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Abstract

Theimportance of media processing has produced a rev-
olution in the design of embedded processors. In order to
face the high computational and technological demands of
near future media applications, new embedded processors
are including features that were commonly restricted to the
general purpose and the supercomputing domains. In this
paper we have evaluated the performance of various DLP
(Data Level Parallelism) oriented embedded architectures
and analyzed quantitative data in order to determine the
highlights and disadvantages of each approach. Addition-
ally we have analyzed the differences between the explicit
parallel versions of code (often based on the standard algo-
rithms) and the high-tuned, non-vectorizable versions usu-
ally found in real multimedia programs. We will show that
sub-word SMD architectures (like MMX) are a very cost-
effective solution, and that, while long vector architectures
provide few improvements at a very high cost, a smart com-
bination between vector and SMD-like architectures isthe
alternativethat leverages best performance at a reasonable
cost. We will also show that the memory latency tolerance,
typical of vector architectures, is partially compensated by
the wor se spatial locality found when executing vector code.

1 Introduction

The significance that media processing has been taking
on during the last years have not been limited to the general
purpose domain. On the contrary, the embedded domain
has experimented a revolution based on new and harder de-
mands. Near future applications such as personal mobile
computing, WebTV devices, DVD players or even next gen-
eration of game consoles [1] are just a few examples.
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The 32-bit embedded processors have already narrowed
the gap between embedded and desktop systems [2] and DSP
processors include currently features that were restricted not
far ago to just the general purpose domain.

Realizing the computational demands, together with the
cost and power consumption requirements of these new ap-
plications, it can be easily predicted that even more ag-
gressive approaches are going to be implemented in future
embedded processors.

In this paper we will try to evaluate several of the various
DLP oriented approaches designed to boost the performance
of multimedia and DSP applications for the embedded do-
main: (a) sub-word level SIMD multimedia architectures,
(b) conventional short/long vector architectures and (c) ma-
trix SIMD multimedia architectures. In order to understand
the performance benefits of each alternative we will present
quantitative data such as the number and type of instructions
executed, the overall number of operations or the memory
behavior.

As a side matter of study, this paper focuses also on
studying the difference between scalar optimized code and
explicit DLP code, which is a generally overlooked issue in
most multimedia papers. We will show what are the main op-
timizations made over the standard vectorizable algorithms
and we will analyze both optimized and vectorizable ver-
sions.

2 The embedded domain evolution towards
media processing

Media processing has motivated strong changes in the
focus and design of mid 90s processors. In the general pur-
pose domain, these changes have been very straightforward
with the inclusion of SIMD-like multimedia extensions such
as MMX[3], VIS[4] or MDMX [5]. These extensions have
become the most important change to the basic ISA since
the inclusion of the FP units inside the processor core.

On the other hand, the changes in the embedded design
have been strongly influenced by different domains such as
the general purpose or the supercomputing domain.
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From the general purpose domain, two main DSP ar-
chitectures have evolved: superscalar DSPs with SIMD
instructions (such as TriCore [6]) and VLIW DSPs, ei-
ther with special SIMD instructions (Philips TriMedia
[7], TigerSHARC [8]) or without (Texas Instruments
TMS320C6201 [9]).

From the supercomputing domain, the vector and systolic
paradigms have influenced new DSP processors. There have
been several papers dealing with the design of cost-effective
vector microprocessors [10, 11]. Examples of vector micro-
processor designs are the Torrent TO [12] or the V-IRAM
project [13]. Additionally, there are current projects using
streaming SIMD architectures to address 3D graphics pro-
cessing such as Imagine [14]. Finally, as a side research line,
there have been papers dealing with the inclusion to a basic
superscalar core of a conventional vector ISA extension [15]
and a matrix ISA extension [16].

While all these new architectures are able to take ben-
efit from the abundant Data Level Parallelism available in
common media codes, there has not been any work compar-
ing their potential performance and characteristics, specially
in the embedded domain. When dealing with restricted
resources, different factors such as the code density, the
explicit parallelism or the memory behavior can affect per-
formance in different ways than more aggressive general
purpose architectures. These three factors will be the basis
of the performance analysis in this paper.

3 Evaluation Background

In this section we will discuss the selection of bench-
marks for our set of evaluations, the impact of the scalar
optimized code compared to explicitly parallel codes, and
we will briefly describe all the modeled architectures and
the approach used for simulate them.

