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Abstract 

The phase stability and mechanical properties of wurtzite (w)-Zr0.25Al0.75N/cubic (c)-TiN and 

w-Zr0.25Al0.75N/c-ZrN multilayers grown by arc evaporation are studied. Coherent interfaces 

with an orientation relation of c-TiN (111)[1-10]ǀ ǀ w-ZrAlN (0001)[11-20] form between 

ZrAlN and TiN sublayers during growth of the w-ZrAlN/c-TiN multilayer. During annealing 

at 1100 °C a c-Ti(Zr)N phase forms at interfaces between ZrAlN and TiN, which reduces the 

lattice mismatch so that the coherency and the compressive strain are partially retained, 

resulting in an increased hardness (32 GPa) after annealing. For the w-ZrAlN/c-ZrN 

multilayer, there is no coherency between sublayers leading to strain relaxation during 

annealing causing the hardness to drop. The retained coherency between layers and the 

compressive strain in the w-ZrAlN/c-TiN multilayer results in superior fracture toughness 

compared to the w-ZrAlN/c-ZrN multilayer as revealed by cross-sectional investigations of 

damage events under scratch and indentation tests.  
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1. Introduction 

Wear resistance of protective coatings at high temperature is critical for cutting and 

machining tools [1], where the operating temperature may exceed 1000 °C [2]. One way to 

achieve high thermal stability and good mechanical properties is to design an alloy that 

decomposes at high temperature into a nanocomposite and exhibits age hardening [3, 4]. The 

archetype for this approach is the metastable cubic (c-) Ti1-xAlxN solid solution, which forms 

nm-sized domains by spinodal decomposition when exposed to high temperatures (around 

900 °C) [5-8]. At even higher temperatures this alloy further decomposes into its 

thermodynamically stable phases c-TiN and wurtzite (w-) AlN [9] that deteriorates the 

mechanical properties [10, 11]. The related Zr1-xAlxN alloys display characteristics similar to 

Ti1-xAlxN with a miscibility gap for cubic solid solutions and a higher driving force for 

decomposition compared to Ti1-xAlxN [12, 13] resulting in promising mechanical properties 

[14-18] at high temperature. In addition to cubic solid solutions, wurtzite structured Zr1-xAlxN 

solid solutions have high thermal stability when the Al content is higher than ~70% [13]. It 

has also been shown to exhibit spinodal decomposition at high temperature [19] resulting in 

good wear behavior during cutting applications [20]. 

 Multilayered structures incorporating hard coating materials can be designed to 

improve the thermal stability [21-23], mechanical properties [24, 25] and wear behavior [26, 

27]. For example, when sandwiching ZrAlN and TiN during very high temperature (900 °C) 

growth conditions, the multilayer architecture allows for growth of c-AlN in a c-ZrN matrix 

in the ZrAlN sublayers where c-AlN further transforms to w-AlN when exposed to 

mechanical stress [28]. The transformation is associated with a volume expansion that 

promotes crack closure and yields an enhanced fracture toughness of the coatings [27, 29]. 

Promising data has also been reported for low Al content c-ZrAlN/TiN multilayers grown at 

more moderate temperatures (400 °C) displaying superior hardness at 1100 °C compared 
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with ZrAlN and TiAlN single layers; ZrAlN/ZrN and TiAlN/TiN multilayers [30]. The 

enhanced hardness is suggested to be an effect of the secondary phase, c-ZrTi(Al)N, formed 

during annealing. In addition, tribological tests of cohesion/adhesion and wear resistance 

have demonstrated the enhancement of such properties from multilayered structures [26, 27, 

31].  

