
1 Introduction

In order to tackle the ever-increasing challenges imposed by new exploration
areas around the world, HPC systems are mandatory. The need for more HPC
resources increases with the complexity of the area under exploration. However,
this HPC resources could not be provided without considering the involved
energy consumption, as it may prevent the construction of bigger (e.g. Exascale)
HPC systems.

To reduce overall energy consumption in the design of HPC facilities, leading
technologies vendors introduced many-core devices and heterogeneous comput-
ing to the supercomputers. In the last decade, some of the fastest machines in
the TOP5001 increasingly include a mix of CPUs, and coprocessors or acceler-
ators. Thus, forcing exploration codes to be ported to such new architectures.
Considering that the Oil & Gas industry has more than 30 years of legacy code,
the dedicated effort could be huge.

Also, porting codes became a more complex task because of the different
types of parallelism and memory hierarchies available. As portability of parallel
applications and the programmer productivity are recognized as major concerns
in HPC field, architecture-specific programming, plus its corresponding rewrite
phase, are not an option for performance porting [5].

To this extent, several programming models came into play to exploit the
potential of the coprocessors and accelerators available. For example, high-level
directive-based programming models (e.g. as OpenMP, OpenACC, and OmpSs)
rely on specifying to the compiler the parallelism directives to release users from
manually decomposing and processing the parallel regions.

In this work, we evaluate the costs and benefits (i.e. speedup) of porting a
sequential Elastic Full-Waveform Inversion (FWI) propagation kernel to several
parallel versions. Porting is achieved through high-level, directive-based pro-
gramming models, such as OpenMP, OmpSs and OpenACC, to take advantage
of modern architectures, such as NVidias’s GPUs and Intel’s Xeon Phi coproces-
sors. An important remark is that in this work no optimization will be applied
to the ported kernel. With this, we will measure the benefit of porting and
parallelizing at the minimum possible cost.

2 Wave propagation in anisotropic elastic media

To provide a complete FWI system, a kernel able to simulate the wave propa-
gation phenomenon is required. In this work, we use an elastic wave propagator
following Newton’s second law and the linearly elastic stress-strain relationships
[4]. Surface forces on an elastic body comprise six different stress components,
three compressional stresses σxx, σyy and σzz, and three shear stresses σyz, σxz
and σxy, where subscripts stand for the face and direction of force application.
Stresses induce material strains that are quantified regarding displacement gra-
dients. Time differentiation of the stress-strain relations (Eqs.1) coupled to the

1TOP500 Supercomputer Site, www.top500.org

1

Evaluating directive-based programming models on Wave 
Propagation Kernels

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87660414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Newton’s equation of motion (2) allows describing wave propagation in an elastic
medium. In this system, u, v, and w represent the particle velocity components
in the x−, y− and z− directions, respectively, and the stiffness tensor C defines
the anisotropic response of the material.

∂tσxx

∂tσyy

∂tσzz

∂tσyz

∂tσxz

∂tσxy


= C



∂xu

∂yv

∂zw

∂zv + ∂yw

∂zu+ ∂xw

∂xv + ∂yu


(1)

ρ∂tu = ∂xσxx + ∂yσxy + ∂zσxz

ρ∂tv = ∂xσxy + ∂yσyy + ∂zσyz

ρ∂tw = ∂xσxz + ∂yσyz + ∂zσzz

(2)

The tensor C is always a symmetric matrix with 21 arbitrary components in
the most general anisotropic case. However, certain materials can be described
with fewer parameters, and the most frequent symmetry types are monoclinic,
orthorhombic and transversely isotropic, with 13, 9 and 5 independent param-
eters, respectively. On the other end, only the two Lamé constants permit
defining the non-zero C entries that model isotropy. In this work, we will fo-
cus on the complete C matrix to allow arbitrary anisotropy and nearly realistic
topography [3].

In order to implement Eqs. 1 and 2 for supporting fully anisotropic scenarios,
we have used a Finite Differences (FD) method over a Fully Staggered Grid [2].
Figure 1.c shows the structure of an FSG cell, compared to more traditional
Acoustic (Figure 1.a) and Elastic VTI (Figure 1.b) mesh cells.