3.1 Benchmarks

The difficulty to capture all of the essential elements
of modern embedded multimedia and communications sys-
tems is reflected on the lack of any standardized bench-
mark suite. For our study we focus on three representa-
tive programs of image and video workloads: cjpeg (a
JPEG image encoder), djpeg (a JPEG image decoder) and
mpeg2encode (@ MPEG2 video encoder), all from the
UCLA Mediabench suite [17].

We have chosen entire applications instead of represen-
tative kernels in order to compare the real effectiveness of
current architectures. Note that the improvement obtained
in some parts of the code can be overridden by the degrada-
tion produced on the remaining part. The selected programs
are representative enough as far as compilation methods and
vectorization percentage is concerned.

JPEG is a compression standard for either grayscale and
color digital images based on the DCT-method [18]. The
codification is performed in three stages: color space con-
versionand downsample, forward DCT transformand quan-
tization, and entropy coding. In color space conversion, each
pixel from the source image in converted from the RG B to
its YUV representation and then the chrominance compo-
nents (I and V') are downsampled by a factor of two on both
spatial dimensions. The forward DCT processing step lays
the foundation for achieving data compression by concen-
trating most of the signal in the lower spatial frequencies.
Source images samples are grouped into 8x8 blocks and
input to the DCT. The output is another block of 64 coef-
ficients with the property that most of them have zero or
near-zero amplitude and need not be encoded. Afterwards,
each coefficient is quantized with the purpose to achieve
further compression by representing the coefficients with
no greater precision than is necessary to achieve the de-
sired image quality. Finally, all the quantized coefficients
are ordered into a "zig-zag" sequence, so that they can be
encoded more compactly based on their statistical character-
istics (Huffmann coding). Djpeg just performs the inverse
operations in the reverse order.

MPEG-2 video compression standard was developed by
the Motion Picture Experts Group [19]. Video sequences
usually contain statistical redundancies in both temporal and
spatial direction. Spatial correlation is exploited for each
frame in the same way as JPEG, and motion compensated
prediction techniques are used to reduce temporal redun-
dancies between frames. Motion estimation searches which
block of the previous image matches better with the block
being compressed (this becomes the most computational-
intensive part of the process), and the resulting displacement
between the two blocks is called the motion vector. Usually,
the block size is 16x16 pixels for the luminance component
(Y") and 8x8 for the chrominance components (U and V).
A motion compensated difference block is then formed by
subtracting the pixel values of the predicted block from that
of the current block. The differentblock is then transformed,
quantized and entropy coded.

3.2 Explicit DLP VsOptimized Scalar Code

Most of the algorithms used in the standards above have a
vector nature. Nevertheless, due to the intrinsic significance
of most multimedia algorithms, there has been a great effort
focusing on reducing the overall number of required opera-
tions. Unfortunately, this effort has been oriented towards
scalar architectures, hiding in most cases the data parallel
nature of the original algorithm.

We can find the most representative example in the DCT
algorithm. This transformation can be represented as a ma-
trix operation using a 8x8 transform matrix A to obtain



the 8x8 transform coefficients matrix C' based on a bilinear
transformation: C = A- B - AT, where B is the input block
and AT denotes the transpose of A. This would involve
1024 multiplications for each input block. Nevertheless,
various fast algorithms have been introduced in the litera-
ture for reducing the number of multiplications involved in
the transform [20]. The algorithm used in the JPEG standard
only needs to perform 192 products to produce one resultant
block; but because of this optimization, the new code cannot
be vectorized.

The use of memory tables to replace multiplications or
other operations groups is quite frequent too. In color space
conversion, the equations to be implemented for each pixel
are:

Y=Cl«+R+C2+G+C3xB
U=C4xR4+C5«xG +C6+ B+ 128
V=C6+xR+C7T+G+ C8x B+ 128

where C'1 to C'8 are constants and R, GG and B are the
pixel color components. To avoid floating-point/fixed-point
conversions, fractional numbers are represented as integers
scaled up by 2*6. Moreover, in order to avoid doing multipli-
cations inthe inner loop, these products are precalculated for
all possible values of R, G and B. This would involve 256
entries of 32 bits per table; as two multiplication constants
are identical, only eight tables are needed. These small ta-
bles are grouped into one unique table of 8 Kbytes, which
can be held in cache. Taking into account that offsets and
rounding factors are included in the tables, the real change
is 9 loads and 6 adds in opposite to 9 mults and 9 adds.

