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Abstract 

Directed evolution creates diversity in subsequent rounds of mutagenesis in the quest of increased protein stability, 

substrate binding and catalysis. Although this technique does not require any structural/mechanistic knowledge of 

the system, the frequency of improved mutations is usually low. For this reason, computational tools are 

increasingly used to focus the search in sequence space, enhancing the efficiency of laboratory evolution. In 

particular, molecular modeling methods provide a unique tool to grasp the sequence/structure/function relationship 
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of the protein to evolve, with the only condition that a structural model is provided. With this book chapter, we tried 

to guide the reader through the state of art of molecular modeling, discussing their strengths, limitations and 

directions. In addition, we suggest a possible future template for in silico directed evolution where we underline two 

main points: a hierarchical computational protocol combining several different techniques, and a synergic effort 

between simulations and experimental validation. 

 

1. Introduction 

Biotechnology needs catalysts that can work under harsh conditions, catalyze a broad range of substrates, generate 

maximum amount of product, and tolerate changes in the environment. Enzymes, which are biodegradable and 

reusable catalysts [1], in addition to remarkable reaction rates, can work in environmentally friendly pH and 

temperature ranges, and display control over stereochemistry and regioselectivity which makes them ideal for many 

applications [2,3]. When thinking about enzymes, people normally associate them to expressions such as “perfect 

catalysts” or “outstanding reaction rate”. In fact, there are examples of enzymes that catalyze reactions at extremely 

high rates such as triose phosphate isomerase, superoxide dismutase or carbonic anhydrase [4]. These are often 

limited only by the rate of ligand diffusion into the active site (diffusion-controlled rate). Nevertheless, an extensive 

analysis by Bar-Even et al., of nearly 2000 enzymes, showed that the median maximal turnover rate value over all 

measured enzymes is about 10 s−1 nowhere close to the values of 105 or 106 normally associated with catalysts [5,6]. 

So, it would appear that natural enzymes are “just good enough” for the function they must perform in a 

given organism [7]. One might conclude that if they had evolved to their optimum performance then trying to 

improve them (from a kinetic point of view) would be attempting the impossible. On the contrary, as seen by the 

distribution of reaction rates, kcat, most enzymes function at a lower rate than the diffusion-limit and thus, there is 

space to further increase their kinetic properties to meet industrial needs. Additionally, we need enzymes capable of 

catalyzing reactions for which no known enzymes exist, to work with different substrates and for particular 

conditions that are industrially convenient and economically advantageous. For all these reasons, in most cases, we 

cannot just use enzymes as they are found but instead we need to change their physical-chemical and functional 

properties. This is one of the reasons why engineering enzymes for biocatalysis is an incessantly growing field [8-

11].  

In Nature, enzymes have evolved over millions of years to meet specific demands and operate under tight in 

vivo regulation. Their degree of adeptness includes diverse criteria such as: which substrates they accept, the 

effective reaction rate, the environment in which they function and how well they tolerate changes in it, inactivation 

by their own products, etc. These characteristics are precisely the ones that scientist wish to control to their own 

advantage. Some of the earliest attempts to modify enzymes required a deep knowledge of complex 

structure/function relationships and (to the authors’ contentment) computer simulations have played an important 

part in it [12,13]. Since the pioneering work [10,14,15] in computationally designed protein sequences (with 

experimental validation) many remarkable achievements have been obtained. Interesting work includes predicting 

sequence changes that alter atomic packing arrangements in buried protein regions or the creation of new metal 



binding sites which may have many applications along with potential improvement in protein stability [16-18]. In 

addition to being able to correctly predict changes in protein structure, there has been, of course, a large interest in 

altering proteins, through computational techniques, to create new function or adapt them to particular conditions. 

Rational protein design, which involves modification of specific amino acids in the protein’s three-dimensional (3D) 

structure with previous structural/mechanistic knowledge, can be used to alter specificity, stability, selectivity and 

activity. Literature contains a vastness of examples of rationally designed proteins (which we do not presume to 

cover here) including creating new recognition [19-26], improve protein stability [27-29], and protein-protein [30-

34] or protein-DNA interactions [35,36]. We can find procedures to engineer a protein that binds a specific cofactor 

[37] or a calcium-binding site [38,39], redesign an enzyme by stabilizing the transition state [40] or create new 

activity from scratch [41]. 

 

A special mention involves the design of new proteins from scratch, commonly known as de novo design, and 

literature displays many truly interesting examples of new proteins [42-45]. Currently one of the most common 

strategies to design new enzymes is based on encountering complementary active sites for the transition states of 

interest [46,47]. Despite the success of de novo design in providing novel structures and activity, its difficulties in 

achieving fast kinetics make it still preferable to modify templates available in Nature for the desired chemistry. 

Indeed, a recent computational study pointed out how target reactivity can be one mutation away from a non-

enzymatic protein (if well picked) [48]. Due to the scope of this book, we refer the reader interested in de novo 

design to recent studies on this topic [49]. 

 

Despite many promising studies, rational computational protein redesign has its limitations: it requires a reliable 

three-dimensional structure of the system of interest and an in-depth comprehension of the catalytic mechanism; 

understanding the relationships between a protein’s primary sequence, its three-dimensional structure and its 

function is therefore a fundamental goal. Regrettably, our knowledge of enzyme activity is still incomplete which 

makes our attempts to modifying them often limited. Detailed understanding of the enzymatic structure/function 

relation is, however, not necessary in directed evolution, an alternative engineering technique based on massive 

mutations and selective evolution.   

