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The Internet (of things) Era 

Human life has changed dramatically since the arrival of the new millennium. First was 

the single computer, which arrived to solve human problems and automatize complex 

processes (e.g.: the deciphering of Enigma code in II World War), next it evolved to the 

interconnection of computers and information sharing, also called computer networks or 

networking, thanks to Cold War and the development of the very first scratch and 

embryo of Internet, ArpaNet, by the U.S. Department of Defense. Although 

investigators like Gordon Corera State that “the computer was born to spy. That the first 

computer was created in secret to aid intelligence work, but all computers (and specially 

networked computers) are also uniquely useful for – and vulnerable to – espionage” [1], 

networking and internet is nowadays not exclusive to computers, but for all kind of 

daily use and traditional devices that have now interconnection capabilities with internet 

and other devices, the well-known IoT, Internet of Things. Cyber is now everywhere. 

Smart or connected devices are now not only computers but cellphones, TV’s, coffee 

makers, washing machines and whatever you can imagine, including extreme examples 

like airplane engines or oil pipes. According to a report from Gartner, there will be 8.4 

billion connected things in 2017, up 31 percent from 2016, and will reach 20.4 billion 

by 2020 [2]. Our life will be definitely digitally connected. Social relations have now 

evolved to the digital world with the boom of social media: Facebook, Instagram, 

Twitter, Linkedin, Whatsapp, etc…Creation of new concepts like e-governance, smart 

cities, smart cars, etc. We buy things from the other side of the world via credit card 

(cash is not fashionable any more). There is no doubt that internet is now everywhere at 

every time, thus we are increasingly more dependent of the cyber element.  

 

The New Cyber (criminal) field 
 

The creation and expansion of the digital field has brought also new challenges and 

threats. Real (or analogic) world bad guys continue doing their criminal acts in the 

analogic way. Some of these are not possible in the digital field, but some of them can 

be easily adopted and with more impunity for the criminal in the cyber or digital world. 

Acts like scamming, stealing, fraud, damage, cheating...can be easily done in the 

computer world (no matter if you are a script kiddie or a tech expert), by combining the 

newness of the field and the general naïve of the people in the digital world. Threats in 

the digital world can come from thousand miles from the physical place and sometimes 

difficult to be aware of. Real world threats are easy to feel (e.g.: armed-assault robbery) 

but it is difficult and requires more skills and experience to perceive and recognize the 

threat from that unusual but not suspicious email that tells you to check your banking 

online account via that easy to click link, everything seems harmless. But the reality is 

just the opposite, as we are each time more and more dependent of technology, our life 

is becoming more digital (credit card passwords, bank accounts, social media accounts, 

email addresses, etc.) most of our personal information is on the cloud and we are losing 

the control of it, sometimes totally. 

How cybercriminals attack. Defense mechanisms 
 

Cyberattacks can be classified in a simple way as targeted (if the victim has been 
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explicitly chosen and everything has been done in order to attack that specific target) or 

untargeted (if the victim is not explicitly chosen, randomly attacked for meeting specific 

criteria or having done some specific thing, e.g.: clicking an advertisement). All these 

attacks, although have different characteristics has some common steps or phases 

(called cyber kill chain in the case of advanced persistent threats) in order to be 

performed successfully by the attacker: reconnaissance, scanning, gaining access, 

maintaining access and covering tracks. Reconnaissance is the phase where the 

information about the objective is gathered from open or other sources in order to find 

define the target; scanning phase involves directly looking for entry points in the target 

system, by using network scanners and gathering information about vulnerabilities; 

gaining access phase involves the exploitation of such vulnerabilities found while 

maintain access involves actions in order to ensure and get access to the broken system 

in the future and finally, covering tracks involves hide tracks and any other information 

suspicious that the system has been broken into. The main importance of these steps is 

that by knowing how the attackers attack, the defenders can defend themselves wisely 

and effectively.  

 

Defense mechanisms against cyberattacks can be briefly categorized as Active Cyber 

Defense (ACD) or Passive Cyber Defense (PCD). Passive defenses are defined to 

include all kind of “measures taken to reduce the probability of and to minimize the 

effects of damage caused by hostile action without the intention of taking the initiative” 

[3]. Traditionally used mechanisms are IDS, IPS, Firewalls, AntiVirus, etc. which react 

to hacker activities, without any kind of proactivity. In the other hand, active defenses 

are proactive measures taken for “detecting or obtaining information as to a cyber 

intrusion, cyber-attack, or impending cyber operation or for determining the origin of an 

operation that involves launching a preemptive, preventive, or cyber counter-operation 

against the source” [4]. An optimal defensive approach should combine both 

perspectives, concretely, “passive defenses are a necessary 10 component of a well-

designed cyber defense program, but they are no longer sufficient to address 

increasingly sophisticated threats” [5]. ACD are “a set of operating concepts that all 

involve taking the initiative and engaging the adversary in some way” [5]. A well-

known deceptive example of this approach is honeypots, honeynets and honeytokens.  

 

The honey world: honeypots, honeynets 

and honeytokens 

Honeypots 
 

Deception is an ACD technique employed by both offensive and defensive actors. 

“Attackers use deception to lure victims to visit fake websites or to enter Personally 

Identifiable Information (PII) into contrived emails. The defending teams also employed 

deception, with the intent of having attackers steal files which were intentionally fake or 

which pointed the attacker in the wrong direction. Deception could serve as a deterrent 

as the attacker wasted valuable time on purposefully misleading information, with 

potentially diminished returns seen as an end goal” [5]. In the defensive field, honeypots 

are used as the most well-known deception technique. A honeypot is basically a 

“security resource whose value lies in being probed, attacked, or compromised” [6]. A 
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system set up as a decoy to entice attackers. But not exclusively “to distract hackers, 

they’re also great at tracking down all sorts of information” [7]. As a lure, their main 

purpose is to attract the hacker, to detect and study the behavior of the attacker in order 

to enhance and improve system and network cyber security defenses. Any connectivity 

attempt, activity or external interaction with the honeypot should be considered 

suspicious since a normal user will never interact with the honeypot nor have any 

awareness of its existence. Thus, helps to reduce false positives that are mainly common 

in traditional security defenses (passive defenses such as IPS, IDS, etc.). Honeypots can 

be classified basically in two ways: purpose and interaction level.  

 

Regarding its purpose, honeypots can be categorized as production or research 

capabilities. Briefly, “production honeypots protect an organization, while research 

honeypots are used to learn” [6]. This distinction is merely conceptual and not absolute, 

the same honeypot can be used as production or research, depending on the use and the 

built-in functionalities.   

 

Production honeypots main aim is to protect the environment of the organization that 

deployed it and help to mitigate the risk of attackers. They create a safer environment by 

detecting attacks. Production honeypots are “easier to build and deploy than research 

honeypots because they require less functionality” [6]. Paradoxically, the so called 

production “honeypots do not have any production value” [15] for itself for the 

company, as it is not providing any real productive value for it. “They are just a security 

resource whose value lies in being probed, attacked, or compromised, and any new 

activities or network traffic that comes from the honeypot indicates that it has been 

successfully compromised. As such, a compromise is very easy to detect on honeypots. 

False positives, as commonly found on traditional intrusion detection systems, do not 

exist on honeypots” [15]. Production honeypots usually fake services or systems in a 

limited way. Thus, they also provide less risk for the network if the honeypot is 

compromised but the information gathered about the attack or attackers is also very 

limited. They are easier to maintain and provide protection to the organizations network 

by providing prevention, detection and reaction mechanisms.  

 

Research honeypots main aim is to learn about the hackers. They are not mainly used in 

organizations, but their “primary mission is to research the threats organizations may 

face, such as who the attackers are, how they are organized, what kind of tools they use 

to attack other systems, and where they obtained those tools” [6]. Research honeypots 

could be considered as a counterintelligence mechanism to enhance protection against 

evolving and skilled attackers. The gathered information helps to improve the security 

of the resources indirectly. They are often deployed by universities, security research 

companies, military, government agencies, etc. They are more complex than production 

honeypots, “just because to learn about attackers, you need to give them real operating 

systems and applications with which to interact. This gives us far more information than 

simply what applications are being probed.” [6]. This also provide greater risk and also 

more management efforts. In fact, “research honeypots could potentially reduce the 

security of an organization, since they require extensive resources and maintenance” 

[6].     

 

Regarding to the interaction level, a honeypot can be categorized as: low-interaction, 

medium-interaction and high-interaction. This categorization refers basically to the 

built-in capabilities and the interaction provided with the attacker. “Are you hoping to 
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catch the attackers in action and learn about their tools and tactics? If so, you need to 

build a complex honeypot that gives the attacker a complete operating system with 

which to interact. Are you primarily interested in detecting unauthorized activity, such 

as scanning? For this you can build a simple honeypot that merely emulates a variety of 

services in operation. If someone connects to these servers, then you know it is most 

likely unauthorized activity. Are you hoping to capture the latest worm for analysis? 

Then you need a customized honeypot with the intelligence to interact with the worm 

and capture the worm activity” [6]. As can be seen, for each goal the capabilities should 

be different and honeypots offer a huge variety of options and different functionalities. 

Furthermore, by increasing the interaction and capabilities of a honeypot, it provides 

more extensive and detailed information but also more potential damage can be done by 

the attacker. 

 

Low-interaction honeypots are usually production honeypots (they are used to help 

protect organizations) that simulate, emulate or fake one or more services or 

functionalities. They are easy to install and, maintain and deploy and they do not 

provide actual real services or functionalities. Their interaction with the attacker is very 

limited (e.g.: allowing scanning and basic connection into a port/service, but not more) 

thus the information and risk are very limited, as the attackers’ interaction capacities are 

also very limited. “There is also no operating system for the attacker to interact with, so 

the honeypot cannot be used to attack or monitor other system” [6]. Attackers can only 

interact with the limited amount of emulated services. The information provided by 

these honeypots is mainly limited to transactional information that is “the data collected 

about the circumstances of the attack but not about the attack itself” [6]. Examples of 

transactional information are time and date of attack, source IP address and source port 

of the attack and destination IP address and destination port of the attack. Additional 

information can be gathered, depending whether the emulated service allows any kind 

of interaction with the attacker or not. So, low-interaction honeypots main purpose is to 

capture well-known behavior. “The attacker acts a certain way, and the honeypot 

responds in a predetermined manner” [6]. They are not useful if the attacker vector is 

not known or against unexpected behavior or attacks.  

 

Medium-interaction honeypots are a step up in the interaction scale. They “offer 

attackers more ability to interact than do low-interaction honeypots but less 

functionality than high-interaction solutions” [6]. They are designed to provide certain 

responses beyond the limited capabilities of a low-interaction honeypot would give and 

they expect and manage certain level of activity by the attacker. They are still emulating 

a service or functionality so the risk is still quite low, there is no full operating system 

for the attacker to interact. This kind of honeypots are usually more time consuming to 

install and configure than low-interaction honeypots, as they are more complex in 

nature. “Often these solutions are not prepackaged commercial products. Instead, they 

involve a high level of development and customization from an organization” [6]. As 

the attacker has more interaction with the honeypot, the deployment must be done with 

secure mechanisms to ensure that the hacker cannot use the honeypot to harm other 

systems in the network and the increased capabilities are not vulnerable to exploitation 

by an attacker. They can gather more information than low-interaction honeypots and 

learn how the attacker behave in the specific attack (e.g.: how the attacker compromised 

the system, how elevated privileges, etc.).  

