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Abstract 
The dependence of life scientists on software has steadily grown in recent years. For many tasks, 

researchers have to decide which of the available bioinformatics software are more suitable for their 

specific needs. Additionally researchers should be able to objectively select the software that provides the 

highest accuracy, the best efficiency and the highest level of reproducibility when integrated in their 

research projects. 

Critical benchmarking of bioinformatics methods, tools and web services is therefore an essential 

community service, as well as a critical component of reproducibility efforts. Unbiased and objective 

evaluations are challenging to set up and can only be effective when built and implemented around 

community driven efforts, as demonstrated by the many ongoing community challenges in bioinformatics 

that followed the success of CASP. Community challenges bring the combined benefits of intense 

collaboration, transparency and standard harmonization. Only open systems for the continuous evaluation 

of methods offer a perfect complement to community challenges, offering to larger communities of users 

that could extend far beyond the community of developers, a window to the developments status that they 

can use for their specific projects. We understand by continuous evaluation systems as those services 

which are always available and periodically update their data and/or metrics according to a predefined 

schedule keeping in mind that the performance has to be always seen in terms of each research domain. 

We argue here that technology is now mature to bring community driven benchmarking efforts to a higher 

level that should allow effective interoperability of benchmarks across related methods. New 

technological developments allow overcoming the limitations of the first experiences on online 

benchmarking e.g. EVA. We therefore describe OpenEBench, a novel infra-structure designed to establish 

a continuous automated benchmarking system for bioinformatics methods, tools and web services. 
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OpenEBench is being developed so as to cater for the needs of the bioinformatics community, especially 

software developers who need an objective and quantitative way to inform their decisions as well as the 

larger community of end-users, in their search for unbiased and up-to-date evaluation of bioinformatics 

methods. As such OpenEBench should soon become a central place for bioinformatics software 

developers, community-driven benchmarking initiatives, researchers using bioinformatics methods, and 

funders interested in the result of methods evaluation. 
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Introduction 
Scientific research dependence on software, data repositories, and advanced computer science 

methodologies has dramatically increased over the last years, mostly under the pressure of the 

increasingly large amounts of data produced by experimental biology. This is especially relevant for many 

areas of life sciences from omics to live imaging to processing electronic health records. Knowledge can 

emerge from the analysis of newly generated data, the re-analysis of existing ones, and/or from the 

combination of both. However, as life sciences data sets become larger, minor differences and 

inaccuracies in available data and/or used software can have a strong impact on the final results [Marx 

2013, Di Tommaso et al 2017]. It is also worth noting that bioinformatics software publications tend to be 

over-optimistic about the self-assessment of the reported software [Norel et al. 2011, Boulesteix 2015]. 

Thus, external and independent evaluation of bioinformatics software is needed to overcome such biases. 

An independent assessment will also assist developers and researchers when selecting the most suitable 

bioinformatics software for their specific scientific needs. 

Critical benchmarking of bioinformatics software adds value to research communities by providing 

objective metrics in terms of scientific performance, technical reliability, and perceived functionality 

[Jackson et al. 2011, Friedberg et al. 2015]. At the same time, target criteria agreed within a community 

are an effective way to stimulate new developments by highlighting challenging areas [Costello and 

Stolovitzky 2013].  

Motivated by the success of CASP (Critical Assessment of Techniques for Protein Structure Prediction) 

[Moult et al. 1995] and building in the long tradition of benchmarking exercises and competitions in 

software engineering, a number of similar community-driven benchmark experiments have been 

organized during the last two decades, for instance: BioCreAtIvE (Critical Assessment of Information 

Extraction in Biology) [Hirschman et al. 2005], CAFA (Critical Assessment of Functional Annotation) 

[Radivojac et al. 2013], and QfO (Quest for Orthologs) [Altenhoff et al. 2016]. A more complete list is 

shown in figure 1 and table 1. Together with their intrinsic scientific impact, these efforts promote the 

organization of communities around scientific challenges, incentive new methodological developments, 

and, more importantly, inspire the emergence of new communities in other research areas. However, for 

the efficient development of bioinformatics methods, tools and web services (referred to as “tools” from 

here on), continuous automated benchmark services are required to compare the performance of tools on 

previously agreed data sets and metrics. Continuous benchmarking is even more important for users that 

tend to have difficulties in choosing the right tool for their research questions, and are not necessarily 

aware of the latest developments in each of the fields of the bioinformatics methods they need to use. 

Thus, there are many aspects to consider when organizing a benchmarking effort [Friedberg et al. 2015]. 
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For instance, it is important to define i) roles for participants e.g. whether organizers can actively take part 

at the challenge as participants; ii) who is running the benchmark infrastructure; iii) how the benchmark is 

performed: in real-time, online, and/or offline; iv) whether the effort is punctual or continuous in time 

with periodic updates in data sets and/or evaluated metrics; v) how input data sets are processed. In the 

case of large data sets, a continuous service will provide more reliable and comprehensive statistics and 

ranking schemes over time [Eyrich et al. 2003]; vi) the final relevance of the reported indicators and their 

practical usability by external users, as well as for the design of bioinformatics workflows. 