 

Directed evolution (DE), has proven to be a powerful tool for adapting enzymes to wider applications [50-53]. 

Briefly, in DE diversity is first created through mutagenesis or recombination, followed by screening for 

improvements in desired properties. One of the main advantages of DE is most certainly that it does not require a 

thorough understanding of structure/function relationships, unlike rational or de novo design. The introduction of 

random mutations throughout the gene allows the discovery of mutations that could be difficult to predict with 

studies based on structure-function knowledge (mostly focused at the active site region). However, the low 

frequency of improved mutations, some experimental bias, and the combinatorial explosion of possibilities limits 

this technique. Furthermore, DE requires the development of high-throughput screening and not all processes can be 



adapted. The methodologies and achievements of directed evolution were already discussed in other sections of this 

book and will not be included here. Also we refer the reader to interesting reviews [54-59].  

A remarkable observation of many DE experiments is that the location of the beneficial mutations varies 

considerably. For example, most modifications in enantioselectivity or substrate specificity are located in the 

vicinity of the active site or in the access/exit of reactants/products [58,60,61]. Stability and activity however can be 

affected by mutations in any part of the protein, close or far from the active site [62], increasing significantly the 

number of possible mutations. To avoid screening massive number of mutations, one can reduce the region to 

explore by using functional information (from point mutations, random mutagenesis or deduction from sequence 

alignments) or when structural information exists (by visual inspection, analysis, etc.), it would be advantageous to 

exploit this by concentrating mutations where they might be the most effective [62]. Methods such as saturation 

mutagenesis (where all other 19 amino acids are tested) on specific positions, generally near the active site, can 

increase the probability of finding beneficial mutations [63-65]. This approach is particularly advantageous when a 

high-throughput screening method is not available. Generally known as semi-rational approaches, these are based 

on “smart” libraries that, in principle, should have a higher success rate and try to overcome the limitations of the 

directed evolution and rational design [66-69]. 

Although it is true that many computational approaches exist to complement DE experiments [70,69,71], the 

scope of this chapter is to center on how physics based molecular modeling can aid in laboratory DE. For this 

reason, sequence-based strategies that use evolutionary information or statistical data from previous DE rounds will 

not be explored. These often use phylogenetic analyses and multiple sequence alignments for exploring the amino 

acid conservation and relationships between homologs protein sequences [67,72-78]. Instead we will center our 

attention on how computations and structural information may aid and focus mainly in physics-based methods to 

assist in the improvement of three major aspects in enzyme design: catalytic rate constants, protein stability and 

protein-ligand binding processes. 

 

The atomic/molecular detailed computational exploration of a protein’s amino acid sequence space is a complex 

problem. As in most simulation fields, a compromise between sampling quality and quantity is necessary. Sampling 

quality involves construction of the models together with the energy and scoring functions necessary to rank them 

and evaluate molecular interactions, topics extensively reviewed previously [63,79-92]. An energy function 

describes the internal energy of the protein and its interactions with the environment such as other proteins, 

substrates and solvent, aiming at reproducing the features of the folded protein [34,84,93]. The level of theory used 

in these and their parameters vary considerably but most implementations include bonded (bonds, angles and 

torsions), non-bonded terms (van der Waals and electrostatics) and solvent components. Associated to the energy 

functions is the ability to efficiently score a large number of protein structures and protein-ligand interactions. 

Scoring functions are used to assess the quality of the designed protein, help select the preferred sequence and the 

lowest energy protein-substrate complex. Just as the energy functions, also these vary considerably and can be 



statistics or empirically-based methods such as DMutant or PopMuSiC or physics-based and rely on the derivation 

of energy terms from basic principles to calculate free energy changes [94-97].  

 

The second key aspect involves the system (model) sampling. Given the large number of degrees of freedom, 

including possible mutations and structural changes associated with them, sampling near-native protein 

conformations is difficult. Moreover, in situations where protein-ligand interactions exist, sampling must also extend 

to all (relevant) protein-ligand conformations. And if we don’t consider these issues to be enough of a headache, 

scoring and sampling are not independent! So, to overcome these limitations it is essential to introduce many 

approximations. Strategies to limit the sampling include restricting the backbone and side-chain degrees of freedom 

[34,82]. In most protein design strategies, sampling is simplified by using a fixed backbone which is normally 

obtained from an experimentally determined protein structure [98] or a high quality homology model. Although 

controversy exists on the importance of dynamics in catalysis [99-101], currently we see more and more cases where 

backbone flexibility is being taken into account [18,102-106]. As shown below, development in molecular dynamics 

(such as high-throughput molecular dynamics (HTMD), steered-MD, etc.) and Monte Carlo techniques, are gaining 

importance in enzyme engineering. 

 

As mentioned, this book chapter will center on physics-based methods to assist in the improvement of catalytic 

rate constants, protein stability and protein-ligand binding processes. Before entering in these three topics, we refer 

to Figure 1 and Table 1 for a quick guide describing the main computational methods and models being used for 

these purposes (a guide for non-experts in theoretical modeling).  Finally, we conclude this book chapter by 

introducing our perspective on how we believe these techniques will aid in future enzymatic directed evolution. 

 

Fig. 1 Scheme showing three different levels of granularity used in molecular modeling: coarse grained, all-atom 

and electronic. In the coarse grained model the smallest particle is a bead that includes condensed information on a 

set of atoms. All-atom, as indicated by the name, uses the atom as the smallest unit while in an electronic treatment 

electrons and nuclei are explicitly included. Here we show the highest energy molecular orbital (HOMO) only 

possible in an electronic treatment of the system. 