In this study, we use the multilayer design and combine high Al-content (~75%) w-

ZrAlN with high thermal stability with a stable c-TiN or c-ZrN phase. We grow w-ZrAlN/c-

TiN and w-ZrAlN/c-ZrN multilayer coatings by cathodic arc evaporation and report their 

microstructure evolution and thermal stability and its effect on the mechanical properties. A 

secondary phase, c-Ti(Zr)N, forms at the interfaces in the w-ZrAlN/c-TiN multilayers during 

annealing which stabilizes the coherent interfaces between w-ZrAlN and the cubic phase, 

leading to sustained compressive strain and an enhanced hardness and crack resistance.  

 

2. Experimental details 

w-Zr0.25Al0.75N/c-TiN and w-Zr0.25Al0.75N/c-ZrN multilayer coatings were deposited 

by cathodic arc evaporation in an Oerlikon Balzers Innova system on polished cemented 

carbide (WC-Co) substrates (12 × 12 mm
2
). Deposition of multilayer coatings was performed 

by placing a Zr17Al83 cathode and a Ti or Zr cathode on each side of the chamber. The 

polished WC-Co substrates were placed on a rotating fixture (single rotation) rotating with 

2.5 rpm. The depositions were performed at a total pressure of 1.6 Pa in a mixed flow of N2 

(400 sccm) and Ar (200 sccm), a substrate temperature of 400 °C, and a substrate bias of -30 

V. With this growth condition, two multilayer coatings with a similar bilayer period of ~15 

nm consisting of ~10 nm of TiN (ZrN) and ~5 nm of ZrAlN are resulted. Total thickness of 

the coating is ~5 µm and ~6 µm for TiN and ZrN multilayers respectively, which is measured 
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on cross-sections of the coating carried out by focused ion beam (FIB) milling (Zeiss, Neon 

40). The difference in their total thickness is a result from the difference in deposition rate 

between ZrN and TiN. The alloy composition of ZrAlN was determined from the w-ZrAlN/c-

TiN sample by energy-dispersive x-ray spectroscopy (EDS) in a Leo 1550 Gemini SEM 

operated at 20 kV, and we assume that the composition is the same for the w-ZrAlN/c-ZrN 

sample.  

In situ wide angle x-ray scattering (WAXS) experiments during annealing were 

carried out at beamline P07 (high-energy materials science beam line) at PETRA III, DESY 

in Hamburg using a 75 keV (λ=0.165 Å) x-ray beam with a size defined to 500 × 20 µm
2
 

using slits. The WAXS signal was recorded from a 1 mm
 
thick cross-sectional slice cut from 

the coated substrate using transmission geometry. The thermal annealing was performed in a 

vacuum chamber with a work pressure of 1.6 mPa at an isothermal annealing temperature of 

1100 °C for approximately 2 hours. The heating rate (20 K/min) and maximum annealing 

temperature was controlled by a Eurotherm controller connected to a thermocouple placed in 

vicinity of the sample. The temperature of the sample was calibrated beforehand by a two-

color CellaTemp pyrometer. A two-dimensional area detector (Perkin Elmer) with a pixel 

size of 200 by 200 µm
2 
was used to record the diffracted x-ray signal. The sample to detector 

distance was determined by a LaB6 NIST standard sample and using the software Fit2D [32]. 

The strain evolution during annealing is obtained by the sin
2
ψ method using the c-TiN and c-

ZrN 200 diffraction peaks, where the residual stress was calculated with elastic constants for 

TiN (E=570 GPa) [33] and ZrN (E=462 GPa) [34]. 

Additional annealing experiments for ex situ analysis were carried out in the same 

vacuum chamber at two different annealing temperatures, 900 °C or 1100 °C, for 2 hours. 

Grazing incidence x-ray diffraction (GIXRD) using Cu Kα radiation with a fixed incident 

angle of 4° was applied for enhancing the scattering signals from the coating. Detailed 
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investigation of the sub-layer structure and phase evolution of coatings was performed in a 

FEI Tecnai G
2
 TF 20 UT transmission electron microscope (TEM) operated at 200 kV. 

Cross-sectional TEM-samples were prepared by mechanical grinding followed by Ar-ion 

beam milling to electron transparency.  

