
Benefits of SMT and of Parallel Transpose Algorithm
for the Large-Scale GYSELA Application

Guillaume Latu
CEA/IRFM
FR-13108

St-Paul-les-Durance
guillaume.latu@cea.fr

Julien Bigot
Maison de la Simulation

CEA, CNRS, Univ. Paris-Sud,
UVSQ, Université Paris-Saclay

FR-91191 Gif-sur-Yvette
julien.bigot@cea.fr

Nicolas Bouzat
INRIA (hosted by CEA/IRFM)

FR-13108
St-Paul-lez-Durance

nicolas.bouzat@inria.fr

Judit Gimenez
BSC-CNS / UPC

ES-08034 Barcelona
judit@bsc.es

Virginie Grandgirard
CEA/IRFM
FR-13108

St-Paul-lez-Durance
virginie.grandgirard@cea.fr

ABSTRACT
This article describes how we manage to increase perfor-
mance and to extend features of a large parallel applica-
tion through the use of simultaneous multithreading (SMT)
and by designing a robust parallel transpose algorithm.
The semi-Lagrangian code Gysela typically performs large
physics simulations using a few thousands of cores, between
1k cores up to 16k on x86-based clusters. However, simu-
lations with finer resolutions and with kinetic electrons in-
crease those needs by a huge factor, providing a good exam-
ple of applications requiring Exascale machines. To improve
Gysela compute times, we take advantage of efficient SMT
implementations available on recent INTEL architectures.
We also analyze the cost of a transposition communication
scheme that involves a large number of cores in our case.
Adaptation of the code for balance load whenever using both
SMT and good deployment strategy led to a significant re-
duction that can be up to 38% of the execution times.

1. INTRODUCTION
A key factor that determines the performance of magnetic

plasma containment devices as potential fusion reactors is
the transport of heat, particles, and momentum. To study
turbulent transport and to model Tokamak fusion plasmas,
several parallel codes have been designed over the years.
Computational resources available nowadays have allowed
the development of several petascale codes based on the well-
established gyrokinetic framework. In this article, we focus
on the gysela gyrokinetic code parallelized using a hybrid
MPI/OpenMP paradigm[1, 14, 15, 18].

The main data in gysela is an ion distribution function

in a 5D phase space. (r, θ, ϕ) are the space variables with
r the radial direction, θ and ϕ respectively the poloidal and
toroidal directions and (v‖, µ) the velocity variables. v‖ is
the velocity parallel to the magnetic field lines while the
magnetic momentum µ is proportional to the perpendicular
velocity squared. The parallelization of the code take ad-
vantage of the fact that it is an adiabatic invariant therefore
plays the role of a parameter. Uniform mesh partition is
used, the size of the phase space grid is Nr Nθ NϕNv‖ Nµ.

The computational domain is defined on (r, θ, ϕ, v‖, µ) ∈
[rmin, rmax] × [0, 2π] × [0, 2π] × [vmin, vmax] × [µmin, µmax].
Lower and upper bounds in r, v‖ and µ are fixed according
to the physical case. One of the main computational cost
is the advection operator (that performs a single time step
integration of the Vlasov equation). This operator is split
in order to avoid a costly 4D advection in (r, θ, ϕ, v‖). The
chosen Strang splitting consists in four 1D advections (along
ϕ and v‖ directions) and one 2D advection (both r and θ
directions are treated simultaneously), that are applied at
each time step [7, 8]. Producing physics results with this
tool requires large computational resources and approaches
to optimize the use of these resources are therefore required.

The first such contribution presented in this paper is a
new parallelization of the gysela Vlasov solver. It relies
on a transposition of the distribution function inside each µ
value between the 1D and 2D advections. Unlike the pre-
vious parallelization [4, 14], it supports large displacements
in the (r, θ) plane during one single time step. This en-
ables to consider new physics sub-models and is especially
important when the physics shows large poloidal velocities
so as to support large time steps to shorten global execu-
tion time. Our evaluation show that somewhat counter-
intuitively, even with a transposition, this algorithm shows
good performance at scale.

The second contribution is an analysis of the best way
to leverage new micro-processors architectures in codes
such as gysela. While the clock-rate of processors has
reached a maximum, vendors have to introduce new fea-
tures so as to keep increasing the floating point operations
per second (FLOPS) they can execute. These features in-
clude vector units, fused multiply-add, simultaneous multi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87660398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


threading (SMT) and an increased number of cores. This
increasing complexity makes reaching a significant ratio of
processors peak FLOPS more and more difficult. We iden-
tify specific problems that arise in gysela with the Haswell
processor and solutions we have adopted. Amongst those is
the use of SMT that now provides a noticeable gain whereas
it was not so clear with previous processors.

The remaining of this paper is organized as follows. We
first go through a short description of gysela. Then, we
describe the transpose-based advection algorithm and an-
alyze its performance. We study the impact of SMT and
propose approaches to improve its use. Finally, we conclude
the paper by summarizing the gains achieved.

2. GYSELA APPLICATION
The gysela code is a non-linear 5D global gyrokinetic

full-f code which performs flux-driven simulations of ion tem-
perature gradient driven turbulence (ITG) in the electro-
static limit with adiabatic electrons. It solves the standard
gyrokinetic equation for the full-f distribution function, i.e.
no assumption on scale separation between equilibrium and
perturbations is done. This 5D equation is self-consistently
coupled to a 3D quasineutrality equation. The code also in-
cludes other features not described here (ion-ion collisions,
several kind of heat sources). The code has the original-
ity to be based on a semi-Lagrangian scheme [20] and it is
parallelized using an hybrid OpenMP/MPI paradigm [5, 14].