 
 

Methodology Guide 
Length-size based models (see also Figure 1)  
 
Coarse grained (CG) model. A group of atoms is described by a bead enclosing the properties of the 
aggregation. For example, according to the MARTINI model [107], aminoacids are represented with 
one to four beads, classified as charged, polar, nonpolar or apolar, and also subdivided depending on 
their hydrogen bonding capacity. Reduction in the number of beads decreases the number of pairwise 
interactions thus increasing the speed of the simulation 
 
All-atom model. All the atoms of the system are included in the model, where the energy function 
used (see below) must describe their interaction. Electrons and the nuclei information is condensed to a 
single particle that must contain an averaged description of those properties. 
 
Electronic treatment model. Each atom is described as a nucleus with its electrons, requiring, for its 
description, approximate solution of the Schrödinger equation.  
 
Physical theoretical methods  
 
Molecular mechanics (MM) [108]. These methods perform a classical description where atoms (or 
beads in a coarse grained model) are represented as spheres (or spheroids) connected by bonds, 
behaving as springs. Based on MM arise several computing simulations such as molecular dynamics, 
Monte Carlo and docking methods. 
 
Force field. Set of parameters that define the property of atoms or beads (predefined with a partial 
charge and radius) and the energy function describing their interactions in MM methods. Typically 
they include bonding: bond, angle and torsion, and non-bonding: electrostatic and van de Waals terms. 
 
Elastic network model [109] (ENM). Describes the collective dynamics of proteins by an elastic 
network, typically using a reduced set of nodes, such as alpha carbons.   
 
Molecular Dynamics [110] (MD). Simulate the motion of a model accordingly to the classical 
Newton's equation. Most MD software uses force fields to describe the properties of atoms and its 
interactions. With current high performance computing (HPC) simulations can be expanded up to the 
millisecond time-scale [111] and few millions of atoms; typical values however, involve thousands of 
atoms and hundreds of nanoseconds.  
 
Monte Carlo simulations (MC). The dynamics of the system are obtained by random (stochastic) 
motion of the system to assemble a non-time dependent trajectory [112]. As in MD, it is mostly based 
in a force field description of the model.  
 
PELE [113]. The protein energy landscape exploration (PELE) software is a Monte Carlo based 
technique including protein structure prediction techniques (such as ENM) capable of quickly 
modeling protein dynamics and protein/DNA-ligand interactions [114,115]. 
 
Docking simulations. These propose the preferred relative bound orientation between molecules, 
mostly used in protein-ligand (substrate) or protein-protein interactions. Usually, docking methods first 
provide several conformations which are then classified by scoring functions.  
 
Scoring functions. Are mathematical functions that predict the strength of intermolecular interactions 
[116]. Scoring functions are mostly parameterized from MM force fields, empirical data or knowledge 
based functions. 
 
Rotamer library. Contains a restricted number of the most probable conformations (torsion angle 



values) for a molecule, mostly applied to amino acid side chains, protein backbone and ligands. They 
are built from experimental structural data or from accurate quantum simulations (for example in 
ligands). When used with sampling methods they accelerate the exploration by adopting discrete states 
instead of continuous values. 
  
Quantum mechanics (QM). These methods are based on solving the Schrödinger equation (normally 
using approximations) under an electronic model description of the system. The solution provides the 
wave function which fully describes the system: the electronic distribution, energy and the gradients to 
describe the motion of the system. The main limitation of QM methods is their high computational 
cost, limiting the system’s size and simulation speed. 
 
Ab initio methods. These are quantum mechanics methods which parameters are obtained exclusively 
from first principles solution of the equations (still under approximations) but without any usage of 
parameterized data (see semiempirical methods).  
 
Semiempirical methods. Referred to quantum mechanics methods that use parameters derived from 
experimental data (or ab initio calculation), typically for the parameterization of the electron-electron 
interaction terms (the most expensive to compute). Thus, they are less computationally expensive and 
faster than ab initio ones, capable of dealing with large systems. Their lack of accuracy, especially 
when fragments are not in the parameterized data set, is their main limitation. 
 
QM/MM. This methodology is a combination of QM and MM methods to handle  (large) biological 
all-atom systems [117]. One part of the system where we require an electronic description, such as the 
active site in an enzyme, is treated at the QM level and the rest of the model (remainder of the protein, 
solvent, etc.) is treated at the MM level. 
 

 

2. State of the art of molecular modeling in protein design 

We provide here a general view of recent computational work on protein design. We do not aim to review all studies 

produced in the field but to underline several ones which we believe to be important for future developments of in 

silico DE approaches. 

2.1 Protein stability improvement  

Understanding and quantifying the effect of mutations on the thermodynamical stability of a protein is of paramount 

importance for industrial applications. Two of the most popular tools to prepare and score mutated proteins are 

Rosetta [118,119] and FoldX [27]. After introducing a mutation, the protein’s torsional degrees of freedom (usually 

sidechain rotamers) are optimized using an energy function that estimates the folding free energy for the created 

variant. Such energy functions depends on: i) physics-based terms, which account for van der Waals, hydrogen 

bond, solvation and electrostatic energies; ii) knowledge-based contributions, which determine the probability of a 

given rotamer according to the protein data bank (PDB) statistics [120]. Apart from these common energy terms, 

these functions have unique features. For example, Rosetta approximates the free energy change in the unfolded 

state due to a mutation with context-independent reference energies for each residue [121], On the other hand, 

FoldX explicitly estimates the entropy cost to restrict a rotamer in the native state [27]. The relatively low 

computational cost of these protocols permits to generate and score a large number of mutations in a short time. As 

shown by Potapov et al., the accuracy/cost trade-off is such that these tools can reproduce overall trends, and 



therefore suggest stabilizing mutations with acceptable probabilities, but they are not good enough to provide 

detailed results [122]. 

