
Prediction of the Impact of Network Switch Utilization
on Application Performance via Active MeasurementI

Marc Casasa,∗, Greg Bronevetskyb

aBarcelona Supercomputing Center,
Universitat Politècnica de Catalunya

bGoogle Corporation

Abstract

Although one of the key characteristics of High Performance Computing
(HPC) infrastructures are their fast interconnecting networks, the increasingly
large computational capacity of HPC nodes and the subsequent growth of data
exchanges between them constitute a potential performance bottleneck. To
achieve high performance in parallel executions despite network limitations,
application developers require tools to measure their codes’ network utilization
and to correlate the network’s communication capacity with the performance of
their applications.

This paper presents a new methodology to measure and understand network
behavior. The approach is based in two different techniques that inject extra
network communication. The first technique aims to measure the fraction of
the network that is utilized by a software component (an application or an
individual task) to determine the existence and severity of network contention.
The second injects large amounts of network traffic to study how applications
behave on less capable or fully utilized networks. The measurements obtained
by these techniques are combined to predict the performance slowdown suffered
by a particular software component when it shares the network with others.
Predictions are obtained by considering several training sets that use raw data
from the two measurement techniques. The sensitivity of the training set size
is evaluated by considering 12 different scenarios. Our results find the optimum
training set size to be around 200 training points. When optimal data sets are
used, the proposed methodology provides predictions with an average error of
9.6% considering 36 scenarios.

IWith the support of the Secretary for Universities and Research of the Ministry of Econ-
omy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie
Curie Actions of the 7th R&D Framework Programme of the European Union (Expedient
2013 BP B 00243). The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s 7th FP (FP/2007-2013) / ERC GA
n. 321253. Work partially supported by the Spanish Ministry of Science and Innovation
(TIN2012-34557).

∗Corresponding author

Preprint submitted to Elsevier July 19, 2017

Keywords: Performance Modeling, Resource Sharing, Measurement
Techniques

1. Introduction

HPC applications demand very capable communication networks to sup-
port their high message and data volumes and/or tight synchronizations. In-
deed, constraints on available network bandwidth or latency as well as net-
work hotspots induced by specific communication patterns are often the key
bottleneck that limit application performance [37, 2, 42, 16, 4, 17]. Looking
into the future, it is expected that the computational capabilities of individual
computing nodes will continue to rise faster than the capabilities of the net-
works that connect them [27]. This means that application performance will
become increasingly bottlenecked on the capabilities of the network, making it
even more imperative for application developers to optimize their applications
taking network performance into account. Specifically, developers will need to
(i) predict how their applications will perform on future systems with poorer
network-to-node performance ratios and (ii) develop ways to assign computing
work to available resources to effectively balance network communication and
on-node computation. To achieve these tasks developers will require powerful
tools to enable them to understand the interactions between their applications
and the networks they run on and how these interactions ultimately affect ap-
plication performance. Specifically, two directions of this interaction will need
to be quantified for developers. First, tools must quantify how the application’s
communication utilizes the network and whether the application’s needs are
approaching the limits of the network’s capabilities. Second, tools must mea-
sure how the capabilities of the network influence application performance and
most importantly, whether the network is the application’s performance bottle-
neck. These analyses must apply to both current and future systems, as well
as to both static and highly configurable applications (e.g. where the space of
possible configurations is too large to be explicitly enumerated and analyzed).

This paper eluates a new approach to measure the relationship between net-
work capacity and application performance [9]. Our basic insight is that this
relationship should be modeled as the application consuming a resource pro-
vided by the network. As more of this resource is available, the application runs
monotonically faster, with reduced improvements as application performance
becomes bottlenecked on other resources. Further, if multiple software com-
ponents (entire applications or individual tasks such as processes, threads or
Charm++ chares [21])) run concurrently on the same network, they will share
its resources. This sharing can be modeled as one component consuming some
amount of network resources, making it unavailable to others and thus causing
them to behave as if they were running on a less capable network. The heart
of this idea is a “performance relativity” principle, that “from the perspective
of software components less capable networks behave very similarly to networks
that are partially utilized by other software components”.

2

When several software components share a network there can be many more
potential issues than when just a single software component runs on a dedi-
cated but slow network. These issues have been measured in detail [22, 5, 20]
concluding that interference strongly contributes to performance degradation.
Since the slowdown suffered by each particular software component can be emu-
lated by running each one of these components in a dedicated and slow network,
the “performance relativity” principle holds even though the plethora of issues
that can be raised by network interference. This principle enables two novel
measurement techniques that can answer the above questions:

Impact experiments measure a software component’s use of the network
based on the latency of a few additional packets sent over the network while the
component runs. These measurements directly quantify the network’s ability
to carry application communication and can be used to determine whether the
network is congested and measure how close the application is to fully utilizing
the network. The additional packets are triggered by extra tasks running on
dedicated cores and they do not impact applications’ performance as the extra
load is very low. We presented this idea in a previous paper [9] and some
subsequent similar ideas have been proposed [15].

Compression experiments measure the relationship between network ca-
pability and a software component’s performance. The component is executed
concurrently with a micro-benchmark that runs on cores connected to the same
network and sends varying amounts of communication. As the effective network
capability is varied we observe the component’s resulting performance, which
corresponds to how it will perform on less capable networks or when more soft-
ware components are executed on the same network. The idea of inserting
messages and study its subsequent performance impact at parallel applications
has been previously explored [36].

Finally we present several techniques that combine the two measurements to
predict the performance degradation that a given combination of software com-
ponents would suffer when executed concurrently on the same network. Each
technique is based on a particular description of the available network capability
when an application is running. Data from Impact measurements is used to com-
pute latencies of the triggered packets. We consider four different approaches to
describe the available network capacity when a particular parallel application
is running: i) The average latency of all the packets triggered by the applica-
tion ii) The average latency and the standard deviation of the packets triggered
by the application iii) the histogram of the latencies of the packets triggered
and iv) a mathematical queue [40]. By measuring the network capability that
is left available while a given application or the Compression benchmark runs
we can estimate the effect of multiple concurrent software components on each
other as they share a network. The experimental and analytic procedures pre-
sented in this paper are focused on single-switch networks that connect multiple
computing nodes.

This paper extends our previous work [10, 9] by building performance models
from multiple data sets, that is, by providing a complete evaluation of the
performance prediction sensitivity with respect to the training set size. Our

3

approach improves upon the state of the art in network performance modeling
and measurement in at least 4 ways. The first 3 were already presented [10, 9]
and are revisited in this paper, while the fourth one is completely new:

i) Impact experiments of network utilization and contention are significantly
faster than similar analysis performed inside simulators and apply to real physi-
cal networks for which precise models may not exist due to intellectual property
restrictions. Further, unlike indirect measurement techniques, Impact experi-
ments directly probe the network’s ability to carry out the application’s commu-
nication requests. Since they focus on just the network and quantify its effective
capabilities in terms of a generic queue-oriented metric, these experiments pro-
vide a simple and unfiltered view onto this resource.

ii) Compression experiments and Performance Degradation analysis make it
possible to relate application performance to network capacity. While simula-
tors can predict the performance of specific workloads on specific networks, a
separate simulation run is required for each configuration. As the number of
configuration options increases (e.g. number of atoms per core or the assign-
ment of software components to different cores), the number of such experiments
rises exponentially. In contrast, our approach scales linearly with the number
of software components that must be measured independently.

iii) Our techniques are enabled by a new metric for measuring network uti-
lization, the switch utilization metric. This metric has the key property of
describing the utilization of the physical network. Combined with the Com-
pression experiment, the switch utilization metric is connected to application
performance.

iv) The sensitivity of application performance predictions to training set
sizes is evaluated by considering from very restricted up to very large training
set sizes. The considered sizes vary from 30 up to 408 points per set, covering
thus a wide range of prediction scenarios.

This paper is structured as follows: Section 2 presents the experimental setup
used and briefly describes the set of applications we use in our experiments. Sec-
tion 3 describes Impact and Compression measurements and how they interact.
Section 4 presents the models used to predict applications’ slowdown. Section 5
presents and validates our methodology for predicting performance of real com-
plex workloads that share the same network switch. Section 6 shows a complete
evaluation of the predicting models considering different training set sizes.