Our focus here is on benchmark efforts which can be automated, and potentially run continuously 

including the use of new reference data sets as soon as they become available. Such system should be in 

charge of hosting reference data sets, gathering participants data, measure performance, and produce 

metrics on-demand. It is important to consider that continuous benchmark services require a stable 

computational and human infrastructure which may be difficult to fund and maintain over time. CAMEO 

(Continuous Automated Model EvaluatiOn) [Haas et al. 2013], CompaRNA [Puton et al. 2013], and QfO 

[Altenhoff et al. 2016] are examples of currently active continuous benchmark initiatives; the first one is 

focused on the evaluation of protein structure predictions, model quality estimation and contact 

predictions; the second focuses on the prediction of RNA secondary  
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Figure 1. Bioinformatics benchmark initiatives timeline for a broad range of topics. Additional details and other efforts are part 
of table 1. 
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structure; while the latter one measures orthology predictions from different perspectives, including the 

use manually curated data as reference. Moreover, several projects have implemented automated and/or 

continuous benchmark systems in the past, e.g. EVA (EValuation of Automatic protein structure 

prediction) [Rost and Eyrich 2001, Koh et al. 2003], LiveBench [Bujnicki et al. 2001, Rychlewski and 

Fischer 2005], and CAFA-SP (Critical Assessment of Fully Automated Structure Prediction) [Fischer et 

al. 1999], but they have been abandoned in the meantime or integrated into other experiments such as 

CASP [Moult et al. 1995]. Therefore, we envision that many scientific communities would benefit from a 

stable, generic and efficient infrastructure devoted to host unattended, periodic and continuous benchmark 

services. 

A benchmark infrastructure needs a close connection with high-quality repositories for both reference 

data sets and tools. Despite their primary role in the scientific, technical and/or functional evaluation of 

tools, such infrastructure should also provide use cases and best practice guidelines about how to establish 

and maintain communities around benchmark efforts, how to identify scientific relevant questions for 

each area, and how to make sure data sets and tools implement widely adopted standards for data 

exchange. The infrastructure should come along with well defined mechanisms allowing its expansion, 

evolution and long-term sustainability, in tune with the scientific needs of the scientific community.  

This work outlines general principles and requirements for designing benchmark initiatives, either 

continuous or periodic, provides a strengths, weaknesses, opportunities, and threats (SWOT) analysis 

based on existing communities (Figure 2), and maps active initiatives as example for future efforts. Figure 

3 identifies the relevant beneficiaries of community-driven benchmarking initiatives: software developers, 

communities running benchmark efforts, end-users who benefits of such systems when taking informed 

decisions about the best choice for their research problem; and funders who can take benefit of an open 

benchmarking infrastructure to objectively evaluate the contribution of its funding recipients 

retrospectively and/or prospectively.  
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Figure 2. Strengths, weaknesses, opportunities and threats (SWOT) analysis based on existing benchmark initiatives. 
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Figure 3. Main actors within a community-driven benchmark challenge: objectives, final goals and previous channels to address 
their objectives. 

General aspects for establishing a community-driven benchmark effort.  
Community-driven benchmarking is a complex process entirely relying on intense cooperation among its 

members. These communities can be effectively strengthened by  challenge-based competition with clear 

participation rules, a scientific sound set of questions, and agreed common data sets (Figure 4). Provided 

a critical mass of software developers is reached, competition eventually ends up bringing stimulated 

rewards and invaluable feedback about potential improvements for individual solutions. 
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Figure 4. General workflow and crucial input for successful community supported (continuous) evaluations. 

 

The next sections describe several aspects involved in the design of successful challenges which are 

important and complement previous work in the field [Friedberg et al. 2015].  

1. Types of benchmarking 

General-purpose software is usually evaluated using technical performance metrics, such as average 

response time and memory access rate. However, in order to add real value for researchers, scientific 

software cannot be evaluated only from a technical perspective, a more comprehensive evaluation should 

also measure the scientific performance of software under diverse scenarios of application and data sets.  

Evaluation can be carried out by considering three different but yet complementary types of assessment as 

shown in figure 5. 

Technical: how does the tool perform under specific technical conditions? 

Technical benchmarking usually focuses on elements of technical quality. Relevant factors that determine 

whether scientific software is technically successful are, for instance, whether it can be compiled with no 
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errors, resources needed along the execution (storage, memory), the reproducibility of the results, and 

portability, among others. In the case of services, relevant features are accessibility, up-time, 

communication protocols, response time, processing speed, and interoperability. Importantly, reverse 

engineering, comparison of technical specifications and analysis of operating statistics are the primary 

techniques in the context of technical benchmarking. 

Functional: how usable is a given tool by end-users? 

The functional assessment performs a user-based evaluation of software usability. Some relevant aspects 

that determine the usability of a given software are: how intuitive and easy-to-use is the Graphic User 

Interface (GUI); if there exists clear and comprehensive user documentation; whether software 

customizes the user experience according to predefined roles when more than one profile is available; 

whether it is linked to data repositories that are updated frequently; if there are communities around the 

software aiming to support users and/or developers; whether the software is open source and licenses are 

properly indicated. 

Scientific: how does the method perform within clearly defined scientific challenges? 

The main aspect here is to define within the respective community what is to be measured and how, the 

so-called metrics. These metrics come in all shapes and sizes. Some relate to experimental readouts used 

as standards of truth while others merely quantify some level of optimization. The metrics serve two 

complementary purposes: the first one is to objectively evaluate the relative scientific performance of the 

different participating tools. The second one is more complex and it is related with the understanding of 

the theoretical basis of the differences between tools, and the evaluation of the specific details of the tools 

related with their performances. What are the tools potential biases, strength and weaknesses? Under 

which conditions do tools tend to underperform? Are key scientific questions that cannot be answered 

easily by the evaluation systems? This is possible since they might require deep scientific knowledge and 

substantial information about the corresponding tools. However, automated evaluation systems can assist 

communities to perform this type of analysis by providing the necessary information about the 

participating tools.   
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Figure 5. Venn diagram showing relations among the different types of benchmarks: scientific, technical and functional. 

2. Definition of the benchmark 

Understanding why a given software performs as it does on a specific benchmark scenario is often as 

important as the actual benchmark results [Aniba et al. 2010]. When designing a benchmark, this should 

be adapted and representative enough of its actual application as well as capable to scaling-up as more 

participants use it and data volume grows. Moreover, different benchmark editions should move towards 

more challenging aspects of the core scientific questions under study, so the benchmark design needs to 

evolve over time to keep its relevance within its scientific domain.  

