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conduction in the considered cells. The most valuable results of the study could be 
the impedance spectroscopy (IS) characterization. However, 
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(iii) the impedance spectra  for all the investigated cell structures are not 
compared, 
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As we demonstrate in our work the stability of non-encapsulated solar cells is affected 
by the penetration of slow moving charges. In that respect the impedance spectra do no 
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impedance. In our case the impedance plot shows a tail towards the x axis, indicating a 
finite diffusion. Thus, it is more appropriate fitting such behaviour to a short-circuit 
Warburg impedance. Indeed, the Warburg resistance is a more convenient parameter to 
show the trend of the diffusion process with time. 
 
 
Reviewer #3: I quite like this manuscript that is well illustrated and described. The 
written english could be improved in places but from the technical point of view it 
is OK. The long terms stability that the authors describe under ISOS-D-1 is 
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important that the PTB-7 story is told correctly. 
 
We appreciate the comments and suggestions from the reviewer. In accordance, we 
performed ISOS-L-1 tests which are commented in lines 9-15 form page 8 of the 
revised manuscript. The data corresponding to such tests is provided in the 
supplementary data file. 



Graphical Abstract (for review)



- Influence of the OPV stability on the penetration of degradation agents as, for instance, 

moisture. 
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*Highlights (for review)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Enhanced stability in semi-transparent PTB7/PC71BM photovoltaic 

cells 
 

Pablo Romero-Gomez,
 a*

 Rafael Betancur,
a
 Alberto Martinez-Otero,

a
 Xavier Elias,

a
 Marina Mariano,

a
 Beatriz 

Romero
b
, Belén Arredondo

b
, Ricardo Vergaz

c
, and Jordi Martorell

a,d 

a- ICFO-Institut de CienciesFotoniques, Mediterranean Technology Park, 08860 Castelldefels 

(Barcelona), Spain. 

b- Escuela de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 28933 Móstoles 

(Madrid), Spain. 

c- Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganés (Madrid), Spain. 

d- Departament de Fisica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Terrassa, Spain. 

 

*corresponding author: pablo.romero@icfo.es 

Keywords: PTB7, OSC, stability, Warburg, inverted, Photonic crystal 

 

 

We studied the performance over time of opaque and semi-transparent PTB7:PC71BM bulk hetero-junction solar cells. For 

unsealed inverted configuration cells we observe that when the isolation from the environment is improved, the degradation 

observed is dominated by one single exponential decay. We demonstrate that a dielectric multilayer stack of approximately 550  

nm provides an isolation that increases the lifetime of the cell close to ten times. In that event the fill factor appears to be the 

PV parameter dominating cell degradation resulting from a decrease in the shunt resistance. An Impedance analysis we 

performed indicates that a Warburg element, attributed to the presence of slowly moving charges such as heavy ions, must be 

included in thedescription of the experimental data. The contribution from such element increases as the cell degrades in good 

agreement with a degradation dominated by the corrosive effects from external agents reaching the active layer of the device. 

 

 

1. Introduction 

Since the early works on organic solar cells (OSC), many different polymers have been synthesized towards the 

goal of obtaining an active material with an optimal photon to charge conversion that would make such type of 

cells a commercially viable technology. In recent years, cells made with bulk hetero-junctions (BHJ) of 

PTB7/PC71BM have emerged as one of the most promising polymer based devices combining the unique features 

of an organic based technology with a relatively high power conversion efficiency (PCE) [1],[2]. Interestingly, it 

has been shown that such polymer blend can be used to obtain high performance homogenously semi-transparent 

solar cells [3]. Unlike semi-transparent cells fabricated using other types of polymers or PV technologies, with 

PTB7 one may fabricate devices which do not alter the colour of the objects seen through them. However, despite 

the high PCEs obtained and the potential for the PTB7/PC71BM blend to be used in building integrated PV, any 
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practical application for such cells would be pending on the final stability of the devices fabricated using such 

blend.  