2. Experimental design

The experiments in this paper were conducted on the Cab cluster at the
Lawrence Livermore National Laboratory. Cab is composed of 1,296 compute
nodes, each of which includes two 8-core 2.6GHz Intel Xeon E5-2670 proces-
sors with 32GB of RAM. The network is QLogic Quad-data-rate organized into
a two-level fat tree. This paper focuses on the bottom-level switches of the
network, which are QLogic 12300, with 36 ports, of which 18 are used to con-
nect compute nodes and 18 more connect to the second-level switch. These

4

switches provide approximately 1µs of network latency and 5GB/s bandwidth
per port. Each experiment on Cab was run on groups of 18 nodes, respectively,
connected to a single bottom-level switch and our results are thus not affected
by interference from other applications running on the same cluster.

Our experiments focus on the following applications:

• AMG [13] - An implementation of the Algebraic Multi Grid Solver by using
the Hypre library applied to the 3D Laplace problem on a 160x160x160
cube domain.

• FFTW [14] - Fast Fourier Transform library that uses hierarchical com-
position of multiple FFT algorithms, applied to perform a 2D transform
of a 2000x2000 matrix.

• Lulesh [1] - The Livermore Unstructured Lagrangian Explicit Shock Hy-
drodynamics simulation that is a materials science proxy application, ex-
ecuted on a 22x22x22 cube domain.

• MCB [11] - A continuous energy Monte Carlo Burn-up Simulation Code
for studying nuclear waste transmutation systems, executed on 3,000,000
particles.

• MILC [3] - The MIMD Lattice Computation, a Quantum Chromodynam-
ics simulation with lattice size nx=16, ny=32, nz=32, nt=36.

• VPFFT [30] -A structure sensitive crystal plasticity simulation code ap-
plied to a 4x4x4 sample grid considering 1000 time steps, 0.03 time units
per step and a convergence threshold of 1e-5.

The set of applications is representative of the typical workloads that run in
HPC infrastructures. AMG carries out several iterations of an iterative solver
over the same linear system at different levels of granularity. It behaves like a
CPU intensive benchmark when operating over a dense representation of the
system and like a communication and memory bound application when the rep-
resentation of the system is sparse. Thus, AMG runs will display very different
phases. FFTW and VPFFT applications contain expensive all-to-all communi-
cations. The difference between these two applications is that VPFFT performs
expensive computation between two communication phases while FFTW does
not. As such, VPFFT has some flexibility to overlap communication and com-
putation while FFTW is not that flexible. Lulesh is a typical finite difference
method code with local communication phases interleaved by intensive compu-
tation phases. MCB is a monte carlo simulation code, which means that it does
not have much communication and, therefore, its usage of the interconnecting
network is expected to be low. Finally, MILC spends most of its time running
the conjugate gradient solver, which means that most of its communications in-
volve point to point communications with the neighbors and global reductions
once in a while.

5

…

…

Compute Nodes

Utilized Queue
Entries

Free Queue
Entries

…

Compute Nodes

Utilized Queue
Entries

Free Queue
Entries

Impact
Cores

Application
Cores

Figure 1: Impact Interference

3. Active Measurement

Our active measurement methodology adds extra-load into the network and
measures some performance metrics provided, directly or indirectly, by this
extra load. We follow two main approaches: The first one aims to inject a
very light extra traffic into the network with the aim of not impacting the
performance of the running application. By directly measuring the latency of the
extra packets we inject, we infer the distribution of the latencies of the packets
triggered by the main application, which would be very hard to measure without
injecting the extra traffic. The second approach aims to inject heavy traffic
into the network and measure, for each degree of interference, the performance
degradation suffered by the main application. We explain the details of these
two approaches in this section.

3.1. Impact

The basic idea behind Impact experiments is that the degree to which an
application utilizes a network switch can be measured in terms of how well the
network can service additional communication requests. Application messages
are broken up into multiple small (few KB) packets and sent to the network
switch. As illustrated in Figure 1, packets from one compute node arrive on
one port of the switch, propagate through its internal circuitry and exit via
the port of its destination node. Since the execution time of communication
operations depends on the transit time of each packet, the distribution of these
times captures the network’s effective capability that is available to applications.
Further, when some software component is already utilizing the network, the
difference between this distribution during the component’s execution and the
same on an unloaded network measures the amount of network capability the
component uses up and leaves unavailable to others.

We measure the latency of packets through the network switch using the
simple micro-benchmark listed in Figure 2, which we denote ImpactB. Compute
nodes on the same switch are paired and execute a ping-pong data exchange
where the process with the even rank sends a message, the process with the odd
rank receives it and replies with another, which is finally received by the initial
process. The entire exchange is timed by the initiator process to determine
the average latency of the two messages, which are set to be 1KB in size to

6

while (1) {

if(my_node %2 == 0 && my_node !=n_nodes -1) {

MPI_Isend (... , (my_rank+tasks_per_node)%(n_nodes), ... , &request);

MPI_Irecv (... , (my_rank+tasks_per_node)%(n_nodes), ... , &request2);

} else if (my_node %2 == 1) {

MPI_Irecv (... , my_rank -tasks_per_node , ... , &request);

MPI_Isend (... , my_rank -tasks_per_node , ... , &request2);

}

MPI_Wait (&request , status);

MPI_Wait (&request2 , status);

usleep (100000);

}

Figure 2: Pseudo-code of the ImpactB micro-benchmark

0

10

20

30

40

50

60

70

1 2,5 4 5,5 7 8,5 10

Fr
e

q
u

e
n

cy
 (

%
)

Packet Transmision Time (μs)

No App MILC FFTW Lulesh

MCB VPFFT AMG

Figure 3: Distributions of Packet Latencies on Cab

ensure that they are communicated via a single network packet. Each ping-pong
exchange is separated by a 100ms (i. e. 2.6 ·108 CPU cycles in our experimental
setup) sleep to minimize ImpactB’s effect on the executing application.

Figure 3 shows the distribution of message latencies observed on Cab when
executing ImpactB on an unloaded switch and when ImpactB is executed con-
currently with our target applications. In these experiments the processes of
ImpactB and the target application were spread over all the compute nodes con-
nected to the switch. In our experiments, 2 ImpactB processes were executed
on every node. Since Cab’s nodes have 2 sockets, an ImpactB process was run
on each socket.

The application processes were executed on the remaining cores. We exe-
cuted 4 processes of MILC, FFTW, MCB, VPFFT and AMG on each socket, 8
per node for a total of 144 across all the 18 nodes connected to a switch. Lulesh,
which needs a cubic number of processes, was run on 16 nodes, utilizing 2 cores
on each socket, for a total of 64 MPI processes.

The remaining cores were left idle in these experiments. This assignment
of application processes to cores was used to simplify the presentation of the

7

while (1) {

for(partner =0; partner <P; partner ++) {

for(mesg =0; mesg <M; mesg ++) {

// Receive from same core ID on succeeding node

MPI_Irecv(... , (my_rank+tasks_per_node *(partner +1))% comm_size , ...);

// Send to same core ID on the preceding node

MPI_Isend(... , (my_rank -tasks_per_node *(partner +1)+ comm_size)%comm_size ,);

}

usleep(B);

}

MPI_Waitall(...);

}

Figure 4: Pseudo-code of the CompressionB interference micro-benchmark

performance prediction experiments in Section 5, which discusses performance
prediction for multiple concurrently-executing applications.

The data shows that when the switch is not loaded, packet latency is 1.25µs
on average, with many packets taking a little less or more time and a few pack-
ets taking significantly longer. When the applications are running the latency
distribution shifts. The execution of FFTW and MCB on Cab shifts 20% of
packets from taking approximately 1.25µs to take more than 2.5µs. The rela-
tively mild perturbation induced by FFTW is due to the small input set size
(2000x2000 matrix) we use. While it is true that a larger input set size would
bring more perturbation, we chose the small size to have one example of appli-
cation with communication phases with not much data transfered within them.
In case of VPFFT, there is perturbation in a small portion of packets, which
corresponds to packets sent when VPFFT is going through intensive communi-
cation phases. In contrast, the primary effect of Lulesh and MILC is to shift
the mode of the distribution to the right, close to 2.5µs. Further, while Lulesh
didn’t cause an increase in the fraction of packets with very high latency, with
MCB this effect was strong. Interestingly, AMG shifts 50% of the packets to
take more than 5.5µ but does not perturb much the latency times of the other
50%. Such behavior is explained by the different execution phases AMG goes
through, since some of the them are communication intensive and some others
are computation intensive.