The presence of a strong magnetic field in the Tokamak
induces a large anisotropy of the transport along and across
the magnetic field lines. As a result, the particle density has
small structures across the magnetic field lines and large
smooth structures along the magnetic field lines. The heat
diffusion coefficient is larger by several order of magnitude
in the parallel direction than in the perpendicular direction.
An anisotropy in the temperature distribution exists also,
the perpendicular temperature gradient being much larger
than the parallel temperature gradient. Using this strong
anisotropy in the numerics enables a considerable reduction
of mesh size and thus reduction of computing time. A com-
mon approach is to choose dimensions in such a way that
the parallel and transverse motion are separated. One solu-
tion is to label each magnetic surface using a flux coordinate
system. In our case, the coordinates θ and ϕ lie on the flux
surface and represents angles. The r coordinate is normal
to the flux surface and is a flux surface label.

Let ~z = (r, θ, ϕ, v‖, µ) be a variable describing the 5D
phase space. The time evolution of the ion guiding-center
distribution function f̄(~z) (main unknown) is governed by
the gyrokinetic Vlasov equation:

∂tf̄ +
1

B∗‖s
∇~z ·

(
d~z

dt
B∗‖sf̄

)
= 0 (1)

The guiding-center motion described by the previous
Vlasov/transport equation is coupled to a field solver (3D
quasi neutral solver which is a Poisson-like solver) that com-
putes the electric potential φ(r, θ, ϕ):

e

Te
(φ− 〈φ〉) =

1

n0

∫
J0(f̄ − f̄init) dv + ρ2i∇2

⊥
eφ

Ti
(2)

We will not describe this last equation (details can be
found in [7, 8, 15]). This Poisson-like equation gives the
electric potential φ at each time step t. One of the difficulty

in the gyrokinetic approach is that the Vlasov equation (1)
deals with guiding-centers while the quasi-neutrality equa-
tion (2) acts on particles. The link between particles and
guiding-centers is ensured via a gyroaverage operator. It
can be proved that it is equivalent to apply a Bessel func-
tion of first order J0. This gyroaverage operator will not be
addressed in this paper but numerical details can be found
in [21] and parallelization optimizations for gysela in [19].
The derivatives of J0 φ along the torus dimensions are com-
puted. Then, these quantities act as a feedback in the Vlasov
equation, they appear into the term d~z

dt
B∗‖sf̄ (not detailed

here, see [8]). The Vlasov solver represents the critical CPU
part, i.e. usually more than 90% of computation time.

3. TRANSPOSE-BASED ADVECTION
This section introduces the transpose algorithm and com-

pare it to the original gysela algorithm through numerical
experiments. The transpose algorithm is used by the 2D
advection operator and removes a CFL-like condition at the
expense of extra communications.

3.1 Algorithm Description

for time step n ≥ 0 do

Field solver, Derivative computation, Diagnostics

1D Advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])
Local 2D Adv. in (r, θ) (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])

V
la

so
v

so
lv

er


1D Advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])

Algorithm 1: using local splines for 2D advection

for time step n ≥ 0 do

Field solver, Derivative computation, Diagnostics

1D Advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])
Transpose of f̄
2D Advection in (r, θ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗])
Transpose of f̄
1D Advection in ϕ (∀(µ, r, θ) = [local],∀(ϕ, v‖) = [∗])

V
la

so
v

so
lv

er


1D Advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗])

Algorithm 2: transpose of distrib. function for 2D advection

The original version of gysela, [7, 14] used a MPI domain
decomposition along dimensions µ, r, θ. The µ dimension
is at the highest level of parallelism and each µ-value con-
stitutes a MPI communicator. Then, within each communi-
cator dedicated to one µ, a domain decomposition in r and
θ is used to distribute the distribution function among MPI
processes. OpenMP is used to exploit the parallelism avail-
able in the inner loops (along variables v‖ or ϕ typically).
We use the following notation throughout the Algorithms of
this paper: local indicates that in a given dimension each
MPI process owns a parallel sub-domain, conversely * states
that each MPI process possesses all points along a specified
direction. In Algorithm 1, one can see that a single domain
decomposition is valid for all advections, nevertheless the ad-
vection along (r, θ) has to be handled in a special way. Local



cubic splines have been designed years ago [5, 14] in order to
perform interpolation on 2D sub-domains during the 2D ad-
vection in (r, θ). Typically, only a ghost zone of 3 points is
needed at each border of a local sub-domain in r and θ with
this approach. These local splines generate few communi-
cations between processors while preserving accuracy of the
interpolation. However, it limits the displacement during
one time step in (r, θ) to one grid cell at the maximum.
This introduces a CFL-like condition that prevents use of
large time steps [5].

An alternative to local splines is presented here where
the MPI domain decomposition is switched between advec-
tions as shown in Algorithm 2. The 4D distribution function
(for a given µ value) is transposed just before and after the
2D advection along (r, θ). Each processor exchange data to
change its sub-domain from (r= local, θ= local, ϕ= ∗, v‖ =
∗, µ= local) to a new sub-domain (r=∗, θ=∗, ϕ= local, v‖=
local, µ= local). Even if it implies larger communication vol-
umes, this solution enables one to make use of standard 2D
cubic spline over the whole domain (r = ∗, θ = ∗). Hence,
the CFL-like condition is removed. Furthermore, other ad-
vection schemes that need to consider the whole domain
(r = ∗, θ = ∗) are now allowed. Communications of the
transpose step have good locality properties, the message
exchanges are done inside a µ-communicator that groups to-
gether adjacent processes. The numerical accuracy is close
for the previous and new solution.