Atom probe tomography (APT) was performed on 30 nm radius sample tips prepared 

by FIB milling (FEI Helios nanolab 600) using a standard lift out technique [35]. 

Measurement of the needle shape samples was performed in a local electrode atom probe 

instrument (Cameca LEAP 3000X-HR) in laser mode with a 200 kHz frequency, 0.5 nJ per 

pulse energy and a 532 nm wavelength laser. Tips were set at a ground temperature of 60 K 

and at a controlled evaporation rate of 0.005 ions per pulse. Data reconstruction was 

performed in IVAS software package with reconstructed parameters calculated from 

Kingham curves [36] and scanning electron microscope (SEM) images of the tips. The used 

parameters were: an evaporation field of 40 V/nm, an image compression factor of 1.65, and 

a field factor between 3.7 and 4.1. Due to resolution limitation of the APT instrument, 

overlap of Zr
+3

 and TiN
+2

 isotopes leads to composition errors in 1D concentration profiles 

and proximity histograms along interfaces. To address this, the different layers (TiN and 

ZrAlN) were carefully isolated from the interfaces and then a peak deconvolution was 

performed in order to obtain correct compositions. 

The mechanical properties and sliding behavior at the micrometric length scale of 

each coating system were characterized through nanoindentation and scratch tests, 

respectively. Hardness (H) was tested using a nanoindenter XP (MTS) and applying the 

continuous stiffness measurement (CSM) technique [37]. Indentations at a maximum 

penetration depth of 2000 nm into the surface or until reaching the maximum applied load of 

650 mN were performed in a square array of 64 imprints (8x8) using a Berkovich diamond 

tip. The distance between imprints was kept to 50 µm in order to avoid any overlapping 
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effects. The indenter area was calibrated using fused silica with a well-known elastic modulus, 

72 GPa [38]. The hardness was determined by the Oliver and Pharr method [38] and the 

results presented are averaged from several indents. 

 Cube-corner indentations were performed on the coating surface at penetration depths 

of 250, 500, 1000 and 2000 nm. The purpose of these indents was to qualitatively determine 

the strength and fracture toughness of different multilayer systems. The residual imprints and 

the fracture mechanism were studied by a LEO 1550 FEG SEM to identify the critical load at 

which the first damage event appears in the vicinity of the indent.  

Sliding-scratch tests were done at nanometer scale with a Berkovich indenter 

increasing the load linearly to 500 mN during a length of 500 µm on the coating surface using 

the nanoindenter described above. The scratch tests were conducted at a constant loading rate 

of 10 m·s
-1

. Cross-sections of the scratched coatings were prepared by FIB and examined by 

SEM in a dual beam Workstation (Zeiss Neon 40). Platinum (Pt) layers were deposited 

before ion milling to protect the sample surface. Specimens were milled using a 30 kV/2 nA 

Ga
+
 ion beam, which was decreased to 500 pA for the final polish. 

 

3. Results 

3.1 Microstructure and strain evolution during annealing 

Fig. 1 shows bright-field cross-sectional TEM micrographs presenting an overview of 

two as-deposited samples studied here. The contrast arises mainly from mass differences and 

diffraction contrast resulting in bright ZrAlN layers while the dark layers are TiN or ZrN. It 

shows that both coatings exhibit fine-grain microstructures, with a smaller grain size in the 

ZrAlN sublayers. Due to the difference in deposition rate, the ZrN sublayers (~12 nm) are 
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slightly thicker than the TiN sublayers which have a thickness of approximately 10 nm. The 

ZrAlN layers are approximately 5 nm thick. For both samples, the interfaces are sharp 

between w-ZrAlN and c-TiN/c-ZrN.   