Concise and comprehensive definition of the scientific scope is also key for successfully organizing a 

benchmarking initiative and attracts participants. The community should define this scope in terms of 

relevant scientific questions, which can be quantitatively evaluated; and the data needed to answer those 

questions. Scientific questions should be: achievable, i.e. solvable in a reasonable time, but not trivial; 

realistic, i.e. representing real problems with real data; and appealing to attract a broad interest. Prediction 
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tasks should be defined in terms of expected results, e.g. range of possible predictions, input and output 

data formats, and potential impact. Prior to starting the challenge, it is crucial to agree on both the metrics 

and the evaluation mode, in particular for those cases where a 'gold standard' is not available. Importantly, 

the temporal frame of the challenge should be defined in advance in order to allow the community to learn 

from it and prepare new editions of the initiative. 

Participants and assessors should be involved in the open definition of the scientific challenge and 

evaluation criteria, and community feedback should be gathered to periodically refine assessment metrics 

and procedures. Therefore, the evaluation procedure of the benchmark should be transparently accessible 

to the community at any moment during the challenge implementation. Importantly, benchmark data, 

including the data sets submitted by participating tools, should be also available after the challenge to 

facilitate further refinements and the development of new tools using sound and relevant data. 

Additionally, data considered as reference for the community should be properly identified as such, 

documented, and maintained at stable repositories.  

3. Evaluation: reference data sets, metrics and ranking 

Continuous benchmarking provides a framework where a large number of tools are being compared and 

evaluated simultaneously, under the same conditions and over time. As soon as results become available, 

an assessment on their correctness and/or accuracy has to be carried out. The assessment should allow to 

effectively compare the performance of participant tools by providing appropriate rankings which are of 

high interest for developers, the community organized around the benchmark effort, researchers, and 

funders. The framework must also guarantee the reproducibility of results, and provide ways to verify 

such reproducibility.  

But, which metrics are appropriate to evaluate the accuracy of a result? In scientific benchmarking, a 

precise definition of what “correct” means is essential. Prediction accuracy can be defined as the degree to 

which the prediction reflects the real facts of biological systems. However, no single metric can be 

definitely used to evaluate all the predictions. In almost all cases there are orthogonal aspects 

necessitating more than one ranking to be made available and, optimally, all scores should be integrated in 

a way that tool developers and end-users can weight those metrics according to their specific needs. It 

seems obvious that the benchmark should be method-independent. In the ideal case, a 'gold standard', 

which will be usually kept undisclosed during official challenges, is used to assess the accuracy of 

predictions applying quantitative metrics, e.g. CAMEO and CASP use new, unpublished, experimental 

3D structures that are available on weekly basis. Biocreative uses gold standard manually curated data 

sets that require laborious and costly production, as well as silver standard data sets which are produced 

after collecting and combining results from the participating tools. However, this cannot be the case in all 
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communities. Initial efforts around multiple sequence alignments used one of the benchmarked methods 

output, which was manually refined at a later stage, to build up the reference data sets [Thompson et al. 

1999]. The case of multiple sequence alignment (MSA) is especially revealing on the complexity of 

setting up appropriate gold standards. While MSA modelling is one of the most widely used technique in 

computational biology [Van Noorden et al., 2014], the agreement across the six main reference datasets 

has been reported to be as low as 66% [Kemena et al. 2009] with current benchmarks being criticized for 

deep flaw in their underlying logics. Critics were later raised by other members of the community [Edgar 

et al. 2010].  

 

Importantly, assessment metrics should be easily interpretable by everyone in the field as this will 

promote participation. Metrics should also reflect different angles of relevant scientific questions to allow 

detailed discussions and to avoid convoluted, and, thus, scientifically meaningless scores. Communities, 

and especially those who volunteered as assessors, should periodically review existing metrics and come 

up with new metrics reflecting the current developments and challenges in the field. 

Communities may use absolute metrics, relative measures and/or statistical significance of differences. 

Individual metrics are suited to describe different aspects of the evaluation, or the same aspect under 

different perspectives, and when combined provide a comprehensive view of tools performance. Over 

time, best methods tend to converge and the relevance of the differences should also be analyzed to 

determine whether better results are due to the new methods and/or refinement of existing ones, just due 

to chance, or if they merely reflect an overfitting of the gold standard. Various approaches have been used 

to evaluate the prediction accuracy of results depending on the availability of such gold standards. For 

instance, the predictions can be compared directly either with experimental data, with synthetic and/or 

simulated datasets generated in silico following previous experiences [Van den Bulcke et al. 2006, Kim et 

al. 2010, Hatem et al. 2013] or with data generated using unsupervised learning approaches, based on the 

consensus among different —i.e. algorithmically independent— methods [Elsik et al. 2007, Chen et al. 

2007, Keith et al. 2012]. For the latter, naive methods e.g. Bayesian networks, can provide a baseline 

allowing assessors to measure relative performance between methods with, on average, moderate to good 

accuracy. Such consensus data is referred to as ‘silver standard’. However, data from silver standards 

should be used with caution as it needs to be revised regularly avoiding to poorly evaluate new 

developments in the field. New developments which implement radical solutions to open scientific 

questions under scrutiny may produce little to none overlap with existing solutions, and, thus, perform 

poorly when evaluated with silver standard data sets which are produced after combining the output of 

existing solutions.. The use of synthetic data is complicated. On the one hand synthetic data is perfectly 
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suited to any problem dominated by an optimization issue e.g. Maximum Likelihood tree computation; on 

the other hand synthetic data is poorly suited to be a substitute for experimental data, especially when the 

biological process is imperfectly modelled. 