Some values as the J0 φ-derivatives, are computed from φ.
They should be provided as an input to each advection step
with the appropriate parallel domain decomposition. There-
fore, switching from Algo. 1 to Algo. 2 requires to adapt
the communication scheme to send the appropriate J0 φ-
derivatives to each MPI process. In Algo 1, the domain
decomposition of these derivatives matches the main code
decomposition (r = local, θ = local, ϕ= ∗, v‖ = ∗, µ= local),
they are used equally into 1D and 2D advections. However,
in Algo. 2, the new transposed 2D advection algorithm needs
additional communications to get the J0 φ-derivatives on the
new domain decomposition (r = ∗, θ = ∗, ϕ = local, v‖ =
local, µ = local). The costs of these additional communi-
cations will be exhibited in the next subsection.

3.2 Experimental Evaluation
Timing measurements of this subsection have been real-

ized on the Curie machine at the French GENCI-TGCC-
CEA computing center. Each computing node is a dual
socket Intel Xeon E5-2680 (Sandy Bridge): 2×(8 cores, 2.7
GHz, 20 MiB shared L3-cache, DDR3 1600 Mhz memory)
with 64 GiB of RAM. Let us mention that the thread level
for MPI is set to MPI THREAD FUNNELED in gysela.
MPI THREAD MULTIPLE approach is avoided because of
portability issues on production machines (notably with
BullxMPI proposed on several supercomputers). Further-
more, it is not uncommon that codes relying on the level of
MPI THREAD MULTIPLE run slower than the case where
one of the other modes has been chosen [24] (management
of locks and thread-safety can be costly).

For a strong scaling experiment, we choose a domain size
of Nr ×Nθ ×Nϕ ×Nv‖ ×Nµ = 512× 512× 128× 128× 32,
representing 1 TiB of data for a single distribution function.
Fig. 1, 2, 3 and 4 show a strong scaling from 2k cores up
to 65k cores (16 threads per MPI process). On Fig. 1, one
can observe a good global scaling behavior for the elapsed

2048 4096 8192 16384 32768 65536
Nb. of cores

0.1

1

10

100

1e+03

1e+04

1e+05
Vlasov solver
Field solver
Derivatives computation
Diagnostics
Total for one run

Execution time, one run (Loc.splines - Curie)

Figure 1: Strong scaling - Local spline - Timing

2048 4096 8192 16384 32768 65536
Nb. of cores

0.1

1

10

100

1e+03

1e+04

1e+05
Vlasov solver
Field solver
Derivatives computation
Diagnostics
Total for one run

Execution time, one run (Transpose - Curie)

Figure 2: Strong scaling - Transpose - Timing

time of one entire run (thick black line). The Vlasov solver
and diagnostics computations are processing 5D data and
represent the biggest part of computation time; they are ap-
proximately divided by a factor two whenever the number
of cores is doubling. On the other hand, the field solver and
the part that gets derivatives of the electric potential are
dealing with 3D data. These computation kernels are less
computation intensive and do not provide as much paral-
lelism as the previous ones. Their respective execution times
are relatively low. This is due to dedicated algorithms [15]
that: (i) reduce the amount of data transferred in large MPI
collective calls within the field solver, (ii) favor communica-
tion schemes that send-receive data inside local communica-
tors and (iii) split the field solver into two separate solving
steps (treating a one-dimensional equation and then several
two-dimensional equations) in order to decrease the overall
computation cost.

Let us compare these execution times obtained by the
local splines (Algo 1) shown in Fig. 1 with the transpose
version (Algo 2) shown in Fig. 2. First, Algo. 2 introduces
an overhead due to the transpose communications that rep-
resents from 1% up to 20% of the Vlasov solver in produc-
tion runs compared to the local spline reference time (see
Fig. 5 as well). As it can be observed, the overheads are
not directly and linearly related to core counts. Another
way to say this, transpose communication times are scaling



2048 4096 8192 16384 32768 65536
Nb. of processors

0

20

40

60

80

100

120

Vlasov solver
Field solver
Derivatives computation
Diagnostics
Total for one run
Ideal scaling

Relative efficiency, one run (Loc.splines - Curie)

Figure 3: Strong scaling - Local spline - Efficiency

2048 4096 8192 16384 32768 65536
Nb. of processors

0

20

40

60

80

100

120

Vlasov solver
Field solver
Derivatives computation
Diagnostics
Total for one run
Ideal scaling

Relative efficiency, one run (Transpose - Curie)

Figure 4: Strong scaling - Transpose - Efficiency

quite well on modern architectures (BlueGene/Q has also
been checked [1]). Second, the derivatives computation step
transmits a larger amount of data with Algo. 2, because the
derivatives are distributed to each MPI process according to
two different domain decompositions. This increase is signif-
icant, but it remains a low overhead relatively to the biggest
computational parts (Vlasov solver, diagnostics). The rela-
tive efficiencies of Fig. 3 and 4 for the two algorithms are
very similar. For the entire application this efficiency is com-
petitive and larger than 60% at 65536 cores in this strong
scaling benchmark. Practically, let us notice that physi-
cists run the code between 1k up to 8k cores commonly for
this type of domain size (16k cores is uncommon). Typi-
cally, we avoid the cases with 32k and 64k cores presented
in Fig. 3 and 4. Thus, we mainly target high parallel effi-
ciency for production runs in order to maximize the number
of results one can get within the amount of CPU hours that
we obtain every year on several supercomputers.