Something similar is done to perform saturation in
djpeg. Several decompression processes need to range-
limit values between 0 and 255. On most machines a table
lookup is faster than the explicit test:

if(x < 0) x = 0;
else if (x > 255) x = 255;

So, two conditional branches and an assignment above are
replaced by one single memory access.

Finally, another typical scalar optimization which can
prevent a code fragment from being vectorized is a break
condition inside a loop. We can look at the distance func-
tion in mpeg2encode for a sample. In motion estimation,
the distance between two blocks is computed as the sum of
absolute differences between the pixels of both blocks. In
fact, the object of the search is finding the block with mini-
mal distance, so it is not worth to calculate the full distance
when the sum accumulated for some columns exceeds the
current minimum, and the resulting code is something sim-
ilar to this:

for (i=0;i<h;i++) {
for (j=0;j<w;Jj++)
s += abs(bl[i] [j]1-b2[i] [J]);
if (s >= distlim) break;

}

We cannot vectorize this code over loop ¢ because of the
conditional break, but this line of code could be removed
without affecting the program output but rather the overall
number of operations executed.

Note that the improvement obtained with this kind of
optimizations is strongly architecture dependent. We have
looked for the main optimizations which are present in the
three benchmarks and handwritten the standard (without
optimizations) associated code, so that we can generate vec-
tor/SIMD code. In section 4 we will evaluate the impact of
the optimized code over performance.

The optimizations we have taken into account are:

a) For cjpeg: tables used for color space conversion have
been changed for the lineal combination of the inputs showed
above. The DCT is implemented as matrix per matrix prod-
ucts.

b) For djpeg: besides the optimizations described for cjpeg,
saturation is performed as a comparison instead of just ac-
cessing atable. Inthe optimized code, they avoid computing
the IDCT for those blocks whose elements are all zero. Ini-
tial evaluations showed us that eliminating this optimization
would provide us diminishing returns. Therefore, the IDCT
has not been modified for any vector code (except for the
basic non-optimized reference code).

c) For mpeg2encode: as in the previous benchmarks, the
IDCT is implemented as two matrix per matrix products. In
motion estimation, we have removed the break condition in
distance computation when generating matrix-oriented code
(see subsection 3.3) since would not allow us to vectorize
the whole matrix, and also when generating MMX-like code
as it would not allow us to generate optimal scheduling.

3.3 Modeled Architectures

In this paper, we are going to evaluate five different
SIMD/vector architectures:

e 2-way basic superscalar DSP

2-way superscalar DSP + SIMD extensions

e 2-way DSP + long vector instructions (128)

2-way DSP + short vector instructions (16)

2-way DSP + Matrix SIMD extensions
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Figure 1. The basic superscalar DSP refer-
ence architecture: (a) in-order, (b) out-of-
order.

The basic characteristics of all the architectures (such as
the issue rate, the latencies, the pipeline or the cache config-
urations) have been chosen based on those of the Siemens
TriCore TC10. Notethatitisvery difficultto provide arather
perfectly fair comparison between architectures, since fac-
tors such as the characteristics of the specific ISA or the
election of the number of the functional units may affect
overall performance. This paper is an attempt to determine
trends and characteristics rather than identifying the best
alternative.

3.3.1 Reference superscalar DSP

The basic reference DSP isa 100MHz, 2-way issue, RISC
load/store architecture with 32 general purpose registers.
The engine is able to fetch and decode up to two different
instructions per cycle. There are two different pipelines:
one for integer and branch instructions and one for memory
instructions. The integer operation latencies are 1 single
cycle, except for multiply operations (3 cycles) and divide
operations (7 cycles).

The processor has a 16KB, 2-way set associative instruc-
tion cache that provides 16-byte cache lines into an instruc-
tion buffer that decouples the fetch and the decode stages.
The data cache is a 16KB, write-back, 4-way set associative
cache with 32-byte cache lines able to provide one 32-bit
data access per cycle. The processor is coupled to a pseudo
Direct Rambusmemory system with a bi-directional, 128-bit
wide, 25MHz main bus, able to deliver up to 0.4 GB/s.

The in-order execution version has a very simple con-
trol logic that stalls the pipeline whenever we encounter any
kind of data dependence or resource constraint. The out-of-
order version of the DSP (see figure 1.b) provides register
renaming (40 physical registers) and includes one reserva-
tion station (of 8 slots) per pipeline. Instructions between
pipelines can be executed out-of-order, but instructions in-
side the same reservation station must be executed in-order.

