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Abstract
Seasonal climate forecasts could be an important planning tool for farmers, government and
insurance companies that can lead to better and timely management of seasonal climate risks.
However, climate seasonal forecasts are often under-used, because potential users are not well
aware of the capabilities and limitations of these products. This study aims at assessing the merits
and caveats of a statistical empirical method, the ensemble streamflow prediction system (ESP, an
ensemble based on reordering historical data) and an operational dynamical forecast system, the
European Centre for Medium-Range Weather Forecasts—System 4 (S4) in predicting summer
drought in Europe. Droughts are defined using the Standardized Precipitation Evapotranspiration
Index for the month of August integrated over 6 months. Both systems show useful and mostly
comparable deterministic skill. We argue that this source of predictability is mostly attributable to
the observed initial conditions. S4 shows only higher skill in terms of ability to probabilistically
identify drought occurrence. Thus, currently, both approaches provide useful information and
ESP represents a computationally fast alternative to dynamical prediction applications for drought
prediction.
1. Introduction

Ecosystems and human societies are strongly impacted
by weather driven natural hazards, such as droughts
[1, 2], expected to becomemore frequent and of larger
amplitude under climate change [3–6]. Seasonal
climate forecasts of droughts can enable a more
effective adaptation to climate variability and change,
offering an under-exploited opportunity to minimise
the impacts of adverse climate conditions. Conse-
quently, developing skilful drought seasonal forecasts
has become a strategic challenge in national and
international climate programs (see e.g. [7]).

The feasibility of seasonal prediction by mean of
numerical models largely rests on the existence of
slow, and predictable, variations in soil moisture,
snow cover, sea-ice, and ocean surface temperature,
© 2017 IOP Publishing Ltd
and how the atmosphere interacts and is affected
by these boundary conditions [8]. Seasonal predict-
ability of weather events is spatially as well as
seasonally highly variable. Generally, the skill is high
over the tropics while over the extra-tropics it is very
limited. Over Europe, the achieved forecast skill is
low, especially regarding seasonal rainfall forecasts
[8, 9]. However, recent investigations have shown
some improvements with the initialization of soil
moisture [10], increased resolution [11] and some
systems have demonstrated skill in prediction of the
large scale circulation over Europe up to a year in
advance [12].

Meteorological drought predictions, defined using
the standardized precipitation index aggregated over
several months (such as SPI–6, that is, aggregated over
6 months; [13]), generated with dynamical models
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combined with monitored data indicate significant
skill (see [14] for a global assessment using ECMWF-
System 4 data (S4) and [15, 16] using the North-
American Multi-Model Ensemble).

Thus, it is essential to compare dynamical climate
predictions with simple empirical methods to assess
the overall added value of the former [17]. For
instance, [14] found that it is difficult for dynamical
systems to add value with respect to forecasts based on
climatology. Instead, [15] found some added value of
dynamical forecasting relative to a baseline empirical
method when predicting the drought onsets. They
consider as a benchmark forecast an ensemble
streamflow prediction (ESP; [18]) system. The ESP
method relies on resampled historical data to generate
an ensemble of possible future climate outlooks. [19]
have achieved skillful predictions of several drought
indicators at global scale with this method, showing
the value of purely statistical based systems.

Skill of both empirical and dynamical methods
largely relies on the persistence properties of droughts.
Long observational datasets that are continuously
updated are thus of paramount need to monitor
current conditions and to generate drought indicator
forecasts [20]. However, a number of constraints (such
as data unavailability and poor data coverage) may
limit such analysis. This is particularly challenging
when observations need to be available in near-real
time (so less time is available to retrieve and control
the observations) and especially over data-poor
regions (e.g. Africa and South America [16]).