On Fig. 5, 6 and 7, a zoom on the time measurement of
the new method compared to the original algorithm is given.
Both computations and communications are accounted for
in the curves (rationale is that separation of computation
versus communications measurements is not easy for sub-
routines that finely mix both steps). Concerning the 2D
advection part, the difference of the new method compared
to the original one tends to decrease considering a high num-

2048 4096 8192 16384 32768 65536
Nb. of cores

1

10

100

1000
2D Advection (Algo 1)
2D Advection (Algo 2)

Figure 5: 2D Advection comparison - Timing

2048 4096 8192 16384 32768 65536
Nb. of cores

1

2

4

8

16
Derivative computation (Algo 1)
Derivative computation (Algo 2)

Figure 6: Derivatives comp. comparison - Timing

2048 4096 8192 16384 32768 65536
Nb. of cores

100

1000 Total (Algo 1)
Total (Algo 2)

Figure 7: Total run-time comparison - Timing

ber of cores. The derivatives computation does not scale well
because the amount of communication (J0 φ derivatives on
a 3D sub-domain) is increasing along with the number of
cores, even if this growth is sub-linear. To oversimplify, the
communication pattern is in-between a MPI scatter and a
MPI broadcast of a 3D sub-domain. Finally, we are pleased
with these timings for both algorithms as long as their costs
stay well below those of main costly steps.

The expense of this transpose method is an overhead per
time step (Fig. 7) that can be up to 12% of the run time (due
to the increase by 20% of the Vlasov solver). However, the
transpose approach permits to gain more than a factor 10
on the time step in removing the CFL-like condition. Defi-
nitely, it seriously shorten global execution time for typical
runs. Production runs of gysela use, now, exclusively the
transpose algorithm.

3.3 Discussion
The transpose method is a great step forward for the Gy-

sela application, we will discuss in the following paragraphs



whether it can bring a benefit to other codes also.
In scientific parallel computing, two communication pat-

terns are useful among others: Halo communication pattern
and Redistribution of multi-dimensional arrays. On the one
hand, many stencil-based applications in HPC use domain
decomposition to distribute the work among different pro-
cessing elements. Decomposed sub-domains logically over-
lap at the boundaries and can, depending on the numerical
schemes, be updated with neighbor values located on neigh-
bor processing elements. The overlapping regions are called
halo (or ghost) regions. They need to be updated with data
from neighbor regions during a halo communication step.
For example, Halo communication strategy together with
domain decomposition is classicaly used by explicit meth-
ods to solve PDEs.

On the other hand, the operation of remapping multi-
dimensional array (also called transpose method) on com-
puting elements is a common tool. The goal of such a
method is to reorganize the data distribution of a multi-
dimensional array (of dimension n) across all processes. At
start all the elements over m dimensions (m < n) of the
multi-dimensional array are stored in the local process and
the other n−m dimensions are distributed over the processes
typically using a domain decomposition. After the transpose
step and several communications between processes, the do-
main decomposition has been switched, each process owns a
very new subdomain of the multi-dimensional array. Often,
this transpose is required because the numerical scheme ex-
pects that at a specific stage, all the the components over
one or several dimensions are locally known in the process.
A well designed redistribution communication schedule aims
to minimize node contentions and maximize network band-
width utilization. Data redistribution using message passing
approach has been extensively studied in literature. Numer-
ous fields use this communication pattern including: Cli-
mate and weather forecasting, Geophysics, Computational
fluid dynamics, but also FFT libraries for 3D Fourier trans-
form notably. Also, it is common that an explicit method
requires impractical small time steps to keep the error low
and an implicit method takes much less computational time
due to larger time steps. From the parallel computation
point of view, an implicit method is often more difficult to
parallelize than an explicit method because the solution at a
point is dependent on those in the entire domain (no spatial
locality). Nevertheless, implicit method is able to reduce the
total number of time steps and therefore possibly shorten the
total time to solution.

The communication pattern of halo is sparse, whereas the
transpose operation involves a dense one. Then, the overall
cost of a single halo exchange of a few cells is expected to be
a lot cheaper than a transpose step on a multi-dimensional
array using many computing units of a supercomputer. Nev-
ertheless, affording the cost of a transpose gives the opportu-
nity to consider alternative efficient numerical schemes (e.g.
Fourier transform). Examples exist in the literature where
the transposition permitted to employ profitable schemes
with good scaling on parallel machines [2, 3, 12, 13, 16, 17,
22]. In Gysela case, we have seen that transposition strat-
egy managed to reduce time to solution. It allows us to
take larger time steps, and at the same time the overhead
in term of communication time remains limited. This con-
clusion should be also true for other applications that are
suffering from stringent CFL condition, thus restricting the

time step. Naturally, the ratio of communication time dedi-
cated to the transpose over the useful computations time is a
key factor. This ratio should be evaluated on a given target
parallel system and target application in order to evaluate
possible gains.