 

High-interaction honeypots are in the top level of the interaction scale. High-interaction 
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honeypots are real systems with completely operative operating systems and 

applications that are given to the attacker without any emulation or restriction. “They 

give us a vast amount of information about attackers, but they are extremely time 

consuming to build and maintain, and they come with the highest level of risk” [6]. 

High-interaction honeypots provide a huge amount of information and are mostly used 

in research environments to learn about attackers, attacks and its behavior. “To create 

such an environment, few to no modifications can be made to the actual honeypots. 

Most often standard builds are no different than production systems found in many 

organizations today. The only thing that defines these systems as honeypots is that they 

have no production value-their value lies in being probed, attacked, or compromised” 

[6]. As they are real operating systems, their risk level is really high, so their 

deployment has to be done in a very secure manner, making them hard to maintain and 

deploy. For that reason, they are usually placed in controlled environments, usually 

behind a firewall. The firewall allows the attacker to compromise the honeypot but it 

prevents the attacker to use the honeypot to launch attacks. So, a great deal of work it is 

needed to build a firewall with proper rulebases. Installation and configuration are 

difficult and time consuming, not only for the honeypot, as they involve other 

technologies such as firewall or Intrusion Detection Systems. Everything has to be 

perfectly fitted. Along with this complexity comes a high level of risk. “The more 

interaction we allow the attacker, the more that can go wrong. However, once 

implemented correctly, the high-interaction honeypot can give insight into attackers that 

no other honeypot can” [6].  

 

Level of 

interaction 
Work to install 

and configure 
Work to deploy 

and maintain 
Information 

gathering 
Level of risk 

Low Easy Easy Limited Low 

Medium Involved Involved Variable Medium 

High Difficult Difficult Extensive High 

 

Figure 1. Honeypots interaction level comparison [6]. 

 

To illustrate a complete step by step differentiated scenario for previous points, a low-

interaction honeypot emulating a web server could place a listener on port 80 or port 

443 with no other interaction needed. To upgrade the honeypot to a medium-interaction 

would need implement a complete emulation of the webserver and all its capabilities. 

Finally, a high-level interaction honeypot would require the complete deployment of a 

full and real web server, without any restriction or limitations of interaction and 

additional security features (like a properly configured firewall) to avoid the use of the 

honeypots as an attack weapon for the real attacker into our local area network. 

 

Additionally, honeypots can be categorized as physical or virtual. A physical honeypot 

is a physical machine with a corresponding IP address allocated on the network. “A 

virtual honeypot is hosted on another machine that responds to network traffic directed 

to the virtual honeypot” [11].  

 

Last but not least, a new differentiation has been created recently, by differentiating 

traditional honeypots as server honeypots, such as the ones previously introduced that 

expose (by simulation or real deployment) server services and wait calmly to be 

attacked, as shown in figure 2a, and a “newer technology called client honeypots that 



9 

 

deals with a different attack vector” [15]. Client honeypots deal with an attack vector 

that is not detectable by server honeypots, the so-called client side attacks. Those are 

“assaults of clients that originate from malicious servers. This could be a seemingly 

harmless visit to a website with a browser. As part of a server’s response to a client 

request, the malicious website might serve code that is targeted at exploiting a 

vulnerability of the browser as shown in figure 2b. As a result, a mere visit to the 

website might leave a machine exploited with malware. Client honeypots are designed 

to interact with servers and detect the attacks of servers” [15]. Client honeypots are few 

fish in the vast honeypots sea, but they are not least in importance. These honeypots 

deal with important client side attacks performed by malicious web servers which client 

honeypots interact with by driving a web browser on the honeypots system. 

Compromises are mainly detected by monitoring changes to a list of files, directories 

and system configuration after the interaction between the client honeypot and the 

suspicious malicious server.   

 

 
      Figure 2a. Server honeypot architecture [14].             Figure 2b. Client honeypot architecture[14] 
 

Honeynets 
 

Honeynets can be considered as a special type of honeypot. Specifically, they are 

considered a high-interaction honeypot with the main purpose of capture extensive 

information of threats and attacks. In brief, a honeynet is a “network of real computers 

for attackers to interact with. These victim systems (honeypots within the honeynet) can 

be any type of system, service, or information you want to provide” [8]. The systems are 

high interaction, so they are composed by real systems, applications and other services 

waiting for attackers to interact with them. A honeynet can contain one or more 

honeypots that are not actual production systems, so any interaction with these systems 

implies malicious or unauthorized activity. “Any connections initiated inbound to your 

honeynet are most likely a probe, scan, or attack. Any unauthorized outbound 

connections from your honeynet imply someone has compromised a system and has 

initiated outbound activity” [8]. Thus analyzing is made simple with the use of a 

honeypot, there is no need to look through thousands of megabytes of firewall or IDS 

logs to know that something happened. Furthermore, false positives are almost 

eliminated from the field. As honeynets are nothing more than an architecture of 

honeypots, that has to be deployed correctly. The key element of the honeynet 

architecture is what is called as honeywall. “This is a gateway device that separates your 

honeypots from the rest of the world. Any traffic going to or from the honeypots must 

go through the honeywall. This gateway is traditionally a layer 2 bridging device, 

meaning the device should be invisible to anyone interacting with the honeypots” [8]. 

As an example, next diagram shows a typical honeynet architecture. The honeywall has 
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3 interfaces: eth0 and eth1 separate the honeypots from everything else (they are 

bridged interfaces that have no IP stack) while eth2 (that is optional) has an IP stack 

allowing for remote administration. “This network is reachable via the honeywall 

gateway, a stealth inline network bridge that closely monitors and controls the network 

data flow to and from the honeypots in the network. Data capture includes network 

traffic captured on the honeywall gateway, system event data captured in logs, and 

keylog data gathered by a stealth keylogger on the honeypot systems” [9].  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Example of a honeynet [8]. 

 

Honeynets create a highly controlled network that allows the complete control and 

monitoring of what is happening in every moment within it. There you can deploy 

whatever target system you want (there is no actual limit, e.g.: routers, printers, servers, 

etc.) and simply watch what is happening inside the network, how intruders interact 

with the honeypots systems and gather all the information. As a tradeoff, the risk is 

extremely high as has the same risks involved by a single high-interaction honeypot but 

incremented by a more complex architecture that has to be fitted perfectly on each of 

the possible failure points.  

Honeytokens 
 

Honeytokens are a special kind of honeypots. They are honeypots that are not 

computers or physical resources. Until this point, all of the reviewed manifestations of 

honeypots have been computers, that is the traditional manifestation but not the only 

one. Actually, a honeypot it is only a resource that is created as a lure for attackers to 

interact with. In that sense, a honeytoken is exactly a honeypot which is not a computer. 

It can be any kind of digital entity or resource. For example, a credit card number, Word 

document, a database entry or even a bogus login. “Honeytokens come in many shapes 
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or sizes but they all share the same concept: a digital or information system resource 

whose value lies in the unauthorized use of that resource. Just as a honeypot computer 

has no authorized value, no honeytoken has any authorized use” [10]. As a usual 

honeypot, any interaction with the honeytoken most likely represents unauthorized or 

malicious activity. They can be used to test, lure and detect suspected violations and 

other behaviors against law or security policies.   

 

HoneyD: A widely used low-interaction honeypot 
 

HoneyD (http://www.honeyd.org) is an open source honeypot solution designed for 

Unix systems. It was first released in April 2002, created and maintained by Niels 

Provos of the University of Michigan. Begotten as a virtual low-interaction production 

honeypot, it simulates TCP and UDP services and is used to detect attacks or 

unauthorized activity by emulating a wide variety of services. It only expects interaction 

at network level, simulating only the network stack and not the rest of services of an 

operating system like file system manipulation or I/O operations. HoneyD is a Unix 

daemon that simulates the TCP/IP stack of many operating systems, supporting TCP, 

UDP and ICMP. “It listens to network requests destined for its configured virtual 

honeypots. Honeyd responds according to the services that run on the virtual honeypot. 

Before sending a response packet to the network, the packet is modified by Honeyd’s 

personality engine to match the network behavior of the configured operating system 

personality” [11]. HoneyD powerful features include the creation of virtual realistic 

networks topologies (e.g.: adding routers with configurable link features such as latency 

and packet loss).  

 

 
Figure 4. Example of virtual honeypot creation with HoneyD [11]. 

 

“Honeyd receives traffic for its virtual honeypots via a router or Proxy ARP. For each 

honeypot, Honeyd can simulate the network stack behavior of a different operating sys-

tem” [11]. When a packet arrives to the daemon for one of the virtual honeypots, it is 

received and processed by a central packet dispatcher. The dispatcher checks the length 

of the IP packet and verifies its checksum. The daemon only accepts packets for ICMP, 

TCP or UDP. Other protocols are discarded. Then, “the dispatcher queries the configu-

ration database for a honeypot configuration that corresponds to the destination IP ad-

dress. If no such configuration exists, the default template is used. Then the dispatcher 

http://www.honeyd.org/
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calls the protocol specific handler with the received packet and the corresponding 

honeypot configuration” [11] to create a proper response.  

 

Figure 5.  HoneyD architecture [11]. 

 

Before any packet is sent to the network, it is processed by the personality engine. The 

main purpose of the personality engine is to adjust the packet’s content so that it seems 

to originate from the network stack of the configured operating system. The concept of 

personality refers to the network stack behavior of a virtual honeypot. The daemon uses 

the Nmap fingerprint list as a reference. Each fingerprint has a format similar to the fol-

lowing example: 

 

Figure 6. Fingerprint example [14]. 

 

“We use the string after the Fingerprint token as the personality name. The lines after 

the name describe test results for nine different tests” [11]. These tests will be covered 

in a deeper way in future chapters. HoneyD additional features include the creation of 

virtual routing topologies and a simple CLI to create in an easy manner highly 

customizable honeypots. Without any doubt, HoneyD is a good choice and starting 

point for deploy and maintain low-interaction honeypots and honeynets.  

 

IoT devices attacks: the arise of botnets 
 

Hacking is an always evolving and adapting art of exploitation of devices. The rise of 

IoT devices has opened a new interesting field for the bad guys to play in. “Since years, 
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it is known that many Internet of Things (IoT) devices are vulnerable to simple intrusion 

attempts, for example, using weak or even default passwords” [12]. These weaknesses 

(mostly permitted unconsciously by the human owners of the devices) are exploited 

easily by the hackers that compromise the device, install a backdoor or a rootkit, and 

take permanent control of it. Usually, the infected device, becomes part of a botnet 

(named as bot or zombie). A botnet is, by definition, “a collection of computers, 

connected to the internet, that interact to accomplish some distributed task” [13]. The 

botnet is controlled by a single person or a group of people (called the botmaster), under 

a command and control structure (C&C). A C&C refers to single (or multiple) servers 

(called C&C servers) that allow and simplify the control of all the specific hosts within 

the botnet by the botmaster, which could be hundreds or thousands. The botmaster sends 

commands through C&C server to the bot, that controls all the bots within the botnet. 