Previous drought forecast studies (see e.g. [14–16,
19]) are based on the Standardised Precipitation Index
(SPI). Recently, many other works have used the
Standardized Precipitation Evapotranspiration Index
(SPEI) [21]. As the SPI, the SPEI has the advantage of
allowing the analysis of different temporal scales.
However, the SPEI also includes the effects of
temperature on drought assessment [21]. Importantly,
summer SPEI has been shown to capture better than
other indices (such as SPI or the Palmer drought
severity index) the drought impacts on hydrological,
agricultural, and ecological variables (e.g. [22–26]).

The aim of this study is to explore the drought
seasonal predictability by combining observed climate
conditions (with near-real time datasets) with fore-
casts of the current-summer precipitation and
temperature variables based on the ECMWF Sys-
tem-4 and the ESP method. The final goal is to assess
the skill achieved by these approaches and drawing
some general conclusions about their respective
drawbacks and the advantages when applied to the
region under investigation. Here we extend previous
studies on drought seasonal prediction by (i) analysing
the SPEI, (ii) focussing on Europe (between 36.25° to
71.25°N and −16.25° to 41.25°E), a challenging
domain for the currently available global dynamical
climate models but with good monitoring products
(see e.g. [16]) and (iii) evaluating forecasts valid
2

during the boreal summer for the 6-month (relative to
the period March to August), when the high heat and
associated evaporation are intensifying potential water
deficits and shaping drought events with large negative
impacts (e.g. on public water supply [27], agriculture
[28] and forest fires [29, 30]).
2. Data and methods
2.1. Data
As reference data we used two long term and
continuously updated databases: GHCN-CAMS for
two-meter air temperature [31] and CPC Merged
Analysis of Precipitation (CMAP; [32]). CMAP is a
monthly precipitation database from 1979 to near the
present and it combines observations and satellite
precipitation data into 2.5°×2.5° global grids. These
datasets are consistentwith other observational data sets
over Europe [31, 32]. Supplementary S1 shows the high
consistency between SPEI calculated with these data
against SPEI calculated with ECMWF re-analysis data
(ERA-Interim) for two-meter temperature [33] and
GPCPVersion 2.2CombinedPrecipitation dataset [34].

Here, we use seasonal forecasts from ECMWF
System 4, a leading operational seasonal prediction
system based on a fully coupled general circulation
model [35]. To evaluate the S4 prediction quality we
use a set of retrospective forecasts (re-forecasts)
emulating real predictions for a 30-year period
(1981–2010) joined with the operational S4 forecast
for the period 2011–2015. S4 probabilistic predictions
consist in an ensemble of integrations [35] of the
model that uses slightly different initial conditions: for
the atmosphere the ERA-Interim re-analysis [33] is
perturbed using single vector perturbations [36] and
for the ocean the 5 members of the ORAS4 reanalysis
are used [37].

Temperature and precipitation S4 predictions are
bias corrected by means of simple linear scaling
performed by using a leave-one-out cross-validation,
i.e. excluding the forecasted year when computing the
scaling parameters. Figures S2-S9 show the remaining
bias (generally negligible), correlation for raw data and
for detrended data for monthly temperature and
precipitation forecasts from ECMWF System 4
considering the start dates of April, May, June and
July. These analyses indicate that the dynamical
seasonal forecasts show good performance for the
first month, while afterwards their quality declines
markedly with remaining correlation skill only locally
for temperature at lead time of 2 months or more.

To compare the various data sets, their values are
remapped (bilinear interpolation for temperature and
conservative remapping for precipitation) from their
original resolution to the coarsest grid, defined by
CMAP (2.5°× 2.5°). More details on the remapping
procedure are provided in the supplementary material
available at stacks.iop.org/ERL/12/084006/mmedia.

http://stacks.iop.org/ERL/12/084006/mmedia


Table 1. Drought severity classification based on the SPEI values.