In order to reach Exascale, new hardware design ap-
proaches are expected to completely change many well ac-
cepted idioms for optimization and parallelization. We are
told network and memory accesses will not follow the growth
of computing power both in term of performance and energy
consumption [6] and that, as a result, algorithms will have
to be changed for example by recomputing some data so as
to reduce stress on these parts. The transpose-based algo-
rithm is one example of optimization that is favorable in
terms of computation at the expanse of network bandwidth
use. This statement should however be balanced by two
observations. First, we can cope with a tripling of this rel-
ative cost without incurring a severe penalty on the total
execution time. Second, the main problem expected regard-
ing Exascale networks is related to latency, it is not so clear
for bandwidth. In any case, we will have to keep compar-
ing the halo vs. transpose based approaches with each new
hardware architecture. If the situation was to become too
critical, we could consider introducing a pipelined version of
the transpose communication pattern in order to partially
overlap communication costs with the upcoming computa-
tions. Using the current programming model to express such
a pipeline might however make the code difficult to read and
switching to a task-based model where computations are
automatically scheduled when the data becomes available
would likely help in this case.

4. SIMULTANEOUS MULTI-THREADING

4.1 Haswell Micro-Architecture
Haswell is based on a 22 nm production process and

a new micro-architecture replacing that used in Sandy
Bridge. Haswell introduces a huge number of new inte-
ger and floating-point vector instructions (AVX2 extension).
Amongst those, the fused multiply-add (FMA) combines an
addition and a multiplication and is especially important
for the HPC market. Indeed it must be used to reach the
announced peak FLOPS performance of the processor.

Figure 9 presents the pipeline of the Haswell architecture
compared to that of Sandy Bridge in Figure 8. A notice-
able change is the addition of two new units to the pipeline:
a (vector) integer dispatch port (Port 6) and a memory
port (Port 7). In addition, the Haswell floating-point units
(Port 0 and Port 1) have been upgraded compared to Sandy,
they now have the capability to perform both additions and
multiplications. This enables to leverage both units even for
applications not perfectly balanced in term of multiply/add.
The addition of new execution units combined with the im-
proved capabilities of the existing ones means that it be-
comes more realistic for the scheduler to submit close to its
maximum of 4 µ-operations per cycle thus improving the
parallelism at this level.

As with any kind of parallelism, the difficulty with this
design is for the code to expose enough in-fly µ-operations
from which the scheduler can choose. This is why simulta-
neous multi-threading1 (SMT) is more and more important

1multiple hardware threads are handled by each core



Figure 8: Sandy Bridge CPU Core Pipeline Func-
tionality, extract from [10]

Figure 9: Haswell CPU Core Pipeline Functionality,
extract from [10]

to feed all units (also known as a reduction of horizontal
waste). In addition, using multiple hardware threads makes
it possible to hide latencies related to data access by switch-
ing to another thread that is not waiting for data (reduction
of vertical waste). All in all, this results in an outright dou-
bling of peak FLOPS in Haswell vs. Sandy which requires
for the memory interface to be improved similarly. The L1
bandwidth has been doubled compared to the previous gen-
eration, as well as the interface between the L1 and L2 cache.

In the following study, we use the Jureca machine from
Jülich/Germany. This supercomputer hosts 1872 compute
nodes. Each node contains two Intel Xeon E5-2680 v3
Haswell CPUs (2× 12 cores, 2.5 GHz).

4.2 Performance Metrics
From the user’s point of view, the impact of SMT is typi-

cally measured by calculating the relative speed-up attained,
e.g. the code is sped up by x% using SMT compared to
one thread per core configuration. In order to measure the
core-level effects of SMT, a useful quantity to analyze is the
utilization level of the core’s execution units. In particular,
it is of utmost importance to access a significant fraction of
micro-operation slots (executing units) that are available to
execute an instruction. If the number of instructions per-
formed per cycle (IPC) is high, then the execution units are
being kept busy doing useful work. We will measure IPC
in some important kernels of gysela. Let us notice that
on Haswell processor, IPC can reach a maximal value of 4.
This is due to instruction retirement and decode units that
can treat up to 4 micro-operations per cycle [9].

4.3 Direct Benefits of SMT
To evaluate SMT, we choose a domain size of Nr ×Nθ ×

Nϕ ×Nv‖ ×Nµ = 512× 256× 128× 60× 32 in this section.
Due to gysela internal implementation choices, we are con-
strained to choose, inside each MPI process, a number of
threads as a power of two. Let us remark, that the appli-
cation performance increases by avoiding very small power

of two (i.e. 1, 2). Haswell node that we target are made of
24 cores. That is the reason why we choose to set 8 threads
per MPI process for the runs shown hereafter. This config-
uration will allow us to compare easily an execution with or
without SMT activated.

In the following, the deployment with 3 MPI processes
per node (one compute node, 24 threads, 1 thread per core)
is checked against a deployment with 6 MPI processes per
node (one compute node, 48 threads, 2 threads per core,
SMT used). Strong scaling experiments are conducted with
or without SMT, timing measurements are shown in Table 1.
Let us assume that processes inside each node is numbered
with an index n going from 0 to 2 without SMT, and n = 0
to 5 whenever SMT is activated. For process n, threads are
pinned to cores in this way: logical cores id from 8n up
to 8n+ 7.