In order to extract valuable conclusions from the results, sometimes, it is also necessary to use additional 

information, such as expert analysis and manual curation. Proper ontological description of the references 

and their associated metrics would therefore be instrumental at ensuring that metrics and datasets are 

described in the most informative way with respect to the aspect of the modelling they are capturing. 

To guarantee a fair comparison, it is essential that participants use only input data agreed by the 

community. Hosting such data in well defined data repositories will prevent having distorted results 

because of different IDs for the same input data and/or different data versions. In the case of fully 

automated approaches, where continuous benchmarking is achieved by interrogating web servers, 

additional strategies may be necessary. Another important aspect is the amount of available data for 

conducting benchmarking activities because few cases might lead to similar results among participating 

tools. In fact, input data sets should contain varied test cases covering a wide range of possible inputs to 

the prediction problem. This provides means to prove the ability of participants to generalize and conform 

to new inputs, avoiding overfitting a resource to perform well just on specific test cases. When possible, 

input data should be made up of experimentally validated data. Indeed, similar results can make nearly 

impossible to establish a reliable ranking among participating tools making necessary to consider other 

aspects e.g. technical performance when similar scientific results are obtained. 

4. Continuous release of data sets and assessment metrics 

The periodic release of standardized benchmark data sets is crucial to allow independent training and 

testing. This is especially relevant for the refinement and development of new tools because it allows 

comparing these implementations with standardized data on already recognized tools. It is also relevant 

for developers because it allows to trace the evolution of a given resource —in terms of performance over 

time— for the same reference data and/or the performance of a given resource for an increasing number 

of reference data sets. Repositories such as Model Archive [Haas J. et al 2013], which aims to store 

protein models; UniProt [The UniProt Consortium 2017], which aims to provide a large-scale 

comprehensive and high-quality resource of protein sequences and functional annotations, and similar 

repositories facilitate data deposition and preservation. E-infrastructures for data handling like EUDAT 

[Lecarpentier D 2013] with specific services like B2Handle for providing persistent identifiers for data 

sets, B2Share and B2Drop for data storage, and B2Ffind for looking for data sets based on their metadata; 

or Zenodo can provide support and stable management for smaller projects. For continuous benchmarking 

efforts, regular standard test sets should be released and documented, for instance, in a short 

http://www.modelarchive.org/
http://www.uniprot.org/
https://www.eudat.eu/
https://zenodo.org/
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accompanying paper. Such continuous evolution fosters improvements in tools performance, and also 

aims at detecting and correcting software bugs as well as flaws in data sets used for benchmarking 

purposes. Moreover, substantial new features and functionalities could be discovered with the community 

support. 

5. Regular Community Input  

Regular meetings are envisioned with a large fraction of a given community present to discuss new 

developments and latest scoring methods, thereby driving the field to embrace new challenges and openly 

discuss best practice in assessing these aspects. For instance, in protein structure prediction, additional 

input of residue-residue contact predictions marked a game change in the field of de novo predictions. 

This success originated in community discussions at recurring meetings within CASP (CASP12, Dec 10-

13 2016, Gaeta, Italy) and provides an excellent example of discussing new directions at community 

meetings. In addition to regular meetings, organizers should request feedback from the community after 

each event, for instance, via surveys and/or questionnaires to the participants. It is important to develop 

training and communication strategies to promote knowledge and experience exchanges within the 

community, and beyond. This is especially relevant for highly heterogeneous and geographically 

distributed communities. Importantly, results from a given benchmarking community might be of high 

relevance for other communities who are organized around downstream scientific aspects e.g. 

phylogenetic tree reconstruction methods highly depends on multiple sequence alignments quality; and/or 

focuses on the benchmarking of complex workflows scenarios rather than individual tools [Laurie S et al 

2016]. 

Specification and technical framework for online benchmarking. 
The constant growth of biological data represents unprecedented technical challenges as most software 

and data i) do not have, if any, structured descriptions; ii) lack useful metadata; iii) use non-standardized 

input and output formats; and iv) lack clear terms of use and/or licenses. Software source code, if 

available, is often obsolete, and makes it difficult to reproduce benchmark tests. Thus, it is necessary to 

develop a new technical framework to address, at least partially, these challenges. Such framework should 

implement approaches for managing, analyzing, and preserving both benchmarking data and metadata 

using standard formats for future reuse. The framework should, therefore, guarantee that data is Findable, 

Accessible, Interoperable, and Reusable according to the FAIR data principles [Wilkinson et al. 2016]. 

OpenEBench (Open ELIXIR Benchmarking and Technical Monitoring platform) is an attempt to address 

these challenges in a sustainable way under the ELIXIR-EXCELERATE umbrella. OpenEBench is an 

open infrastructure which focuses on supporting continuous automated community-driven benchmark 

https://www.elixir-europe.org/about-us/how-funded/eu-projects/excelerate
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efforts. OpenEBench aims at implementing different standards and best practice to facilitate the 

interoperability with other ELIXIR resources, including the ELIXIR Core data resources. OpenEBench 

also captures technical information about bioinformatics software aiming to provide a comprehensive 

description of scientific and technical performance of tools to developers, communities, end-users, and 

funders. The integration of different benchmark initiatives is meant to provide long term solution to the 

storage, analysis and publication of large scale heterogeneous data benchmarking ranging all across the 

biological data analysis challenges such as data mining, genomics, precision medicine, evolutionary and 

functional analysis. Finally its implementation has to be as inclusive as possible so it allows the 

integration of complex workflow, standalone software and web services.  