Following Potapov accuracy assessment, Kellogg et al. tested the ability of Rosetta to score mutations 

combining several energy functions and sampling methods with variable resolution [119]. As a main result, the 

authors concluded that the choice of the sampling algorithm should be tuned with the resolution of the energy 

function adopted. In other words, an accurate energy function performs better on a finer sampling; likewise, roughly 

sampled structures should be scored by smoother functions which can tolerate steric clashes better. Still, flexible 

backbone protocols improved small to large residue mutations, where significant structural changes can occur. In 

addition, the authors found that conformational sampling was still insufficient to recover the crystal conformation 

when a large to small hydrophobic residue mutation was introduced, due to poor packing. Larger errors were found 

when the polarity of the residue drastically changed upon mutation, which suggests poor trade-off between polar 

desolvation and buried polar interactions. The lack of explicit water molecules and ligand contacts was another 

factor in some failed predictions. Finally, the lack of a context-dependent unfolded state modeling (a given mutation 

was considered to have the same effect on the unfolded state independently of the environment [121] was considered 

as a source of error, although not a major one. In fact, a free energy variation of the unfolded state upon mutation 

might change protein stability as well as a variation in the folded state. However, a recent paper shows that an 

accurate conformational and energetic characterization of the unfolded protein is not trivial and its inclusion in 

protein stability scoring significantly worsened the prediction [123]. 

The entropic scoring in FoldX [124,27] only takes into account the change in conformational entropy, which 

depends on the number of accessible conformers in the unfolded state and their probabilities [124]. Although this 

entropic variation dominates folding [125], large discrepancies in vibrational entropy (the intrinsic entropy of a 

given protein conformer [124] have been calculated between thermophilic and mesophilic proteins [126]. Therefore, 

the thoughtful inclusion of a vibrational entropy contribution in protein design free energy functions might pay-off. 

Najmanovich and coworkers implemented this strategy in the ENcoM server [126], where they combine FoldX 

[27] with their ENcoM protocol to rapidly estimate vibrational entropy. ENcoM combines ENM techniques with 

a pairwise atom-type non-bonded interaction term to include the specific nature of amino acids [127].  

In an attempt to quantify free energies more rigorously, de Groot and coworkers employed alchemical free 

energy MD simulations to score 109 mutants of ribonuclease barnase [128]. In this technique, sampling a convenient 

number of unphysical (“alchemical”) intermediates renders a rigorous evaluation of the free energy difference (ΔG) 

between two states (e.g. wild type and mutant protein). Unfolded state’s free energy differences were calculated 

using a generic Gly-XXX-Gly peptide with capped termini. This choice provides a universal, albeit less accurate and 

context-independent, reference state whose values need to be calculated only once and then are stored as a database. 

The overall Pearson’s correlation coefficient with experimental values was 0.86, providing ~72 % of the predicted 

values within 1 kcal/mol of the experimental one when using 30 ns of simulation time. Notably, most of this 

accuracy (65 %) is retained with only 5 ns. The generality of this accuracy/cost ratio will need to be tested against a 

wider benchmark of mutations. Larger errors were detected for mutations that introduced changes in the 



electrostatics of buried residues or large structure fluctuation: mutations to glycine, involving bulky and/or well 

packed residues, etc.. 

Due to the impossibility of scoring the entire sequence (mutation) space, several strategies have been developed 

to focus the search in smaller regions. These include: i) the identification of flexible backbone sites which can be 

rigidified [129,130] introducing salt bridges [131] and/or disulphide bonds [132]; ii) the optimization of surface 

charge-charge interactions [133-135]; iii) the optimization of core packing [136]; iv) the removal of unsatisfied 

buried polar groups [137]; v) the localization of critical residues in the active site entry tunnels, especially for co-

solute tolerance, with MD [138] or other algorithms like our in-house software PELE [113]. 

Recently, Wijma and coworkers developed, and applied with success, a mixed approach which aims to obtain 

highly thermostable protein variants in a short time with minimum experimental screening [139]. In their 

computational workflow, potentially stabilizing mutations were firstly produced and scored with Rosetta [119] and 

FoldX [27]. To minimize the risk of affecting catalysis, only residues beyond 10 Å of the substrate were mutated. 

Mutations were considered potentially stabilizing if ΔΔGfold ≤ -5 kJ/mol or if |ΔΔGfold| < 5 kJ/mol and the mutation 

type was contained in the set XXX→Arg, XXX→Pro, Gly→XXX. These were then filtered to avoid undesired, 

typically destabilizing features such as increased unsatisfied hydrogen bond donors and acceptors or hydrophobic 

surface exposure to water. Then, multiple short MD simulations were used to discard variants with increased 

backbone flexibility. Finally, variants with experimentally confirmed higher thermostability and preserved activity 

were combined in the lab. This computational hierarchical workflow helps to unmask false positives (~50 % of the 

potentially stabilizing mutations), aiding to focus on reliable mutations; it is, therefore, a plausible strategy for future 

computer-aided directed evolution of thermostable proteins. The main drawback is the exclusion of mildly damaging 

mutations that could be coupled synergically to other to improve thermostability.  