Number of Exec. time Exec. time Benefit of

nodes/cores (1 th/core) (2 th/core) SMT

22/ 512 1369s 1035s -24%
43/1024 706s 528s -25%
86/2048 365s 287s -21%
172/4096 198s 143s -28%

Table 1: Time measurements for a strong scaling
experiment with SMT activated or deactivated, and
gains due to SMT

The different lines show successive doubling of the num-
ber of cores used. The first column gives the CPU resources
involved. The second and third columns highlight the exe-
cution time of mini runs comprising 8 time steps (excluding
initialization and output writings): using 1 thread per core
(without SMT), or using 2 threads per core (with SMT sup-
port). The last column points out the reduction of the run
time due to SMT comparing the two previous columns. As a
result, the simultaneous multi-threading with 2 threads per
core gives a benefit of 21% up to 28% over the standard ex-
ecution time (deployment with one thread per core). While
an improvement is expected with SMT, as already reported
for other applications (e.g. [11, 23]), this speedup is quite
high for a HPC application.

We have investigated the most intensive computation
parts of the code with Paraver tools (www.bsc.es/paraver).
The tools are based on traces capturing the detailed behav-
ior of the different MPI processes and threads along time.
Calls to the MPI and OpenMP runtime can be enriched with
hardware counters, so we were able to measure the instruc-
tions and cycles for each computation region. We observe
that for each intensive computation kernel the number of in-
structions per cycle (IPC) cumulated over the 2 threads on
one core with SMT is always higher than the IPC obtained
with one thread per core without SMT. For these kernels,
the cumulated IPC is comprised between 1.4 and 4 for two
threads per core with SMT, whereas it is in the range of
0.9 up to 2.8 with one thread per core without SMT. These
IPC numbers should be compared to the number of micro-
operations achievable per cycle, 4 on Haswell. Thus, we use
a quite large fraction of available micro-operation slots. Two
factors explain the boost in performance with SMT. First,
SMT hides some cycles wastes due to data dependencies and
long latency operation (e.g memory accesses). Second, SMT
enables to better fill available execution units. It provides
a remedy against the fact that, within a cycle, some issue



Tr
a
n
sp

o
se

D
if
fu

si
o
n

1
D

 A
d
v.

 p
h
i

2
D

 A
d
v
e
ct

io
n

Tr
a
n
sp

o
se

1
D

 A
d
v.

 p
h
i

D
if
fu

si
o
n

1
D

 A
d
v.

 v
p
a
r

1
D

 A
d
v.

 v
p
a
r

Fi
e
ld

 s
o
lv

e
r

D
e
ri

v.
 c

o
m

p
.

Figure 10: Snippet of a run with 2 threads per core (SMT), Top: Paraver useful duration plot, Bottom:
Parallel functions plot

slots are often unused.

4.4 Optimizations to Increase SMT Gain
The Paraver tool gives us the opportunity to have a view

of OpenMP and MPI behaviors at a very fine scale. The vi-
sual rendering informs rapidly the user of an unusual layout
and therefore hints to look on some regions with unexpected
patterns. On the Fig. 10 is plotted a snippet of the timeline
of a small run with SMT (2 threads per core, 24 MPI pro-
cesses, 8 threads per MPI process, meaning 4 nodes hosting
48 threads within each node). We can extract the following
information:

1. The 2D advection kernel (first computationally inten-
sive part of the code) is surprisingly full of small black
holes.

2. There are several synchronizations during this time-
line between MPI processes that are noticeable. As
several moderate load imbalances are also visible, a
performance penalty can be induced by these synchro-
nizations. See for example 2D advection and Trans-
pose steps (Useful duration plots), there is much black
color at the end of these steps. This is due to final MPI
barriers. Nevertheless the impact is relatively low in
this reduced test case because the tool reported a par-
allel efficiency of 97% over the entire application indi-
cating that only 3% of the iteration time is spend on
the MPI and OpenMP parallel runtimes. The impact

is stronger on larger cases, because load imbalance is
bigger.

3. The transpose steps show a lot of black regions
(threads remaining idle). Fig. 11 zooms into the trans-
pose kernel execution for the MPI ranks showing larger
communication times for the higher ranks despite they
use the same communication pattern (in this plot, one
colored bar represents one entire MPI process, no dis-
tinction by thread). At the end of the phase, all the
ranks are synchronized by the MPI Barrier. The use-
ful duration plot shows this delay is caused by a larger
duration of the initial computation phase on only few
MPI processes. Checking the hardware counters indi-
cate the problem is related with a different IPC where
the fast processes are getting twice the IPC of the de-
layed ones. This behavior illustrates well that SMT
introduces heterogeneity of the hardware that should
be handled by the application even if the load is well
balanced between threads.

These inputs from the Paraver visualization helped us to
determine some code transformations to make better use of
unoccupied computational resources. The key point was to
point out the cause of the problem, the improvements were
not so difficult to put into place. The upgrade are described
in the following list. The Table 2 and Fig. 12 exhibits
associated measurements.

1. The 2D advection kernel is composed of OpenMP re-



Figure 11: Zoom on the Transpose kernel (only MPI
ranks are displayed), Top: Paraver MPI calls plot,
Bottom: useful duration plot

gions. There is mainly an alternation of two distinct
OpenMP kernels. The first one fills the input buffers
to prepare the computation of 2D spline coefficients
for a set of N poloidal planes (corresponding to dif-
ferent ϕ, v‖ couples). The second kernel computes the
spline coefficients for the same N poloidal planes and
performs the advection itself that encompasses an in-
terpolation operator. Yet, there is no reason for having
two separate OpenMP regions encapsulated in two dif-
ferent routines, apart from historical ones. Thus, we
decided to fuse these OpenMP regions in a single large
one. This modification avoids the overheads due to en-
tering and leaving the OpenMP regions multiple times.
Also the implicit synchronization at the beginning and
end of each parallel region are removed. Thus, avoid-
ing synchronization leads to a better load balance by
counteracting the imbalance originating mainly from
the SMT effects.