Fig. 2 (a, b) shows GIXRD diffractograms of the as-deposited and annealed 

multilayers, where “s” indicates the substrate signal. The as-deposited w-ZrAlN/c-TiN 

coating displays intense c-TiN peaks with a weak shoulder (filled dashed curves) 

corresponding to w-ZrAlN (0002) next to the c-TiN (111) peak. The lower volume fraction of 

w-ZrAlN contributes to its relatively low diffraction signal. For w-ZrAlN/c-ZrN, only 

diffraction signal originating from c-ZrN can be resolved, mainly due to overlap of the 

diffraction signals from c-ZrN and w-ZrAlN. It is also affected by the relatively poor 

crystallinity of the ZrAlN sublayers in w-ZrAlN/c-ZrN (observed by high-resolution (HR) 

TEM micrographs in Figs. 4-5). After annealing at 1100 °C, the diffraction peak of w-ZrAlN 

(0002) has shifted to higher angle in w-ZrAlN/c-TiN coating, resulting in a larger overlap 

with c-TiN 111. For w-ZrAlN/c-ZrN, a shift of c-ZrN diffraction peaks to higher angle is 

observed after annealed. Also, the width of the diffraction peaks decreases after annealing, 

which can be related with the growth of c-ZrN grains [39]. 

The selected area electron diffraction patterns (SAED) of the as-deposited coatings 

are shown in Fig. 2 (c, d). For w-ZrAlN/c-TiN, c-TiN appears slightly textured while w-

ZrAlN is more textured with (0002) along the growth direction; (10-10) and (11-20) are 

found in the in-plane directions. For w-ZrAlN/c-ZrN, the weak signal from w-ZrAlN is not 

clearly distinguishable due to overlapping with c-ZrN (111); however, it can be extracted by 

examination of one-dimensional line profiles obtained by integration of the SAED patterns 

(also done to resolve the overlapping of w-ZrAlN (0002) with c-TiN (111)). c-ZrN is more 

randomly oriented compared to c-TiN. 
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Fig. 2 (c, d) also shows SAED patterns from the multilayers after being annealed at 

1100 °C for 2 hours. After annealing of the w-ZrAlN/c-TiN coating, the w-ZrAlN (0002) 

reflection moves to higher angles and approaches the c-TiN (111) signal, indicating a 

decrease of the w-ZrAlN (0002) spacing. Table 1 summarizes the lattice spacing of all phases 

detected by SAED using the d-spacing of c-TiN or c-ZrN extracted by x-ray diffractometry as 

reference values. During annealing, the lattice parameters decrease slightly for the w-ZrAlN 

phase, from a=3.22 Å and c=5.00 Å in the as-deposited state to a=3.15 Å and c=4.96 Å in the 

w-ZrAlN/c-TiN multilayer. For the w-ZrAlN/c-ZrN multilayers, the recorded d-spacing of w-

ZrAlN (10-10) remains similar values. However, due to large degree of overlap the peak 

deconvolution and lattice parameter determination is less precise in this case. The only 

change for w-ZrAlN/c-ZrN during annealing is that the reflections from c-ZrN move to 

higher two-theta values after annealing, which can be related to annihilation of point defects 

(interstitial or substitutional) frequently observed during annealing of arc deposited coatings 

[19, 40]. The annihilation should also affect the lattice parameters of c-TiN. However, the 

effect of Zr diffusion into c-TiN may counteract the expected lattice spacing decrease. 

Fig. 3 shows APT results from the as-deposited and annealed w-ZrAlN/c-TiN 

coatings. In the as-deposited state, the proxigram (Fig. 3 (a)) shows that a clear segregation 

between Ti with Al and Zr atoms takes place at the sub-layer interfaces. Also the 2D contour 

plot in Fig. 3 (b) shows a homogenous distribution of Zr in the ZrAlN layer. After annealing, 

Al and Ti are still segregated at the sub-layer interfaces (Fig. 3 (c)), while the Zr atoms are 

redistributed to the layer interfaces. These changes result in an increase of the Al-fraction in 

the ZrAlN layer. The 2D contour plot in Fig. 3 (d) shows there is less Zr in the original 

ZrAlN layer and more at the interfaces between sublayers. It indicates that Zr is mainly 

located at the interfaces between the original ZrAlN and TiN layers after annealing. For w-
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ZrAlN/c-ZrN, analytical TEM and EDS line scans across the sublayer interfaces reveal that 

no changes in the compositional profile take place during annealing.  