Using an FSG grid will lead us to a loop in time where velocities are updated
based on stresses values in odd iterations and the other way around for even
iterations. Velocities update involves the computation of 12 different 3D stencils
plus 12 3D material interpolations for each point of the velocity grid. We store
materials in a single vertex of the FSG cell for memory saving issues, trading
storage per computation. On the other hand, stresses update consists of 28
3D stencils computation plus 84 3D interpolations for the material properties.
Notice, that both velocities and stresses calculations are typically dominated by
accesses to main memory to retrieve all the data needed to update the corre-
sponding values.

3 Target Programming Models and Architec-
tures

Our sequential version of the kernel of FWI was parallelized using the following
directive-based programming models:

2



Figure 1: Different grid cells for a conventional grid (a), traditionally used for
acoustic propagation, Standard Staggered Grid (SSG) for elastic VTI media (b)
and the FSG (c) used in this work for arbitrary anisotropy and topography.
Notice, the lateral bar indicating the relative amount of memory needed for
each grid cell.

• OpenMP [7] is the leading open standard with a highly usable interface
for parallel performance on heterogeneous devices. It supports a directive
based API for C/C++ and Fortran on multiple shared memory systems.
OpenMP is jointly defined by a group of vendors, laboratories, users, and
academia.

• OmpSs, is an in-house programming model that supports irregular and
asynchronous parallelism and heterogeneous architectures, including data
dependences and data-flow concepts to automatically move data as nec-
essary [1]. OmpSs is available for GPUs, FPGAs, and co-processors, such
as Xeon Phi.

• OpenACC [6] directives provide portable high-level programming that is
potentially less invasive to application code, but does not provide access
to all features of the underlying hardware. OpenACC supports offloading
to NVIDIA GPUs and, to x86 CPUs when using the PGI compiler suite.

The ported kernel was evaluated in different hardware architectures (as seen
in Table 1), that are commodities at the time of writing. The general purpose
architecture is based on a dual processor, Intel Xeon E5-2640 v3 with 8-core
processors (Haswell) at 2.60GHz, and 256 GB of Main memory. The second
architecture is a single socket Intel Knight Landing (KNL) Xeon Phi at 1.40
GHz, with 68 cores per socket (up to 4 threads per core), 6x16GB DDR4 and
8x2GB of MCDRAM. For GPUs we have two alternatives, the first is an Nvidia’s
K40 card with 12GB of GDDR55 memory and the second one is an Nvidia’s
Titan X with 12GB of G5X memory, based on the newest Pascal architecture
from Nvidia.

3



4 Results

This work is concerned about key aspects of using current high-level program-
ming models when aiming for portability. Hence, we have considered not only
pure performance metrics (see Table 1), but also the effort and knowledge re-
quired to port the application (see Table 2).

It is noticeable that porting our code to selected programming models did
not required profound modifications. A well-structured code and the amenable
nature of finite differences scheme for parallel programming contributed to this
fact. However, this may not happen for other applications.

Programming Model Compiler (version) General Purpose KNL K40 Titan X

Sequential Intel 16.0.3 1.00

OpenMP Intel 17.1 3.13x 10.84x

OmpSs Intel 17.1 3.20x 9.51x

OpenACC PGI 17.1 15.91x 44.73x

OpenACC+CUDA PGI 17.1 22.26x 55.01x

Table 1: Speedup for each programming model

OpenMP OmpSs OpenACC OpenACC extended

1 GPU 2 GPU 1 GPU 2 GPU

Lines of code 32 40 180 188 + CUDA kernels

Impact on code structure Low Low High High

Algorithm knowledge Low Medium High High

Table 2: Development of ported version for FWI kernel

Regarding the amount of work required for porting the kernel for the eval-
uated architectures, OpenMP, OmpSs and OpenAcc versions took in the order
of hours in contrary, the implementation based on OpenAcc+CUDA took a few
days.

At a high level, OpenMP and OmpSs programming models are very similar
from the code’s point of view. However, writing our code based on OmpSs tasks
exposed new levels of parallelism while done transparently to the programmer
by the runtime. For instance, it was natural for OmpSs to overlap computation
and I/O access, or calls to free and malloc functions. However, it came at the
price of an in-depth knowledge of the algorithm at hand and careful attention
to the granularity of tasks to target best performance.