For many different kinds of organic based PV cells it has been reported that the penetration of oxygen and 

moisture into the active layer of the cell results in severe loss of performance [4],[5],[6],[7],[8]. In the standard 

OPV configuration, the acidic nature of the poly(3,4-ethylenedioxylenethiophene):poly(styrenesulphonic acid) 

(PEDOT:PSS) used as electron blocking layer (EBL) [9],[10] leads the etching of the indium tin oxide (ITO)   

electrode [11]. For instance, in P3HT oxygen has been demonstrated to react with the side chain by insertion in the 

alpha position relative to the thiophene ring [12].In polyfluorenes oxygen insertion next to the quaternary carbon 

leads to fluorenone units and results in severe damage of the polymer properties [13]. Blocking of similar carbon 

positions with bulky side chains that prevent oxygen insertion has resulted in important increases in device stability 

[14], especially when aryl groups are used instead of alkyl chains. Large improvements in the stability of organic 

devices can be obtained in inverted configurations that bypass the need to use PEDOT:PSS. In such architecture, n-

type metal oxides such as ZnO or TiO2 are deposited on the ITO layer to lower the work function of the electrode 

[15],[16], while NiO, WO3 or MoO3 may be used as EBL [11]. Further improvements in stability may be reached 

by an adequate isolation from the most aggressive external agents [4]. 

In the current work we study the stability of cells which use PTB7:PC71BM as the active blend.  In particular 

we show that the incorporation of a 1-D multilayer structure combining three layers of high refractive index (HRI) 

and two layers of low refractive index (LRI) dielectric materials to enhance the efficiency of semi-transparent 

cells[3] acts also as an efficient barrier to protect the cell from a rapid degradation. In the first part of the work, a 

comparison between the stability of opaque and semi-transparent cells is provided. In the second, the performance 

of opaque and semi-transparent inverted devices is compared, and the impact of the multi-layer structure (ML) over 

the long term stability is analysed. 
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2. Experimental  

2.1-Device Fabrication 

To fabricate the photovoltaic devices we used 120 nm thick ITO-patterned substrates. For the standard 

configuration, PEDOT:PSS was used as EBL while thermally evaporated BCP as HBL. Details of the preparation 

of such cells can be found elsewhere [17]. For the inverted solar cells, a thermally evaporated MoO3 layer was used 

as EBL while ZnO was used as HBL. The ZnO layer was grown by sol-gel where the precursor solution was 

prepared according to Ref [18]. Spin coating was performed at 6000 rpm during 60 seconds followed by a thermal 

annealing at 200
o
C during 20 min in air. In the semi-transparent devices, a 10 nm thick silver back electrode was 

thermally evaporated at 5.5 Å s
-1

 onto a substrate cooled down to -5
o
C [19].The thicknesses for all the layers are 

reported in Table 1 (note that all devices have the same active layer thickness). We fabricated five different types of 

non-encapsulated PTB7:PC71BM BHJ cell architectures (see figure 1): Standard opaque (Std-Opaque), Standard 

semi-transparent (Std-ST), inverted opaque (Inv-Opaque), inverted semi-transparent (Inv-ST), and inverted semi-

transparent with a multilayer trapping structure (Inv-ML-ST). Thicknesses of the photovoltaic cell layers were 

determined numerically to optimize light harvesting in the opaque configuration [3],[17],[20] with the only 

constraints imposed by the fabrication procedures or the charge collection limitations of the materials used. The 

photovoltaic part and the photonic structure deposited on top of the transparent Ag electrode may be clearly 

distinguished in the field-emission scanning electron microscopy (FESEM) cross-section view of the Inv-ML-ST 

device shown in Figure 2. 

 

Table 1 Thicknesses (in nm) for all layers in the five different configurations considered 

 

In order to make Std-ST, Inv-ST, and Inv-ML-ST devices semi-transparent, the back silver contact was 

made 10 times thinner than for the opaque cells (i.e. 10 nm instead of 100 nm thickness). Std-ST and Inv-ST 

devices where capped with a 10 nm protective MoO3 layer deposited on top of the back Ag contact. For the Inv-

ML-ST device, such protective layer was replaced by the photonic crystal, a five-layer structure based on MoO3 

(HRI) and MgF2 (LRI). The structure was designed numerically to provide the adequate light management to 
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optimize the performance of the cell, i.e. to increase light trapping in the near IR and near UV region. Details on 

such numerically based optical optimization for semi-transparent cells can be found in Ref. [3], where a similar 

analysis was applied to optimize the PCE of semi-transparent standard cells. 