Botnets are often used for illegal purposes, often related with money issues (earn by the 

hacker or loss for the victims). Attacks like Distributed Denial of Service (DDoS), 

Spam/Phishing, Ad-ware, Click Fraud, etc. are often committed using botnets. In 2012, 

“Carna botnet revealed that there were more than 1.2 million open devices that allowed 

logins with empty or default credentials. In January 2014, an Internet-connected fridge 

was discovered as a part of a botnet sending over 750,000 spam e-mails. In December 

2014, online DDoS services (i.e. booters) knocked down Sony and Microsoft’s gaming 

networks, presumably powered by thousands of compromised IoT devices such as home 

routers” [12]. A special case in the botnet world is Mirai botnet. Mirai is an army of 

hundreds of thousands of IoT devices, most of them cameras (but also printers and 

routers) that is the cause of the latest worse DDoS attacks in 2016: ~600mbps against 

Brian Krebs website, ~1 terabit against OVH and ~1.2 terabit against DYn. Zombie 

devices (bots) are scattered all over the world, but specially in Vietnam, Brazil, United 

States, China and Mexico (which sum up over 50% devices of the botnet). [22-25] 

 

 
 

Figure 7. Example of Mirai botnet infected device – bot or zombie device [14]. 

 

Mirai scans the net looking for interesting IP addresses. It looks for unsecured IoT 

devices that could be remotely accessed via easily guessable login credentials – usually 

factory default usernames and passwords (e.g.: admin/admin), and also brute forces 

guessing passwords (dictionary attacks based on simple login/password credentials). 

Once the device is broken into, Mirai malware execute scripts that eradicate other 

worms or Trojans in the device, was well as prohibiting remote connection attempts of 

the hijacked device (e.g.: closing SSH, Telnet and HTTP ports). The main use of Mirai, 

is, as seen before, “to launch HTTP floods and various network (OSI layer 3-4) DDoS 
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attacks”. Mirai is capable of launching “GRE IP and GRE ETH floods, as well as SYN 

and ACD floods, STOMP (Simple Text Oriented Message Protocol) floods, DNS floods 

and UDP flood attacks” [14]. That’s not all, Mirai is becoming each day more and more 

powerful. So, as a result, from an attacker point of view, IoT devices are attractive 

because they are usually 24/7 online (not like PC), have no antivirus protection 

installed, and tend to have weak login passwords that provide easy access to attackers to 

powerful shells (like BusyBox). This picture creates a new challenge for security 

specialists, and places IoT devices' security as an important new area of cybersecurity 

research. 

The Need of an IoT HoneyPot 
 

“DDoS attacks increase over 125 percent year over year” [16], “the size (bandwidth 

usage) of DDoS attacks went up 1233% over the past 5 years and more than 7900% 

compared to the attacks registered in 2005” [17], “they are simply taking advantage of 

the sheer number of unsecured IoT devices that are deployed today” [18]. Those are 

only 3 easy to find examples of the daily increasing IoT botnet landscape. Statistics are 

clear, DDoS attacks are increasing in size, duration and frequency, and mostly thanks to 

the increasing number of IoT devices that are being compromised and attached to a 

botnet. Mirai, the most well-known IoT botnet, has an army of hundreds of thousands 

devices, ready to attack. Botnets are easy to hire in the dark web and can cause hundreds 

or thousands of euros of losses in each attack. But not only the money, reputation is an 

active that companies can loss easily after an attack and that is really hard to restore. 

This landscape is only happening with 10 billion devices in the field, this value will 

double by 2020. The landscape can only get worse, much worse. For this reason, IoT 

device' security and awareness must be placed in an important place in the cybersecurity 

research picture. There is an actual and future need of security in such devices if we do 

not want to be spectators of catastrophic attacks. So, nowadays there is a lack of IoT 

honeypots that could help to investigate, learn and detect such kind of attacks and, of 

course, protect devices within and outside companies’ internal networks. 

 

The answer: HoneyIo4 
 

My contribution to this need is HoneyIo4. HoneyIo4 is a IoT production low-interaction 

virtual honeypot that simulates 4 IoT devices in order to lure and detect unauthorized 

access to the networks and prevent the compromise of IoT devices in local area 

networks. As the research in IoT security is still not much developed, there is a need of 

new tools that should fill the gap that there is nowadays. HoneyIo4 pretends to be a 

contribution to the development of IoT security tools in this area.  

 

About HoneyIo4 

HoneyIo4 is a production low-interaction virtual honeypot that simulates 4 common IoT 

devices: camera, printer, video game console and cash registering machine. The user 

can choose, via an easy-to-use Graphical User Interface (GUI) that is mainly a web 

browser running on a Linux machine, which device wants to simulate and some 

additional options (services/ports open/closed, delay and running time).  
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As a production honeypot, its main purpose is active defense (protection). There is no 

expected interaction with it, so every interaction could be considered as unauthorized 

access, and thus, a potential threat for our network. As a virtual honeypot, it simulates 

using a Linux Virtual Machine a real world’s device. As a low-interaction honeypot, it 

only simulates some part of the service/device, and not the whole capabilities (such as 

banner advertisement, login/connection simulation, etc.). More specifically, it tricks 

network scanners (like Nmap, etc.) by simulating some IoT Operating Systems, so the 

scanners detect the honeypot as some IoT device. Thus, the main idea behind HoneyIo4 

is to provide 4 different options of IoT Operating System’s fingerprint simulation to 

fake hackers attack’s second phase: scanning. While defeating scanning, by providing 

wrong OS information, the rest of the attack cycle is redirected in a wrong way, that it 

turns the attack unsuccessful.  

 

When attacking, hackers follow five main steps: reconnaissance, scanning and 

enumeration, gaining access, maintaining access and covering tracks. Reconnaissance is 

about information gathering of objectives and targets of attack, usually getting the 

information from open sources and not interacting with the target network or hosts 

directly (not testing packets are sent in this phase). Scanning and enumeration phase 

involves using the information gathered in reconnaissance phase with actively apply 

tools and techniques to gather more in-depth information about real targets on the 

network, it usually involves direct interaction with the target network or hosts by 

sending packets or similar interaction mechanisms. Gaining access or exploitation 

involves the exploitation of the vulnerabilities/attack vectors found in previous phase 

and entering/compromising the target machine. Maintaining access’ main purpose is to 

ensure that the hacker has a way back to the compromised machine in the future. 

Finally, covering tracks is the way that the hacker ensures that neither users not IT 

professionals are aware about their activity. These 5 steps are a cyclic feedback process 

that never ends, as shows diagram below. 

 

 
 

Figure 8. The five phases of hacking  
 

As a result, each step provides valuable information to the next step, having special 

importance the very first ones. Although main idea of honeypot is more on collecting 
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information about the attackers and their methods, it can also have an impact in attack 

set up. Reconnaissance and specially scanning create the attack planification that is 

executed lately (exploitation and post-exploitation). So, if the planification is wrong, the 

attack will be sure unsuccessful, wasting the time and efforts of the attacker in an 

impossible mission. Applying this to HoneyIo4, if scanning provides wrong 

information, by simulating something that is not actually capable of being exploited, 

every step after will lead to defeat for the hacker. That is the aim of HoneyIo7, that is 

the purpose of their creation: lure and trick.    

HoneyIo4 implementation 
 

HoneyIo4 main idea is way simplistic of Honeyd. IoT Operating Systems (henceforth 

OS) are simulated not in every aspect of them but in their TCP/IP network stack. 

Network scanners are used by hackers to know about target operating systems and 

services running on the machine. Gathered this information, they just look for an attack 

vector to exploit any known vulnerability (if exists). Network scanners like the well-

known and widely used NMAP provide OS detection information by using TCP/IP 

stack fingerprinting. NMAP main use is not black hat, as OS detection helps system 

administrators and penetration testers to:  

 

- Determine vulnerability of target hosts. “The best way to verify that a vulner-

ability is real is to exploit it, but that risks crashing the service and can lead to 

wasted hours or even days of frustrating exploitation efforts if the service turns 

out to be patched. OS detection can help reduce these false positives. Scanning 

your whole network with OS detection to find machines which need patching 

before the bad guys do” [19]. 

 
- Tailor exploits. Even after you discover a vulnerability in a target system, OS 

detection can be helpful in exploiting it. “Exploit vulnerabilities often require 

custom-tailored shellcode with offsets and assembly payloads generated to 

match the target OS and hardware architecture. In some cases, you only get one 

try because the service crashes if you get the shellcode wrong” [19]. 

 

- Network inventory and support. An inventory (know what OS are running in 

each machine) can also “be useful for IT budgeting and ensuring that all compa-

ny equipment is accounted for” [19]. 

 

- Detection of unauthorized and dangerous devices. Regular scanning can de-

tect unauthorized devices (added without permission to the network) for investi-

gation and containment. 

 

- Social engineering. By knowing what technology is the machine running you 

can fake the support center and trick the user if the naïve administrator assumes 

that only an authorized engineer is calling and would know such information 

about his system.  

NMAP Remote OS Detection and Fingerprinting 
   

NMAP performs OS detection by sending a bunch of TCP and UDP packets to the 

remote hosts and analyzes (performing specific tests) the responses to those packets. 
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“After performing dozens of tests such as TCP ISN sampling, TCP options support and 

ordering, IP ID sampling, and the initial window size check, Nmap compares the results 

to its database of more than 2,600 known OS fingerprints and prints out the OS details if 

there is a match” [20]. OS fingerprints are created with the results of these tests (once 

analyzed the responses), and they are nothing more than the specific results of that tests 

and values that a particular OS provides to the Nmap proof packets. Nmap fingerprints 

are stored in a specific database, called nmap-os-db database, which is a publicly 

available resource [21]. The OS fingerprint format is a tradeoff between human 

comprehension and brevity. Brevity (compacted format) is needed to optimize and 

speed-up the Nmap comparison process. When Nmap is running, and OS detection has 

been enabled, it stores the target fingerprint in memory (tests’ responses) and reads back 

and compares it to the ones (all of them) located in nmap-os-db database (called 

reference fingerprints). If there is a match, so the OS is known, it displays the results to 

the user in plain and in an easy to understand detailed readable format (figure 9). If 

there is not a specific match, Nmap displays after the scanning a subject fingerprint, 

which is a raw ASCII-encoded version fingerprint with the particular tests’ results (it 

can also be forced to display it if there is a match by using Nmap debug mode, -d) of the 

unidentified machine (figure 10).  

 

 
 

Figure 9. Nmap OS detection results – matched fingerprint [22]. 

 

 
 

Figure 10. Nmap OS detection results – unknown fingerprint. 
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Nevertheless, the reality is quite different. An exact OS fingerprint is quite difficult 

nowadays, mostly because the huge amount of different flavors that exist from the same 

theoretical OS (e.g.: Ubuntu versions). So, the main and average result of the scanning 

process is a guess, with some percentage that indicates the amount that the system fits 

some specific fingerprint on Nmap database (that is likely to be the real OS running on 

the system). To show this, I performed a search in Shodan [26], which is a webpage 

where you can find Internet connected devices, querying about Ubuntu running devices. 