As reported in a recent review [140], there is still substantial room for improvement of structure- and physics-

based (thermo)stability design. This will likely pass through a strong synergy of computational and experimental 

efforts to improve our understanding of protein stability. In addition, significant work will have to center on 

developing more accurate energy functions, including polarization, solvation and vibrational entropy terms. These 

methodological developments will necessarily have to couple with improvement of sampling algorithms, including a 

more effective modeling of unfolded state changes.  

 
2.2 Protein-ligand binding redesign  

Whether we are talking about enzymes or receptors, they all share a common feature: at some stage a protein-ligand 

recognition process must occur. These are however, notoriously slow and complex processes that require extensive 

sampling of the protein-ligand dynamics which in many cases includes induced-fit protein conformational changes. 

The accurate in silico design of protein-ligand interactions is thus a challenging step [141] toward the engineering of 

proteins for therapeutic [142] and enzymatic purposes [140]. Its difficulty roots in the low tolerance to error due to 

the reduced number of protein-ligand interactions. In addition, these are largely dominated by polar interactions, 

which are very sensitive to small changes in geometry [143]. It is worth noting that, despite the small size of the 



protein-ligand interface, we still face a huge number of possible combinations in sequence space (for 10 positions 

there are ~1013 sequences).  

In a recent attempt to benchmark the state of art of computational protein-ligand interactions design, Allison and 

coworkers tested Rosetta’s [12] sequence recovery (with respect to the wild type) capability over a set of 43 protein-

ligand complexes [143]. The Rosetta protocol involved simultaneous ligand motion and sidechain rotamer discrete 

optimization. Overall, sequence recovery was more successful when: i) a near-optimal pose was inputted and 

subjected to limited sampling instead of blindly searched; ii) the ligand was small, non-polar and rigid; iii) the 

binding pocket packing was neither overcrowded, nor poor. Another interesting result was the significantly higher 

recovery for non-polar residues. The authors suggested that new terms should be added to the energy function to 

correct this bias toward non-polar interactions [143]. However, this bias could be an artifact of poor sampling, which 

might limit the accuracy of polar interactions estimation (see above). In fact, other suggested areas of improvement 

were the use of continuous, instead of discrete, sampling of backbone and sidechain rotamers [144], concerted 

rotation of the backbone of two adjacent residues allowing larger sidechain motion (the so-called backrub motion) 

[145,146] and the calculations of partition functions providing a link between molecular behavior and bulk 

thermodynamic quantities over structural ensembles [147,148,102]. All these features are grasped by OSPREY 

[144], a recent open source solution to protein design which includes graphic processing units (GPU) acceleration 

[149], dead-end elimination algorithm [150,151] and the K* method [151]. K* aims to approximate the partition 

function of the bound and unbound states over an ensemble of structures; their ratio provides an estimation of the 

binding constant. The conceptual advantage of this methodology is a mathematically rigorous, albeit approximate, 

free energy difference calculation that explicitly simulates the free ligand and protein. Consequently, ligand and 

binding site pre-organization are, in principle, included in the calculation. On the other hand, this absolute free 

energy calculation is neither accurate nor efficient for systems with a large number of energy minima [152], 

requiring extensive sampling to reduce errors. However, the error of the method most likely compensates between 

complex and free monomers calculations, making this strategy a valuable tool for fast free binding energy 

simulations. Regardless of the methodology chosen, an effort to produce new experimental data will be fundamental 

to benchmark these high-throughput computational protocols and improve their predictive power [86]. 

An inaccurate description of the binding site is yet other possible sources of error. Indeed, some mutations 

could shift the pKa of ligand’s and protein’s titratable sites or introduce a new titratable residue. Therefore, the 

system should be prepared thoroughly before computational mutagenesis and quick pKa predictors [153] should be 

used to treat critical mutations. On the other hand, for situations where pKa is close to the experimental pH 

conditions, simulation of all the possible combinations for the ambiguous titratable sites is required. For instance, a 

recent laccase design effort required the simulation of sinapic acid in both protonation states[154]: if one of the two 

protonation would have been picked, activity changes would have been missed since they mostly involved one of 

the two accessible protonation states. Finally, waters in the binding site might have an important role in binding and 

their neglect could affect the quality of the calculation [155]. 



A way to filter and correct designs is based on MD simulations [156]. Many features of designed protein-ligand 

complexes can be inspected with this technique, including hydrogen bond geometries, binding site structural 

integrity, solvent exposure and binding site pre-organization. In particular HTMD [157] was used by Baker and 

coworkers to filter computationally designed candidates according to the fraction of near attack conformations 

(NAC), structures that resemble the transition state (TS) [158]. Moreover, MD can help in the future to discern long 

range effects. In fact, it has been recently used to highlight the impact of distant mutations on active site pre-

organization in evolved enzymes [159,160]. Furthermore, proteins are dynamical entities organized in a network of 

correlated fluctuations whose changes can significantly affect binding at large distances [161]. Importantly, such 

network can be identified through a correlation matrix (which quantifies the correlation degree of a pair of amino 

acids) and partitioned in communities of highly correlated residues, giving insights on allosteric interactions [162]. 

These analyses, with contact and hydrogen bond maps, might be used in the future to identify regions whose motion 

influences the binding site’s dynamics (for example making the sidechain of a catalytic residue too flexible), which 

can then be subjected to mutagenesis in the lab. 