Standardized index Description

−0.50 to −0.79 Abnormally dry

−0.80 to −1.29 Moderate drought

−1.30 to −1.59 Severe drought

−1.60 to −1.99 Extreme drought

−2.0 or less Exceptional drought

Environ. Res. Lett. 12 (2017) 084006
2.2. Observed SPEI
We calculate the standardized precipitation evapo-
transpiration index (SPEI) for the 6 month period
from March to August. The SPEI considers the
monthly climatic balance as precipitation (PRE)
minus potential evapotranspiration (PET) and it is
obtained through a standardization of the 6-month
climatic balance values. The standardization step is
based on a nonparametric approach in which the
probability distributions (p) of the water balance data
samples are empirically estimated [38].

2.3. Predicted SPEI
In this study we assess the skill of forecasts initialized
in April, May, June and July for the two prediction
systems, S4 and ESP. In both cases, to calculate the
predicted SPEI6 for August, we combine the seasonal
forecasts of precipitation and temperature with the
antecedent series of observed records. For instance,
when we forecast SPEI6 with prediction initialized in
April (thus performing a 5-month ahead prediction),
we aggregate the observed precipitation and temper-
atures in March with the forecasted values for April to
August.

When considering the S4 predictions, we join each
individual member prediction of PRE and PET with
antecedent observations to obtain an ensemble
prediction.

ESP consists in replacing monthly forecasts by
resampled historical observations of PRE and PET.
Thus, it provides a probabilistic prediction in which
each member of the ensemble corresponds to one
resampled year, thus preserving the observed sequence
in that year.Adetaileddescriptionof theESP isprovided
in [19] and our specific implementation is reported in
the supplementarymaterial.All the forecasts aredoneby
using cross-validation in order to evaluate the
predictions as if they were done operationally.

2.4. Verification metrics
First, we compute the Pearson correlation coefficient
among forecasts and observations on a grid point by
grid point basis. We estimate the grid point p-values
using a one-sided Student’s t test and we correct
individual significance tests for multiple hypotheses
testing using the False Discovery Rate (FDR) method
[39]. We apply the test on the p-values and
conservatively set a false rejection rate of q= 0.05.
Also, we estimate the significance of the difference
between two correlations using the method described
in [40], which considers the dependence from sharing
the same observations in both correlation values.

Then we compute the reliability diagrams, a
common diagnostic of probabilistic forecasts that
shows for a specific event (e.g. moderate drought) the
correspondance of the predicted probabilities with the
observed frequency of occurrence of that event [41].
We also include the weighted linear regression through
the points in our diagrams (following [9]).
3

Also we consider the ROC area skill score
(ROCSS) based on the relative operating characteristic
(ROC) diagram. ROC shows the hit rate (i.e. the
relative number of times a forecast event actually
occurred) against the false alarm rate (i.e. the relative
number of times an event had been forecast but did
not actually happen) for different potential decision
thresholds [42].

In order to have a large sample of probability
forecast, the reliability diagrams and the ROCSS are
computed by aggregating the grid point forecasts
within the domain of study following the procedure
recommended by the WMO [43]. Thus, for each
drought event (e.g. moderate drought, table 1) and
grid point, we calculate the forecast probabilities of
that event occurring using the ensemble members
distribution. Then, we group the probability forecasts
into bins (here five of width 0.2) and count the
observed occurrences/non-occurrences. Finally we
sum these counts for all area-weighted grid points
in the studied domain.

We estimate the uncertainties in the reliability
slopes and the ROCSS score using bootstrap
resampling, where the prediction and observation
pairs are drawn randomly with replacement 1000
times. The confidence interval is defined by the 2.5th
and the 97.5th percentiles of the ensemble of the 1000
bootstrap replications. To account for the spatial
dependence structure of the data, we use the same
resampling sequence for all grid points within each
bootstrap iteration.