3.2. Compression

Compression experiments measure the relationship between the network ca-
pability available to a software component and its performance by incrementally
reducing network capability and observing the effect of this on performance.
Since it is not possible to adjust the properties of real switches and network
simulations are expensive, we use the performance relativity principle (reduced
network capability affects application performance similarly to resource sharing)
to simulate reduced network capability via software interference. We execute the
target software component on a subset of the available cores. On the remaining
cores we execute the CompressionB micro-benchmark, the pseudo-code for which
is listed in Figure 4. CompressionB is executed on the same number of cores on
each node, where processes running on the same core ID on different nodes are

8

0,0

0,5

1,0

1,5

2,0

2,5

25000 250000 2500000 25000000 25000 250000 2500000 25000000

1 message 10 messages

G
B

/s

Bubbles Size (cycles)

1 4 7 14 17

Figure 5: Network Bandwidth triggered per node by the CompressionB micro-benchmark

organized in a 1-dimensional communication ring. As illustrated in Figure 4, in
each iteration every CompressionB process sends a message to P partner pro-
cesses that precede it in the ring (all processes in its ring are on different nodes)
and receives the messages sent by the P succeeding processes. Message size is
40 KB. After M messages have been sent in this way, the benchmark sleeps
for B cycles, waits for all the MPI Irecvs and MPI Isends to complete, and
repeats the communication pattern. Various settings of parameters P , M and
B degrade network capability to different extents.

Figure 5 shows the bandwidth triggered per node by several CompressionB
configurations when run on Cab. We map one CompressionB process on each
socket, that is, 2 CompressionB instances per node. The experiments consider
all the 18 nodes connected to a switch, which implies that there are 36 MPI
processes in total. Parameter P , the number of partner processes, takes values
1, 4, 7, 14 and 17. Parameter B, the number of cycles the benchmark sleeps, has
values 2.5 · 104, 2.5 · 105, 2.5 · 106, 2.5 · 107. Finally, parameter M , the number
of messages sent in each round of communication, is either 1 or 10. As such,
we consider 40 different input configurations of CompressionB. Since network
links between computing nodes and first level switches have a 5GB/s capacity
considering both incoming and outcoming bandwidth, we conclude that the 40
considered configurations sweep a wide range scenarios from using less than 1%
up to 46% of the available network bandwidth per link. Our results stand for the
outcoming bandwith per node triggered by the CompressionB micro-benchmark.
This is achieved by using just 2 dedicated cores per node, one per socket, out
of 16, which highlights the small amount of dedicated hardware CompressionB
needs to emulate a large range of scenarios.

By performing multiple experiments where a different configuration of Com-
pressionB is executed concurrently with a target software component it is pos-
sible to measure the degradation in the component’s performance on less capa-
ble switches. The degradation is computed by co-running the target software

9

component with the CompressionB configuration C and comparing its perfor-
mance with the one exhibited by the target software component when run on
a dedicated network. If sofware component’s performance is the same in both
experiments, we conclude that the CompressionB configuration C does not bring
any performance degradation. Since the CompressionB interference runs on dedi-
cated cores, the performance degradation that software components may exhibit
when co-run with CompressionB is entirely due to network interference issues.

3.3. Packet Latency Distributions of the Compression Benchmarks

To provide a clearer understanding of the traffic pattern injected into the
network switch by the CompressionB benchmark, we show the packet latency
distributions observed when co-run the 40 CompressionB configurations defined
above with the ImpactB benchmark. Figures 6, 7, 8, 9 and 10 show the distri-
butions obtained when setting parameter P , the number of partner processes,
to 1, 4, 7, 14 and 17, respectively. Each Figure displays results correspond-
ing to 10 different configurations where parameter B, the number of cycles the
benchmark sleeps, has values 2.5 · 104, 2.5 · 105, 2.5 · 106 and 2.5 · 107 and pa-
rameter M , the number of messages sent in each round of communication, is
either 1 or 10. Again, we map one CompressionB process on each socket, that
is, 2 CompressionB instances per node. The experiments consider all the 18
nodes connected to a switch, which implies that there are 36 CompressionB MPI
processes in total. On the other hand, 1 ImpactB MPI process was mapped per
socket, 2 per node.

Figure 6: Distributions of Packet Latencies when CompressionB is co-run with ImpactB. Pa-
rameter P , the number of partner processes, is set to 1.

In Figure 6 we show the specific results when P = 1. As we can see, all the
distributions have a bi-modal shape. The distributions’ first mode is located
close to the 1µs minumum possible latency while the second modes are around
5.5 µs. This behavior is due to the packet switching protocol implemented
at the switch level, which gives some priority to some packets while others

10

are transfered with larger latency. We can clearly see in Figure 6 how the
two configurations that inject the heaviest traffic into the network in terms
of bandwidth for P = 1 according to Figure 5, B = 2.5 · 104,M = 10 and
B = 2.5 · 104,M = 1, correspond to the ones with the highest degree of high
priority packets. Indeed, they have the largest fast packet modes: 33.91% and
35.83% respectively. On the other hand, two of the CompressionB distributions
with parameter P set to 1 that inject less bandwidth into the network according
to Figure 5 (B = 2.5 · 106,M = 10 and B = 2.5 · 107,M = 10) have the slow
packets mode switched to the right of the graph (around 6µs) if compared with
the others (around 5µs). Interestingly, the B = 2.5 · 107,M = 1 configuration
injects less bandwidth into the network than the B = 2.5 · 106,M = 10 one
but has its slow packets mode located more to the left, which is an opposite
effect as the one described a few lines above. This comparison between the
results displayed by Figures 5 and 6 clearly illustrate the complex relationship
between network bandwidth and contention. The explanation of this complex
behavior resides in the fact that packet latencies distributions are determined
by the message triggering pattern of the different CompressionB configurations
rather than the absolute bandwidth they inject into the network switch.

In Figure 7 we show the obtained results when P = 4. Again, the dis-
tributions have a bi-modal behavior where the first mode is close to the 1µs
minimum possible latency while the second one is close to the 5.5µs value. The
two most bandwidth intensive CompressionB configurations when P = 4 accord-
ing to Figure 7, B = 2.5 · 104,M = 10 and B = 2.5 · 104,M = 1, are the
ones with the largest fast packet modes, which is a similar behavior as the one
seen in Figure 6 for P = 1. There are 3 configurations (B = 2.5 · 105,M = 1;
B = 2.5 · 106,M = 10 and B = 2.5 · 107,M = 10) that have their high latency
mode slightly switched to the right (around 6.25µs) with respect the others.
Interestingly, among these 3 configurations there are 2 that are not bandwidth
intensive (B = 2.5 · 106,M = 10 and B = 2.5 · 107,M = 10) while another one
is (B = 2.5 · 105,M = 1). Figure 7 also shows how there are 4 CompressionB
configurations (B = 2.5 ·107,M = 1; B = 2.5 ·106,M = 1; B = 2.5 ·104,M = 1;
B = 2.5 · 105,M = 10) that have their low packet modes very close to 5µs.
There is another configuration (B = 2.5 · 104,M = 10) displaying an intermedi-
ate behavior between the 2 sets of configurations we just described.

In Figure 8 we display results when P = 7. The same bi-modal behavior
as the one previously observed appears in these results. In this case, the two
most bandwidth intensive parameter sets (B = 2.5 · 104,M = 10 and B =
2.5 · 104,M = 1) are the ones with the largest low latency modes: 36.03% and
33.54%, respectively. Since the 4 configurations with the M parameter set to
10 have their high latency modes close to 6.25µs while the other 4 defined by
the equation M = 1 have it close to 5µs, it is clear that when P = 7 the M
parameter determines where the high latency mode is located.

In Figure 9 we see the packet latency distributions when P = 14. As we can
see in Figure 5, this set of distributions contains the most bandwidth intensive
CompressionB parameter configurations. Configurations B = 2.5 · 104,M = 1
and B = 2.5 · 105,M = 1 have largest low latency modes. Also, these two

11

Figure 7: Distributions of Packet Latencies when CompressionB is co-run with ImpactB. Pa-
rameter P , the number of partner processes, is set to 4.

Figure 8: Distributions of Packet Latencies when CompressionB is co-run with ImpactB. Pa-
rameter P , the number of partner processes, is set to 7.

configurations have their high latency modes around 5µs. In contrast, almost
all the other configurations with parameter P set to 14 have their high latency
modes switched to the right and close to the 6.25µs point. On the other hand,
configuration B = 2.5 · 104,M = 10 has a behavior located between these two
sets of CompressionB configurations. Interestingly, the set of results displayed
in Figure 9 is useful to illustrate the different behaviors in terms of packet
latency distributions that CompressionB configurations with similar bandwith
injection rates have. For example, configurations B = 2.5 · 104,M = 1 and
B = 2.5 · 104,M = 10 inject large amounts of bandwidth into the network
switch (above 2.0 GB/s according to Figure 5) but they have different behaviors
in terms of their packet latency distribution. In contrast, configuration B =
2.5 · 104,M = 1 has a latency distribution very close to B = 2.5 · 105,M = 1
according to Figure 9 but the first one injects much more bandwith into the

12

Figure 9: Distributions of Packet Latencies when CompressionB is co-run with ImpactB. Pa-
rameter P , the number of partner processes, is set to 14.