In order to evaluate the performance of the architecture
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Figure 2. The in-order superscalar DSP +
SIMD instructions architecture.

we have used ATOM [21] to provide Alpha code traces to
our Jinks simulator [15]. In order to approximate the effect
of 0-cycle resolution branches typical of several DSPs, we
have taken an optimistic approach and have assumed perfect
branch prediction.

3.3.2 Superscalar DSP + SIMD extensions

We have enhanced the basic model with a SIMD register
file together with an additional pipeline able to execute 64-
bit sub-word level SIMD instructions (see figure 2). We have
used the emulation libraries described in [16] to hand-write
the same applications with a SIMD ISA extension fairly
similar to INTEL’s SSE [22] integer opcodes. This SIMD
extension provides 67 opcodes and 32 64-bit SIMD registers
able to operate on up to eight 8-bit items in parallel. The
data path of the data cache has been enlarged to allow one
full byte-wise 64-bit access per cycle. For more information
about the emulation and simulation details the reader may
refer to [16, 23].

3.3.3 DSP + vector instructions

We have enhanced the basic model with a vector register
file and a real single vector unit. The in-order execution
model is similar to that proposed in [11], while the out-of-
order version is based on the architecture proposed in [15].
Both the register file and the vector functional unit are clus-
terized in 4 independent 32-bit vector pipes (or lanes) where
the different vector elements are interleaved (see figure 3).
Therefore, up to 4 operations from the same vector instruc-
tion can be performed per cycle (in the same vein that the
SSE sub-word level parallelism). We have used the CON-
VEX C4000 compiler to generate vector code and we have
generated traces to feed Jinks. The CONVEX ISA provides
16 32-bit logical vector registers, and 52 address and scalar
registers. The out-of-order version of the architecture per-
forms register renaming with 24 physical vector registers
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Figure 4. The in-order superscalar DSP + Ma-
trix instructions architecture.

and 64 scalar/address registers.

In order to study the design trade-offs, we have generated
code for two different vector lengths: 16 and 128. For the
16-length version, we have used strip-mining techniques on
all those vectorizable loops it was required. For the full
vector length version (128), whenever possible, we used
loop-unrolling plus loop-interchange techniques so that we
could achieve the longest effective vector length possible.

SIMD-like extensions such as MMX are able to provide
up to 8 elements with a single 64-bit memory access. We as-
sume that the vector microprocessor memory system is able
to provide the same bandwidth when the vector elements
are consecutively arranged in memory (up to 8 elements of
8 bits, or up to 4 elements of 16 bits) and that the logic to
distribute the elements among the vector lanes does not add
additional cycles of latency.

3.3.4 DSP + matrix SIMD extensions

In [16] we proposed a matrix ISA that is basically an
hybrid between conventional vector ISAs and SIMD MMX-
like ISAs. This ISAis able to exploit DLP from two different
dimensions (parallel loops). We used emulation libraries to
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Figure 5. Dynamic instruction breakdown.

hand-write the code using the proposed model and Jinks was
modified to be able to detect the emulation functions calls
while gathering the SIMD traces.

We have modified the DSP+vector model in order to al-
low the execution of this kind of instructions. The ISA pro-
vides 16 logical matrix registers (with 16 64-bit words each)
and 2 logical 192-bit packed accumulators (similar to those
proposed in the MDMX multimedia extension [5]). We have
an independent matrix register file and an independent accu-
mulator file. In sharp contrast with the conventional vector
version, we have not implemented parallel lanes since: a)
we already have the MMX-like sub-word execution capa-
bilities, and b) the accumulators complicate the design of
fully independent lanes. The out-of-order version provides
register renaming with 20 physical matrix registers and 4
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physical multimedia accumulators.

4 QuantitativeAnalysis

In this section we will provide quantitative data in or-
der to identify the main characteristics of every architecture
under study. We will show the instruction and operation
breakdowns and an analysis of the performance results. Ad-
ditionally, we will study the impact of out-of-order execution
over each architecture. Finally, we will analyze the data lo-
cality and the memory latency to explain the impact of a
realistic memory over performance.

4.1 Instruction Breakdown

Figure 5 shows the dynamic instruction breakdown for
the benchmarks under study. The instruction types have
been classified into the following five categories: scalar
memory, scalar arithmetic, vector memory, vector arithmetic
and branches (control).

