes of the dataset’s theme. As we have two similar building datasets, Oxford5k
and Paris6k, we compute the most representative classes of the 55 Paris6k queries and use
that predefined list of classes ordered by probability of appearance to obtain the image repre-
sentations in Oxford5k. The results can be observed in Figure 5. Firstly, we see that now we
are learning a better PCA transformation when increasing Npca. As we use the same classes
per every image, PCA is finding a better representation space. Secondly, we see that the
mAP improves for both OfA, as now we do not have the mismatching of classes, and OnA,
because the PCA is providing a better transformation.

4.4 Comparison to State-of-the-art Methods
Table 2.a summarizes the performance of our proposal and other state-of-the-art works, all
of them using an off-the-shelf VGG-16 network for image retrieval on the Oxford5k and
Paris6k datasets. These results are given for a Npca of 1 and NC of 64 for both approaches.
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Method Dim Oxford5k Paris6k Oxford105k Paris106k

SPoC [3] 256 0.531 - 0.501 -
uCroW [14] 256 0.666 0.767 0.629 0,695
CroW [14] 512 0.682 0.796 0.632 0.710
R-MAC [28] 512 0.669 0.830 0.616 0.757
BoW [15] 25k 0.738 0.820 0.593 0.648
Razavian [21] 32k 0.843 0.853 - -
Ours(OnA) 512 0.736 0.855 - -
Ours(OfA) 512 0.712 0.805 0.672 0.733

(a)

Method Dim R QE Oxford5k Paris6k Oxford105k Paris106k

CroW [14] 512 - 10 0.722 0.855 0.678 0.797
Ours(OnA) 512 - 10 0.760 0.873 - -
Ours(OfA) 512 - 10 0.730 0.836 0.712 0.791
BoW [15] 25k 100 10 0.788 0.848 0.651 0.641
Ours(OnA) 512 100 10 0.780 0.874 - -
Ours(OfA) 512 100 10 0.773 0.838 0.750 0.780
RMAC [28] 512 1000 5 0.770 0.877 0.726 0.817
Ours(OnA) 512 1000 5 0.811 0.874 - -
Ours(OfA) 512 1000 5 0.801 0.855 0.769 0.800

(b)
Table 2: a) Comparison with the state-of-the-art CNN based retrieval methods (Off-the-
shelf). b) Comparison with the state-of-the-art after applying Re-Ranking (R) or/and Query
Expansion (QE). Descriptor dimensions are included in the second column (Dim).

In Paris6k benchmark, we achieve the best result with our OnA strategy, with a signifi-
cant difference compared to OfA. This reflects the importance of selecting the relevant image
content. We can also observe that our OfA method scales well, reaching the top performance
in Oxford105k and falling behind RMAC [28] in Paris106k. If we are working in a particular
application where we need to retrieve only specific content (e.g. buildings), the OfA strategy
could be further enhanced by doing a filtering in the pool of possible classes as described in
Section 4.3. In Oxford5k benchmark, Razavian et al. [21] achieve the highest performance
by applying a extensive spatial search at different scales for all images in the database. How-
ever, the cost of their feature extraction is significantly higher than ours since they feed 32
image crops of resolution 576× 576 to the CNN. In this same dataset, our OnA strategy
provides the third best result using a more compact descriptor that the other techniques.

4.5 Re-Ranking and Query Expansion

A common approach in image retrieval is to apply some post-processing steps for refining a
first fast search such as query expansion and re-ranking [14, 15, 28].

Query Expansion: There exist different ways to expand a visual query as introduced
in [5, 6]. We choose one of the simplest and fastest ones as in [14], by simple updating the
query descriptor for the l2 normalized sum of the top ranked QE descriptors.

Local-aware Re-Ranking: As proposed in [17], a first fast ranking based on the im-
age features can be improved with a local analysis over the top-R retrieved images. This
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re-ranking is based on a more detailed matching between the query object and the location
of this object in each top-R ranked images. There are multiple ways to obtain object loca-
tions. For instance, R-MAC [28] applies a fast spatial search with approximate max-pooling
localization. BoW [15] applies re-ranking using a sliding window approach with variable
bounding boxes. Our approach, in contrast, localizes objects on the images using class acti-
vation maps, as explained in Section 3.1. We use the most probable classes predicted from
the query to generate the regions of interest in the target images, see Figure 2. To obtain
these regions, we first define heuristically a set of thresholds based on the normalized inten-
sity of the CAM heatmap values. More precisely, we define a set of values 1%, 10%, 20%,
30% and 40% of the max value of the CAM and compute bounding boxes around its largest
connected component. Second, we build an image descriptor for every spatial region and
compare them with the query image using the cosine distance. We keep the one with the
highest score. The rationale behind using more than one threshold is to cover the variability
of object dimensions in different images. Empirically, we observed that using the average
heatmap of the top-2 classes improves the quality of the generated region. This is probably
due to the fact that most buildings are composed by more than one class.

We provide a comparison of our re-ranking and query expansion results with relevant
state of the art methods: CroW [14] applies query expansion after the initial search. BoW
and R-MAC apply first a spatial re-ranking. The number of top-images considered for these
techniques varies between works. For the sake of comparison, Table 2.b summarizes our re-
sults with their same parameters for query expansion (QE) and re-ranking (R). For the initial
search, we keep Npca of 1 and NC of 64 for both OnA and OfA as in the previous section.
For the re-ranking process, we decrease NC to the 6 more probable classes because, after
the first search, we already have a set of relevant images and we aim at a more fine-grained
comparison by looking at particular regions. In addition, taking less classes reduces the
computational cost. Looking at Table 2.b, we observe that our proposal achieves very com-
petitive results with a simple query expansion. Adding a re-ranking stage, the performance
improves mostly in Oxford5k dataset, where we obtain the top performance. In Paris6k, we
can observe that re-ranking does not increase the performance because relevant images are
already on the top QE of the initial list.

5 Conclusions
In this work we proposed a technique to build compact image representations focusing on
their semantic content. To this end, we employed an image encoding pipeline that makes
use of a pre-trained CNN and Class Activation Maps to extract discriminative regions from
the image and weight its convolutional features accordingly. Our experiments demonstrated
that selecting the relevant content of an image to build the image descriptor is beneficial,
and contributes to increase the retrieval performance. The proposed approach establishes a
new state-of-the-art compared to methods that build image representations combining off-
the-shelf features using random or fixed grid regions.
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[19] Filip Radenović, Hervé Jégou, and Ondrej Chum. Multiple measurements and joint
dimensionality reduction for large scale image search with short vectors. In ICMR,
2015.
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