Figure 10: Distributions of Packet Latencies when CompressionB is co-run with ImpactB.
Parameter P , the number of partner processes, is set to 17.

network switch (2.35 GB/s according to Figure 5) than the second one (1.21
GB/s). Again, this experiments demonstrate that there is no direct relation
between the bandwith injected into the network switch by a particular software
component and the amount of contention that packets face when they go through
the network switch.

Results shown in Figure 10 display experiments performed by setting param-
eter P to 17. The only two configurations that have their large latency mode
close to 5.5µs are B = 2.5 · 104,M = 1 and B = 2.5 · 105,M = 1. All the other
configurations have this mode more switched to the right. Again, there is no
direct correlation between the results shown in Figure 5 in terms of bandwidth
and the ones shown in 10.

13

4. Modeling

In this section we describe the four modeling approaches we follow to get
slowdown predictions when applications share network resources. These four
approaches can be divided into two main categories: The look-up table based
models and the queue model. Three of our four approaches are look-up table
based while just the fourth is the queue approach. All of them use informa-
tion obtained from the impact and compression measurement to compute the
performance slowdown predictions.

4.1. Look-up Table Models
The look-up table models use a description of the intensity of the extra

traffic injected by the compression benchmark and the performance degradation
each application suffers for each level of traffic injection. As the compression
benchmark has many different input configurations, we can consider from very
light-weight to heavy traffic injections, which describes the application behavior
under very different contexts. Additionally, the degree of perturbation each
application brings, measured by using the impact benchmark, is also used.

To predict the performance slowdown of a particular application when it
shares the network switch with a second workload, the model takes the level
of perturbation that the second application brings, which is measured by the
impact benchmark and summarized in a certain way, looks into a look-up table
for the input configuration of the compression benchmark that brings the closest
degree of perturbation, and then takes the subsequent performance degradation,
previously measured by the compression benchmark, as the prediction.

We consider three different Look-up Table Models:

4.1.1. The Average Look-Up Table (AverageLT)

This model uses the average latency of the packets that travel through the
switch as a metric to summarize network’s usage. As such, to predict the slow-
down of application A when co-runs with application B, the model takes the
average latency of the packets triggered by B, µB , which can be computed via
impact measurements, and then looks for the input configuration Ci of the com-
pression benchmark that has the closest average value µCi

, which is computed
by co-running the Ci configuration with the ImpactB benchmark. Once this
identification is done, the model takes the slowdown that application B suffers
when is co-executed with the selected compression workload.

4.1.2. The Average and Standard Deviation Look-Up Table (AverageStDevLT)

This model works in a very similar way as the previous, but instead of using
just the average to select the input configuration of the compression benchmark
to be used to predict, it uses the average and the standard deviation. As such,
it takes the interval IB = [µB − σB , µB + σB] and the intervals ICi = [µCi −
σCi

, µCi
+σCi

] for all the input configurations Ci of the compression benchmark,
computes the lengths of the intervals IB ∩ ICi

and selects the configuration Ci
that maximizes it. The idea behind this approach is to use the intervals ICi

as
proxies of the whole distribution of packets’ latencies.

14

4.1.3. The Probability Distribution Function (PDF) Look-Up Table (PDFLT)

This model works very similarly as the previous ones, but it uses the whole
distribution of latencies instead of just the average and the standard deviation.
As such, if the application A runs with B, the model takes the distribution
of the packet latencies triggered by B, fB and the distributions fCi of all the
considered compression workloads. Then, it computes the integrals

∫∞
0
fBfCi .

Since we have that
∫∞
0
fBfCi ≤

∫∞
0
fB

∫∞
0
fCi ≤ 1, these integrals are well

defined. Since the closer distributions fB and fCi are, the bigger the integrals’
values are, the model selects the configuration Ci that maximizes

∫∞
0
fBfCi

.

4.2. Switch Utilization Metric

While packet latency distributions can provide some insight into the effec-
tive capability of the switch, they do not vary monotonically with application
performance since it is not clear whether one distribution represents more or
less network utilization than another (e.g. compare Lulesh and MCB’s distribu-
tions). However, they can be used to extract the appropriate metric by modeling
the behavior of a switch as a mathematical queue and leveraging the results of
queuing theory (QT) [40] to infer the state of this queue based on its observable
behavior (the packet latencies).

We represent the real switch as a queue by considering that each packet
arrives at one switch port, is processed by internal switch circuitry and then
departs via another port. As Figure 1 illustrates, when the packet arrives at
this queue other packets may already be waiting in the queue to be routed,
forcing the packet to wait until these packets are processed. The length of
the queue inside the switch depends on the pattern of packet arrival times
at the switch. Specifically, we use the M/G/1 [32] queue model to represent
switch routing logic. Since a M/G/1 queue is a stochastic process modeling
the number of customers in a queue waiting for a service, it fits well with our
situation where packets arrive to the network switch after being triggered by a
software component. Once they reach the switch, they wait until they are sent
to the proper node, that is, they behave like if they were customers waiting for
a service.

QT defines the utilization of a queue as the proportion of its entries that are
used by the arriving traffic. Utilization ρ can be expressed as the rate λ

µ , where
λ is the mean rate of packet arrivals and µ is the mean rate of packet service
times. If ρ ≥ 1 then the queue’s waiting time will grow, which implies that the
switch will be contended and application performance will degrade significantly.
Parameters λ and µ must be known to measure ρ. µ is a hardware parameter
that is measured by sending multiple individual packets into an idle switch and
measuring their minimum latency. λ is an application specific parameter that
can only be directly measured by using switch counters, which are not available
in general as they require root privileges. However, λ can be computed via the
the Pollaczek-Khinchine formula [18]:

W =
ρ+ λµV ar(S)

2(µ− λ)
+ µ−1 (1)

15

Where W is the total average time spent by packets in the queue either wait-
ing and being serviced and V ar(S) is the variance of the service times. Since
utilization ρ = λ

µ , we can write the formula as:

W =

λ
µ + λµV ar(S)

2(µ− λ)
+ µ−1 (2)

which can be transformed to compute λ as follows:

λ =
2− 2Wµ

−2W + 2
µ − µV ar(S)− µ−1

(3)

V ar(S) can be computed from the single-packet experiments on an idle
switch and, importantly, W is just the average latency of the packets communi-
cated by ImpactB while the target application runs. Since utilization ρ = λ

µ , we
can compute it by using the the above formula given the parameters obtained
through ImpactB measurements. In our context, we call ρ the switch utilization
metric. This metric aims to describe the fraction of switch capability used by
parallel codes.

4.3. Switch Utilization of CompressionB

To quantify the fraction of switch capability that various configurations of
CompressionB use, we run it together with ImpactB just like any other software
component ImpactB may measure. This measurement makes it possible to relate
performance degradation to the fraction of switch queue capability removed by
CompressionB. The result is a high-level description of application performance
in terms of a generic measure of network capability, the switch utilization frac-
tion.

Our CompressionB+ImpactB experiments are executed using the same con-
figuration as above, where we map 1 ImpactB and 1 CompressionB process on
each socket, for 2 ImpactB and 2 CompressionB tasks per node. Figure 11 shows
the range of different switch utilization percentages that can be achieved by all
the considered variants of CompressionB when run on Cab. We consider the
same 40 different input configuration of CompressionB as in section 3.2

The data shows that main determinant of switch utilization is the number
of cycles the benchmarks sleeps, with utilization decreasing with longer sleeps.
Further, utilization rises with increasing partner counts and message counts.
The effect of partner count is strongest for longer sleep times while the effect
of message count is strongest for shorter sleep times. In total, we consider 40
different input configurations, which allow us to cover switch utilization between
26% and 92%. The broad range of switch utilization provided by these configu-
rations enables us to precisely evaluate applications performance degradations
due to reduced switch capability.