OpenEBench as an open benchmarking infrastructure 

Community-driven benchmarking efforts can be: i) fully automated —which is the case for continuous 

online benchmarking; ii) manual —dependent on human expert predictors; or iii) hybrid —thus, 

combining both approaches like in CAFASP. We will focus on the first one giving the need to deal with 

enormous amounts of data and highly diverse scientific scenarios. To conduct continuous automated 

community-driven benchmarking challenges, it is necessary to have a stable infrastructure that allows 

significant and reliable participation. This infrastructure must scale according to the number of 

participants while allowing centralized collaborative efforts to define reference data sets. It should also 

implement a system for storing and sharing benchmarking results as well as performing benchmarking 

experiments. An extension to this infrastructure would allow complex bioinformatics workflows to be 

evaluated along with precise estimates of individual components and their fine-grained parameter tuning. 

Such a framework will optimally integrate the decision-making capabilities of communities and involved 

groups.  

In order to engage and keep the interaction among community members, it is important to have a website 

which provides both friendly and unified programmatic access across different resources at the 

benchmarking platform. This central access point will facilitate data exchange, and promote results 

dissemination. To that end, service-oriented architectures should be designed using well-established web 

standards, such as those developed by the World Wide Web Consortium (W3C), the International 

Organization for Standardization (ISO) and the Internet Engineering Task Force (IETF®). Web-services 

should be platform-independent so they can be deployed and invoked from any platform and/or 

architecture. The early development of APIs (Application Programming interfaces) for the creation and 

deployment of web services will provide a way to conduct continuous automated benchmarking tests 

online. However, although web services provide the underlying basis for designing web architectures, 

further discussions about data, e.g. wide adoption of JSON format files as preferred interchange data 

https://www.elixir-europe.org/platforms/data/core-data-resources
https://www.w3.org/standards
https://www.iso.org/standards.html
https://www.iso.org/standards.html
http://www.ietf.org/
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format, and interoperability standards, e.g. implementation of FAIR data principles [Wilkinson et al. 

2016], are needed.  

The platform should implement mechanisms for guaranteeing reproducibility of conducted benchmarking 

experiments as well as to ensure the persistence of the involved data sets, e.g. input, output, results, and 

metrics. Besides, in order to avoid long execution cycles, it would be useful to develop specific testing 

and deployment paradigms that facilitate tools benchmarking. For instance, to deploy and execute 

different benchmarking experiments within the same technical environment, it is recommended the use of 

software container technologies, such as Docker [Boettiger 2015]. Software containers facilitate 

reproducibility, easy deployment and flexible building of collections of tools and search engines dedicated 

to specific scientific domains. Moreover, a conjunction of software containers could be used for 

benchmarking scientific workflows as well as to measure different metrics belonging to a specific 

benchmark. Thus, software orchestrators are needed to control those workflows. Two technologies will be 

deployed into OpenEBench: the widespread workflow manager Galaxy which offers a web-based user 

interface [Afgan et al. 2016], and Nextflow, a recently released framework which allows exact 

reproducibility and ease configuration and management of diverse tasks [Di Tommaso et al. 2017]. 

A schematic representation of the OpenEBench infrastructure can be found in Figure 6. As a highly 

interoperable infrastructure, it will make extensive use of APIs to communicate the central data 

warehouse with external providers, i.e. communities and software registries. Moreover, scientific 

benchmarking and technical monitoring results are accessible through an unified web-site. All data is also 

available to other web services via dedicated APIs. 

Benchmark components and benchmarking process 

In general, a benchmark can be defined by three main different components: 

Data resources, including reference data sets for training and testing software resources and the 'gold 

standard' data set, if available. At the same time, the system should register participants contributions, 

preserving them in a centralized data warehouse available to the community (Figure 6). Under some 

circumstances, the reference benchmark can be dynamic and updated through modalities agreed by the 

community (e.g. delayed structural publication for the CASP contest) so as to allow the evaluation of 

untrained tools. 

 

https://openebench.bsc.es/
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Figure 6. OpenEbench general overview representing input/output data sources (olive boxes), input data sources (lime boxes), 

output data resources (blue boxes), and technical components (gray boxes). 

Guidelines and standards for input and output formats allowing interoperability between computational 

resources. The benchmarking infrastructure will use standards for the design of the different services to be 

provided, as well as for the information transfer between them, both for data and metadata. Data standards 

would depend on the specific area under study, whilst metadata standards that define the semantics of the 

data are, generally, agnostics regarding the scientific domain e.g. ISO11179, which represents an example 

of an international standard for metadata-driven exchange of data in heterogeneous environments; ii) ISA-

Tab, for complex metadata from 'omics-based' experiments [Sansone et al. 2012]; and iii) PDBx (PDB 

Exchange Dictionary), to define data content for deposition, annotation and archiving of PDB entries 

[Westbrook et al. 2005, Westbrook and Fitzgerald 2009]. 

Scoring methodology and/or assessment tools to compare the performance and rank the benchmark 

participants including scientific and technical metrics when possible. 

Based on the aforementioned components, a standard continuous automated benchmarking service would 

consist of the following steps (Figure 7).  

http://metadata-standards.org/11179/
http://isa-specs.readthedocs.io/en/latest/isatab.html
http://isa-specs.readthedocs.io/en/latest/isatab.html
http://mmcif.wwpdb.org/pdbx-mmcif-home-page.html
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Figure 7. Stages of a benchmarking experiment within a scientific open challenge 

Interoperability and data formats. 

Interoperability of heterogeneous information systems is a key issue in bioinformatics [Thiam Yui et al. 