 

Fig. 1 Architecture for the OPV devices reported in this work. In all cases illumination was from the substrate side. The opaque samples 

differ from the transparent ones in the thickness of the Ag back-contact electrode. The blocking layers corresponding to standard and 

inverted solar cells architectures are indicated on the left and right of the drawings, respectively. Layer thicknesses are not drawn at scale.  

 

2.2 Device characterization. 

The PCE of the fabricated devices was determined from current density-voltage curve measurements obtained 

under 1 sun, AM 1.5G spectrum illumination from a solar simulator (Abet Technologies, model Sun 3000). The 

solar simulator illumination intensity was monitored using a monocrystal silicon reference cell (Rera Systems) 

calibrated against a National Renewable Energy Laboratory calibrated reference cell. In the characterization of all 

semi-transparent cells, illumination was from the ITO side. Impedance Spectroscopy (IS) measurements were 

performed under illumination conditions using a standard red LED. A Solartron 1260 impedance analyzer was used 

(Solartron Analytical, Farnborough, UK). The cell was connected to the analyzer that fed the input signal, biasing 

the device at different dc levels and superimposing an alternating signal with amplitude 100 mV and sweeping 

frequency from 1 Hz to 1 MHz. 

Fig. 2 Schematic and FESEM image of ML-ST. A) Photovoltaic cells were fabricated on top of fused silica glass substrate. The cell area, i.e. 

the area over which the Ag and ITO electrodes overlap was 0.09 cm
3
. The multilayer photonic structure was deposited on top of the 

electrical structure saving the silver contacts. B) SEM cross-sectional micrograph of the ML-ST. The photovoltaic structure consists of two 

parts. On the one hand the electrical part based on PTB7:PCBM-based cell. On the other hand, the multilayered MoO3/MgF2 PC. In this 

particular case instead of on a glass substrate, the structure was grown on a doped-silicon substrate to avoid charging effects during the 

SEM scanning. 

 

3. Results and discussion 

3.1. Time Evolution of the PV parameters 

The study the aging process of the fabricated devices was performed according to the ISOS-standards defined in 

Ref. [21].We performed two sets of experiments. In one set we compared the performance of the Std-Opaque and 

Std-ST configurations relative to the Inv-Opaque one, while in a second set we compared the three different inverted 
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configurations. The PV parameters for each cell were measured at the start of the aging process (cf. Table 2). All PV 

parameters measured subsequently were normalized to the corresponding initial values. In between measurements 

the cells were stored at ambient conditionsin the dark, which corresponds to ISOS-D-1 shelf testat level 2 according 

to consensus stability testing protocols for OPVs[21]. With such level 2 testwe aimedatdetermining the role played 

by the ML on the lifetime of the cells and determine the origin of cell degradation under such conditions.In our 

study, the cell lifetime is taken as the time the cell efficiency drops to 80% of its initial value [21]. 

The time evolution of the main PV parameters (Voc, Jsc, FF and PCE) for the first set of time evolution experiments 

is shown in Figure 3. As it has been reported with other polymer blends, the acidic nature of the PEDOT:PSS in 

contact with the ITO causes a rapid degradation of the FF and Voc[22]. Such source of rapid degradation may mask 

any other source of degradation possibly related to the thickness of the capping metal electrodes and consequently 

we observe that Std-Opaque and Std-ST degrade at a very similar speed. On the contrary, the Inv-ST cells exhibit a 

lifetime of approximately 250 hours, corresponding to at least 50 times the lifetime of the other two cells.  

 

Fig. 3 Evolution of the PV parameters for Std-Opaque (Wine squares), Std-ST (Blue triangles), and Inv-ST (red circles) solar cells. All 
parameters are normalized to their respective value at t=0 h. The lines are guides for the eye. 