16

0

10

20

30

40

50

60

70

80

90

100

25000 250000 2500000 25000000 25000 250000 2500000 25000000

1 Message 10 Messages

%
 S

w
it

ch
 U

ti
liz

at
io

n

Bubbles Size (cycles)

1 4 7 14 17

Figure 11: Switch usage compression benchmark on Cab. We consider compression workloads
with 1, 4, 7, 14 and 17 partners.

4.4. Application performance impact due to reduced network capability

We use CompressionB to measure the relationship between available net-
work switch capability and the performance of our target applications. Each
experiment uses the same configuration as in Section 3.1, with 2 CompressionB
processes per node. We assign 1 CompressionB process per socket. The other
cores are assigned to the application or left idle. Figure 12 shows the percent-
age performance degradation on Cab of FFTW, Lulesh, MCB, MILC, VPFFT
and AMG (y-axis, logarithmic scale) as the percentage of switch utilized by
CompressionB changes across its full range (x-axis) due to the use of different
configuration parameters. Performance degradation is computed as

Run time with interference - Run time with no interference

Run time with no interference
(4)

Reducing switch capability has the most effect on FFTW and VPFFT.
FFTW runs more than 50% slower on Cab when even 40% of the switch queue is
utilized and up to 250% slower as utilization reaches 92%. VPFFT also shows
a very significant performance degradation, reaching a slowdown higher than
250% when 87% of the queue is used. VPFFT behavior is not as consistent as
the ones observed in the other applications, showing oscillations from 132% to
263% of slowdown when 87% of the switch is used. MILC is also significantly
affected, running approximately 20% more slowly on Cab at 40% switch uti-
lization and over 100% more slowly at 92% utilization. This is because both
applications are very sensitive to the latency of messages, meaning that if on
average the queue is 40% full the stochastic nature of packet arrivals means that
there are many packets that arrive when the queue is very long. Recall that the
packet latency distributions shown in Figure 3 have some high latency packets
even when the switch is idle. When the switch is partially utilized the fraction
of high latency packets can become considerable, significantly degrading the
performance of FFTW, VPFFT and MILC.

17

1

10

100

20 30 40 50 60 70 80 90 100

%
 P

e
rf

o
rm

an
ce

 D
e

gr
ad

at
io

n

% Switch Utilization

MCB
FFTW
Lulesh
MILC
VPFFT
AMG

Figure 12: Performance degradations suffered by applications in terms of the switch utilization
metric. The y-axis is expressed as a logarithmic scale.

In contrast, Lulesh, MCB and AMG are significantly less affected by reduc-
tions in switch capability. The performance of Lulesh degrades by 8% at 50%
switch utilization and 15% at 92% utilization. MCB and AMG are almost com-
pletely insensitive to switch utilization, slowing by no more than 3.5% across
the full utilization range.

The above experiments make it possible to estimate the performance of
software components when executing on switches with different capabilities.
Specifically, to focus on a particular scenario it is necessary to choose the switch
utilization fraction that corresponds to the removal of the given amount of switch
capability and run the application with CompressionB configured to emulate this
utilization fraction.

5. Prediction

Experimental techniques ImpactB and CompressionB can be combined to
make quantitative predictions about how the performance of multiple software
components (application tasks or entire applications) will suffer when they are
executed concurrently on the same switch. Our approach allows to train a model
for each software component by running it together with several combinations
of the CompressionB benchmark and just one time with the ImpactB benchmark.
Therefore, the training cost grows linearly with the number of involved software
components. Taking into account that the total number of pairings of n software
components is n2 and that the total cost of our training methodology is n(k+1)
where k is the number of CompressionB configurations considered in the training
set, the prediction cost becomes negligible as the number of software components
grows up.

We evaluate the accuracy of the proposed prediction algorithms by running
pairs of our target applications concurrently on the same switch to observe

18

FFTW Lulesh MCB MILC VPFFT AMG
FFTW 45 5 3 11 12 7
Lulesh 5 5 3 6 2 3
MCB 3 5 4 7 5 6
MILC 25 12 1 4 3 14

VPFFT 9 0 2 5 7 2
AMG 0 5 4 5 3 4

Table 1: Measured Performance slowdowns for all the combined workloads. Numbers express
percentages.

whether the model correctly predicts how much they degrade each other’s per-
formance. We run each benchmark in continuous loops and we measure the
average slowdown over many concurrent runs. In these experiments each appli-
cation is executed using the configurations used in the experiments reported in
Sections 3.1 and 3.2. Specifically, for the experiments run with MILC, FFTW,
MCB, AMG and VPFFT we ran 4 processes on each socket, one per core, for
a total of 144 processes per application on the 18 dual-socket nodes connected
to one switch. Since we co-run 2 applications, all the 288 cores sharing the
same switch are used. Since Lulesh must run on cubic numbers of processes,
we ran 2 Lulesh processes on each socket on 16 nodes, for a total of 64 pro-
cesses. This process mapping utilizes at most half the available cores, leaving
enough cores for two applications to run concurrently without sharing cores.
Our experiments include combinations where two copies of a single application
run concurrently on the same nodes and switch, as well as combinations where
two different applications execute together. The former evaluates our model’s
accuracy on the use-case of HPC capability computing where different amounts
of a single application’s work may be assigned to a single switch. The latter
accounts for the use-cases more typical in cloud computing or HPC capacity
computing where multiple applications may share a single switch, as well as
applications that run processes dedicated to molecular dynamics and processes
for FFT computations concurrently on different nodes on the same network.
In Table 1 we depict the measured slowdowns for all the possible application
pairs. In each row we show all the possible performance slowdowns each appli-
cations experiments when is co-run with itself and with the other 5 applications.
Numbers represent percentages.

5.1. Look-up Table Predictions

Using the methodologies explained in Section 4.1 we get some predictions of
the measured performance slowdowns when the considered applications share
the network resources. To apply these methodologies, we run each one of the
applications with all the 40 input configurations of CompressionB considered in
Section 4.3. Besides that, we run each one of these 40 configurations with the
ImpactB to figure out, for each input configuration, the average packet trans-
mission latency, the standard deviation and the complete distribution of the

19

0

10

20

30

40

50

60

70

80

90

100

FF
T

lu
le
sh

M
C
B

M
IL
C

V
P
FF
T

A
M
G

lu
le
sh FF
T

M
C
B

M
IL
C

V
P
FF
T

A
M
G

M
C
B

FF
T

lu
le
sh

M
IL
C

V
P
FF
T

A
M
G

M
IL
C

FF
T

lu
le
sh

M
C
B

V
P
FF
T

A
M
G

V
P
FF
T

FF
T

lu
le
sh

M
C
B

M
IL
C

A
M
G

A
M
G

FF
T

lu
le
sh

M
C
B

M
IL
C

V
P
FF
T

FFT lulesh MCB MILC VPFFT AMG

|R
e

al
 %

 S
lo

w
d

o
n

 -
 P

re
d

ic
te

d
 %

 S
lo

d
o

w
n

|
AverageLT AverageStDevLT PDFLT Queue

Figure 13: Performance predictions for combined workloads in Cab

packets latency. With these data we can apply the three methodologies ex-
plained in Section 4.1: AverageLT, AverageStDevLT and PDFLT. As such, if
we want to predict the performance of application A when it runs with appli-
cation B, we compute the closest configuration of ImpactB to application B and
use the measured slowdown when A run with it as a prediction.

Figure 13 presents the results of the 36 experiments (6 experiments where
each application was run with itself and 30 experiments for different application
pairs) executed on Cab. The y-axis shows the difference between the measured
and the predicted percent performance degradations of each application in each
pairing, while the x-axis shows each pairing X − Y . Since experiments where
two different applications are executed concurrently result in two different per-
formance degradations, they are listed separately on the x-axis, for a total of
36 different degradation measurements. The x-axis is divided into 6 different
boxes: Each box contains data referring to the application written horizontally
when co-run with each one of the applications listed vertically.

Figure 13 shows the results we achieve using AverageLT, AverageStDevLT
and PDFLT. The accuracy is quite good when the techniques predict slowdowns
for Lulesh and AMG. The AverageLT model shows high deviations when it tries
to predict slowdowns for FFT and VPFFT. However, the other two techniques
improve AverageLT accuracy when predicting the behavior of these two appli-
cations. For MILC and MCB none of the techniques considered in this section,
AverageLT, AverageStDevLT and PDFLT, achieve good results, which means
that we have to increase the number of ImpactB configurations we consider to
build our look-up tables or either apply more complex models. In the next sec-
tion, we discuss the prediction methodology and the results achieved when the
queue model is used.