The in-plane strain evolution of c-TiN and c-ZrN from the two multilayers samples, 

obtained by in situ x-ray scattering during annealing, is shown in Fig. 4. Both as-deposited 

multilayer samples exhibit compressive strain with a slightly higher value in c-TiN (c-TiN: -

0.63%, c-ZrN: -0.48%), which correspond to residual stresses of - 3.59 GPa for c-TiN and - 

2.22 GPa for c-ZrN. During annealing below the deposition temperature (~400 °C), the strain 

increases slightly caused by the difference in thermal expansion coefficients between the 

substrate and coating [41-44]. Between 400 and 1100 °C, the strain relaxes for both coatings, 

which is likely a result of a decreasing network of defects [11]. For w-ZrAlN/c-TiN, the 

strain relaxation continues slowly during isothermal annealing and the strain has decreased to 

-0.16% after annealing for 2 hours. For w-ZrAlN/c-ZrN, c-ZrN is under tensile strain when 

reaching 1100 °C, and the strain increases to 0.13% after 2 hours isothermal annealing. 

Fig. 5 shows HRTEM micrographs of the w-ZrAlN/c-TiN multilayers in the as-

deposited state and after annealing at 1100 °C, with the fast Fourier transform (FFT) of the 

micrographs from each layer as insets in the figure. In Fig. 5 (a), the orientation relation of c-

TiN (111)[1-10]ǀ ǀ w-ZrAlN (0001)[11-20] is observed in the as-deposited state. This 

coherency is thermodynamically the most favorable for c-TiN/w-AlN interfaces [45]. After 

annealing at 1100 °C for 2 hours, the interfaces are partially coherent between TiN and 

ZrAlN sublayers with the same orientation relation as in the as-deposited state. Coherency is 

not observed in w-ZrAlN/c-ZrN multilayers, neither in the as-deposited or annealed states by 

the HRTEM micrographs (Fig. 6). Also the c-110ǀ ǀ w-10-10 orientation relation was found 

to be favorable for ZrN/AlN interfaces, while such interfaces are not found in this study.  

Besides this, less distinct interfaces are observed in w-ZrAlN/c-ZrN compared to w-ZrAlN/c-

TiN revealing poor crystalline quality of ZrAlN sublayers, which could be resulted from the 
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lack of coherency with ZrN during growth. During annealing, the thickness of ZrN layer 

increases, which agrees with the decreasing peak width observed by XRD (Fig. 2).  

Table 1  Lattice spacing of c-TiN or c-ZrN and w-ZrAlN in w-ZrAlN/c-TiN and w-

ZrAlN/c-ZrN multilayers from SAED and XRD under as-deposited and after annealing 

at 1100 ºC for 2 hours 

 

  Lattice spacing (Å) 

  as-deposited 1100 ºC, 2 hours 

w-ZrAlN/c-TiN 

w-ZrAlN (10-10) 2.79 2.75 

w-ZrAlN (0002) 2.50 2.48 

w-ZrAlN (11-20) 1.60 1.57 

c-TiN (111) 2.44 2.44 

c-TiN (200) 2.12 2.12 

c-TiN (220) 1.49 1.49 

w-ZrAlN/c-ZrN 

w-ZrAlN (10-10) 2.79 2.77 

c-ZrN (111) 2.66 2.63 

c-ZrN (200) 2.29 2.28 

c-ZrN (220) 1.61 1.61 

 

  

3.2 Evolution of the mechanical response during annealing 

Fig. 7 shows the hardness of w-ZrAlN/c-TiN and w-ZrAlN/c-ZrN multilayers in the 

as-deposited state and after annealing at 900 °C and 1100 °C for 2 hours. The hardness of the 

two as-deposited samples is similar (~30 GPa). After annealing at 900 °C, the hardness 

increases for both systems and reaches ~32 GPa for w-ZrAlN/c-TiN multilayer. At 1100 °C, 

the hardness of w-ZrAlN/c-TiN is sustained while it drops to ~30 GPa for w-ZrAlN/c-ZrN.  