From the results, we can clearly observe that the explicit
vector parallel versions of code have a huge instruction over-
head. The optimizations described in section 3.2 are able
to reduce between 35% and 70% of the overall number of
instructions. Note specially the high degradation introduced
in the non-optimized code for djpeg, mainly produced by
the zero condition removal mentioned in subsection 3.2,
since almost 3/4 parts of the input blocks have zero AC
coefficients.

Because of the lack of resources in typical embedded
architectures, the increases in performance are almost pro-

[ [[ SS+SIMD [ SS5+SV | SS+LV | S5+ Matrix ||

mpeg2encode 6.60 15.19 16.47 50.82
djpeg 471 15.99 127.66 75.10
Cipeg 356 11.27 1453 11.48

Table 1. Average vector length of the instruc-
tions for all the SIMD architectures.

portional to the reduction of the number of instructions (con-
sidering the same ISA). Therefore, we may expect that the
optimized version of code is going to execute about twice
faster than the vectorizable version of code.

Taking into account that all the SIMD/vector versions of
code are based on the non-optimized vectorizable version,
it might seem that the overall number of instructions could
be higher than in the optimized original version. Neverthe-
less, as seen in the figure, the MMX-like SIMD architecture
executes about 35% fewer instructions than the optimized
code, and the vector oriented architectures (short, long and
matrix) an average of 60% fewer instructions. The reason
is that, as already pointed out in [24], the SIMD/vector ar-
chitectures can pack several scalar memory and arithmetic
instructions into a single vector/SIMD instruction. More-
over, due to the fact that multiple instances of a loop are
replaced with equivalent SIMD/vector instructions, there is
an additional reduction of the number of instructions in-
volved in the loop-related control (that is, loop indexes and
address variables). Finally, there is another factor of reduc-
tion related to the specific characteristics of every ISA. For
instance, the MMX-like and the matrix SIMD ISAs have sat-
uration arithmetic that avoids having to perform the process
described in section 3.2 and the matrix SIMD ISA allow to
perform multiply&accumulate instructions.

4.2 Operation Breakdown

The overall instruction reduction is strongly dependent
on three factors: the average vector length (say, the average
number of operations per vector instruction), the vectoriza-
tion percentage of the program and the overall number of
operations to execute. Figure 6 shows the dynamic opera-
tion count and table 1 shows the average vector length for
all the benchmarks under study.

Analyzing the average vector length for every architec-
ture we can see that the short vector architecture is able to
leverage a vector length very close to the maximum (16).
The SIMD architecture is also able to provide convincing
vector lengths (packing only 3 times less elements than the
short vector architecture with a vector register file 16 times
smaller). On the other hand, the average vector length of
the long vector architecture is rather disappointing, since
only for djpeg is able to almost reach its maximum vector



length, and for the other benchmarks is barely able to lever-
age longer lengths than the short vector alternative. This is
due to the fact that most multimedia kernels are characterized
by having several nested loops with very small loop counts
(between 8 and 16). The number of cases where longer
loops or loop interchange can be used is very small. Insharp
contrast with the conventional vector architectures, the ma-
trix ISA, due to its capability to vectorize two inner loops,
leverages very long vectors lengths for mpeg2encode and
djpeg and a fair vector length for cjpeg.

The overall number of operations is a way to determine
the semantic richness of every ISA and is a strong indicator
of the final performance. From the results in figure 6 we can
identify three different cases. In mpeg2encode both the
MMX-like SIMD and the matrix architecture performs less
operations than the conventional vector architectures. This
is explained by the fact that they have very powerful in-
structions to perform the motion estimation algorithm, such
as the vector average or the sum of absolute differences in-
structions. Furthermore, the matrix architecture only needs
to execute almost half the number of operations than the
SIMD architecture thanks to the advantages of the matrix
accumulators [16]. Additionally, the vectorization percent-
age of the overall program is similar, since just this algorithm
represents almost a 80% of the entire program.

Unfortunately, the similarity in the vectorization percent-
age is not found in the other two benchmarks. The CONVEX
compiler is able to vectorize much more instructions than
simply identifying some kernels and hand-write them (as is
the case in the SIMD and matrix versions). This causes that
the conventional vector architectures execute fewer scalar
instructions than the others. Moreover, the number of vec-
tor operations is also smaller. This is produced by the large
overhead involved in packing/unpacking operations (usu-
ally found in MMX-like ISAs) to perform typical transfor-
mations such as data promotion, matrix transpose or sign
conversion. This logic overhead may represent almost the
50% of the overall number of operations. As we will see
later, in some cases (such as djpeg) this overhead may
cause less performance but, interesting enough, for some
other cases (cjpeg) it may end up being beneficial.