I found a specific IP that showed that it was running Ubuntu OS and Apache web 

service. Then, I performed from my machine an Nmap OS detection scanning, so the 

results are shown in Figure 11.  

 

 
 

Figure 11. Nmap OS detection results – partial matching results. 

 

As we can see, although there is not a total matching, there is a really good match on 

Linux OS (more than 90%), especially in some specific versions. So, as can be seen, the 

most common real output of Nmap OS detection is an OS guess (or Aggressive OS 

guess) that provides some valuable information about the most likely OS running in 

target machine (with a high true positive ratio). If Nmap OS detection scanning doesn’t 

show up any high percentage match, it is also possible to force Nmap to show 

interesting results (using the flag parameter --osscan-guess). Nmap-os-db is a big 

fingerprint database (that has not information of every networked OS, but the most 

common ones) made by Nmap users (who submit them) but is rarely changed by them. 

“Adding or modifying a fingerprint is a moderately complex process and there is 

usually no reason ever to remove one. The best way to get an updated version of the OS 

database is to get the latest release of Nmap” [27]. Finally, note that although Nmap can 

be used as a normal Linux user, remote OS detection capabilities require root privileges 

to run it (sudo).  

Remote OS detection process 
 

Nmap remote OS detection process involves direct interaction with the target machine. 

More specifically, Nmap sends probe packets to the target machine, analyzes some 

specific fields of the replies, performs some specific tests and process packet data, and 

stores that information in its memory (the so called subject fingerprint). Afterwards, it 

compares this stored fingerprint to the ones in nmap-os-db database and it provides the 

output (OS running information if there is a match or subject fingerprint if there is 

none). Nmap OS fingerprinting process involves the sending of up to 16 packets (TCP, 
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UDP and ICMP probes) to known open and closed ports of the target machine. “These 

probes are specially designed to exploit various ambiguities in the standard protocol 

RFCs. Then Nmap listens for responses. Dozens of attributes in those responses are 

analyzed and combined to generate a fingerprint. Every probe packet is tracked and 

resent at least once if there is no response. All of the packets are IPv4 with a random IP 

ID value. Probes to an open TCP port are skipped if no such port has been found. For 

closed TCP or UDP ports, Nmap will first check if such a port has been found. If not, 

Nmap will just pick a port at random and hope for the best” [28]. The fingerprinting 

process consists of up to 16 probes sent in a specific order: 

 

1) First part of fingerprinting process is the sending of 6 TCP probes which 

responses are used to define the first 4 lines of the fingerprint. These probes are 

sent every 100 milliseconds, so it takes 500 milliseconds to send them all. 

Timing is important for some of the algorithms applied to the responses (initial 

sequence numbers, IP ID’s and TCP timestamps), as they are time dependent. 

“Each packet send in this first step is a TCP SYN packet to a detected open port 

in the target remote machine. The sequence and acknowledgment numbers are 

random (but saved so Nmap can differentiate responses)” [28]. The main 

difference between the packets is the TCP options they use and the TCP window 

field (see [28] for more detailed information).  

 

The responses and results of the answers to this packets define the first four 

fingerprint lines: SEQ (contains results based on sequence analysis of the probe 

packets: GCD, SP, ISR, TI, II, CI, TS and SS), OPS (contains the TCP options 

received in the replies, numbered from 01 to 06), WIN (contains window sizes 

received, numbered from 01 to 06) and T1 (contains various specific tests for 

packet #1: named R, DF, T, TG, W, S, A, F, O, RD and Q).  

 

 
 

Figure 12. Example of first lines of a Nmap OS fingerprint [27] 

 

2) Following these 6 packets, Nmap sends two ICMP echo request (aka ping) 

packets to the target machine. The differences between both of them are 

minimum but enough to test ICMP reply behavior of the target machine. ICMP 

request ID and sequence numbers are incremented by one from the previous 

query values. The result of both probes form the last line of a fingerprint (IE) 

that contains up to five fields: R, DFI, T, TG and CD. T and CD are extracted 

from the first probe and the rest are done in combination with the data of the two 

replies.These ICMP probes follow immediately after the TCP sequence probes to 

ensure valid results of the shared IP ID sequence number test (named SS and 

specified in the SEQ line; see [28] for more detailed explanation).  

 

 
 

Figure 13. Example of last line of a Nmap OS fingerprint [27] 

 

3) Next single packet sent my Nmap tests for explicit congestion notification 
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(ECN) support in the target machine TCP stack. “ECN is a method for 

improving Internet performance by allowing routers to signal congestion 

problems before they start having to drop packets. It is documented in RFC 

3168. Nmap tests this by sending a SYN packet which also has the ECN CWR 

and ECE congestion control flags set” [28].  
The results of this reply include the fields: R, DF, T, TG, W, O, CC and Q. See 

[28] for more detailed explanation about the tests.  

 

 
 

Figure 14. Example of ECN line of a Nmap OS fingerprint [27] 

 

4) Following ECN test, Nmap sends 6 TCP probe packets. Except one (last one 

changes the window value) all data sent in the six packets is the same, but the 

flags are different in all cases. First 3 packets (named as T2-T4) are sent to an 

open port and last 3 packets (named T5-T7) are sent to a closed port (if there is 

one). Every single response to these single packets is recorded and create a new 

line in the fingerprint (T2-T7), which fields named as: R, DF, T, TG, W, S, A, F, 

O, RD and Q (more information in reference [28]).  

 

 
 

Figure 15. Example of T2-T7 line of a Nmap OS fingerprint [27] 

 

5) Finally, as a last test, Nmap sends a UDP packet to a closed port in the target 

machine. “If the port is truly closed and there is no firewall in place, Nmap 

expects to receive an ICMP port unreachable message in return” [28].  
The response to this packet defines line U1 in Nmap fingerprints, with 

fields: R, DF, T, TG, IPL, UN, RIPL, RID, RIPCK, RUCK, and RUD (check out 

reference [28] for more detailed information).  

 

 
 

Figure 16. Example of U1 line of a Nmap OS fingerprint [27] 

 

Nmap documentation defines how the test and algorithms are applied in order to get the 

results of each single field in each specific line in the fingerprint. A detailed explanation 

of each test is out of the scope of this project (see reference [28]) but they have to be 

well known in order to trick Nmap OS detection mechanism, as HoneyIo4 does.    

Understanding a fingerprint: the whole picture 

Reference fingerprints 

 

Up to here, we have defined the lines of a fingerprint, which is basically what Nmap 

uses to compare and guess the OS running in the target machine. But a complete 

http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
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fingerprint contains additional lines, as can be seen in next example.  

 

 
 

Figure 17. Complete Nmap Reference Fingerprint [27] 

 

As can be shown in picture above, there are two differentiated areas. Bottom part 

(highlighted in green) is the results of the probe tests, explained before, and what Nmap 

uses to compare with the subject fingerprint. Nmap tries to match subject fingerprint 

test lines with reference fingerprint test lines. Top part (highlighted in red) is used to 

describe the OS they represent, and part of this information is the one provided by 

Nmap as an output when there is a match. First commented line is not used, and it is 

only a partial reference. “The Fingerprint line first serves as a token so Nmap knows to 

start loading a new fingerprint. Each fingerprint only has one such line. Immediately 

after the Fingerprint token (and a space) comes a textual description of the operating 

system(s) represented by this fingerprint. These are in free-form English text, designed 

for human interpretation rather than a machine parser. Nevertheless, Nmap tries to stick 

with a consistent format including the vendor, product name, and then version number” 

[28]. As Nmap developers state, “in an ideal world, every different OS would 

correspond to exactly one unique fingerprint. Unfortunately, OS vendors don't make life 

so easy for us. The same OS release may fingerprint differently based on what network 

drivers are in use, user-configurable options, patch levels, processor architecture, 

amount of RAM available, firewall settings, and more. Sometimes the fingerprints differ 

for no discernible reason. While the reference fingerprint format has an expression 

syntax for coping with slight variations, creating multiple fingerprints for the same OS 

is often preferable when major differences are discovered” [28]. The class lines (can be 

allocated more than one) specify four fields: vendor, OS family, OS generation and 

device type, all separated by the pipe symbol (|). Vendor is the company that makes an 

OS or device; OS family includes products such as Windows, Linux, IOS, OpenBSD, 

etc. (when is not clear, embedded keyword is used); OS generation defines more 

detailed information (e.g.: version 2.4.X in case of Linux or Vista in Windows case). If 

embedded was used or this was not known, this field is omitted in some fingerprints; 

device type is a broad classification of devices used by Nmap, that can be readen here 

[29], e.g: video game console, router, etc. Finally, CPE (Common Platform 

Enumeration) gives equivalents of class lines, referencing hardware and software (see 

more [30]).  

Subject fingerprints 

 

As stated in previous pages, subject fingerprints contain the information provided and 

results to Nmap tests for the specific target machine after the scanning process. This 
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fingerprint is then compared with thousands of reference fingerprints in order to match 

them. Test result expressions (lines) is what is being compared and are almost the same 

in both fingerprints (if there is a match) but, in order to match all instances (hardware 

can modify the response) of a particular OS, reference fingerprints are a little bit more 

generalized in order to match all of them, so they usually contain a value range that is 

accepted in each specific field instead of one exact value. Subject fingerprints, as they 

are used by Nmap, have a different format when printed (-d, debug mode) and in order 

to extract legible information they have to be cleaned a little bit.  

 

 
 

Figure 18.  Raw subject fingerprint output in debug mode [29] 

 

If we eliminate the “OS:” keywords and separate each line appropriately, we end up 

with the following picture. 

 

 
 

Figure 19.  Cleaned subject fingerprint [29] 

 

As we can see, this format is really similar to the test part of a reference fingerprint 

except for the SCAN line, which is information stored by Nmap regarding the scanning 

process and machine (not about the target machine) and which explanation is out of the 

scope of this chapter. See [29] for more information about this information line.  

Fooling Nmap OS Detection 
 

In order to trick Nmap OS Detection, the process of how it scans and analyses the 

responses is critical (explained in previous pages). Nmap is just an example of a 

network scanner (the most used one) but all of them work in a similar way, analyzing 

specific OS implementations’ responses to TCP/IP stack probes. Next sections explain 
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the tools and platforms used to achieve this goal.  

Virtual Machine Platform: Linux 
 

HoneyIo4 main platform is a Linux based virtual machine OS. More specifically is 

Ubuntu 15.04 version. This chose was done by affinity and easy usage by the developer, 

which is used to this Linux flavor more than others, but HoneyIo4 can be used in other 

Linux VM environments. As it is a VM, it is portable and can run in Windows machines 

as well with the appropriated configuration and hypervisor tool (like Oracle VirtualBox, 

VMWare, QEMU, etc). In my case, I used Oracle VirtualBox installed in an Ubuntu 

14.04 machine (which acts as the host machine of the Hypervisor that runs the Ubuntu 

15.04 VM machine, aka honeypot).  

Programming HoneyIo4: Python 
 

HoneyIo4 is programmed in Python programming language. Python is high level, 

interpreted, general purpose, open-source language that supports both functional and 

object-oriented programming paradigms. It is a powerful language, with a huge 

community behind and an extremely easy-to-understand syntax. As it is an interpreted 

language, it needs an interpreter in order to run, that can be easily installed from Linux 

repositories or https://www.python.org. To run a simple python script (named 

example.py) with no parameters, just issue: python example.py in Linux CLI and it 

will be executed properly. Once selected the platform, programming language and 

knowing in deep Nmap scanning process, I started coding planification. Discovering 

Nmap scanning process was the hardest part, making lots of dumb scans to real 

machines and operating systems in order to analyze and see the packets flow in 

Wireshark environment, as can be seen in pictures below.  