2. Some years ago, with homogeneous computing units
and resources, the workload in gysela was very bal-
anced between MPI processes and inside them, be-
tween threads. Thus, even if some global MPI barriers
were present within several routines, they induced neg-
ligible extra costs because every task was executed syn-
chronously with the others. In latest hardware, there
is heterogeneity coming from cache hierarchy, SMT,
NUMA effects or even Turbo boost. The penalty due
to MPI barriers is now a key issue, and thread idle
time is visible on the plot. We removed several use-
less MPI barriers. As a result, we see for example in
Fig. 12 that, now, diffusion is sandwiched between the
transpose step and the 2D advection, without global
synchronization.

3. The transpose step is compounded of three sub-steps:
copy of data into send buffers, MPI non-blocking
send/receive calls with a final wait on pending com-
munications, copy of receive buffers into target distri-
bution function. On the Fig. 10, it is worth noticing
that only the first thread of each MPI process is work-
ing, i.e. only the master thread is performing a useful
work. To improve this, we added OpenMP directives

to parallelize all the buffers’ copies. This modifica-
tion increases the extracted memory bandwidth and
the thread occupancy. On the Fig. 12, the bottom
plot shows that the transpose step is now partly par-
allelized with OpenMP.

Thanks to these upgrades, there is much less black (idle
time) in Fig. 12 compared to Fig. 10. Still, MPI commu-
nications induce idle time for some threads in the transpose
step and in the field solver. This can not be avoided within
the current assumptions done in gysela. Table 2 also il-
lustrates the achieved gain in term of elapsed time. If one
compares to Table 1, the timings are reduced with one or
two threads per core. Comparing one against two threads
per core, the SMT gain is still greater than 20% (almost
the same statement as before optimization). Now, if we
cumulate the gain resulting from SMT and from the opti-
mizations, we end up with a net benefit on execution time
of 32% up to 38% depending on the number of nodes.

Number of Exec. time Exec. time Benefit of Benefit vs.

nodes/cores (1 th/core) (2 th/core) SMT Table 1

22/ 512 1266s 931s -26% -32%
43/1024 631s 474s -25% -33%
86/2048 320s 239s -25% -34%
172/4096 164s 124s -25% -38%

Table 2: Time measurements and gains achieved
after optimizations that remove some synchroniza-
tions and some OpenMP overheads

5. CONCLUSION
gysela achieves a good parallel computation scalability

up to 64k cores combining several levels of parallelism and
a hybrid OpenMP/MPI approach. The transpose algorithm
helps to reduce the CFL and represents a scalable and ro-
bust solution to handle different physics regimes. Global
execution times are greatly reduced thanks to this upgrade.

Simultaneous multi-threading of Haswell architecture en-
ables a program to better use each core efficiently with multi-
ple threads. Therefore, by using multiple threads on a single
core, we are able to increase the cumulated throughput of all
available integer units and floating-point units. In gysela
code, it leads to a significant reduction of the execution time,
larger than 20% in typical cases. Some adaptations of MPI
and OpenMP usage to avoid synchronization that conflicts
with threads and SMT further improve performance. All
in all, this leads to large gain in execution time whenever
one uses several thousands of cores, compared to the initial
version without SMT we notice an improvement from 32%
up to 38% depending on the test case.

We observe that SMT technology introduces observable
benefits, but also introduces heterogeneity of the hardware
throughput. Well balanced applications such as gysela
should revise their parallelization strategy in order to deal
with this kind of imbalance due to hardware characteristics.

6. ACKNOWLEDGMENTS
This work was strongly supported by the Energy ori-

ented Centre of Excellence (EoCoE), grant agreement num-
ber 676629, funded within the Horizon 2020 framework of
the European Union. We gratefully acknowledge the POP
project, that has also received funding from the European
Union’s Horizon 2020 research and innovation programme



Tr
a
n
sp

o
se

D
if
fu

si
o
n

1
D

 A
d

v.
 p

h
i

2
D

 A
d

v
e
ct

io
n

Tr
a
n
sp

o
se

1
D

 A
d

v.
 p

h
i

D
if
fu

si
o
n

1
D

 A
d

v.
 v

p
a
r

1
D

 A
d

v.
 v

p
a
r

Fi
e
ld

 s
o
lv

e
r

D
e
ri

v.
 C

o
m

p
.

Figure 12: Snippet of a run with 2 threads per core (SMT), after optimizations are done, Top: Paraver useful
duration plot, Bottom: Parallel functions plot

under grant agreement No 676553. This work was possible
due to the generous computational and software engineering
supports from FZJ Juelich (Germany) and CCRT Bruyères-
le-Châtel (France). The authors would also like to thank
Chantal Passeron for assistance and for her precious help.

7. REFERENCES
[1] J. Bigot, V. Grandgirard, G. Latu, C. Passeron,

F. Rozar, and O. Thomine. Scaling gysela code
beyond 32K-cores on bluegene/Q. In CEMRACS
2012, volume 43 of ESAIM: Proc., pages 117–135,
Luminy, France, 2013.

[2] C. Christara, X. Ding, and K. Jackson. High
Performance Computing Systems and Applications,
chapter An Efficient Transposition Algorithm for
Distributed Memory Computers, pages 349–370.
Springer US, Boston, MA, 2000.