5.2. Queue Model Predictions

Using the model explained in Section 4.2, we can measure the fraction of
the switch queue that software components A and B use by conducting impact

20

experiments on A and B. They will result in quantities UA% and UB% that
measure the fraction of the switch queue each component utilizes. Compres-
sion experiments on these components produce mappings pA and pB that map
switch utilization fractions to the performance degradation in each component,
like we show in Figure 12. We then use the configurations of CompressionB that
also utilize UA% and UB% of the switch queue to model the effects of A and B,
respectively on other software components with which they share a switch. We
thus predict the performance degradation of A when executed concurrently with
B to be pA(UB). Specifically, this means that A’s performance will degrade as
much when sharing the switch with B as it did when it shared the switch with
the configuration of CompressionB that utilizes the same fraction of the switch
queue as B does. The converse prediction is made for B. This analysis can be
performed for any combination of application tasks, their configurations (e.g.
number of molecules simulated or the size of their communication stencil) or
even multiple concurrently executing applications. Since predicting the degra-
dation of B when co-runs with A is a totally independent process of predicting
A’s performance when co-runs with B, the accuracy of these predictions does
not have to be necessarily the same.

Results in Figure 13 show that overall the queue model has very good predic-
tive capability. For Lulesh, MCB, VPFFT and AMG the model properly pre-
dicts the performance slowdowns for all the possible co-running applications, as
it clearly separates the pairings that induce little performance degradation from
those that induce significant degradation. For MILC and FFTW, the model
shows some deviations sometimes, which can be divide into three different cat-
egories: (i) the model predicts zero degradation while in reality performance
degrades by 3%-5%, (ii) it predicts a degradation that a few percent higher or
lower than reality (MILC with Lulesh and MCB) or (iii) the model predicts a
notable degradation where in reality it was small (FFTW with AMG).

The only significant error is when the model predicts the performance of
FFTW when co-executing with AMG. According to the model, the performance
of FFTW would degrade significantly more than it actually does. The explana-
tion of this high error is that, as AMG executions go through phases that do not
significantly use the network, the switch capacity available to FFTW is close to
100% during a significant portion of its co-run with AMG, which is something
that the queue model has not considered as it assumes a constant utilization of
the network during the applications’ runs.

5.3. Summary of the Results

In Figure 14 we summarize the results we have obtained with the four con-
sidered methodologies. For each method, we show two boxes that represent the
second and third quartiles of the errors we have got predicting the 36 consid-
ered workloads. The line between the two boxes represents the median and the
two error bars show the range covered by the errors of the first and the fourth
quartile respectively. As we can see, the AverageStDevLT model outperforms
the AverageLT, which is not surprising since the former uses more data than
the latter. The accuracy of models AverageStDevLT and PDFLT is almost the

21

0

10

20

30

40

50

60

70

80

90

100

AverageLT AverageStDevLT PDFLT Queue

|R
e

al
 %

 S
lo

w
d

o
w

n
 -

 P
re

d
ic

te
d

 %
 S

lo
w

d
o

w
n

|

Figure 14: Summary of the results obtained in Cab

same, which means that just the average and the standard deviation of the
packets’ latency is already a good description of the whole distribution of la-
tencies and that adding more information regarding this distribution does not
increase the accuracy of the models. However, look-up table approaches do not
achieve a satisfactory accuracy as more than one third of the predictions have
an accuracy worse than 20%.

The queue model over-performs in general the look-up table approaches as
more than 75% of its predictions have an error lower than 10%. Even more,
as we can see in Figure 13 all of its predictions except one have an error lower
than 20%. However, the queue model still shows a high deviation in one of the
considered workloads.

6. Training Set Sensitivity

The previous sections evaluate the prediction accuracy of the 4 proposed
techniques considering the training set defined in Section 4.3, which consists
of 40 different configurations obtained combining parameters P , the number of
partner processes, B, the number of cycles the compression benchmark sleeps
and M , the number of messages sent in each round of communication. From
these results, it is not clear whether or not that training set is optimal in terms
of the prediction accuracy it provides or the overhead it involves. To provide
a precise analysis of the prediction accuracy versus training overhead trade-off,
we consider 12 different training sets and evaluate them in terms of prediction
accuracy for each one of the 4 considered prediction techniques. In Table 2 we
show in detail the 12 different training sets we consider for our evaluations. Per
each set, we specify all the different values parameters B, P and M take. Set 1
is the smallest represented in the Table. It considers a Bubble Size parameter

22

Training Bubble Size (B) Number of Number of
Set in terms of # of CPU cycles Partners (P) Messages (M)
Set1 2.5E9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set2 2.5E9 2.5E8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set3 2.5E9 2.5E8 2.5E7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set4 2.5E9 2.5E8 2.5E7 2.5E6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set5 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set6 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set7 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1.25E5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set8 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1.25E5 2.5E4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set9 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1.25E5 2.5E4 1.25E4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set10 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1.25E5 2.5E4 1.25E4 2.5E3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set11 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1.25E5 2.5E4 1.25E4 2.5E3 1.25E3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10
Set12 2.5E9 2.5E8 2.5E7 2.5E6 1.25E6 2.5E5 1.25E5 2.5E4 1.25E4 2.5E3 1.25E3 2.5E2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 1 10

Table 2: Data set descriptions in terms of CompressionB parameters

of 2.5 · 109 cycles, 15 different numbers of communication partners from 1 to 17
and two different numbers of messages sent per iterations: 1 and 10. Therefore,
this training set has a total of 30 sample points. As shown in the Table, the
number of training points per set raises from 30 (Set 1), to 408 (Set12).

To design these training sets we consider the results shown in Figure 11,
where it is clear that the largest variation in terms of switch utilization is ob-
tained by changing the value of the bubble size parameter. From the data shown
in Figure 11 it is also clear that the number of communication partners and the
number of messages sent also provide some variations, but not as much as B.
The design of the 12 training sets is made taking these considerations into ac-
count and trying to get large sets that sweep all the possible switch utilization
numbers from 0% up to 100% and also small ones that consider a subset of this
range.

0

10

20

30

40

50

60

70

80

90

100

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12

|R
e

al
 %

 S
lo

w
d

o
w

n
 -

 P
re

d
ic

te
d

 %
 S

lo
w

d
o

w
n

|

Figure 15: Prediction errors concerning the AverageLT. All the training sets shown in Table2
are considered to generate these results.

23

0

10

20

30

40

50

60

70

80

90

100

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12

|R
e

al
 %

 S
lo

w
d

o
w

n
 -

 P
re

d
ic

te
d

 %
 S

lo
w

d
o

w
n

|

Figure 16: Prediction errors concerning the AverageStDevLT techniques. All the training sets
shown in Table2 are considered to generate these results.

6.1. Extended Look-up Table Predictions

In Figures 15 and 16 we show the prediction accuracy provided by techniques
AverageLT and AverageStDevLT respectively while Figures 17 and 18 represents
results provided by the PDFLT technique and the queue model. The 12 training
sets mentioned previously are considered in this campaign of experiments. For
each method and training set, we show two boxes representing the second and
third quartiles of the errors we get predicting the 36 considered application
pairings. The line between the two boxes represents the median and the two
error bars show the range covered by the errors of the first and the fourth
quartile respectively.

In Figure 15 we can see the results obtained by the AverageLT technique.
As it is shown in the figure, the median error is slightly below 5% for the first
six training sets while the maximum error is around 71%. These values stay
stable for the six initial training sets but they experiment a significant increase
when set 7 is considered. The median prediction error increases from below
5% up to 8% while the maximum error raises up to 95% of prediction error.
Significantly, the third quartile value suffers a large increase from around 10%
up to 47% of the prediction error when comparing training sets 6 and 7. The
main reasons behind this degradation in the prediction quality suffered by set 7
are the bad decisions the AverageLT model make when selecting the Compres-
sionB benchmark configuration. The AverageLT technique selects a training set
configuration included in set 7 but not in set 6, {1.25 ·105, 9, 1}, to estimate the
slowdown of applications when co-run with moderate switch usage workloads,
like MILC or Lulesh. Since these applications actually use the network in a much
smaller degree than CompressionB configuration {1.25 · 105, 9, 1}, the prediction
is not good. The reason for this bad choice of predicting configuration is the

24

0

10

20

30

40

50

60

70

80

90

100

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12

|R
e

al
 %

 S
lo

w
d

o
w

n
 -

 P
re

d
ic

te
d

 %
 S

lo
w

d
o

w
n

|

Figure 17: Prediction errors concerning the PDFLT technique. All the training sets shown in
Table2 are considered to generate these results.

behavior of packets traveling through the switch under heavy network traffic.
Since the distribution of packets’ latencies is very irregular and noisy, its aver-
age is not a good metric to describe the real behavior observed in the network.
This noisy behavior confuses the model, which ends up emulating applications
with moderate switch usage, like MILC or Lulesh, with highly intensive Com-
pressionB benchmarks configurations. Clearly, the AverageLT technique does
not really get any benefit from increasing the size of the training set once noisy
configurations are included. Consequently, metrics that properly filter the noisy
behavior of some highly intensive traffic training configurations is required.