 

 
 

Figure 20.  Port scanning by Nmap 

 

https://www.python.org/
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The experimental setup was formed by two machines: a host machine (attacker) and a 

Virtual Machine connected to the same LAN (victim). The IP of the attacker was 

192.168.56.1, using a Ubuntu 14.04 machine. Victim machine was created by an 

hypervisor (Virtualbox) running a Ubuntu 15.04 machine, whith IP 192.168.56.101. The 

only open port in the victim machine was 8080 and the rest of them were assumed to be 

closed. Attacker performed a simple OS scanning with Nmap tool. When the 

environment was set up, I started the experiment.  

 

Prior to OS detection scanning, Nmap has to detect open/closed ports as they are the 

target of probe packets and also it can guess what services are running (in case of well-

known ports are used without change). This can be seen in Figure 20, as Nmap sends 

TCP SYN (using SYN port scanning, IP 192.168.56.1), the host replies with Reset-Ack 

packet to show closed ports (IP 192.168.56.101). Figure 21 (below) shows one step 

further in the detection process. In this case, port 8080 was detected as an open port 

(first three lines of the pcap file, numbered 35-85-86), as there is a SYN packet that has 

a reply SYN-ACK to establish connection but, then, the scanner aborts and sends a RST 

packet, so the three-way handshake is not finished and the connection is not established. 

Then, following packets are the probes sent by Nmap to perform remote OS detection. 

In Figure 21 we can see, in blocks of three (SYN packet, answer and RST), the first 6 

probes (lines 2102 to 2119), ECN (lines 2126-2128) and 3 TCP packets to open port 

(lines 2129-2131, highlighted in white). The following additional lines are retransmitted 

packets for whose Nmap did not received an answer yet.  

 

 
 

Figure 21.  Port scanning and open port probe packets by Nmap 

 

As a filter was applied to Wireshark in the screenshot above, the process seems to 

behave differently as it was explained. But reality is, as can be seen in number, that 

following TCP SYN probes, Nmap sent ICMP echo request packets, as can be seen in 

Figure 22. These are two slightly different ICMP packets that are answered by the target 

machine. As we can see, Nmap retransmits some of the probes to ensure its application. 

If we check the line numbers of first ICMP probes, we can see that are 2120-2125, 
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which are immediately following the numeration of TCP probes and before ECN 

packet. Figure 23 shows the packets sent to closed port (before packets 2129-2131 in 

previous screenshot). As Nmap detected in this case 999 closed ports, it chose randomly 

on closed port to send it. It chose port 1 as can be seen in Figure 23. Following port 

scanning, we can see the 3 packet probes sent by Nmap to the closed port and its 

following replies by the target machine (lines 2133 to 2138). Rest are retransmitted.  

 
 

Figure 22.  ICMP probe packets sent by Nmap 

 

 
 

Figure 23.  Closed port probe packets sent by Nmap 

 

Finally, as can be guessed there is only missing one probe packet, the one regarding 

UDP probe. Figure 24 shows that packet with its reply. As we can see, again, Nmap 
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retransmits and resends more than one time the probe packet. As expected, for a non- 

firewall filtered port UDP message, the response is an ICMP message: Destination and 

Port unreachable (ICMP message type 3 code 3). Then, this was used to know the 

practical implementation of the scanning process, and not only the theoretical one 

(explained before). As we can see, there are a lot of retransmissions of packets and the 

process performance respects the theoretical explanation.  

 
 

Figure 24.  UDP probe by Nmap to a closed port 

 

Once I identified all the packets (up to 16 in repeated waves) sent by Nmap I analyzed 

the responses done by real machines. In this case, I just coded a listening socket on port 

8080 with Python in the target machine (IP 192.168.56.101), executed it, let the OS 

answer and captured the traffic in the scanner interface (IP 192.168.56.101). As can be 

seen below, I used socket library in Python to create, bind and use listening mode of the 

recently created socket.  

 

 
Figure 25.  Socket creation with Python socket library 

 

Previous to this step, I worked a with socket communication between the 2 machines, 

host and virtual machine, in order to workout with Scapy and sockets. I used Scapy for 

its easy to integrate capabilities within Python code (as it has been created itself in 
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Python) and at the same time can be run as an autonomous powerful program. Other 

alternatives are Pypacker, Libcrafter and Ostinato, but all of them lack of integration 

capabilities in Python code (Scapy allows to use the same commands in a similar way 

both in CLI and Python code, so its integration is easier). Then, I created a listening 

socket (aka server), that replied back to a client the information that this sent to the 

server. For this purpose I created a listening socket in VM machine (IP 192.168.56.101), 

coded as can be seen in Figure 26. In the other side, the client machine was the real host 

(IP 192.168.56.1) that was coded using Scapy library. I created a raw TCP packet and 

sent it to the listening server (VM). As can be seen in Figure 27, packet creation in 

Scapy is done by adding layers of information, and finally using the function send, 

which is used to send the datagrams created.  

 

 

 
 

Figure 26.  Listening-echo socket in port  

 

 

 
 

Figure 27.  Client message, sent by Scapy function send( )   

 

To test both, I first executed the listening socket script in the VM, that acted as a server, 

and it bound the port in listening mode, awaiting for connections. As can be seen in 

Figure 28.  
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Figure 28.  Listening socket waiting for incoming connections (server)   

 

Then, in the other side, host machine, I executed the script acting as a client (connecting 

to the server). As seen in Figure 29, it was sent, printing out the message Sent 1 packets, 

that automatically is printed when send() function sends successfully a message. 

 

 
 

Figure 29.  Client sent a message 

 

This test was successful, but then I modified the sending script to also receive messages, 

using socket library (not Scapy). These tests main purpose was to test connectivity and 

socket performance. As can be seen in picture below, were successful. 

 

 
 

Figure 30.  Message received successfully from client, and replied back. 

 

 
 

Figure 31.  Message received by client sucessfully 
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Once working out with socket and Scapy, next goal was to fake a real and well-known 

machine: Ubuntu 15.04 (Linux flavor OS). In order to do that I used the pcap file of the 

capture that has been explained before (the whole real process), and just copied the 

packets information, bit by bit. I used this as a reference of working and tunning of the 

coding process but this was not the real aim of the project, which was to fake 4 IoT OS. 

First main issue when starting to proof the code against Nmap was that if I used socket 

creation, the OS answered itself to Nmap, so it was always detected as the real Ubuntu, 

but because of the real OS answering, and not the faking script. So, as a result, I had to 

fake it and do not let the OS to answer. For that reason, I used a Python library called 

python-iptables to modify iptables, which is “the tool that is used to manage netfilter, 

the standard packet filtering and manipulation framework under Linux. Iptables is used 

to set up, maintain, and inspect the tables of IPv4 packet filter rules in the Linux kernel. 

Several different tables may be defined. Each table contains a number of built-in chains 

and may also contain user- defined chains. Each chain is a list of rules which can match 

a set of packets. Each rule specifies what to do with a packet that matches. This is called 

a target, which may be a jump to a user-defined chain in the same table” [34]. Using 

iptables I could drop every incoming packet and do not let the OS answer. If this is not 

performed, the OS will reply to all as a closed port, Reset packet. The code for drop the 

incoming packets is as follows: 

 

 
 

Figure 32.  Drop packets Python code 

 

As can be seen in Figure 32, a rule is created and inserted into a chain. The incoming 

interface was eth1 (connected to same subnet of host machine, 192.168.56.0/24), the 

main rule for drop is every packet coming from source 192.168.56.0/24, that is, every 

packet sent by the hosts of the LAN and the rule applied: drop the packet. Last two lines 

insert or eliminate rules inside the chain. As can we see, if we execute the script as it is 

in Figure 32, the output (adding a few lines of code to print IpTables) is: 

 

 
 

Figure 33.  Output of executing python-iptables code 

 

This created a new rule that theoretically dropped all packets coming to interface eth1 

with packet source 192.168.56.0/24. As can be seen in Figure 34, eth1 is the interface 
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connected to the same subnet as the host machine. Then I used Wireshark and Nmap 

again to test the performance of the new applied rule. I performed again a remote OS 

detection with Nmap and captured all packets in host exiting interface (which was 

vboxnet0), as can be seen in Figure 35. The results were successful, no answer was 

found in the Wireshark capture (Figure 36), and Nmap outputs was clear (Figure 37), all 

ports in the target machine were filtered (no response from the target).  

 

 

 
 

Figure 34.  Interfaces in VM, loopback omitted in output 

 

 

 
 

Figure 35.  Interfaces in host machine 
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Figure 36.  No answer to port scanning, all packets dropped 

 

 

 
 

Figure 37.  All ports detected as filtered, as no answer was detected from alive host 

 

Once ensured that all packets were dropped and no answer was received (so it fakes a 

power off machine), I used Scapy library to sniff all packets incoming to the specific 

interface with IP 192.168.56.101, the one connected to the same LAN as the target 

machine. Note that this entire project has been done using two machines connected to 

the same LAN, but Nmap can perform also remote OS detection to public IP addresses, 

as was shown before in the Shodan case. Scapy is a “powerful interactive packet 

manipulation program. It allows you to forge or decode packets of a wide number of 

protocols, send them on the wire, capture them, match requests and replies, and much 

more” [31]. It can be used as a program itself or integrated in Python code, with the 

same functionalities available for the developer. Scapy documentation [33] shows the 

powerful functionalities that it has through examples and guided tutorials. In my case 

the needs were simple: as my intention was to fake a specific OS, I had a four step 

process: capture incoming packets (sniff), know which probe packet was (packet 

interpretation), create an appropriate response (packet creation) and send it back to the 

scanner machine (reply). As Nmap never stops until it gets the whole fingerprint, I had 

to perform all this steps in a continuous cycle, as shown in the next flow chart.  
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Figure 38.  Packet processing cycle of HoneyIo4 

 

In order to capture the traffic incoming to the specific interface (IP 192.168.56.101) I 

used Scapy library function called sniff. Sniff( ) is a blocking function that allows, when 

called, sniff packets from a specific interface, apply filters (to capture only specific 

traffic via keywords or regular expressions) and choose the number of packets sniffed at 

a time (it stores them into an indexed array that is the returning value for the function). 

As is a blocking function, it doesn’t let the program code continue until it has finished. 

In my case I was interested in TCP, UDP and ICMP packets, coming to the specific 

LAN connected interface (vboxnet0, IP 192.165.56.101) and one packet at a time. So I 

coded: 

 

 
 

Figure 39.  Sniff ( ) scapy blocking function coded 
 

As we can see, it filters for icmp packets, tcp packets with destination 8080 (open port), 

tcp packets with destination 8888 (closed port) and udp packets. Rest of packets are 

discarded and not sniffed. I chose two random ports as open/closed for these tests. 