[3] A. W. Cook, W. H. Cabot, P. L. Williams, B. J.
Miller, B. R. de Supinski, R. K. Yates, and M. L.
Welcome. Tera-Scalable Algorithms for
Variable-Density Elliptic Hydrodynamics with
Spectral Accuracy. In Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference.

[4] N. Crouseilles, G. Latu, and E. Sonnendrücker.
Hermite Spline Interpolation on Patches for Parallelly
Solving the Vlasov-Poisson Equation. Applied
Mathematics and Computer Science, 17(3):335–349,
2007.

[5] N. Crouseilles, G. Latu, and E. Sonnendrücker. A
parallel Vlasov solver based on local cubic spline
interpolation on patches. Journal of Computational
Physics, 228:1429–1446, 2009.

[6] E. D’Hollander, J. Dongarra, I. Foster, L. Grandinetti
and E. G. Joubert Eds. Transition of HPC Towards
Exascale Computing. IOS Press, 2013.

[7] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse,
X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin,
O. Sauter, E. Sonnendrucker, J. Vaclavik, and
L. Villard. A drift-kinetic Semi-Lagrangian 4D code
for ion turbulence simulation. Journal of
Computational Physics, 217(2):395 – 423, 2006.

[8] V. Grandgirard et al. A 5D gyrokinetic full-f global
semi-lagrangian code for flux-driven ion turbulence
simulations. Submitted to CPC. https://hal-
cea.archives-ouvertes.fr/cea-01153011, July
2015.

[9] D. Hackenberg, R. Schone, T. Ilsche, D. Molka,
J. Schuchart, and R. Geyer. An Energy Efficiency
Feature Survey of the Intel Haswell Processor. In
Parallel and Distributed Processing Symposium
Workshop (IPDPSW), 2015 IEEE International,
pages 896–904, May 2015.

[10] Intel Corporation. Intel R© 64 and IA-32 Architectures
Optimization Reference Manual. Number 248966-031.
September 2015.

[11] S. Jarp, A. Lazzaro, J. Leduc, and A. Nowak.



Evaluation of the Intel Sandy Bridge-EP server
processor. Technical Report CERN-IT-Note-2012-005,
CERN, Geneva, Mar 2012.

[12] M. Kuhn, G. Latu, N. Crouseilles, and S. Genaud.
Parallelization of an advection-diffusion problem
arising in edge plasma physics using hybrid
MPI/OpenMP programming. In Euro-Par 2015:
Parallel Processing, Proceedings, pages 545–557, 2015.

[13] S. Laizet and N. Li. Incompact3d: A powerful tool to
tackle turbulence problems with up to o(105)
computational cores. International Journal for
Numerical Methods in Fluids, 67(11):1735–1757, 2011.

[14] G. Latu, N. Crouseilles, V. Grandgirard, and
E. Sonnendrucker. Gyrokinetic semi-Lagrangian
parallel simulation using a hybrid OpenMP/MPI
programming. In Recent Advances in PVM and MPI,
volume 4757 of Lecture Notes in Computer Science,
pages 356–364. Springer, 2007.

[15] G. Latu, V. Grandgirard, N. Crouseilles, and
G. Dif-Pradalier. Scalable quasineutral solver for
gyrokinetic simulation. In PPAM (2), LNCS 7204,
pages 221–231. Springer, 2011.

[16] D. Pekurovsky. P3DFFT: A Framework for Parallel
Computations of Fourier Transforms in Three
Dimensions. SIAM Journal on Scientific Computing,
34(4):C192–C209, 2012.

[17] M. Pippig. PFFT: An Extension of FFTW to
Massively Parallel Architectures. SIAM Journal on
Scientific Computing, 35(3):C213–C236, 2013.

[18] F. Rozar, G. Latu, J. Roman, and V. Grandgirard.
Toward memory scalability of Gysela code for extreme
scale computers. Concurrency and Computation:
Practice and Experience, 27(4):994–1009, 2015.

[19] F. Rozar, G. Steiner, Ch. Latu, M. Mehrenberger,
V. Grandgirard, J. Bigot, T. Cartier-Michaud, and
J. Roman. Optimization of the gyroaverage operator
based on Hermite interpolation. In CEMRACS 2014,
volume accepted of ESAIM: Proceedings., Luminy,
France, 2015.

[20] E. Sonnendrücker, J. Roche, P. Bertrand, and
A. Ghizzo. The Semi-Lagrangian method for the
numerical resolution of the Vlasov equation. Journal
of Computational Physics, 149(2):201 – 220, 1999.

[21] C. Steiner, M. Mehrenberger, N. Crouseilles,
V. Grandgirard, G. Latu, and F. Rozar. Gyroaverage
operator for a polar mesh. The European Physical
Journal D, 69(1):18, 2015.

[22] S. Stellmach and U. Hansen. An efficient spectral
method for the simulation of dynamos in cartesian
geometry and its implementation on massively parallel
computers. Geochemistry, Geophysics, Geosystems,
2008.

[23] P. Szostek, A. Nowak, G. Bitzes, L. Valsan, S. Jarp,
and A. Dotti. Beyond core count: a look at new
mainstream computing platforms for HEP workloads.
Journal of Physics: Conference Series, 513(6):062036,
2014.

[24] R. Thakur and W. Gropp. Test Suite for Evaluating
Performance of Multithreaded MPI Communication.
Parallel Comput., 35(12):608–617, Dec. 2009.