In the second set of experiments we considered only the inverse configurations. The evolution of all PV 

parameters for the three cells under study is shown in Figure 4. As in the previous set of time evolution 

experiments the cells were stored in air and under darkness in between measurements. For all three inverted cells, 

the FF exhibits a faster degradation than Vocand Jsc. Consequently the efficiency followed, to a large extent, the 

evolution of the FF. Note that the lifetime for the Inv-Opaque with a capping electrode of 100 nm is 800 hours, 

close to three times the lifetime of the Inv-ST which is only capped with 10 nm of Ag and 10 nm of MoO3.  This 

suggests that external agents are a dominant source of degradation for the inverted cells and that thicker capping 

layer provide a better isolation from such agents.Note that for the Inv-ST and the Inv-Opaque a sudden drop in FF 

begins after 50 hours and after 500 hours, respectively. In the 3500 hours of the study, this drop was not observed 

for the ML-ST cell.  

 
Table 2 PV parameters for five different configurations 
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To gain further insight in the degradation mechanisms of the latter device, the natural logarithm of the 

normalized FFs are shown in Figure 5a for the three inverted devices. We observe that for the Inv-ML-ST cell, 

after an initial transient of approximately 1000 hours, the FF experiences a slow exponential decay with a decay 

time of 10,500 hours. The degradation in performance for the Inv-ST cell exhibits, first, a fast exponential decay up 

to approximately 1000 hours, and secondly, a very slow decay time once the cell is already practically dead. The 

Inv-Opaque exhibits a similar behavior but delayed 500 hours. In such first 500 hours the evolution of such opaque 

cell is similar to the long exponential decay of the Inv-ML-ST cell. As can be seen in Figure 5a, such long decay 

observed for the Inv-ML-ST cell can be adjusted to one single exponential, indicating one dominant mechanism of 

degradation for such devices. By comparing the decay rates for the three different type of devices, shown in Figure 

5a, we observe that a larger cell isolation can be associated to a larger cell lifetime indicating that degradation may 

be linked to the external agents such as oxygen and moisture.  

 

Fig. 4Evolution of the normalized PV parameters for Inv-Opaque (black squares), Inv-ST (red circles) and ML-ST (blue diamonds) cells: Jsc 
(a), Voc (b), FF (c), and Eff (d) All parameters are normalized to the respective value at t = 0h. The dotted lines in (d) indicate the time at 
which the efficiency is 80% of the initial value.The life-times of the Inv-ST/Inv-Opaque/MS-ST cells were approximately 250/750/1900 h.  
 

We monitored the evolution the Rs and Rsh for the three devices under study shown in Figures 5b and 5c, 

respectively. For the Inv-ML-ST device the Rs exhibits a slow increase over time while the Rsh degrades faster 

except for an initial period where that resistance increased slightly. A degradation of the device dominated by the 

Rsh over the Rs is an indication that such degradation is primarily located in the active material. For the Inv-

Opaque the thick Ag metal electrode also serves as a barrier to protect the active part, but in this case the barrier is 

thinner and, once the corrosive agents reach effectively the active layer, the degradation becomes very rapid. For 

the Inv-ST, the lack of any protection barrier leads to an almost immediate degradation of both, the Rs and Rsh. 

 

Fig. 5Evolution of the (a) natural logarithm of the cell FF, (b) the series resistance and, (c) the shunt resistance for Inv-Opaque (black 
squares), Inv-ML-ST (green diamond), and Inv-ST (red circles) solar cells. 
 