A possible error when studying protein-ligand association arises when focusing mostly on the binding site, as 

some mutations along a possible entrance channel could hinder the ligand entrance/exit process. Sampling 

algorithms like PELE [163,113] can help to recognize such mutations. Its combination of ENM, sidechain 

prediction, ligand perturbation (translations and rotations), all-atom minimization and implicit solvation make it a 

suitable tool to quickly map the whole ligand migration process with good accuracy, taking protein flexibility into 

account [164-166]. Analogous MD based techniques, such as HTMD [157], RAMD [167] and steered MD [168] 

,have addressed this problem. These, provide more accurate simulations, as it explicitly models water molecules, but 

also significantly more expensive ones, difficult to apply to massive mutation studies. Additional tools such as 

Fpocket [169] or CAVER [170] are widely used to quickly identify tunnels and cavities. These techniques, however, 

do not explicitly simulate ligand or protein dynamics.  

Finally, quantum chemical calculations can be used to validate promising mutations, especially when charge 

transfer and polarization have an important role in the binding process. Mixed QM/MM schemes [171], widely used 

to model large systems, can significantly improve protein-ligand binding prediction directly, through explicit energy 

calculations [172], or indirectly [173] by re-calculating ligand’s atomic charges in an attempt to model ligand 

polarization effects. An alternative, more accurate but slower approach to large systems, is the fragment molecular 

orbital (FMO) method [174]. FMO divides a system in N non-overlapping fragments (e.g. one for each protein 

residue and ligand) and calculates the total energy as the sum of one-body fragment energies and two-body 

interaction energy corrections, providing a ~N2 scalable fully parallelizable QM calculation. Jensen and coworkers 

used this methodology to energetically score the cleavability of peptides by HIV1-protease [175] by looking at the 

protein-peptide interaction energy. 

  



2.3 Catalytic rate constant enhancement 

The improvement of catalytic activity of bond breaking/formation, passes through the modeling of the TS of the 

slowest chemical step of the targeted reaction; see below for electron transfer (ET) processes. The problems with the 

design of optimal activation energies are multiple: i) the energy function should be sensitive enough to effectively 

discriminate between the reactant (substrate) and the TS, whose charges and geometries might be similar; ii) the 

nature of the TS can change upon mutation; iii) activation energies are very sensitive to molecular geometry 

changes.  

In OptZyme the TS is approximated by a transition state analogue (TSA), a stable molecule which electronically 

and sterically resembles the TS [176]. Once the TSA and the substrate are docked in the active site, two parameters 

drive mutant selection: the enzyme-substrate (ES) and the enzyme-TSA interaction energies. These last two 

quantities are obtained using classical force fields. Through a number of conceptual and mathematical 

simplifications, the authors show that the former energy correlates with the Michaelis constant (KM) while the latter 

with the specificity constant (defined as the ration between kcat and KM). Although it yielded satisfactory correlations 

for their specific case, it is worth noting that these have no general validity. If the rate constant is comparable or 

much higher than the ES dissociation constant the pre-equilibrium approximation is no longer valid. Then, the 

Michaelis constant cannot be approximated by the ES dissociation equilibrium constant (KD) [177]. 

Notwithstanding, ES and enzyme-TSA interaction energies are still valuable tools for a fast semi-quantitative 

evaluation of enzyme variants. 

Khersonsky et al. combined computational design and directed evolution to optimize a previously designed 

Kemp eliminase [178]. As in the previous example, the classical (force field) interaction energy between the enzyme 

and an explicit TS model was the parameter to be optimized during the sequence exploration. The TS model, 

however, was derived from QM calculations in solution including key catalytic residues. The authors individuated 

three main factors for the improved activity: a more favorable electrostatic environment, a better packed active site 

and a higher degree of active site pre-organization.  

Although the last two methods, based on classical interaction energies, allow to test a big number of mutants, 

they both present a conceptual limitation: the use of the enzyme-TS (model) interaction energy, which is size-

dependent (extensive property), to score the activation energy. To correct for this approximation, the ES interaction 

energy should be taken into account, providing a relative value. However, poor sampling and inaccurate energy 

functions might introduce uncertainties that could make its introduction useless (as it often happens in molecular 

mechanics/generalized born surface area (MM/GBSA) free energy calculations [179]). Still, they are currently the 

best approach to test a large number of mutations and find promising protein variants which can then be filtered with 

MD and quantum chemical methods [156]. 

The only way to properly calculate the activation energy barriers is the introduction of a QM methodology, 

capable of describing the electronic effects associated with TS formation. QM/MM schemes, which have been 

widely applied to elucidate enzymatic reaction mechanisms [180], have been employed to rescore promising 

candidates [156,180]. A remarkable example is the hierarchical approach of Zheng et al. used to design a cocaine 



hydrolase [181]. Firstly, the reaction coordinate and the TS of the rate-determining limiting step are determined in 

the wild type. Then, many mutations are scored according to their protein-TS interaction energy; if this is lower than 

the wild type, a QM/MM calculation along the reaction coordinate is used to estimate the energy barrier. To allow 

fast computation, the authors use a reaction coordinate approach, freezing at each step the reactive coordinate and 

minimizing all the other degrees of freedom. A main drawback is still the need of extensive sampling, which makes 

the presented methodology too expensive for a general use. 

A cheaper alternative to QM/MM calculations is empirical valence bond (EVB) [182]. EVB is based on a semi-

empirical Hamiltonian which describes reactants and products with their resonance structure (explicitly defining 

atom connectivity). Although EVB energies are less accurate than ab initio and DFT QM/MM methods, free energy 

calculations are orders of magnitude quicker and still can achieve accurate results [183,184], making EVB a suitable 

tool to score a bigger number of mutants. 