4.3 Performanceresults

Figure 7 shows the performance results for the three
benchmarks with realistic cache simulation. The speed-up
performance is related to the execution time of the refer-
ence superscalar DSP architecture. From the performance
results, we can see that, as expected, the optimized version
of code performs twice faster than the vectorizable code. On
the other hand, we can also see that the long vector architec-
ture is not cost effective, as it is hardly able to outperform the
short vector architecture (except for djpeg which exhibits
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Figure 7. Performance results.

a 10% of performance improvement).

In mpeg2encode, the SIMD architecture outperforms
both vector architectures leveraging a 25% of additional
performance while the matrix architecture provides a huge
performance boost of 2.2X. Two reasons explain this perfor-
mance gains: (a) the smaller number of overall operations
to execute, and (b) the higher parallelism (for instance, the
SIMD version executes 6.6 vector operations per cycle while
the vector architectures execute only up to 4 vector opera-
tions per cycle).

Neither of the two previous reasons can explain why
the SIMD and the matrix architectures slightly outperform
the conventional vector architectures (15% and 20% re-
spectively) in cjpeg. As we will see in section 4.5, the
pack/unpack overhead in those architectures (basically, to
perform matrix transpose and RGB color restructuring) al-
low to make full 64-bit vector memory accesses. On the
contrary, the conventional vector architecture find the vec-
tor elements not consecutively arranged in memory thus
leveraging very poor data bandwidth.

On the other hand, the problem of the data rearrangement
is not encountered in djpeg, since the IDCT is not vector-
ized at all, and the inverse color conversion algorithm has
the color dimensions adequately rearranged. Moreover, the
matrix architecture cannot take benefit from the multime-
dia accumulators in the upsample algorithm (thus needing
costly data promotion transformations). As a result, due to
the difference in the number of operations to execute, the
conventional vector architectures provides a performance
benefit over the SIMD and matrix architectures of a 50% for
the short vector architecture and a 66% for the long vector
architecture.



[ Speed-up [ SS [ SIMD [ SV [ LV T Matrix ||
mpeg2encode 242% | 311% | 63.3% | 595% | 32.6%
djpeg 201% | 305% | 436% | 374% | 272%
Cipeg 504% | 37.2% | 51.0% | 456% | 333%

Table 2. Impact of out-of-order execution.

4.4 Theimpact of out-of-order execution

Historically, out-of-order execution has been considered
not an option for the embedded domain. Theoretically, if
the performance gains were not higher than the obvious
increase in power consumption, an out-of-order execution
engine would not be worth. Table 2 shows some speed-
ups when using a very limited form of out-of-order rather
than the baseline architecture. Note that the Speed-ups are
relative to the correspondent in-order architecture. From
the results, we can see that out-of-order execution provides
a considerable performance boost for all the architectures
(between 30% and 60%). Nevertheless, it still remains to
be seen whether these performance gains are higher than the
increase in power consumption.

Contrary to our expectations, the architectures that bene-
fit the most from an aggressive dynamic scheduling are the
conventional vector architectures. From the architectural
point of view, the streaming nature of the vector instruction
should leverage a convincing throughput even for in-order
execution. However, looking carefully at the behavior of
the pipeline for in-order and out-of-order execution we can
easily figure out what produces such a performance degrada-
tion in the basic in-order approach. Our vector architecture
model does not allow memory chaining (that is, a vector
arithmetic operation does need to wait until a dependent
vector load has executed totally). This design decision was
due to the fact that, while memory chaining is worth for sys-
tems with fixed memory latency, having a cache hierarchy
(and thus, unpredictable latencies) complicates too much the
control logic of the in-order processor. As a consequence,
when we encounter a load-arithmetic dependence, the pro-
cessor stalls many cycles waiting for an entire long stream
of data.