Additional information from the degradation mechanism can be obtained by measuring the time evolution of 

impedance on an Inv-Opaque cell at different voltages. Impedance experimental data have been fitted with the 
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equivalent circuit shown in the inset of Figure 6ain accordance with the model described in ref [23],[24],[25]. It 

consists of a series resistance, RS, modelling metallic contacts, wires, etc., and a parallel resistance, RP, that 

accounts for the cell dynamical resistance. The circuit also includes a constant phase element (CPE) that is a non-

ideal capacitance taking into account non-homogeneities such as porosities, roughness and surface states and it 

presents an impedance given by 
( )

1

( )( ) P
CPE CPE

T

Z
CPE j

  with CPEP ranging from 0 to 1 and CPET being 

approximately the capacitance value (when CPEP = 1).  Finally, the circuit includes a Warburg element that models 

the existence of slowly diffusion charges, typically ions with an associated impedance given by 

tanh( )

( )

P

CP

C

W T

T

R j C
W

j C




  where RW is the Warburg resistance associated to the size of the low frequency tail in the 

Nyquist plot, CT is a coefficient related to diffusion effects and CP is related to roughness of the diffusion media 

[26]. For V< 0.6 V the Warburg feature is not observed and therefore Rw is set to 0.  

 
Fig. 6  Impedance spectra of the Inv-Opaque cell measured at a) 0 V b) 0.4 V c) 0.6 V and d) 0.8 V, and at three different times (solid 
squares). Solid lines correspond to the theoretical fit. Inset in a) corresponds to the equivalent circuit scheme used to fit the experimental 
data. 

 

Nyquist plots at four different voltages are shown in figures6as examples of impedance measurements for three 

different times. We observe a good agreement between the experimental data and the theoretical fit.  The main 

feature in the complex plane is a typical depressed semicircle in the medium-high frequency range, a standard 

behaviour in organic solar cells associated to carrier recombination. The semicircle diameter increases with time, 

which implies an increase of the parallel resistance RP. This leads to a corresponding rise of the recombination time 

and therefore to an enhancement of the carrier density. Besides, the semicircle depression is more pronounced with 

time, leading to a decrease of CPEP parameter, and thus moving away from the ideal capacitor behaviour. At low 

frequencies, for V = 0.6 and 0.8 V, one may observe a tail associated to a Warburg behaviour that is more 

pronounced as time evolves. This results in an increase of the Warburg resistance, obtaining values of RW=148.3 

(98.6) at t=0, RW =447.6 (237.8) at t=1176 h and RW =683 (311) at t=2232 h for V=0.6 (0.8) V. The increase 

in RW suggests an increment in the number of slowly moving charges as the cell degrades attributed to the heavy 

ions that are being dragged into the active blend by the water that penetrates in the cell as times evolves. This 
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would be in agreement with a cell degradation dominated by a rapid decrease in the shunt resistance for the opaque 

cell as we observed in Figure 5c. It is observed that Rw is higher for 0.6 V than for 0.8 V. This could appear bizarre 

at first glance.However, this should be analysed in comparison with the recombination resistance Rp. The ion 

diffusion process modelled by Rwcannot be analysed by itself, but always related to the recombination mechanism. 

In fact, it is the ratio Rw/Rp that gives an idea of the ion diffusion influence on the overall dynamical process. This 

ratio increases with voltage, being for the last day of measurement 0.18 and 0.24 for 0.6 V and 0.8 V, respectively. 

This suggests that ion diffusion is linked to carrier recombination, as Rp increases, carrier recombination decreases 

enhancing carrier density and hindering ion diffusion. 

When inverted configuration devices are sealed, penetration of moisture is prevented and the cells exhibit a 

decay time constant close to 2000 hours. We performedISOS-L-3 tests and observed, as shown in Figure 1S a of 

the  supplementary data file, that the FF of inverted devices exhibits a two exponential type degradation being the 

time constant of the rapid one 14 hours and 1960 hours for the slow one. When the UV light from the solar 

simulator is filtered using a GG400 filter, the rapid degradation disappears and, as shown in Figure 1S b of the 

supplementary data file,the FF of the cell degrades following an almost single exponential decay with a time 

constant above 2000 hours.  