In the attempt to describe the entire enzyme or a large part of it with QM calculations, Jensen and coworkers 

approximated the reaction coordinate with the linear interpolation between reactant and product optimized 

geometries and calculated each point with semi-empirical methods [185-187]. These fast electronic calculations, 

united with algorithms for large scale systems such as FMO [174,188] or the much faster Effective Fragment 

Molecular Orbital (EFMO) [189], make “ab initio biochemistry” [190] closer, albeit still far away for design 

purposes. 

 In the particular case of oxidoreductases, where charge transfer processes dominate, additional complexity 

is added to the protein design problem. Electrons must move from a donor to an acceptor, sometimes through a long 

range electron transfer. According to Marcus’ theory, the ET rate constant [191] depends on three parameters: i) 

electronic coupling, the probability to jump from the reactant to the product’s diabatic state, which exponentially 

depends on the donor-acceptor distance; ii) reorganization energy, which is the energy penalty that accompanies 

electron transfer; and iii) the free energy difference between product and reactant (driving force). The ET rate 

constant has a maximum when the sum of reorganization energy and driving force equals zero. Although accurate 

QM/MM methodologies have been developed to study electron transfer rate in proteins [192,193], their use in 

enzyme design is limited by their computational cost. To overcome this barrier, we have recently developed a new 

methodology to approximately evaluate ET rates, which combines fast conformational sampling [163] and quick 

QM/MM spin density calculations and has been used to evaluate the activity of laccases variants [194,154]. While 

PELE provides a thorough and quick mapping of enzyme’s and substrate’s dynamics, substrate’s spin density 

permits to promptly score the relative changes in driving force upon mutation (the higher the spin density, in 

principle, the higher the driving force). In the same spirit, we rationally improved the oxidation rate of 2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) by a highly stable manganese peroxidase (Fig. 1) relying on 

electron coupling calculations, after the entire protein-ligand migration studies were performed [195]. In this case, it 

was assumed that the driving force and the reorganization energies did not change upon mutation, which can be a 

reasonable approximation in surface ET.  



 

 

Fig. 2 General scheme for the rational MnP6 engineering (Acebes et al.2016). The study was divided into two steps: 

1) ligand diffusion and 2) electronic transfer process. First, we compare the ligand diffusion in the active and 

inactive enzyme by computing the interaction energy (red and green dots, respectively) and the distance between 

ligand and receptor. From the active enzyme we extract information about the active site environment that help us to 

redesign the inactive enzyme by introducing two specific surface mutations (blue dots). Importantly, these mutations 

involved solvent exposed residues with low conservation and mutability score provided by bioinformatics 

techniques. The activation was confirmed in silico by electronic coupling calculations in the second step. Site-

directed experimental mutagenesis validated the success of the new mutant, which combines both stability and 

activity.  

 

Since long range ET is often the rate limiting step in catalysis, engineering efforts have also centered on 

mutating residues along the ET pathway. By using the QM/MM e-pathway method [196], Vidal-Limon et al. studied 

P450BM3’s suicide inactivation [197], a common process in heme peroxidases. From the QM-MM calculations they 

identified key residues in the second heme coordination sphere, aiming at reducing electron delocalization and 

obtaining a more stable enzyme against H2O2. After mass spectrometry assays confirmed the oxidized sites 

predicted by QM/MM, they generated a variant 260 times more stable against H2O2 inactivation. 

 
 



3. Computer-aided directed evolution, a perspective. 

In the previous sections we have seen multiple examples of computationally driven enzyme engineering. While they 

use, to more or less degree, structure/function knowledge for the modeling, we observe a tendency towards more 

random massive sequence sampling; we expect to see in the near future full in silico directed evolution studies. By 

full we obviously do not refer to a complete study of the sequence space (all residues and all possible mutations), but 

to an exhaustive random mutagenesis combination on a large subset of selected mutants.  For 100 residues, for 

example, we have a sequence space of ~10130, which would take several lifetimes to be evaluated even if using 

current supercomputers. If we restrict the exploration to single, double and triple mutants, we have now ~109 

possible variants to model. While this is still a huge number, one can think in a hierarchical scheme where this 

sequence space can be explored in days. This is particularly true with the current (and future) developments in lower 

cost multicore servers based on mobile technology (see, for example, the MontBlanc project at 

https://www.montblanc-project.eu/).  

 We find a promising example in the work by Wijma et al., where a hierarchical protocol is used to increase 

thermostabilty [139]. In this line, we expect the development of additional techniques combining quick 

bioinformatics (or knowledge-based) screening of a large sequence space, with a molecular modeling refinement of 

selected mutants. This last step could be further hierarchically broken down into a first classical molecular modeling 

screening followed by selected quantum chemical reevaluations, in a similar manner to the previously described 

study by Zheng et al. [181]. Even though computational techniques are becoming more precise and easy to 

implement, a synergic effort between in silico predictions and experimental validation will be, in our opinion, the 

preferred solution. Figure 4 shows a possible workflow combining these ideas. In order to apply such a combined 

effort, we should keep in mind that molecular modeling will require an accurate 3D structural model, a possible 

limiting factor.  