The resistance to sliding contact and cracking were investigated by nanoscratch and 

cube-corner indentation. Fig. 8 (a,b) shows the surface viewed by SEM after nano-scratch 
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tests with increasing load from 0 to 500 mN along the direction indicated by the arrow. The 

as-deposited and 900 ºC annealed w-ZrAlN/c-TiN samples display less damage compared to 

the ones annealed at 1100 ºC. Damage is recorded as single cohesive failure events at sliding 

loads higher than ~350 mN. For the coating annealed at 1100 ºC these single failure events 

occur at 300 mN and above 350 mN multiple events are apparent. For the w-ZrAlN/c-ZrN 

multilayer, the as-deposited sample displays the first damage at ~300 mN. The samples 

annealed 900 ºC and 1100 ºC display large decohesion at loads of around 275 mN and 450 

mN, respectively.   

Magnifications of failure events marked with dashed boxes in Fig. 8 (a,b) in the two 

multilayers annealed at 1100 °C are presented in Fig. 8 (c, d). Different failure behaviors are 

seen for the two samples. w-ZrAlN/c-TiN shows multiple crack events leading to spallation 

while w-ZrAlN/c-ZrN displays larger area of coating delamination with large semi-circular 

cracks, similar to wedging spallation frequently observed in coatings [26, 46, 47]. The 

different scratch responses of the multilayers are also displayed in their corresponding depth 

profiles shown in Fig. 8 (e). The sharp depth variations along the scratch should be 

interpreted as coating failures [48, 49] except for the first 200 µm where the fluctuations are 

mostly related to surface defects such as macroparticles (confirmed by SEM). Further, the 

first failure occurs at ~270 mN (Lc1) for both coatings. The higher penetration depth in w-

ZrAlN/c-ZrN could indicate more severe damage events occurring during scratch tests 

compared to w-ZrAlN/c-TiN. The two coatings display similar friction coefficient during 

scratching (~0.15 at the maximum scratch loading).  

Fig. 9 shows SEM cross-sectional micrographs recorded beneath the most severely 

damaged surface along the scratch, i.e. at a load of ~500 mN. For the as-deposited state (Fig. 

8 (a)), the w-ZrAlN/c-TiN multilayer shows good interlayer adhesion and there is only a 

small crack observed near the coating surface (indicated with an arrow). In contrast, w-
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ZrAlN/c-ZrN (Fig. 9 (b)) displays several cracks on both side of the location where the 

indenter was sliding across the surface. The cracks are long and run parallel to the layer 

interfaces. After annealing at 1100 °C (Fig. 9(c)), the w-ZrAlN/c-TiN multilayer present 

more cracks in comparison with its as-deposited state. In the case of w-ZrAlN/c-ZrN 

annealed at 1100 °C (Fig. 9 (d)), the cracks are larger and have propagated through the 

coating interior to the surface. The cracks present a serrated shape indicating that propagation 

was affected by the interfaces within the multilayer. Compared with w-ZrAlN/c-TiN, the w-

ZrAlN/c-ZrN coating is more severely damaged and partly removed by the scratching. 