2011, Sansone et al. 2012, Tenenbaum et al. 2014, Lopes and Oliveira 2015]. Within the context of 

collaborative challenges, interoperability is crucial to ensure that input and output data sets can be found, 

traced, analyzed, and shared inside and outside the community. The FAIR data principles [Wilkinson et 

al. 2016] can be accomplished by defining the proper data structures to model each piece of data using 

input and output standard formats. Ideally, each community should agree on data formats and common 

interfaces prior to the start of each benchmark initiative. Otherwise, data-related interoperability issues 

may arise when connecting different resources. One way to solve this situation is by using ad-hoc 

wrappers. In such scenario, it is important the role of communities in reaching consensus about how to 

interoperate in order to avoid decision-making based on factors that are not relevant to the research that is 

being conducted e.g. cost, availability, ease of use, etc. Lack of consensus may lead to numerous technical 

challenges for continuous automated benchmark efforts, for instance, how to integrate different data types 

e.g. functional, structural, sequences; and data formats; or how to facilitate rapid exchanges and access of 

heterogeneous data among disparate and distributed computational resources. 
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Anonymizing data, secure access and participants visibility.  

A framework for hosting, processing, analyzing and sharing benchmark data requires a detailed 

bookkeeping system for tracking the server responses regarding i) who has accessed to what input data, 

and ii) who has submitted data to participate. Ideally, such framework also involves the use of an alerting 

system for identifying abnormal situations affecting specific participants and/or specific metrics in a given 

benchmark. Regarding data privacy and protection, when sensitive data is part of the challenge, either the 

submission of sensitive data must be anonymized, or both submission and reception should employ strong 

encryption algorithms, such as PGP (Pretty Good Privacy) [Zimmermann 1995] or AES (Advanced 

Encryption Standard) [Daemen and Rijmen 2001], and the appropriate data access policy should be 

enforced. Ideally, this decision should be agreed by the community members before starting the 

benchmark on how data should be processed. In addition, the benchmarking platform must allow users to 

participate at various visibility levels. The strictest would be “private”, where participants only can see 

their data in respect with other publicly available methods and no one else sees their data. The 

“community mode” allows all participants registered as members of the community to see each others 

data along with the public ones but data is not visible for users that do not participate in this community. 

Ideally, this data can be, at least partially, made publicly available once the benchmark campaign ends. 

The “submission mode” would allow participants to share their results with specific people e.g. reviewers 

when submitting a manuscript. An incentive to make data publicly available is to require participants to 

release at least one full submission in order to be part of any report and/or scientific publications derived 

from a given benchmark campaign. The default mode for any participating group must be “public” where 

results become publicly available once the infrastructure has automatically processed submitted data for a 

given benchmark edition. Publicly available data would be used to establish the reference results for any 

benchmark efforts and will be the only ones which are part of any report and/or scientific publication 

derived from community-driven benchmark efforts.  

Discussion and Conclusions 

Current practices of self-evaluation of bioinformatics resources in terms of scientific and technical 

performance are usually limited to expert publications reviewing specific areas (not always exempt of 

biased) and periodic community challenges that evaluate tools on specific tasks, usually oriented to 

methods developers rather than general users. However, it is of high importance for developers and 

researchers being able to evaluate in the most continuous, open, automated and accessible way 

bioinformatics tools. Tools evaluation cannot be separated from the communities that develop the tools, 

since they are the ones with the expertise for identifying relevant scientific questions and technical aspects 

worth evaluating. Communities also drive the selection of appropriate strategies to measure answers to 
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those questions as well as to identify the most suitable data sets to be used in the search of those answers. 

These efforts are of great value not only for tools developers to identify areas of improvement but 

importantly also for end-users that have to make informed choices of the best fitting resource for their 

scientific needs. It is also possible that funders will find this information useful for their evaluation of 

resources when deciding how to grant their resources. 

 The constant growth of available data and the vast amount of available bioinformatics software only 

reinforces the importance of such benchmarking efforts. In this scenario, large-scale efforts for 

developing, maintaining and extending centralized infrastructures which support those community efforts 

are essential. Leading initiatives like ELIXIR, EGI, EUDAT and NIH BD2k embrace those required 

platforms in order to secure standardization, guarantee interoperability, preserve reference data sets and 

strive to minimize the impact of budget and manpower constraints. 

The quality and performance of existing benchmarking systems in bioinformatics have gradually 

improved over the years mainly due to the emergence of new scientific challenges and competitions after 

the success of initiatives like CASP [Moult et al. 1995] and BioCreAtIvE [Hirschman et al. 2005] as well 

as the lessons learnt from EVA [Rost and Eyrich 2001, Koh et al. 2003], LiveBench [Bujnicki et al. 2001, 

Rychlewski and Fischer 2005], and CAFA-SP [Fischer et al. 1999]. All together have fostered the 

creation of novel communities and initiatives, and their future potentials appear to be numerous and far-

reaching [Costello and Stolovitzky 2013, Budge et al. 2015, Saez-Rodriguez et al. 2016]. 

As we pointed out before, essential in this endeavor is to determine what types of data should be collected 

for conducting assessments, what are the metrics to be measured, and which parameters would be used in 

a way that resources could be built around them. Making all these data and metadata interoperable is 

crucial to the development of bioinformatics tools with less bias and improved accuracy. Proper 

management of the metadata associated to any assessment i.e. evaluation environment, tools evaluated, 

parameters used; is important since it keep exact track on how tools have been evaluated. Under different 

conditions, it is possible that tools produce different results leading to different rankings. It is the task of 

the communities, assisted by systems like OpenEBench, to evaluate a relevant number of conditions 

opening up the possibility of evaluating further scenarios over time. 

We strongly believe that most of bioinformatics disciplines would benefit from embracing community-

driven benchmark efforts supported by an online centralized platform in parallel with the “classic” open 

challenges which are held face-to-face on scientific events such as competitions, hackathons and 

jamborees. In this sense, OpenEBench has been conceived to give support to that endeavor, providing 

means to collect, integrate and share data from different benchmarking efforts and communities. As our 

intention is to provide a dynamic resource, continuously available and updated, it will also provide the 

https://www.elixir-europe.org/
https://www.egi.eu/
https://www.eudat.eu/
https://commonfund.nih.gov/bd2k
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mechanisms to refine and expand certain data sets and metrics as new data become available in the future. 