 
 



Fig. 3 Proposed computer-aided directed evolution workflow 

 

The workflow must start with a careful preparation of the wild type structure, a fundamental step as it 

determines the outcome of the computational design. This preparation should include some sampling, aimed at 

generating conformational diversity and providing useful information for design (such as the protein regions where 

to look for improved variants). We should emphasize that most molecular modeling predictions are based on relative 

values (rather than absolute ones), in which case a wild type reference value is needed. In the next step, high-

throughput screening of mutations is carried out with quick methods, such as bioinformatics and knowledge-based 

methods. This step will have to rank the initial sequence space, similar to a high throughput screening in drug 

design. Taking into account that each bioinformatics score can be accomplished in less than a second, we can aim 

for several millions mutants in a “doable” time; we are still looking at several days of hundreds/thousands of cores 

dedication, a feasible effort, however, in near future multicore and accelerated computers (or cloud computing). 

Bioinformatics screening of millions (billions) mutants will benefit from new sequencing and storage of mutational 

data in the years to come and, in particular, from its processing using machine learning techniques [198]. At the 

present stage, such techniques are mostly used to restrict mutagenesis to relevant protein regions [72-75,77,78] or to 

guide directed evolution “on-the-fly”[199]. A second filtering, for example, could then be performed with fast 

molecular modeling techniques such as FoldX or Rosetta. These techniques could be applied to (the best ranked) 

several tens of thousands of compounds. The final goal is to provide a reduced set of candidates, few 

hundreds/thousands, where we can apply a more accurate molecular modeling refinement. The simulation time 

required for this last step will highly depend on two factors: i) the exhaustiveness of conformational sampling and, 

ii) the nature of the property to improve. Conformational sampling aims to determine possible changes in the 

structure produced by the mutation. Quick assessments, in the order of minutes to hours, can be currently performed 

by Monte Carlo techniques [154], using MD will require significantly more computational time, limiting the study 

to only few hundred mutants. Another important aspect is how to re-evaluate the desired property to engineer. 

Substrate binding energies and thermal stability could be quickly evaluated, for example, with alchemical MM free 

energy calculations (with respect to the wild type) [128]. Catalytic design, on the other hand, will require expensive 

QM calculations. Due to their very high cost (hours to days), future work will have to center in designing cheaper 

methods [200-202] and/or property evaluations. For example, in our current efforts in oxidoreductases’s engineering 

the driving force is approximated with the amount of spin density, calculated after five steps of QM/MM geometry 

optimization, localized on the substrate (with respect to the wild type) [194].  

The proposed workflow includes an iterative computational-experimental approach, where several schemes 

could be imagined. Currently we find very few studies following such an approach, where we can underline, for 

example, Privett et al. [203]. When thinking of future implementation, an initial less accurate in silico evolution 

could be tested in the lab and a more accurate second one performed only on those regions that show more 

promising experimental results. Similarly, more accurate simulations could be performed only in single mutants, 

followed by experimental site directed mutagesesis and expanded then to a second in silico round involving double 



mutants, and so on. In this way, synergic mutations can be partially recovered. An alternative strategy to retrieve 

cooperative mutations, while computing single mutants only, is to rank sequence positions instead of point 

mutations. Positions are ordered according to their frequency of beneficial mutations, following a fast computational 

saturated mutagenesis protocol, and the most promising are communicated to the experimental laboratory for 

(iterative) combinatorial saturated mutagenesis. Contrary to the previous strategy, false positives are not filtered out 

since a position, instead of a given mutation, is chosen. On the other hand, true positives can be recovered. We are 

currently employing this strategy to improve oxidoreductases' activity. In our initial test on a high redox potential 

fungal laccase, initial experimental and theoretical evolutions were run in parallel. In the first DE experimental 

generation one improved variant was identified. In the in silico round, over 40 positions were screened with PELE, 

using the protein-substrate interaction energy after an induced fit procedure, and the best five identified (Fig. 4 

central panel). Interestingly the improved variant found experimentally was within these 5 top positions.  Then 

through combinatorial saturation mutagenesis using NDT degenerated codons three new variant were identified 

recovering synergetic effect of two of the suggested in silico positions. This approach allows quickly guiding 

experimental mutagenesis: using 100 CPUs ~200 positions can be scored in one day. Although this protocol requires 

testing more mutants in the lab, it permits to go from the computer to the lab in 24 hours with a focused library of 

mutants, an appealing feature for industrial purposes where large number of mutants can be assayed. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Left panel: scheme of the used computational protocol. It includes identification of all residues close to the 

bound substrate, mutation of these amino acids (AA), system relaxation and energy scoring. The image in the center 

is a heat-map of the tested 43 mutations. The pink color corresponds to an equal or worse value than the wild type, 

while increasing darker color corresponds to improved classical scoring (protein-substrate interaction energy). From 

this heat-map the best positions (with the largest number of improved variants relative to the wild type) are 

identifies, in this example the top 5. On the left panel we find the 5 amino acid positions (in van der Waals 

representation) suggested to be tested experimentally.  

 



4. Conclusion 

Biotechnology needs accurate enzymes evolution techniques, capable of designing new catalysts able to work in 

environmentally friendly conditions and, importantly, under industrial requirements. In this line, we find great 

efforts in developing (and improving) site directed mutagenesis and directed evolutions techniques, with computer 

simulations increasingly being used for this purpose. Different methodologies, from a quick bioinformatics sequence 

analysis to a robust solution of the Schrödinger equation, seek to aid the experimental efforts. In this book chapter 

we overviewed recent developments in molecular modeling for three different engineering tasks: protein stability, 

protein-substrate binding and catalytic rate, with the goal of illustrating how these techniques can influence directed 

evolution in the near future. We underline two key factors in future implementations: i) hierarchical combination of 

different computational solutions (with increasing accuracy but also computational cost), and ii) close iterative 

efforts between in silico and in vitro approaches.  
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