Fig. 10 shows SEM micrographs of residual cube corner indents with a constant 

penetration depth of 500 nm for the as-deposited and annealed coatings. The coatings display 

different cracking behavior, which could be related to differences in fracture toughness. For 

the w-ZrAlN/c-TiN multilayers, in the as-deposited state, there are no cracks on the surface 

while pile-ups around the residual imprint are observed. After annealing at 900 °C, more 

distinct pile-ups are seen. However, cracks do not appear until the specimen was annealed at 

1100 °C. For w-ZrAlN/c-ZrN multilayers, the as-deposited coating also resists crack 

formation, but indentation cracks start appearing in coatings annealed at 900 °C. The crack 

length on the surface further increases in the coating annealed at 1100 °C. Also, the pile-up 

areas are larger compared with w-ZrAlN/c-TiN multilayers in both as-deposited and annealed 

conditions.  

By varying the penetration depth and the maximum load during indentation, the 

critical load (Pc) for the first crack to form on the surface in the vicinity of the indent is 

extracted for the as-deposited and annealed samples. Fig. 11 shows the change in Pc with 

annealing condition. The critical load (Fig. 11) is ~150 mN lower for w-ZrAlN/c-ZrN than w-

ZrAlN/c-TiN in the as-deposited state. For both multilayers, the critical load decreases with 

annealing temperature compared to their as-deposited states. At the same time the hardness 
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increases, which often leads to a more brittle behavior [50]. However, for w-ZrAlN/c-TiN 

coatings, the critical load stays at a value of ~100 mN even after annealing at 900 °C for 2 

hours in comparison to ~10 mN, which is the case for w-ZrAlN/c-ZrN after the same 

annealing condition. The critical load for surface crack formation is higher in w-ZrAlN/c-TiN 

than w-ZrAlN/c-ZrN for all conditions.  

 

4. Discussion 

4.1 Microstructure and strain evolution during annealing 

 The phase analysis results from XRD, TEM and SAED yields that both as-deposited 

multilayer coatings contain layers with a solid solution of w-ZrAlN (with the same 

composition) and c-TiN or c-ZrN respectively. During annealing at 1100 °C, Zr partly 

diffuses out from the ZrAlN layers and cause the lattice parameters to decrease during 

annealing of the w-ZrAlN/c-TiN multilayer. The mixing energy of w-ZrAlN is positive [13] 

and experimental observations have suggested w-ZrAlN to be a metastable alloy with a 

miscibility gap [19]. On the other hand, above 1000 °C c-Ti(Zr)N forms a stable solid 

solution [51, 52]. Thus, the out-diffusion of Zr results in a c-Ti(Zr)N phase formation at the 

original sublayer interfaces when it is being heat-treated. According to APT data, the ZrN-

enriched domains at the interface contains less than 10 at.% of Zr. Effectively this doubles 

the number of sublayers in this multilayer where it is located. The new Ti(Zr)N phase in the 

w-ZrAlN/c-TiN multilayer is not homogenously distributed along the interface, as shown in 

Fig 3 (d). Instead Ti(Zr)N tends to precipitate heterogeneously along the interface causing 

incomplete Ti(Zr)N-sublayers. In comparison, out-diffusion of Zr to the interfaces in w-

ZrAlN/c-ZrN multilayers results only into growth of ZrN layers. 
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 An additional difference between the two multilayers is the high degree of the 

crystallographic coherency between sublayers in w-ZrAlN/c-TiN for both as-deposited and 

annealed samples while w-ZrAlN/c-ZrN displays primarily incoherent sublayer interfaces. It 

also results in a retained compressive strain in the c-TiN sublayers even during annealing 

while the incoherent c-ZrN sublayers are more relaxed in their as-deposited state and exhibit 

tensile strain when annealed at 1100 °C. In addition, the lattice parameters of w-ZrAlN 

observed in this study (a=3.22 Å and c=5.00 Å) is smaller compared with a single layer w-

ZrAlN coating (a=3.25 Å and c=5.2 Å) containing similar Al composition [19]. This is likely 

a result of the coherency between w-ZrAlN and c-TiN/c-Ti(Zr)N that leads to compressive 

strains also in the w-ZrAlN sublayers. 