Counts establish that the function only blocks until one packet is captured, then it 

executes next code. The packet captured goes to an array (where can only be found one 

packet) and can be accessed with index 0, so a[0] references the captured packet. Once 

the packet is captured, it comes the interpretation and information extraction. In order to 

interpret the packets and identify them uniquely, I used simple Python if conditional 

statements to compare the incoming packet data with the known packet data of each 

specific probe (all probe packets are different), features that make them unique (usually 

the options field). So, once the packet was captured, a battery of tests was applied to it 

in order to identify what packet was. As can be seen in the example screenshot 

following this lines.   
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Figure 41. Packet identification performed via nested IF statements 

 

I created three levels of packet identification filtering. From more general filter: 

protocol identification (ICMP, TCP or UDP; highlighted in red in Figure 41), then to 

port destination and other relevant data (closed, open port, etc.; highlighted in orange in 

Figure 41) to a final more detailed filtering of the packet, regarding to specific details 

that made them unique (such as TCP flags; highlighted in green in Figure 41). This 

helped to identify the packet in a systematic and efficient way, via nested IF statements. 

To access to the packet information, Scapy provides an easy to apply syntax. Once we 

have the packet a[0], each layer is accessed as an associative index; so to access TCP, 

there is only need to attach [TCP] to the packet expression and we will access to all the 

information regarding the TCP data of the packet. Once inside this layer, to access each 

specific field, we have to use the dot (.) and then the name of the field (it is accessed as 

object-oriented programming attributes). So, as an example, to access TCP sequence 

number field, we had to use: a[0][TCP].seq.    

 

Once identified properly, comes the packet creation. By analyzing the Nmap fingerprint, 

we can know what Nmap expects from each specific probe in each specific Operating 

System. Thus, I created the appropriate response for each known arriving packet. As can 

be seen in Figure 42, Scapy packets are created layer by layer, allowing us to create a 

full customized packet to meet our specific needs (in this case, what Nmap expects as a 

response for each specific probe packet).  
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Figure 42. Packet creation with Scapy syntax 

 

As can be seen in Figure 42 (above), after filtered and the probe packet has been 

identified (the comments specify an easy reading to know what packet is related), the 

answer packet is created by meeting the answer requirements. Some information is 

hard-written (e.g.: TCP flags field) and other is extracted from the captured packet, as 

can be seen in dport field definition. In order to meet some special requirements, for 

example IP header ID, as Nmap has specific tests for it that analyses the randomness of 

the value, sometimes is needed some special variable to define it and then modify its 

value, as shown in Figure 42: added 1 to the value after the packet is created, so the next 

packet, if arrives, will have next x+1 as ID and not the same as the previous one sent.   

Finally, the packet has to be put into the wire and sent back to the scanning machine. 

For that purpose I used Scapy send( ) function that allows us to send Layer 3 packets.  

 

 
 

Figure 43. Send function 

 

Scapy has two different functions to send packets, depending on the layer. Send ( ) 

function will send packets at layer 3 (so it will handle routing and layer 2 for the user), 

while sendp ( ) will work at layer 2 and requires more specific configuration (such as 

the configuration of the Ethernet layer that, as can be seen, is not defined in none of the 

packets) because send ( ) handles with it.  

 

Finally, as this process was performed for every single packet, once created there was 

no need to continue the checking process and a new packet could be sniffed. For that 

purpose I used Python continue keyword, that allows us to jump to the next iteration of 

the loop statement. Finally, as can be guessed, the whole process was a never ending 

process until Nmap finished its scan. For that reason, without the knowledge of how 

many iterations could be done, I used a while True statement at the beginning that 
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creates an infinite, never ending loop. 

 

 
 

Figure 44. Infinite loop as there is no known iterations 

 

As can be seen in Figure 44, all the code is within the never ending loop and the usage 

of the continue keywords is for performance purposes just because if the packet has 

been detected and sent, there is no need to check for others and the program can skip all 

the others IF statements and loop again, that is sniffing a new packet and starting again 

the process. Note that all variables referenced before are defined before the loop, so they 

start with a fixed value that is modified within the loop.  

 

As a result, the mix and deep development of all of these features shapes the whole 

program of each specific OS simulation. This process was performed for all of the 4 IoT 

OS simulations performed, attending and respecting the expected responses to the probe 

packets by Nmap (analyzing its fingerprints). Some of the test deserved special 

attendance as they are unique algorithms performed by Nmap that have to be discovered 

in order to fake the OS properly (see for example TI, CI and II tests [28], while some of 

them are gathered directly from the packet as fingerprint values (like window or flags). 

Figure 45 shows an extract (first lines) of the complete code of one of the OS 

simulations. More specifically the one that fakes GoPro Hero3 adventure camera OS. 

There we can see all the features shown in previous pages in a more extended way with 

~100 lines for this specific OS TCP/IP stack simulation. 

 

 
 

Figure 45. Extract of GoPro OS Simulation code 
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Testing HoneyIo4 
 

In order to test HoneyIo4 properly, I created a typical scanning situation that can be seen 

in Figure 46. In this case, both computers are in the same private subnet, but the same 

example could be extended with combination of public IP’s (when Network Address 

Translation (NAT) is in place).  
 

 

 
 

Figure 46. Testing scenario 

 

In this case-scenario, attacker interacts with the victim by sending packets via Nmap. 

The attacker issues Nmap remote OS detection to the specific address that he knows is 

an alive host in the same LAN. Honeypot machine has GoPro Hero3 OS simulation in 

place and awaiting for incoming connections. Figure 47 shows the execution of the two 

activation commands on each of the machines (left is nmap/scanner and right is 

honeypot). As we can see, as long as Nmap starts to send packets, the Honeypots 

answers back (Sent 1 packets message indicates that Send ( ) function in Scapy has been 

called successfully).  

 

 
 

Figure 47. Testing start – left is scanning machine, right is HoneyIo4 

 

After a while (in this case 35.95 seconds), the scanning process ends and Nmap shows 

the output. In this case, the machine running Ubuntu has been detected as a GoPro 

Hero3 camera (categorized by Nmap as webcam). It has detected also one open port and 

one closed port. Attacker trust this Nmap output and is deceived by HoneyIo4.  
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Figure 48. Testing ends – Nmap detects HoneyIo4 machine as GoPro Hero3 camera 

 

At the same time, I captured with Wireshark all traffic flowing through vboxnet0 

(interface connected to VLAN in attacker machine, IP 192.168.56.1). Figure 49 shows 

the traffic involving port 8080 (open port) on Honeypot. As we can see, an according to 

the fingerprint of GoPro Hero3, there is no response to most of TCP probe packets, so 

as there is no response in most of them (Figure 50), Nmap resends them awaiting 

response. After a couple retransmissions without response, it gives up. Figure 51 shows 

a different case, those are the TCP packets which destination is the closed port. In this 

capture, port scanning has been omitted and it is not shown. This screenshot shows a 

completely different behavior as the fingerprint states. There is answer to all closed port 

TCP packets from OS running GoPro Hero3 (Figure 52).  

 

 
 

Figure 49.  Traffic to port 8080, TCP probes to open port 
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Figure 50.  TCP probes to open port – reference fingerprint 

 

 
 

Figure 51. Traffic to port 8888, TCP probes to closed port 

 
 

Figure 52.  TCP probes to closed port – reference fingerprint 

 

Last two lines of the fingerprint references ICMP and UDP packets. Figure 53 and 54 

show the Wireshark traffic capture for both cases, all congruent with Figure 55, which is 

fingerprint reference for those two test lines.  

 

 
Figure 53. ICMP packet probes 
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Figure 54. UDP packet probes 

 

 

 

 
 

Figure 55.  UDP and ICMP test lines – reference fingerprint 

 

 
 

As a result, HoneyIo4 deceived the scanning process successfully by simulating an IoT 

Operating System. This process was repeated for the other 3 OS that HoneyIo4 can 

simulate (Oki B4545 – printer, Nintendo Wii – video game console and Casio QT6600 – 

cash registering machine).  

 

Next screenshots show the Nmap output in the remaining three IoT OS that HoneyIo4 

can fake. Figure 55 shows Oki B4545 output when analyzed with Nmap, Figure 56 the 

output of Nintendo Wii scanning and Figure 57 the output of Casio QT6600 registering 

machine.  

 

 
 

Figure 56. Printer’s Nmap scan output 
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Figure 57. Wii’s Nmap scan output 

 

 
 

Figure 57. Wii’s Nmap scan output 

 

 

Graphical User Interface for HoneyIo4 
 

HoneyIo4 can be easily executed in Ubuntu Command Line Interface (CLI) by issuing 

python and the chosen parameter (OS to simulate). As we have seen, it runs iptables and 

all the simulation process without further assistance. Nevertheless, some users that are 

not used to CLI may need further assistance or may have troubles running it. For that 

purpose, HoneyIo4 has a Graphical User Interface that runs in the web browser. It looks 

like a webpage where the user can easily select which OS simulate, activate and 

deactivate the honeypot at will.  
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HoneyIo4 GUI implementation 

 

HoneyIo4 Graphical User Interface runs in the web browser (by issuing localhost in the 

navigation bar). In order to run it properly, it is needed to create a complete LAMP 

environment (Linux-Apache-MySQL-PHP). Once installed, it is really easy to run 

HoneyIo4 from its GUI.  

 

HoneyIo4 GUI was coded using HTML as a markup language, CSS as a HTML styling 

language, JavaScript programming language to run specific client side functionalities 

and PHP to run the HoneyIo4 python script.  I created a simple HTML, CSS interface 

that can be seen in Figure 56 that can be accessed by typing localhost/index.html. This 

works easily as there is a configured LAMP environment that creates a local web 

service environment accessible as a public website from the navbar.  

 

 

 
 

Figure 56.  GUI of HoneyIo4 – accessible at localhost/index.html 

 

 

This interface has an easy navigation, as almost everything is visual/graphical, allowing 

non experienced users to run HoneyIo4 easily. To activate one of the OS simulations, 

the user has to press over the chosen OS of the 4 provided by HoneyIo4 (more 

information is provided when the user is positioned over the image, as can be seen in 

Figure 57). When the user presses the selected OS, a new layer appears over the 

interface with two main options: Run Simulation or Stop Simulation, as can be seen in 

Figure 58. Everything done through steps is coded with HTML and CSS hardcoded. The 

user has then two options: Run or Stop. The next logical step is Run the simulation, 

when pressing the Run button, an html link calls a PHP coded webpage that executes 

the Python code regarding to that OS simulation. Figure 59 shows as an example the 

link that executes GoPro Hero3 OS (gopro.php) and Figure 60 the HTML link call.  
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Figure 57.  Mouse is over the image of GoPro Hero3 – information is displayed 

 

 

 
 

Figure 58. When clicked, a new over layer appears and shows the options available 

 

 

 
 

Figure 59. gopro.php content 
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Figure 60. Code in index.html that executes Python script (call to gopro.php) 
 

As can be seen in Figure 59, the code is executed by using exec PHP built-in function 

that allows the execution of an external program inside PHP code. As the code is 

running socket management, it requires superuser privileges (sudo is needed), so some 

modification was done in order to allow Apache to execute this. As Apache normal user 

is www-data and has user privileges, it cannot run directly sudo commands with exec 

function. In order to allow www-data to run sudo commands, it has to be added to 

sudoers file (/etc/sudoers). Using the program visudo (only this one) this file can be 

modified securely. The most secure way is to enable www-data to have root permissions 

in some specific path and not in all the system, so I added www-data in sudoers and 

added the needed paths to execute the command, so, as a result, Apache can run 

successfully the python code. When the user presses Run simulation, as can be seen in 

Figure 60, it goes to the link gopro.php, that executes the py script and also performs 

onclick event (Javascript), calling runOS function. This function, as shown in Figure 61, 

handle with layers and some styling appearances, as can be show in Figure 62, it closes 

the over layer, and shows a green over layer in the image of the selected OS running.  