In Figure 16 results concerning the AverageStDevLT technique are shown.
The median prediction error stays always below 5% for all the considered train-
ing sets, which means that this technique provides very good predictions for
half of the 36 considered pairings no matter which training set is considered.
The third quartile of the prediction errors raises from around 10% up to 58%
when training set 6 is considered instead of 5. Also, the maximum prediction
error increases from 75% to more than 100% when changing training set 5 for
6. This sudden decrease of the prediction accuracy comes from the irregular
behavior of some new configurations included in Set 6. For example, in case of
configuration {1.25 · 105 17, 19}, the ratio σ

µ is equal to 2.18, while in configu-
rations contained in set 5 this ratio is in general smaller than 1.5. These large
σ values for some configurations Ci make intervals ICi

= [µCi
− σCi

, µCi
+ σCi

]
very large, which artificially extends the length of interval IB ∩ ICi

, which is the
metric the model uses to chose a configuration Ci to approximate application
B. Again, the noise in the training sets’ distribution confuses the model, which
makes wrong decisions in terms of picking up a training configuration close to
the application to be emulated.

25

0

10

20

30

40

50

60

70

80

90

100

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11 Set 12

|R
e

al
 %

 S
lo

w
d

o
w

n
 -

 P
re

d
ic

te
d

 %
 S

lo
w

d
o

w
n

|

Figure 18: Prediction errors concerning the Queue Model techniques. All the training sets
shown in Table2 are considered to generate these results.

Figure 17 displays results involving the PDFLT technique. For training sets
1, 2, 3, 4, 5 and 6 the median error is below 5%. If training sets 7, 8, 9, 10, 11
and 12 are considered, the median error is above 5% but still below 10%. The
third quartile of the prediction errors experiments a drop from 12% to 8% when
comparing results concerning training sets 1 and 4. However, it increases up
to 53% when the training set 7 is considered and stays above 50% for training
sets 7, 8, 9, 10, 11 and 12. With respect to the maximum error, it stays around
70% for training sets from 1 to 6 and grows above 100% for training sets 7-12.
The decrease of the results’ accuracy is due to a very similar issue as in the
case of AverageStDevLT: The increase of the standard deviation of the packets
switch latencies makes the metric proposed in Section 4.1.3 to pick up a bad
CompressionB configuration.

6.2. Extended Queue Model Predictions

Results concerning the Queue Model predictions using the extended training
sets are shown in Figure 18. For all the considered training sets, the median
error is below 3.8% and the third quartile of the prediction errors stays below
10%. The average error is 9.6%. This means that Queue Model is able to
provide satisfactory predictions for 75% of the considered workloads, even with
a very reduced training data set. This is consistent with the good prediction
results concerning 75% of the pairings shown in Section 5.2 which are obtained
from a reduced data set. The main issue is the evolution of the large error
predictions obtained for the remaining 25% of the considered workloads. As seen
in previous sections, the AverageLT, AverageStDevLT and PDFLT techniques
do not succeed in reducing the prediction errors when the training set is increase.
The results shown in Figure 18 show how the Queue Model technique does

26

indeed reduce the maximum error to near 60% when Training Sets 7, 8, 9, 10
or 11 are used. This is a significant reduction of the maximum error, which
reaches values above 90% when training sets 1, 4, 5 and 6 are considered and
above 70% for sets 2 and 3. The only drawback is the increase suffered when the
largest training set, 12, is considered. This increase is brought by the fact that
training set 12 considers interference experiments with bubble sizes of 2.5E2,
which bring extremely noisy and unstable active measurements.

Our results show how the AverageLT, AverageStDevLT and PDFLT ap-
proaches provide good predictions when a large number of cycles occur between
message injections. These techniques based on lookup table predictions are very
sensitive to the noise of the switch latency under traffic intensive workloads. In
contrast, the Queue Model predictions stay consistent across different training
sets, as results shown in Section 5.2 and Figure 18 clearly demonstrate. Also,
the quality of queue model’s predictions improve as the training set size gets
increased, as results shown in Figure 18 show. This last quality highlights the
importance of the Queue Model method to carry out predictions of combined
workloads and also confirms that queuing theory is a good abstraction to model
the network contention brought by HPC workloads.

7. Related Work

The importance of network performance optimization has motivated signif-
icant research by the performance analysis community. It can be divided into
two categories: simulation and indirect measurement. The simulation approach,
exemplified by tools such as SST [34], BigSim [43], Dimemas [29] or Venus [35]
uses a detailed model of network hardware to account for the path of every mes-
sage sent by each application node. Although these tools can accurately predict
the performance of a particular application configuration on current and future
network designs, they have two limitations. First, the cost of using them can
be high for many realistic large-scale applications since a full analysis requires
a large-scale application run followed by a detailed simulation of its communi-
cations, which is too slow to use for live application runs, although feasible for
making projections to future systems. Second, each simulation is valid for only
one application configuration. To predict performance for a different assign-
ment of application tasks to nodes or different distributions of work to tasks it
is necessary to perform a simulation for this specific configurations. Since the
space of possible permutations grows exponentially with the number of ways
to configure the allocation of work to compute nodes, the simulation approach
soon grows infeasible.

The indirect measurement approach is exemplified by tracing tools such as
Vampir [26] and Paraver [28] as well as performance counter-based tools such as
Tau [38]. In this approach various application regions are monitored to deter-
mine its communication structure, the amount of time it spends performing
various operations and the number of events such as cache misses that oc-
cur during each operation. While these measurements can be used to derive
non-trivial information of HPC applications, like the internal structure of their

27

executions [8] or the reasons behind performance slowdowns [7, 6], they can
only enable indirect inference about how the properties of a network relate to
application performance.

Detailed parametric models of HPC applications performance when run
on large scale architectures include network parameters like latency or band-
width [24]. Although machine- and application-specific, such models provide
useful insights. HPC applications sensitivity to network parameters like latency
or bandwidth has been previously evaluated [23] and differences up to 60%
have been reported between the best and the worse performing network con-
figurations. Also, sensitivity to network parameters is reported to be strongly
application dependent. Other studies analyze HPC applications sensitivity to
network noise [19]. These studies conclude that network noise can bring sig-
nificant performance slowdowns to basic collective operations like reductions.
Non-surprisingly, network noise is reported to grow with system size.

Other work has been more focused on exploring the usefulness of new net-
work topologies to achieve significant reductions in both network cost and net-
work power, while still providing a balance of high global and high local band-
width [41]. Previous work [33, 12] considered how power may reduce inter-
connection networks’ capacity. There have been several prior efforts to reduce
power in interconnection networks with a particular focus on reducing power on
infrequently used links. Both [25, 39] propose techniques to power down certain
links in response to traffic behavior. The techniques presented in this paper can
be used to evaluate this kind of power optimizations for interconnecting net-
works. Some work that has focused on the characterization of link utilization
in large systems [31].

8. Conclusion

In this paper we have shown the usefulness of proactive measurements to an-
alyze applications’ consumption of switch resources and to predict performance
degradations when those resources are shared with other workloads. This a very
important problem since high performance computing infrastructures typically
run several applications on the same time, all of them sharing the network. Our
technique uses two interferences that inject extra network workload. The first
determines the fraction of the network that is utilized by a software component
(an application or an individual task) to figure out the existence and severity
of network contention. The second aggressively injects network packets while
a software component runs to evaluate its performance on networks with less
capacity or when it shares network resources with other software components.

We then combine the information from the two types of experiment to pre-
dict the performance slowdown experienced by multiple software components
(e.g. multiple processes of a single MPI application) when they share a single
network. We have also validated our approach by comparing the predictions we
get through our modeling and measurement techniques with real measurements
obtained when two applications run together on the same switch. By using a
queuing theory based approach we have been able to achieve excellent accuracy

28

in almost all the considered workloads. Also, our methodology is general in the
sense that can be deployed in any kind of HPC infrastructure that uses any
kind of interconnecting network to handle communication between computing
nodes.