The lack of memory chaining is not much of a problem
if we consider a careful static scheduling. By exploiting
at compile time the available ILP so that we can separate
the further possible a vector load from a dependent vector
arithmetic instruction, we can perform statically what out-
of-order execution does. Unfortunately, the CONVEX com-
piler does not consider these issues and tends to put together
dependent load-arithmetic instructions. In sharp contrast
with this poorly scheduled code, the MMX-like SIMD and
the matrix architectures were carefully tuned exploiting most
of the potential ILP at the static scheduling level, so taking
little benefit from a more aggressive dynamic execution.

[[ Slow-down J[ SS [SIMD [ SV [ LV [ Matrix |
mpeg2encode -5% -16 % -14% | -18% -18%
djpeg 15% | -13% | -13% | -10% | -12%
cjpeg 23% | 6% | -19% | -21% | -12%

Table 3. Memory performance degradation.

[[ Hitrate [ SS [ SIMD | SV [ LV [ Matix |
mpeg2encode 983% | 955% | 973% | 94.4% | 94.6%
djpeg 96.6% | 95.2% | 928% | 89.4% | 924%
cjpeg 93.7% | 976% | 933% | 93.0% | 935%

Table 4. Data cache hit rate.

45 Memory behavior

Table 3 shows the performance degradation when we con-
sider a realistic memory system (relative to the performance
with a perfect cache). The effect of the instruction cache
over performance has demonstrated to be very small, as all
programs fit perfectly in cache. Therefore, we are going to
focus on the impact of the data cache.

From the results on table 3 we can see three interesting
facts. First, even with high hit-ratios (see table 4), consid-
erable performance losses around 15% are produced when
considering a realistic memory system. This is due to the
fact that we do not have a L2 cache, and for all the accesses
that miss in the first level we must pay all the full latency of
the external memory sub-system. Another interesting fact is
that the MMX-like SIMD architecture seems to be the most
robust alternative to the impact of the memory system.

Additionally, we can observe that the vector architec-
tures (short, long and matrix) exhibit the highest perfor-
mance degradations when considering a realistic memory
system. This fact may seem counterintuitive, since vector
architectures are very well known for their capability to tol-
erate memory latency along long streams of data. However,
this advantage is fully compensated by the fact that as we
have longer vectors the data locality degrades (as it can be
seen in table 4, where we show the data cache hit rates).
The reason resides in the way that the different architectures
execute a loop. A non-vector architecture executes all the
instructions of a loop iteration in a sequential way, exploiting
temporal locality. If there is spatial locality, a miss access
produces an effect of ’prefetching’ that loads the elements
of the following iterations. This effect produces a natural
way of exploiting spatial locality. On the other hand, vec-
tor architectures execute several loop instances of the same
instruction sequentially, thus not being able to exploit this
advantage and finding less elements in the cache.

As a matter of fact, the higher the vector length the lower
the hit rate. On the other hand, the higher the vector length
the higher the tolerance to memory latency. Therefore, this
two effects compensate together. For instance, the long



[ Latency [ SS [SIMD [ SV [ LV [ Matrix |
mpeg2encode 1.61 2.64 246 | 2.85 3.26
dipeg 214 | 233 | 207 | 1.83 | 2.05
cjpeg 3.36 1.48 2.78 | 2.86 191

Table 5. Average memory latency.

vector architecture leverages very high vector lengths for
djpeg, and despite the fact that the hit-ratio is very low (a
89.4%), the performance loss (only a 10%) and the average
memory latency are the lowest for all the architectures. This
effect is not encountered in the basic superscalar architecture
and, as a result, low hit-ratios or even moderate latencies
often translate into a high performance degradation, as it
can be seen in table 5 for the cjpeg benchmark.

The average memory latency is not only dependent on
the data locality. For instance, for cjpeg, the conventional
vector architectures have higher latencies than the matrix
architecture having, though, the same data locality. This is
explained by the fact that in ¢jpeg we find a high percent-
age of vector accesses whose elements are not consecutively
arranged in memory (for example, when accessing the color
dimension we find stride 3, or when traversing columns in
the IDCT we find stride 8). As a result, the memory sys-
tem is forced to access the elements individually, leveraging
very poor effective bandwidth (which ends up affecting the
overall latency of the vector access). This explains why
the conventional vector architectures do not outperform the
SIMD architecture, even though they execute fewer opera-
tions. The SIMD and matrix architectures do not face this
problem as they use logic operations to rearrange the data
conveniently.