With this in mind, we foresee OpenEBench functional assessment becoming a standard practice in the 

development and use of bioinformatics resources. 
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References 
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor 

N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga 

N, Taylor J, Nekrutenko A, Goecks J. The Galaxy platform for accessible, reproducible and collaborative 

biomedical analyses: 2016 update. Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. 

Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T, Forslund  K, Huerta-

Cepas J, Linard B, Pereira C, Pryszcz LP, Schreiber F, da Silva AS, Szklarczyk D, Train CM, Bork P, 

Lecompte O, von Mering C, Xenarios I, Sjölander K, Jensen LJ, Martin MJ, Muffato M; Quest for 

Orthologs consortium., Gabaldón T, Lewis SE, Thomas PD, Sonnhammer E, Dessimoz C. Standardized 

benchmarking in the quest for orthologs. Nat Methods. 2016 May;13(5):425-30. 

Aniba MR, Poch O, Thompson JD. Issues in bioinformatics benchmarking: the case study of multiple 

sequence alignment. Nucleic Acids Res. 2010 Nov;38(21):7353-63. 

Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems 

Review, Special Issue on Repeatability and Sharing of Experimental Artifacts. 2015;49(1):71–79. 

Boulesteix AL. Ten simple rules for reducing over optimistic reporting in methodological computational 

research. PLoS Comput Biol. 2015 Apr 23;11(4):e1004191. 

Budge EJ, Tsoti SM, Howgate DJ, Sivakumar S, Jalali M. Collective intelligence for translational 

medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research 

community. Ann Med. 2015;47(7):570-5. 

Bujnicki JM, Elofsson A, Fischer D, Rychlewski L. LiveBench-1: continuous benchmarking of protein 

structure prediction servers. Protein Sci. 2001 Feb;10(2):352-61. 

Chen F, Mackey AJ, Vermunt JK, Roos DS. Assessing performance of orthology detection strategies 

applied to eukaryotic genomes. PloS one. 2007;2(4):e383.Chen F, Mackey AJ, Vermunt JK, Roos DS. 

Assessing performance of orthology detection strategies applied to eukaryotic genomes. PloS one. 

2007;2(4):e383. 

https://docs.google.com/document/d/1n2Sf9l5qj5VEXAnDu0cITSvCoq1TEws9fD-ZEilihe8


  

 
23 

Costello JC, Stolovitzky G. Seeking the wisdom of crowds through challenge-based competitions in 

biomedical research. Clin Pharmacol Ther. 2013 May;93(5):396-8. 

Crosswell LC, Thornton JM. ELIXIR: a distributed infrastructure for European 

biological data. Trends Biotechnol. 2012 May;30(5):241-2. 

Daemen J, Rijmen V. AES Proposal: Rijndael. National Institute of Standards and Technology. 2001. 

Available here.  

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables 

reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. 

Edgar, R. C. Quality measures for protein alignment benchmarks. Nucleic Acids Res. 2010 

Apr;38(7):2145-53 

Elsik CG, Mackey AJ, Reese JT, Milshina NV, Roos DS, Weinstock GM. Creating a  

honey bee consensus gene set. Genome Biol. 2007;8(1):R13. 

Eyrich VA, Przybylski D, Koh IY, Grana O, Pazos F, Valencia A, Rost B. CAFASP3 

in the spotlight of EVA. Proteins. 2003;53 Suppl 6:548-60. 

Fischer D, Barret C, Bryson K, Elofsson A, Godzik A, Jones D, Karplus KJ, Kelley LA, MacCallum RM, 

Pawowski K, Rost B, Rychlewski L, Sternberg M. CAFASP-1: critical assessment of fully automated 

structure prediction methods. Proteins. 1999;Suppl 3:209-17. 

Friedberg I, Wass MN, Mooney SD, Radivojac P. Ten simple rules for a community computational 

challenge. PLoS Comput Biol. 2015 Apr 23;11(4):e1004150. 

Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T. The  Protein Model Portal - a 

comprehensive resource for protein structure and model information. Database (Oxford). 2013 Apr 

26;2013:bat031. 

Hatem A, Bozdağ D, Toland AE, Çatalyürek ÜV. Benchmarking short sequence 

mapping tools. BMC Bioinformatics. 2013 Jun 7;14:184. 

Hirschman L, Yeh A, Blaschke C, Valencia A. Overview of BioCreAtIvE: critical assessment of 

information extraction for biology. BMC  Bioinformatics. 2005;6 Suppl 1:S1.  

Jackson M, Crouch S, Baxter R. Software Evaluation: Criteria-based Assessment. Technical Report. 

Software Sustainability Institute. 2011. Available here. 

Janin  J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, Vakser I, Wodak SJ; Critical 

Assessment of PRedicted Interactions. CAPRI: a  Critical Assessment of PRedicted Interactions. 

Proteins. 2003 Jul 1;52(1):2-9. 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf


  

 
24 

Keith JM, Davey CM, Boyd SE. A Bayesian method for comparing and combining 

binary classifiers in the absence of a gold standard. BMC Bioinformatics. 2012 

Jul 27;13:179. doi: 10.1186/1471-2105-13-179. 

Kemena C, Notredame C. Upcoming challenges for multiple sequence alignment methods in the high-

throughput era. Bioinformatics. 2009  Oct 1;25(19):2455-65 

Kim J, Sinha S. Towards realistic benchmarks for multiple alignments of non-coding sequences. BMC 

Bioinformatics. 2010 Jan 26;11:54. 