 

 

 
 

Figure 61. Javascript functions that handle with layers 
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Figure 62. Script activated (over layer indicator in green) 
 

This functionality serves as an indicator of which OS is running if any (displays the 

information for the user). When the user wants to Stop the simulation process, he/she 

has to press again the running image and the over layer appears again and by clicking 

Stop Simulation, everything comes to the initial state (Figure 63). Please note that, as all 

the simulations are running in the same “simulated” ports, only one simulation can be 

run at a time. So in order to active another one, the running one has to be stopped.  

 

 
 

Figure 63. Simulation stopped, initial state is recovered 
 

Now, if the user wants to run again the same OS simulation or another one, it has to 

simply do the same steps and the simulation will Run allowing him to stop at will. In 
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order to stop the Simulation, a new php webpage is called, as can be seen in previous 

Figure 60, called stop.php. This page executes the following code: 

 

 
 

Figure 64. Code executed by stop.php 
 

The code executed by stop.php are three calls to exec( ) function and one PHP 

redirection to the mainpage (using header( )  function). The first exec( ) creates a new 

file in Apache html folder (which is the one accessible and executed when navigate to 

localhost). This file main purpose is to stop the py code that is executing the simulation. 

As the OS simulation code is an infinite loop, there is no way to finish it without using 

Ctrl+C in CLI. Another option is to use another strategy to avoid that dramatic end of 

script. I added a new line to the beginning of the loop (Figure 65), that tests each time 

for the existence of a file in the same folder, called exit.doc. It this folder exists, the loop 

is finished by a break statement. If not, the loop continues.  

 

 
 

Figure 65. New added content that checks for file existence 
 

As we don’t know when to finish (whether Nmap has finished the scanning or not), if 

we press the Stop button when Nmap has finished, there are no packets incoming so the 

code is stuck in sniff ( ) function. To avoid this, and recheck again for new created file, I 

created a new python code that sends a new packet to unblock the sniffer (Figure 66) 

and perform a one more loop. It also drops the rule in IPTables in order to clear 

everything for a new use.  

 

 
 

Figure 66. Stopper.py sends a new packet to unblock and drops rule in IpTables 
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So when the file is created, the extra packet is sent, a new loop is performed, the file is 

detected and the script is end successfully and correctly. Also, the rule disappears from 

IPTables, so everything turns to normal state. Finally, in order to clear everything to 

next simulation, the next exec removes the exit.doc file and next Header redirection 

redirects to the mainpage of HoneyIo4, everything is ready for a new simulation.  

 

In order to test these I followed the steps that a user had to perform in order to run one 

simulation successfully. First I performed an Nmap scan without running any of the 

simulations (Figure 67). As can be confirmed, the VM is detected as a Linux 

environrment that is running a web-browser in port 80, everything normal in a web 

service running in a Linux based VM environment.  

 

 
 

Figure 67. Stopper.py sends a new packet to unblock and drops rule in IpTables 

 

Then I clicked and run one of the OS simulations, as can be seen in Figure 68. Nmap 

detected the host as IoT device running and IoT OS (cash registering machine).  

 

 
 

Figure 68. Nmap is tricked and IoT device running is detected 
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As a result, HoneyIo4 tricked Nmap and it detected an IoT OS running. HoneyIo4 

working and tricking the network scanner. Then I wanted to stop the simulation (Figure 

69) and clicked Stop Simulation, previous explained stop.php has to be executed and 

everything restored if working.  

 

 
 

Figure 69.  Before clicking Stop Simulation link. 

 

I performed a new Nmap OS detection to check if everything was restored to normal 

state (no OS IoT simulated). Figure 70 confirms that all has been successfully return to 

previous state. No simulated IoT, just a normal Linux based VM ready for the next 

simulation.  

 

 
 

Figure 70.  Before clicking Stop Simulation link. 
 

I chose to drop the rule, so the VM was detected as it is. But if it is preferred, the 

IPTables rule could have been kept and the system had been detected as filtered, no 

ports open and unknown OS running (only that the system was alive could have been 

detected by Nmap). So the proof-of-concept of HoneyIo4 seemed to work successfully 

and trick Nmap by detecting an IoT OS running instead of the Ubuntu OS running. 

HoneyIo4 works both in CLI and GUI mode.  
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Present and Future work 

HoneyIo4 simulates 4 IoT OS. It is a low-interaction honeypot with minimal 

capabilities that are reduced to OS simulation/detection by network scanners. Further 

work is needed to create a complete low-interaction Honeypot as HoneyD. HoneyD 

allows the user to “create more realistic networks, Honeyd supports the creation of 

virtual network topologies. The networks can be configured to contain routers with 

configurable link characteristics like latency and packet loss. When using tools like 

traceroute, the network traffic appears to follow the configured topology” [11]. While 

HoneyD allows the user to perform more than one simulation at a time and create a 

network virtual topology running of running PC based OS hosts, HoneyIo4 allows only 

running one simulation at a time but for IoT OS that HoneyD is not able to fake.  

 

 
 

Figure 71. HoneyD and compared HoneyIo4 (highlighted in red).  

 

In order to enhance HoneyIo4 to HoneyD level additional capabilities have to be added 

to HoneyIo4, although the most important one is covered (OS deception). HoneyIo4 

should implement an external and differentiated engine, as HoneyD does (in Figure 71 

the machine with IP 10.0.0.2), that allows to create routing and more instances of IoT 

running devices. Main OS personality engine is performed by HoneyIo4 but further 

capabilities require more implementation as HoneyD does like: basic services TCP 

handshakes and UDP banners, so more than one instance can be analyzed by the 

attacker in the network and the main engine have to track the connection and create a 

simple TCP state machine where the connection is created with the service and then 

dropped (HoneyD has not implemented fully receiver and congestion window 

management, so there is only three-handshake establishment). HoneyD has also 

redirection policies, that can be applied in HoneyIo4 by using IPTables rules, as I did 

before with the drop policy applied to incoming packets. Finally, Honeyd keeps state for 

each honeypot. This includes information about ISN generation, the boot time of the 

honeypot and the current IP identification number. Before a packet is sent to the 

network, it passes through the personality engine [11]. So, in order to create multiple 

instances of HoneyIo4, there is also the same need of a main core that keep track of all 

the information running and so it should be able to act appropriately to the incoming 

events for every instance. HoneyIo4 is a small approach to HoneyD, more technical 

requirements should be met in order to enhance HoneyIo4 to HoneyD but the main 

issue, OS simulation is already performed successfully by HoneyIo4 with the advantage 

of being capable of act as a IoT device, luring, tricking and deceiving IoT hunters. 
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Conclusion 

HoneyIo4 is an IoT low-interaction honeypot that pretends to fill the gap in IoT active 

active defense mechanisms, lacking nowadays and with a great and exponential impact 

in the future. IoT devices are growing exponentially and are in the spotlight of the 

hackers to perform its misdeeds. HoneyIo4 can help to learn about attackers 

mechanisms. It allows the user to simulate 4 different and common IoT Operating 

System devices, lure and deceive the attackers’ scanning process. Nmap outputs do not 

allow the attacker to hesitate if the machine is real or not, it is simply something that it 

is. Nmap detects the HoneyPot as an IoT device and the attacker it is informed in detail 

about it. HoneyIo4 can be run both from CLI or GUI, both for experienced and non-

experienced users. Although its original capabilities are limited, it performs, as could 

have been shown across this report, successfully IoT OS detection deception. More 

functionalities can be added to this basic core to enhance HoneyIo4 capabilities: 

multiple instances, routing, TCP connection, banner advertisement, etc. are only a few 

of the improvements that can be added to the HoneyIo4 fingerprinting engine. 

HoneyIo4 like Honeyd work with fingerprints (TCP/IP stack responses) in order to trick 

network scanners, but in the field of IoT devices, a lacking point in the Honeyd 

implementation. Further implementation and work has to be done in HoneyIo4 to 

enhance its capabilities and being able to create a full topology of IoT devices, which 

will be common in the near future. HoneyIo4 is a good starting point in the defense of 

the massively growing number of common devices that are acquiring networking and 

communication capabilities, defenseless against the massive exploitation of its new 

capabilities by black hat hackers. Cars, washing machines, fridges, etc. are a new field 

in exploitation and can be used for multiple purposes by skilled hackers. In a global and 

interconnected world, HoneyIo4 helps to learn about those bad guys that emerge from 

the shadows to exploit, most of times without our awareness, our appreciated devices.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

References 

 

[1] G. Corera. Intercept, “The secret history of Computers and Spies”, 2015.  

 

[2] R. van der Meulen, “Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 

2017, Up 31 Percent From 2016”, Press Release. [Online] Available: 

http://www.gartner.com/newsroom/id/3598917 [Accessed: 7-May-2017].  

 

[3] R.M. Lee, “The Sliding Scale of Cyber Security”. [Online]. Available: 

https://www.sans.org/reading-room/whitepapers/analyst/sliding-scale-cyber-security-

36240 [Accessed: 7-May-2017].  

 

[4] CCDCOE, “Terms and Definition”. [Online]. Available: https://ccdcoe.org/cyber-

definitions.html [Accessed: 8-May-2017].  

 

[5] B. Frumess, “A definitive guide to active cyber defense: Modularizing 

cybersecurity”. [Online]. Available: https://www.researchgat.net/profile/Barnaby_Frum 

ess/publication/290997565_A_DEFINITIVE_GUIDE_TO_ACTIVE_CYBER_DEFEN

SE_MODULARIZING_CYBERSECURITY/links/569d66bb08aed27a702faf32/A-

DEFINITIVE-GUIDE-TO-ACTIVE-CYBER-DEFENSE-MODULARIZING-

CYBERSECURITY.pdf [Accessed: 1-May-2017].  

 

[6] L. Spitzner, “Honeypots: Tracking hackers”, 2002.  

 

[7] M. Walker, “CEH Certified Ethical Hacker”, 2012.  

 

[8] The Honeynet Project, “Know your enemy: honeynets”. [Online]. Available: 

http://old.honeynet.org/papers/honeynet/. [Accessed: 1-May-2017].  

 

[9] C. Seifert, I. Welch, P. Komisarczuk, “Taxonomy of Honeypots”. [Online]. 