 

4. Conclusions 

 

We have considered the over time performance of five different PTB7:PC71BM cell configurations and concluded 

that for unsealed devices when isolation from external corrosive elements increases, the degradation becomes 

clearly dominated by the sole action of such external agents. In such conditions degradation can be directly linked 

to a decrease in the shunt resistance.  Additionally, we performed an impedance study that suggested an increase in 

the presence of slowly moving charges as the degradation of the cell developed. The partial but rather effective cell 

isolation we implemented was achieved by the deposition of five layers of dielectrics with a total thickness of 554 

nm. Lifetimes for inverted semi-transparent cells including such layer stack were close to 8 times the lifetime for 

equivalent cells without the stack and 400 times larger when compared to standard configuration semi-transparent 

cells. When comparing semi-transparent devices to opaque ones, the reduced thickness of the metal electrode did 
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not seem to have a direct effect on the cell lifetime other than being a less effective barrier to external corrosive 

agents. For sealed devices where further penetration of such corrosive elements is prevented, degradation appears 

to be dominated by a photo-degradation that can be slowed down when UV light is filtered out. The time evolution 

results we reported for cells fabricated with the PTB7:PC71BM blend, clearly indicate that such cells have the 

potential to become stable in the event that the fabricated devices are properly isolated from the surrounding 

environment. 
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Table 1 Thicknesses (in nm) for all layers in the five different configurations considered 

 ITO PEDOT:PSS ZnO BHJ BCP MoO3 Ag MoO3/MgF2 

Std-Opaque 120 40 -- 100 3.5 -- 100 -- 

Std-ST 120 40 -- 100 3.5 -- 10 10/0/0/0/0 

Inv-Opaque 120 -- 30 100 -- 5 100 -- 

Inv-ST 120 -- 30 100 -- 5 10 10/0/0/0/0 

Inv-ML-ST 120 -- 30 100 -- 5 10 112/136/102/102/102 

 
 

Table1



Table 2 PV parameters for five different configurations 

 

 Jsc 

(mA/cm
2
) 

Voc 

(mV) 

FF Efficienc

y (%) 

LUMINOSITY 

(%) 

Std-Opaque 13.06 714 69 6.43 0 

Std-ST 8.31 722 70 4.19 32 

Inv-Opaque 13.26 746 73 7.27 0 

Inv-ST 8.09 732 74 4.39 31.6 

Inv-ML-ST 10.02 745 72 5.37 30.1 

 

Table2



 

Fig. 1 Architecture for the OPV devices reported in this work. In all cases illumination was from 

the substrate side. The opaque samples differ from the transparent ones in the thickness of the Ag 

back-contact electrode. The blocking layers corresponding to standard and inverted solar cells 

architectures are indicated on the left and right of the drawings, respectively. Layer thicknesses are 

not drawn at scale.  

 

Figure



 

Fig. 2 Schematic and FESEM image of ML-ST. A) Photovoltaic cells were fabricated on top of fused 

silica glass substrate. The cell area, i.e. the area over which the Ag and ITO electrodes overlap was 

0.09 cm
3
. The multilayer photonic structure was deposited on top of the electrical structure 

saving the silver contacts. B) SEM cross-sectional micrograph of the ML-ST. The photovoltaic 

structure consists of two parts. On the one hand the electrical part based on PTB7:PCBM-based 

cell. On the other hand, the multilayered MoO3/MgF2 PC. In this particular case instead of on a 

glass substrate, the structure was grown on a doped-silicon substrate to avoid charging effects 

during the SEM scanning. 
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Fig. 3 Evolution of the PV parameters for Std-Opaque (Wine squares), Std-ST (Blue triangles), and Inv-ST (red 
circles) solar cells. All parameters are normalized to their respective value at t=0 h. The lines are guides for the eye. 
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Fig. 4 Evolution of the normalized PV parameters for Inv-Opaque (black squares), Inv-ST (red circles) 

and ML-ST (blue diamonds) cells: Jsc (a), Voc (b), FF (c), and Eff (d) All parameters are normalized to the 

respective value at t = 0h. The dotted lines in (d) indicate the time at which the efficiency is 80% of the 

initial value. The life-times of the Inv-ST/Inv-Opaque/MS-ST cells were approximately 250/750/1900 h.  
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Fig. 5  Evolution of the (a) natural logarithm of the cell FF, (b) the series resistance and, (c) the 

shunt resistance for Inv-Opaque (black squares), Inv-ML-ST (green diamond), and Inv-ST (red 

circles) solar cells. 
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