Koh IY, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, Eswar N, Graña O, Pazos F, 

Valencia A, Sali A, Rost B. EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 

2003 Jul 1;31(13):3311-5. 

Laurie S, Fernandez‐Callejo M, Marco‐Sola S, et al. From Wet‐Lab to Variations: Concordance and 

Speed of Bioinformatics Pipelines for Whole Genome and Whole Exome Sequencing. Human Mutation. 

2016; 37(12):1263-1271. 

Lecarpentier D, Wittenburg P, Elbers W, Michelini A, Kanso R, Coveney P, Baxter R. EUDAT: A New 

Cross-Disciplinary Data Infrastructure for Science. Int. J. Digit. Curation. 2013  8, 279–287. 

Lopes P, Oliveira JL. An automated real-time integration and interoperability framework for 

bioinformatics. BMC Bioinformatics. 2015 Oct 13;16:328. 

Marx V. Biology: The big challenges of big data. Nature. 2013 Jun 13;498(7453):255-60. 

Moult  J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess protein structure 

prediction methods. Proteins. 1995 Nov;23(3):ii-v. 

Norel R, Rice JJ, Stolovitzky G. The self-assessment trap: can we all be better than average? Mol Syst 

Biol. 2011 Oct 11;7:537. 

Prill RJ, Saez-Rodriguez J, Alexopoulos LG, Sorger PK, Stolovitzky G. Crowdsourcing network 

inference: the DREAM predictive signaling network challenge. Sci Signal. 2011 Aug 30;4(189):mr7. 

Puton T, Kozlowski LP, Rother KM, Bujnicki JM. CompaRNA: a server for 

continuous benchmarking of automated methods for RNA secondary structure 

prediction. Nucleic Acids Res. 2013 Apr;41(7):4307-23. 

Radivojac P, Clark WT, Oron TR et al. A large-scale evaluation of computational protein function 

prediction. Nat Methods. 2013  Mar;10(3):221-7. 

Rost B, Eyrich VA. EVA: large-scale analysis of secondary structure prediction. Proteins. 2001;Suppl 

5:192-9. 



  

 
25 

Rychlewski L, Fischer D. LiveBench-8: the large-scale, continuous assessment of  automated 

protein structure prediction. Protein Sci. 2005 Jan;14(1):240-5. 

Saez-Rodriguez J, Costello JC, Friend SH, Kellen MR, Mangravite L, Meyer P, Norman T, Stolovitzky 

G. Crowdsourcing biomedical research: leveraging communities as innovation engines. Nat Rev Genet. 

2016 Jul 15;17(8):470-86. 

Sansone SA, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang H, Neumann S, Tong W, 

Amaral-Zettler L, Begley K, Booth T, Bougueleret L, Burns G, Chapman B, Clark T, Coleman LA, 

Copeland J, Das S, de Daruvar A, de Matos P, Dix I, Edmunds S, Evelo CT, Forster MJ, Gaudet P, 

Gilbert J, Goble C, Griffin JL, Jacob D, Kleinjans J, Harland L, Haug K, Hermjakob H, Ho Sui SJ, 

Laederach A, Liang S, Marshall S, McGrath A, Merrill E, Reilly D, Roux M, Shamu CE, Shang CA, 

Steinbeck C, Trefethen A, Williams-Jones B, Wolstencroft K, Xenarios I, Hide W. Toward interoperable 

bioscience data. Nat Genet. 2012 Jan 27;44(2):121-6. 

Tenenbaum JD, Sansone SA, Haendel M. A sea of standards for omics data: sink 

or swim? J Am Med Inform Assoc. 2014 Mar-Apr;21(2):200-3. 

The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017 Jan 

4;45(D1):D158-D169 

Thiam Yui C, Liang L, Jik Soon W, Husain W. A Survey on Data Integration in Bioinformatics. In: Abd 

Manaf A, Sahibuddin S, Ahmad R, Mohd Daud S, El-Qawasmeh E, editors. Informatics Engineering and 

Information Science. 254. Heidelberg: Springer Berlin; 2011. pp. 16–28. 

Thompson JD, Plewniak F, Poch O. BAliBASE: a benchmark alignment database for the evaluation of 

multiple alignment programs. Bioinformatics. 1999 Jan;15(1):87-8. 

Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, 

De Moor B, Marchal K. SynTReN: a generator of synthetic gene expression data for  

design and analysis of structure learning algorithms. BMC Bioinformatics. 2006 

Jan 26;7:43. 

Westbrook JD, Fitzgerald PMD. Chapter 10: The PDB format, mmCIF formats, and other data formats. 

In Structural Bioinformatics, Second Edition (P. E. Bourne & J. Gu, eds.). John Wiley & Sons, Inc., 

Hoboken, New Jersey. 2009. p. 271-291. 

Westbrook J, Henrick K, Ulrich EL, Berman HM. Chapter 3.6.2: The Protein Data Bank exchange 

dictionary. In International Tables for Crystallography G. Definition and exchange of crystallographic 

data, S.R. Hall and B. McMahon, Editors, Springer: Dordrecht, The Netherlands. 2005. p. 195-198. 



  

 
26 

Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data 

management and stewardship. Sci Data. 2016 Mar 15;3:160018. 

Zimmermann P. PGP Source Code and Internals. MIT Press. 1995. ISBN 0-262-24039-4. 

 


	Abstract
	Introduction
	General aspects for establishing a community-driven benchmark effort.
	1. Types of benchmarking
	2. Definition of the benchmark
	3. Evaluation: reference data sets, metrics and ranking
	4. Continuous release of data sets and assessment metrics
	5. Regular Community Input

	Specification and technical framework for online benchmarking.
	OpenEBench as an open benchmarking infrastructure
	Benchmark components and benchmarking process
	Interoperability and data formats.
	Anonymizing data, secure access and participants visibility.

	Appendixes - tables:
	References