OpenACC address one of the most complex issues of portability: heterogene-
ity. Also, and unlike the other two languages, it can generate machine-specific
code for CUDA and general purpose devices, from sequential CPU code. It is im-
portant to notice that, although OmpSs can manage virtually any heterogeneous

4



setup it does not generate CUDA code automatically. Such a great feature,
however, comes at the price of an extra effort on the programmer’s side. No-
tions of CUDA programming model are critical for achieving good performance.
PGI compiler needs to be informed about details of the micro-architecture, and
architecture-dependent flags can be provided to control advanced parameters
such as the number of registers used by the kernels. For instance, OpenACC in-
volves double-buffering for overlapping memory transfers. It is interesting that
OpenACC lets us write our low-level kernels using CUDA. It enables continuous
optimization of applications that already run on GPUs. In this way, the pro-
grammer can focus on critical kernels while OpenACC takes care of managing
data dependencies among multiple devices.

In summary, OpenMP is perhaps the most standardized and portable way
of generating shared-memory CPU code. Starting at 4.0 version, the language
is supporting some features of task-based programming paradigm and also in-
cluding support for accelerators. However, and because it is a standard, these
changes arrive slowly. Requiring the same amount of effort as OpenMP, OmpSs
has the potential to increase the resulting performance. A careful comparison
between OpenACC and OmpSs should be undertaken in the future, but always
considering OpenACC capability for generating CUDA code.

5 Conclusions

In this work, we choose an elastic wave propagation kernel for porting to dif-
ferent HPC hardware architectures that are commodities today. This exercise
was carried out for several pragma-based (i.e. code annotation) programming
models, such as OpenMP, OmpSs, and OpenAcc. The results show that it is
possible to obtain a parallel code for current HPC architectures investing a few
hours or days. Moreover, the obtained speedup is up to an order of magnitude
with respect to a sequential code. This conclusion is essential for evaluating
the porting and parallelization of legacy code to current architectures. The
shown results, however, provide parallelism inside a single computational node.
A wider study should be carried out for evaluating the costs of porting and
parallelizing the code across computational nodes.

6 Acknowledgments

Authors thank Repsol for the permission to publish the present research, car-
ried out at the Repsol-BSC Research Center. This work has received funding
from the European Union’s Horizon 2020 Programme (2014-2020) and from the
Brazilian Ministry of Science, Technology and Innovation through Rede Na-
cional de Pesquisa (RNP) under the HPC4E Project (www.hpc4e.eu), grant
agreement n.◦ 689772.

5



References

[1] Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejan-
dro Duran, Roger Ferrer, Marc Gonzàlez, Francisco Igual, Daniel Jiménez-
González, Jesús Labarta, Luis Martinell, Xavier Martorell, Rafael Mayo,
Josep M. Pérez, Judit Planas, and Enrique S. Quintana-Ort́ı. Extending
openmp to survive the heterogeneous multi-core era. International Journal
of Parallel Programming, 38(5):440–459, 2010.

[2] Sofia Davydycheva, Vladimir Druskin, and Tarek Habashy. An efficient
finite-difference scheme for electromagnetic logging in 3D anisotropic inho-
mogeneous media. Geophysics, 68(5):1525–1536, 2003.

[3] Josep de la Puente, Miguel Ferrer, Mauricio Hanzich, José E Castillo, and
José M Cela. Mimetic seismic wave modeling including topography on de-
formed staggered grids. Geophysics, 79(3):T125–T141, 2014.

[4] Aki Keiiti and Paul G. Richards. Quantitative Seismology. University Sci-
ence Books, 2003.

[5] Verónica G. Vergara Larrea, Wayne Joubert, M. Graham Lopez, and Oscar
Hernandez. Early Experiences Writing Performance Portable OpenMP 4
Codes . In Cray User Group Proceedings, 2016.

[6] OpenACC. OpenACC Standard, 2016.

[7] OpenMP. OpenMP, version 4.5, 2016.

6