More details on data and methods are provided in
the supplementary material.
3. Results

In order to evaluate the deterministic performance of
the systems, figure 1 shows the correlation of the S4
predictions (left panels) and the difference between the
S4 and the ESP correlations (right panels). Significant
S4 correlations exist for all the forecast times, with the
highest values for the forecasts initialized in July, as
one may expect (figure 1 left panels). Generally S4 and
the ESP show similar correlations (figure 1 right
panels) with higher scores in the southern and in the
eastern sectors of the domain for the S4 predictions
initialized in April and May, with few grid points with
a p-value <0.05 (not collectively significant consider-
ing the FDR test). Looking more in detail, although
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Figure 1. Correlation maps of S4 forecasts of summer SPEI against observed SPEI over the period 1981–2015 (panels (a), (c), (e) and
(g), for forecasts are initialized in April, May, June and July, respectively) and difference in correlation between S4 and ESP predictions
(panels (b), (d), (f) and (h)). Open circles indicate local significant (i.e. without the FDR correction) correlations (p-values < 0.05);
filled points indicate global significant (i.e. after the FDR correction) correlations.
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correlation values give an idea of the overall
performance and its evolution with the lead-time,
the correlation results for individual grid points
should be considered with caution as we are dealing
with gridded monthly data, i.e. data showing a strong
spatial correlation. This strongly reduces the effective
number of independent data and suggest interpreting
with care the local results.

In order to summarize the results and to assess the
contribution of the trend to the skill, figure 2 displays
the distribution of the correlation values of the pairs
(S4 predictions, observations) and (ESP predictions,
observations) computed across the studied area for all
the different predictions, calculated on both original
(figure 2(a)) and linearly detrended data (figure 2(b)).
To avoid artificial skill, the data were de-trended in
each step of the cross-validation (as recommended by
the WMO, [43]).

Three main conclusions can be drawn from this
analysis. First, the skill increases with the month of
initialisation, as expected. That is, the correlation
4

values in longer leads (i.e. the 5-month ahead
prediction issued in April or the 4-month ahead
prediction issued in May) are generally lower than
those of shorter (2 and 3 months) lead forecast.
Second, similar results are obtained considering raw
and detrended data, with slightly lower correlation
values in the latter case. Third, figure 2 confirms that
S4 and ESP perform quite similarly, although usually
S4 predictions issued in April and May show slightly
better results than ESP ones. Additionally, as expected,
the interquartile range of spatial correlation distribu-
tion decreases as the starting date approaches July.
This indicates that spatial homogeneity of the drought
forecast skill is increasing with longer observational
precipitation period included in the drought index
calculation.

Figures S10 and S11 show the correlation for all the
predictions and confirm the above described results.
Calculating the Spearman correlation in addition to
the Pearson correlation, or quadratic detrending
instead of linear detrending, led to similar results
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Figure 2. Boxplots of the distribution of the correlation values of the pairs (S4 predictions, Observations) and (ESP predictions,
Observations) computed across the studied area for different start dates based on (a) original data and (b) detrended data. The median
is shown as a solid line, the boxes indicate the 25–75 percentile range while the whiskers show the 2.5–97.5 percentile range.
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(figure S12). It is worth to mention that trends and
their significance have been estimated by using the
original series, i.e. without applying any pre-whitening
procedure. Autocorrelation and trend influence each
other and affect the assessment of the associated
statistical significance; however, reducing the potential
effects of autocorrelation by pre-whitening has in
some cases serious drawbacks (see e.g. [44]). To assess
the effect of temporal autocorrelation of the data on
the significance of our results, we calculate the annual
lag-1 autocorrelation coefficients of the observed SPEI
series on a grid point by grid point basis and found
them to be significant in around 5% of the studied
domain (see figure S13). Thus, errors due to serial
correlation could be considered negligible. Neverthe-
less, we also repeat the correlation analysis estimating
the significance level of correlation using the Student
distribution with N degrees of freedom, N being the
effective number of independent data calculated
following the method described in [45, 46], obtaining
very similar results (figure S14).