5 Architectural complexity comparison

Table 6 compares the register file configuration and the
overall size for all the architectures under study. Note that
due to the simplicity of the basic processor core (same
fetch/decode/issue rate, fixed number of register file and
cache ports), the only parameters that influence the final
area cost are the number and wide of the functional units
and the size of the register files. Since the number of register
file ports is fixed, the area cost is proportional to the register
file size.

Therefore, from the point of view of performance/cost
ratio, we can see that the in-order SIMD architecture is the
most cost effective approach. The SIMD architecture out-
performs the conventional vector architectures for two of the
benchmarks, despite having one single 64-bit functional unit
(instead of 4 32-bit functional units) and a overall register
file size between 3 and 22 times smaller. On the other hand,
the matrix architecture could be a good alternative when

|| SS+SV 52x 32b
[ SS+SV(ooo) || 64x32b I
[ SS+*LV___ || 52x32b | 16x128x32b | 0x192b | 8.203KB_ ||
[ SS+LV(ooo) || 64x32b | 24x128x32b | 0x192b || 12.25KB ||
[
I

16x16x32b [ 0x192b [[ 1.203KB_|

I [ it vector [ accum. [ Total 7|
[ S5 [ 32x32b | Ox1x64b | 0x102b [ 0.125KB ||
1 SS (000) [[ 40x32b | 0xIx64b [0x192b [[0.156KB ||
[ SS+SIMD || 32x32b | 32x1x64b [ 0x192b [ 0.375KB ||
[ SS+SIMD (000) || 40x32b | 40x1x64b | 0x192b || 0.469KB_||
|
|

24x16x32b | 0x192b [[1.750KB

[ SS+matrix ] 32x32b [ 16x16x64b [ 2x192b [[ 2.172KB
|| SS+ matrix (000) || 40x32b | 20x16x64b | 4x192b || 2.750 KB

Table 6. Overall register file sizes.

looking for high performance, since it provides the best per-
formance at a reasonable area cost (about 6 times larger that
the MMX-like SIMD architecture register file size).

On the other hand, the long vector architecture does not
arise as a good option, since requires a register file size of
the same order of the data and instruction caches while is
hardly able to provide performance gains when comparing
with the short vector architecture.

6 Summary

The focus of this paper has been to provide some quan-
titative data in order to understand the performance/cost
trade-offs of different DSP exploitation alternatives for the
embedded domain. We have selected three entire bench-
marks from the Mediabench suite and we have evaluated
them with different SIMD/vector architectures.

We have also analyzed the differences between the ex-
plicit parallel versions of code, based on the standard al-
gorithms, and the high-tuned non-vectorizable original ver-
sions of code, demonstrating that the optimized version can
execute up to two times faster that the non-optimized one.

From the performed quantitative analysis, we conclude
that the SIMD-like architecture arises as the more cost-
effective option, as it can provide convincing performance
(with gains over the reference DSP ranging from 1.2x to
2.6x) with only 32 64-bit registers in front of the nearly six
times larger register file needed by the matrix architecture.
Nevertheless, if we are looking for maximum performance,
the latter can be considered, since it outperforms all the
other architectures at a reasonable cost. As far as vector
architectures are concerned, it has been demonstrated that a
long vector processor is not worth at all for the embedded
domain, as it does not achieve enough performance gains
(only a 10% over short vectors for one of the benchmarks)
to justify the enormous cost increase. However, short vec-
tors could be a good option for some media codes (with few
reduction operations and conveniently arranged data) if the
cost of out-of-order execution is acceptable.



We have also seen that two effects compensate together
in vector architectures. \Vector streams exhibit worse data
locality which translates into lower hit rates. Nevertheless,
the performance impact of this effect is compensated by
the latency tolerance capability typical of vector memory
accesses. On the other hand, scalar architectures do not
tolerate well increases in the latency of the memory system.

SIMD-like architectures need the data to be consecu-
tively arranged in memory. Therefore, they have a huge
overhead involving data restructuring (such as matrix trans-
pose). We have observed that this overhead may end up
being beneficial in some cases (since allow to maximize the
data cache bandwidth) while in other cases is detrimental to
performance.

This paper has focused on superscalar architectures ex-
ploiting different levels of DLP. Nevertheless, a very promis-
ing alternative is the inclusion of SIMD-like instructions in
VLIW embedded processors. This alternative appears as a
good match for the matrix architecture, since it is able to
exploit one of the dimensions of parallelism by means of
DLP (SIMD instructions) while it is able to exploit the other
by means of ILP (by using wide-issue static scheduling).
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