Available: http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-06/CS-TR-06-

12.pdf [Accessed: 27-Apr-2017].  

 

[10] F. Pouget, M. Dacier, H. Debar, “White Paper: Honeypot, Honeynet, Honeytoken: 

Terminological issues”. [Online]. Available: http://www.eurecom.fr/en/publication/ 

1275/download/ce-pougfa-030914b.pdf [Accessed: 2-May-2017].  

 

[11] N. Provos, “Honeyd: A Virtual Honeypot Daemon”. [Online]. Available: 

http://metro.citi.umich.edu/u/provos/papers/honeyd-eabstract.pdf. [Accessed: 20-Apr-

2017].  

 

[12] Y.M. Pa Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, C. Rossow, 

“IoTPOT: Analysing the Rise of IoT Compromises”. [Online]. Available: 

https://www.usenix.org/system/files/conference/woot15/woot15-paper-pa.pdf 

[Accessed: 20-May-2017].  

 

[13] T. Hudak, “Botnets”. [Online]. Available: https://www.korelogic.com/Resources/ 

Presentations/botnets_issa.pdf. [Accessed: 1-Jun-2017] 

http://www.gartner.com/newsroom/id/3598917
https://www.sans.org/reading-room/whitepapers/analyst/sliding-scale-cyber-security-36240
https://www.sans.org/reading-room/whitepapers/analyst/sliding-scale-cyber-security-36240
https://ccdcoe.org/cyber-definitions.html
https://ccdcoe.org/cyber-definitions.html
https://www.researchgat.net/profile/Barnaby_%20Frumess/publication/290997565_A_DEFINITIVE_GUIDE_TO_ACTIVE_CYBER_DEFENSE_MODULARIZING_CYBERSECURITY/links/569d66bb08aed27a702faf32/A-DEFINITIVE-GUIDE-TO-ACTIVE-CYBER-DEFENSE-MODULARIZING-CYBERSECURITY.pdf
https://www.researchgat.net/profile/Barnaby_%20Frumess/publication/290997565_A_DEFINITIVE_GUIDE_TO_ACTIVE_CYBER_DEFENSE_MODULARIZING_CYBERSECURITY/links/569d66bb08aed27a702faf32/A-DEFINITIVE-GUIDE-TO-ACTIVE-CYBER-DEFENSE-MODULARIZING-CYBERSECURITY.pdf
https://www.researchgat.net/profile/Barnaby_%20Frumess/publication/290997565_A_DEFINITIVE_GUIDE_TO_ACTIVE_CYBER_DEFENSE_MODULARIZING_CYBERSECURITY/links/569d66bb08aed27a702faf32/A-DEFINITIVE-GUIDE-TO-ACTIVE-CYBER-DEFENSE-MODULARIZING-CYBERSECURITY.pdf
https://www.researchgat.net/profile/Barnaby_%20Frumess/publication/290997565_A_DEFINITIVE_GUIDE_TO_ACTIVE_CYBER_DEFENSE_MODULARIZING_CYBERSECURITY/links/569d66bb08aed27a702faf32/A-DEFINITIVE-GUIDE-TO-ACTIVE-CYBER-DEFENSE-MODULARIZING-CYBERSECURITY.pdf
https://www.researchgat.net/profile/Barnaby_%20Frumess/publication/290997565_A_DEFINITIVE_GUIDE_TO_ACTIVE_CYBER_DEFENSE_MODULARIZING_CYBERSECURITY/links/569d66bb08aed27a702faf32/A-DEFINITIVE-GUIDE-TO-ACTIVE-CYBER-DEFENSE-MODULARIZING-CYBERSECURITY.pdf
http://old.honeynet.org/papers/honeynet/
http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-06/CS-TR-06-12.pdf
http://www.mcs.vuw.ac.nz/comp/Publications/archive/CS-TR-06/CS-TR-06-12.pdf
http://www.eurecom.fr/en/publication/%201275/download/ce-pougfa-030914b.pdf
http://www.eurecom.fr/en/publication/%201275/download/ce-pougfa-030914b.pdf
http://metro.citi.umich.edu/u/provos/papers/honeyd-eabstract.pdf
https://www.usenix.org/system/files/conference/woot15/woot15-paper-pa.pdf
https://www.korelogic.com/Resources/%20Presentations/botnets_issa.pdf
https://www.korelogic.com/Resources/%20Presentations/botnets_issa.pdf


51 

 

 

[14] R. Graham, “Mirai and IoT Botnet Analysis”. [Online]. Available: 

https://www.rsaconference.com/writable/presentations/file_upload/hta-w10-mirai-and-

iot-botnet-analysis.pdf [Accessed:1-Jun-2017].  

 

[15] C. Seifert, I. Welch, P. Komisarczuk, “HoneyC - The Low-Interaction Client 

Honeypot”. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi 

=10.1.1.61.6882&rep=rep1&type=pdf [Accessed: 20-May-2017].  

 

[16] S. J. Vaughan-Nichols, “DDoS attacks increase over 125 percent year over year”. 

[Online]. Available: http://www.zdnet.com/article/ddos-attacks-increase-over-125-

percent-year-over-year/ [Accessed: 1-Jun-2017].  

 

[17] I. Arghire, “IoT Botnets Fuel DDoS Attacks Growth: Report”. [Online]. Available: 

http://www.securityweek.com/iot-botnets-fuel-ddos-attacks-growth-report. [Accessed: 

1-Jun-2017].  

 

[18] Arbor Networks, “IoT BOTNETS: Massive Attacks with No Turbocharging”. 

[Online]. Available: https://pages.arbornetworks.com/rs/082-KNA-087/images/WISR_ 

Infographic_NoEndInSight_FINAL.pdf [Accessed: 1-Jun-2017].  

 

[19] Nmap, “Chapter 8: Remote OS Detection”. [Online]: Available: 

https://nmap.org/book/osdetect.html [Accessed: 2-Jun-2017].   

 

[20] Nmap, “OS Detection”. [Online]: Available: https://nmap.org/book/man-os-

detection.html [Accessed: 2-Jun-2017].   

 

[21] Nmap, “Nmap-os-db: latest version”. [Online]: Available: https://svn.nmap.org/ 

nmap/nmap-os-db [Accessed: 2-Jun-2017].   

 

[22] C. Cimpanu, “New Mirai Botnet Slams US College with 54-Hour DDoS Attack”. 

[Online]. Available: https://www.bleepingcomputer.com/news/security/new-mirai-

botnet-slams-us-college-with-54-hour-ddos-attack/ [Accessed: 1-Jun-2017].  

 

[23] M. Heller, “Modified Mirai botnet could infect five million routers”. [Online]. 

Available: http://searchsecurity.techtarget.com/news/450403881/Modified-Mirai-botnet-

could-infect-five-million-routers [Accessed: 1-Jun-2017].   

 

[24] N. Woolf, “DDoS attack that disrupted internet was largest of its kind in history, 

experts say” [Online]. Available: https://www.theguardian.com/technology/2016/ 

oct/26/ddos-attack-dyn-mirai-botnet [Accessed: 1-Jun-2017].  

 

[25] Malware Tech, “Mapping Mirai: A Botnet Case Study”. [Online]. Available: 

https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html 

[Accessed: 1-Jun-2017].  

 

[26] Shodan, “Search Query”. [Online]. Available: https://www.shodan.io/ 

search?query=ubuntu [Accessed: 20-May-2017]   

 

[27] Nmap, “Nmap OS Detection Database”. [Online]: Available: 

https://www.rsaconference.com/writable/presentations/file_upload/hta-w10-mirai-and-iot-botnet-analysis.pdf
https://www.rsaconference.com/writable/presentations/file_upload/hta-w10-mirai-and-iot-botnet-analysis.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi%20=10.1.1.61.6882&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi%20=10.1.1.61.6882&rep=rep1&type=pdf
http://www.zdnet.com/meet-the-team/us/steven-j-vaughan-nichols/
http://www.zdnet.com/article/ddos-attacks-increase-over-125-percent-year-over-year/
http://www.zdnet.com/article/ddos-attacks-increase-over-125-percent-year-over-year/
http://www.securityweek.com/iot-botnets-fuel-ddos-attacks-growth-report
https://pages.arbornetworks.com/rs/082-KNA-087/images/WISR_%20Infographic_NoEndInSight_FINAL.pdf
https://pages.arbornetworks.com/rs/082-KNA-087/images/WISR_%20Infographic_NoEndInSight_FINAL.pdf
https://nmap.org/book/osdetect.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://svn.nmap.org/%20nmap/nmap-os-db
https://svn.nmap.org/%20nmap/nmap-os-db
https://www.bleepingcomputer.com/news/security/new-mirai-botnet-slams-us-college-with-54-hour-ddos-attack/
https://www.bleepingcomputer.com/news/security/new-mirai-botnet-slams-us-college-with-54-hour-ddos-attack/
http://searchsecurity.techtarget.com/news/450403881/Modified-Mirai-botnet-could-infect-five-million-routers
http://searchsecurity.techtarget.com/news/450403881/Modified-Mirai-botnet-could-infect-five-million-routers
https://www.theguardian.com/technology/2016/%20oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/%20oct/26/ddos-attack-dyn-mirai-botnet
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://www.shodan.io/%20search?query=ubuntu
https://www.shodan.io/%20search?query=ubuntu


52 

 

https://nmap.org/book/nmap-os-db.html [Accessed: 20-May-2017].   

 

[28] Nmap, “TCP/IP Fingerprinting Methods Supported by Nmap”. [Online]: Available: 

https://nmap.org/book/osdetect-methods.html [Accessed: 20-May-2017].   

 

[29] Nmap, “Device Types”. [Online]: Available: https://nmap.org/book/osdetect-

device-types.html [Accessed: 20-May-2017].   

 

[30] Nmap, “Common Platform Enumeration (CPE)”. [Online]. Available: 

https://nmap.org/book/output-formats-cpe.html [Accessed: 20-May-2017].   

 

[31] Nmap, “Understanding an Nmap Fingerprint”. [Online]. Available: 

https://nmap.org/book/osdetect-fingerprint-format.html [Accessed: 20-May-2017].   

 

[32] Scapy, “Scapy”. [Online]. Available: http://www.secdev.org/projects/scapy/ 

[Accessed: 10-Mar-2017].   

 

[33] Scapy, “Scapy Documentation”. [Online]. Available: https://scapy.readthedocs.io/ 

en/latest/index.html [Accessed: 10-Mar-2017].   

 

[34] Python IPTables, “ Python IPTables Documentation”. [Online]. Available: 

http://python-iptables.readthedocs.io/en/latest/intro.html [Accessed: 10-Mar-2017].   

 

 

https://nmap.org/book/nmap-os-db.html
https://nmap.org/book/osdetect-methods.html
https://nmap.org/book/osdetect-device-types.html
https://nmap.org/book/osdetect-device-types.html
https://nmap.org/book/output-formats-cpe.html
http://www.secdev.org/projects/scapy/
https://scapy.readthedocs.io/%20en/latest/index.html
https://scapy.readthedocs.io/%20en/latest/index.html
http://python-iptables.readthedocs.io/en/latest/intro.html