Figure 3(a) shows the reliability diagram for the
studied domain for moderate drought events (SPEI<
− 0.8; see table 1 and [47]). It compares the observed
relative frequency against the predicted probability,
providing a quick visual assessment of the reliability of
the probabilistic forecasts. A perfectly reliable system
should draw a line as closely as possible to the diagonal
(slope equal to 1). Both prediction systems (ESP and
S4 initialized in April) show that the uncertainty range
of the reliability line does not include the perfect
reliability line, however they are inside the skilful BSS
area (Brier Skill Score > 0 and slope > 0), that is, they
are still very useful for decision-making [9]. In order to
summarise the results for all the start dates and
drought thresholds, we calculate the slopes (and
associated uncertainties) of both predictions (see
boxplots of figure 3). Generally the S4 slopes are
positives but less than the diagonal, indicating that the
forecasts have reliability although tend to be under-
confident (a systematic error). On the other hand,
generally the ESP slopes are larger than S4 slopes
5

resulting in higher reliability except for the highest
drought threshold (although results for the highest
drought threshold should be treated with caution since
the reduced data sample sizes). Most probable reasons
for these results are: (i) ESP resamples the observations
(equally well for the whole sample distribution), which
allows it to have an adequate spread by definition as it
does not have systematic errors associated with the
ensemble generation as dynamical models have and
(ii) for more extreme events, ESP cannot simulate
those cases because they have not been recorded in
observational data.

The reliability diagram measures the performance
of the predictions conditioned on the forecasts (i.e.
considering the relative number of times an event was
observed when it had been forecasted). Complemen-
tary information is given by the ROC diagram, which
is conditioned on the observations. Figure 4(a) shows
an example of the ROC diagram for the prediction
initialized in April. It indicates that both the systems
have high skill since their curves are both above the
identity line H= F (when a forecast is indistinguish-
able from a completely random prediction). Figures 4
(b), (c), (d) and (e) summarize the ROCSS for all the
drought thresholds and start dates. At a first glance, it
is clear that the skill improves as a function of the start
date, although it is worth noting that all the forecasts
have some level of skill (ROCSS > 0), except for the
ESP prediction issued in April for more severe
droughts (figures 4(d) and (e)). Of the predictions,
generally S4 shows higher skill compared to that one of
the ESP forecasts, especially for the start dates of April
and May and for the most severe drought events.

The skill estimates based on the performance of
the system in the past may guide end-users on the
expected performance of the future forecasts. As an
illustrative application, we compare the ability of the
drought prediction based on climatological values
(ESP) with the dynamical forecasts merged to
observations (S4) in forecasting the 2003 drought.
This event has been shown to be predictable four
months ahead [48, 49]). The observed SPEI (figures 5
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Figure 3. (a) Reliability diagrams for moderate drought predictions (as defined in table 1) for S4 and ESP systems (start date of April).
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25–75 percentile range while the whiskers show the 2.5–97.5 percentile range. The black horizontal line shows the perfect reliability
line (slope= 1). Square with dashed lines indicate the example of figure 3(a). (c), (d) and (e) as (b) but for the severe, extreme and
exceptional drought thresholds (according to table 1), respectively.
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(a) and (b)) indicates that most of Europe experienced
drought conditions, with central Europe reaching
SPEI value less than −2, i.e. exceptional drought
conditions. Figures 5(c) and (d) show the SPEI6
forecasted for August 2003 using the S4 forecasts
initialized in May. Both predictions correctly indicate
negative SPEI values over extended regions in Europe,
although with milder drought conditions with respect
to the observed ones. In addition to the ensemble-
mean forecast, we also show the probability for
moderate drought occurrence (SPEI<− 0.8). Indeed,
having an ensemble of predictions (one SPEI6
prediction for each ensemble member of the S4
system) enables us to provide the probability of
drought occurrence for any given drought threshold.
6