The sensitivity of the prediction techniques presented in this paper against
the size of the training set is also evaluated. The Queue Model technique is
demonstrated to provide accurate predictions considering very restricted train-
ing sets and also to improve its predictions when these sets are increased. That
facts confirms the suitability of queuing theory to model network contention
brought by HPC workloads. In contrast, the other three techniques AverageLT,
AverageStDevLT and PDFLT do not experiment significant benefits when the
training set gets increased, which suggests that approaches exclusively based on
massive amounts of data do not always have good prediction qualities if they
do not contain any physical notion of the problem being targeted.

[1] Hydrodynamics Challenge Problem. Technical Report LLNL-TR-490254,
Lawrence Livermore National Laboratory.

[2] Scientific Application Performance on Candidate PetaScale Platforms. IEEE
Computer Society, 2007.

[3] G. Bauer, S. Gottlieb, and T. Hoefler. Performance Modeling and Comparative
Analysis of the MILC Lattice QCD Application su3 rmd. In CCGRID, pages
652–659, 2012.

[4] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P. T. Bremer. Analyzing network
health and congestion in dragonfly-based supercomputers. In 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 93–102,
May 2016.

[5] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs. There goes the neigh-
borhood: Performance degradation due to nearby jobs. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’13, pages 41:1–41:12, New York, NY, USA, 2013. ACM.

[6] M. Casas, R. Badia, and J. Labarta. Prediction of behavior of mpi applications.
In Cluster Computing, 2008 IEEE International Conference on, pages 242–251,
Sept 2008.

[7] M. Casas, R. M. Badia, and J. Labarta. Automatic analysis of speedup of MPI
applications. In Proceedings of the 22Nd Annual International Conference on
Supercomputing, ICS ’08, pages 349–358, New York, NY, USA, 2008. ACM.

[8] M. Casas, R. M. Badia, and J. Labarta. Automatic phase detection and structure
extraction of mpi applications. Int. J. High Perform. Comput. Appl., 24(3):335–
360, Aug. 2010.

[9] M. Casas and G. Bronevetsky. Active measurement of memory resource con-
sumption. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th
International, pages 995–1004, May 2014.

29

[10] M. Casas and G. Bronevetsky. Active measurement of the impact of network
switch utilization on application performance. In Parallel and Distributed Pro-
cessing Symposium, 2014 IEEE 28th International, pages 165–174, May 2014.

[11] J. Cetnar, J. Wallenius, and W. Gudowski. MCB: A Continuous Energy Monte-
Carlo Burnup Simulation Code. In Actinide and Fission Product Partitioning
and Transmutation, 1999.

[12] B. Dickov, M. Pericas, P. Carpenter, N. Navarro, and E. Ayguade. Software-
managed power reduction in infiniband links. 2014 43nd International Conference
on Parallel Processing (ICPP), pages 311–320, 2014.

[13] R. D. Falgout and U. M. Yang. hypre: a library of high performance precondi-
tioners. In Preconditioners, Lecture Notes in Computer Science, pages 632–641,
2002.

[14] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[15] R. E. Grant, K. T. Pedretti, and A. Gentile. Overtime: A tool for analyzing
performance variation due to network interference. In Proceedings of the 3rd
Workshop on Exascale MPI, ExaMPI ’15, pages 4:1–4:10, New York, NY, USA,
2015. ACM.

[16] T. Groves, R. E. Grant, and D. Arnold. NiMC: Characterizing and eliminating
network-induced memory contention. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 253–262, May 2016.

[17] T. Groves, R. E. Grant, S. Hemmer, S. Hammond, M. Levenhagen, and D. C.
Arnold. (sai) stalled, active and idle: Characterizing power and performance of
large-scale dragonfly networks. 2016 IEEE International Conference on Cluster
Computing (CLUSTER), 00:50–59, 2016.

[18] J. Haigh. Probability Models. Springer, 2002.

[19] T. Hoefler, T. Schneider, and A. Lumsdaine. The impact of network noise at
large-scale communication performance. In Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–8, May 2009.

[20] A. Jokanovic, J. Sancho, G. Rodriguez, A. Lucero, C. Minkenberg, and J. Labarta.
Quiet neighborhoods: Key to protect job performance predictability. In Parallel
and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pages
449–459, May 2015.

[21] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In A. Paepcke, editor, Proceedings of OOPSLA’93, pages
91–108. ACM Press, September 1993.

[22] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. Measuring interference
between live datacenter applications. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC
’12, pages 51:1–51:12, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press.

30

[23] D. Kerbyson. A look at application performance sensitivity to the bandwidth and
latency of infiniband networks. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 7 pp.–, April 2006.

[24] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Git-
tings. Predictive performance and scalability modeling of a large-scale application.
In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, SC ’01,
pages 37–37, New York, NY, USA, 2001. ACM.

[25] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan, M. Kandemir, M. J. Irwin,
M. Yousif, and C. R. Das. Energy optimization techniques in cluster interconnects.
In Proceedings of the 2003 international symposium on Low power electronics and
design, ISLPED ’03, pages 459–464, New York, NY, USA, 2003. ACM.

[26] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S.
Müller, and W. E. Nagel. The Vampir Performance Analysis Tool-Set. In M. M.
Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, editors, Parallel Tools
Workshop, pages 139–155. Springer, 2008.

[27] P. Kogge. ExaScale Computing Study: Technology Challenges in Achieving Ex-
ascale Systems. Technical report, DARPA IPTO, September 2008.

[28] J. Labarta. New Analysis Techniques in the CEPBA-Tools Environment. In
M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, editors, Parallel Tools
Workshop, pages 125–143. Springer, 2009.

[29] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. DiP: A Parallel
Program Development Environment, 1996.

[30] R. A. Lebensohn, A. K. Kanjarla, and P. Eisenlohr. An elasto-viscoplastic for-
mulation based on fast fourier transforms for the prediction of micromechanical
fields in polycrystalline materials. International Journal of Plasticity, 3233(0):59
– 69, 2012.

[31] E. A. Len, I. Karlin, A. Bhatele, S. H. Langer, C. Chambreau, L. H. Howell,
T. D’Hooge, and M. L. Leininger. Characterizing parallel scientific applications
on commodity clusters: An empirical study of a tapered fat-tree. In SC16: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pages 909–920, Nov 2016.

[32] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their Applica-
tions, volume 5. 1989.

[33] G. Patel, S. Chai, S. Yalamanchili, and D. Schimmel. Power constrained design
of multiprocessor interconnection networks. In Computer Design: VLSI in Com-
puters and Processors, 1997. ICCD ’97. Proceedings., 1997 IEEE International
Conference on, pages 408–416, 1997.

[34] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. We-
ston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob. The Struc-
tural Simulation Toolkit. SIGMETRICS Perform. Eval. Rev., 38(4):37–42, Mar.
2011.

31

[35] G. Rodriguez, R. Beivide, C. Minkenberg, J. Labarta, and M. Valero. Exploring
Pattern-aware Routing in Feneralized Fat Rree Networks. In Proceedings of the
23rd international conference on Supercomputing, ICS ’09, pages 276–285, New
York, NY, USA, 2009. ACM.

[36] J. C. Sancho, D. J. Kerbyson, and M. Lang. Characterizing the Impact of Using
Spare-Cores on Application Performance, pages 74–85. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[37] V. Sarkar. ExaScale Software Study: Software Challenges in Extreme Scale Sys-
tems. Technical report, DARPA IPTO, September 2009.

[38] S. S. Shende and A. D. Malony. The Tau Parallel Performance System. Int. J.
High Perform. Comput. Appl., 20(2):287–311, May 2006.

[39] V. Soteriou and L.-S. Peh. Design-space exploration of power-aware on/off inter-
connection networks. In Computer Design: VLSI in Computers and Processors,
2004. ICCD 2004. Proceedings. IEEE International Conference on, pages 510–
517, 2004.

[40] V. Sundarapandian. Probability, Statistics and Queueing Theory. PHI Learning,
2009.

[41] K. D. Underwood and E. Borch. Exploiting Communication and Packing Locality
for Cost-Effective Large Scale Networks. 2012.

[42] M. Valero, M. Moreto, M. Casas, E. Ayguadé, and J. Labarta. Runtime-aware ar-
chitectures: A first approach. International Journal on Supercomputing Frontiers
and Innovations, 1(1):29–44, 2014.

[43] G. Zheng, G. Kakulapati, and L. V. Kalé. BigSim: A Parallel Simulator for
Performance Prediction of Extremely Large Parallel Machines. In IPDPS. IEEE
Computer Society, 2004.

32