This 4-month lead time forecast captures reasonably
well the observed drought conditions. Also the ESP
prediction issued in May (figures 5(e) and (f)) shows a
relatively high agreement with the observations,
although both the ensemble mean and the probabili-
ties seem to underestimate the observed ones, more
than the S4 predictions.
4. Conclusions and discussion

In this study we have explored the summer drought
predictability in Europe through the SPEI indicator
aggregated over the months March–August. We have
compared two different seasonal forecasting systems:
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Figure 4. (a) ROC diagrams for moderate drought predictions for S4 and ESP systems (start date of April). The shaded regions
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(i) a dynamical prediction system based on the
ECMWF System-4 and (ii) the ensemble streamflow
prediction system ESP based on reordering historical
data. Both systems merge observations with forecasts.
Results show that both systems are skilful already a few
months ahead suggesting a window of opportunity.

Moreover, the two systems achieve comparable
skill in predicting drought at seasonal time scales.
Since the ESP predictability comes from the observed
initial drought conditions, we conclude that predict-
ability found here largely relies on the persistence of
drought events. We also confirm the main results of
previous studies [14, 15, 50] indicating the need
of improved dynamical forecasts in the mid-latitude
7

regions in order to add value with respect to a baseline
empirical method. Only locally in southern/western
Europe and for April andMay initializations, we found
generally slightly higher performance of S4 in term of
correlation values. Some level of reliability of
probabilistic forecasts is also shown while the ROC
diagram shows generally higher S4 skill compared to
the ESP in discriminating drought events.This may be
explained by the overall good performance of
dynamical seasonal forecasts for the first month of
prediction and residual skill afterwards for tempera-
ture over this area. Thus, at the moment, ESP
represents a computationally faster and cheaper
alternative to dynamical prediction applications for
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drought, and it could be used to benchmark other
models.

Nevertheless, our results demonstrate the feasi-
bility of the development of an operational early
warning system in Europe. Due to inherent and large
uncertainties in seasonal forecasts (both empirically
or dynamically based), predictions need to be
expressed probabilistically. Our probabilistic verifi-
cation results suggest that operational forecasts of
summer drought in Europe can be attempted, but
users need to be well trained on how to best interpret
and use these forecasts, given the not-optimal
reliability here shown. For instance, from the users
perspective, it is important to assess whether these
forecasts can predict the occurrence of drought
events and it is important to know if the predicted
probabilities correspond to the observed probability
of the events. A calibration of probability forecasts
might be necessary in the opposite case to make the
forecasts reliable (e.g. by using the variance inflation
technique as applied in [51]). Although these kind of
predictions (S4 or ESP) are fine when there is an
already established drought, additional studies are
needed to forecast the onset and the end of these
events [15], for which other systems, based on
shorter accumulation scales, have been already
evaluated [52].
8

This work has provided the first assessment of
meteorological drought seasonal prediction in Europe,
and can also serve as a baseline study for future
analyses including other dynamical forecast systems,
more sophisticated empirical methods [53], more
complex estimation of the PET [54, 55], other
hydrological variables (e.g. [56, 57]), and higher
resolution.

The results described here are obtained by
following a solid, relatively simple and transparent
statistical methodology that can also be applied to
other areas. In order to ease the reproducibility of the
methods and results, and to facilitate the applicability
of these predictions, all the scripts used for this study
and the SPEI data (observed and predicted) are freely
available for research purposes by contacting the
corresponding author. In this context, it is worth
noting that the ability to generalize the methods
themselves is technically straightforward, but the
development of a prototype of an operational forecast
system is feasible only where/when reliable observed
climate variables are available in near-real time.
Indeed, a large obstacle to apply these methods in
other areas may be in the uncertainties of the observed
near-real time data used for drought monitoring and
to develop and evaluate the predictions [16, 58]. Thus,
it is recommended that, before implementing our
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approach in other regions, a careful assessment of the
available data sets (update in near-real time) should be
performed.
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