A potential contribution for their difference in coherency can be due to the formation 

of the interface phase Ti(Zr)N during annealing. Ti(Zr)N has a lower lattice mismatch to both 

TiN and ZrAlN such that the partial coherency between sublayers is retained even during 

annealing. In addition, the thermal stability of the interfaces could also play an important role 

here since the c-111ǀ ǀ w-0001 type of interfaces has been calculated as the lowest total 

energy compared with isostructural and heterostructural interfaces for both TiN/AlN and 

ZrN/AlN multilayer systems [45]. The heterogeneous nature of the Ti(Zr)N-sublayers is 

expected to cause areas where the coherency is lost during annealing resulting in a lower 

degree of coherency compared to the as-deposited state.  

 

4.2 Variations in mechanical properties of coatings due to phase changes during annealing 

The two multilayers exhibit similar mechanical properties in terms of hardness and 

surface deformation during scratch resistance in their as-deposited states. However, they 

display a different cracking behavior where more cracks are generated under the same sliding 
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load in the w-ZrAlN/c-ZrN multilayer. Considering the higher thickness for w-ZrAlN/c-ZrN 

than w-ZrAlN/c-TiN, it should result into better scratch resistance of the coating [53, 54]. 

While the results observed show the opposite, we assign this phenomenon to the combined 

effect of their differences in elastic mismatch between sublayers and strain state. The effect 

of elastic mismatch on crack formation under loading is represented by the Dundurs 

parameter () [55], which is given by: 

𝛼 =
𝐸1 − 𝐸2

𝐸1 + 𝐸2
                                                                                             (1) 

where E1 and E2 are the elastic constants of  the sublayer materials.  is ~0.32 for w-ZrAlN/c-

TiN and ~0.22 for w-ZrAlN/c-ZrN system when using an experimental value of the elastic 

modulus of w-ZrAlN [20]. If we use the ab initio calculated elastic constant for w-ZrAlN [56], 

 is ~0.50 for w-ZrAlN/c-TiN and ~0.42 for w-ZrAlN/c-ZrN. A low Dundurs parameter 

value indicates a weak sublayer interface, which favors interface cracking [57]. The influence 

of the sublayer interface strength on crack formation is obvious when comparing the two 

multilayers before and after annealing where the weak interface w-ZrAlN/c-ZrN multilayers 

exhibit crack deflection to a larger extent than the w-ZrAlN/c-TiN multilayers. In addition, 

higher compressive strain in as-deposited c-TiN than c-ZrN should also contribute to better 

fracture toughness properties since the strain at sub-interfaces in multilayers is shown to 

affect its mechanical properties [27, 31].  

After annealing, both multilayers display higher hardness while it is only sustained in 

the w-ZrAlN/c-TiN multilayers after annealing at 1100 °C. The good thermal stability in 

terms of hardness likely has several origins; the residual stress remains compressive during 

the entire annealing process, the high degree of coherency across the interfaces and the 

formation of additional Ti(Zr)N phases at the interface. Further, the Ti(Zr)N phase formation 

during the annealing process results in a TiN/Ti(Zr)N/(Zr)AlN sublayer structure, where the 
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additional semi-coherent heterogeneous interfaces at TiN/Ti(Zr)N and Ti(Zr)N/(Zr)AlN 

contribute to enhanced crack resistance and strength properties [58, 59] compared with 

incoherent interfaces in w-ZrAlN/c-ZrN multilayers. Similar enhanced mechanical properties 

in multilayers with the aid of the secondary phase formed during annealing is also observed 

for lower Al-content Zr65Al35N/TiN multilayers [30]. 

In the later stages of annealing the w-ZrAlN/c-ZrN multilayer forms tensile stresses, 

which promotes more extensive cracking and results in less resistance to failure. Mendibide 

et al. [27] found that the crack behavior is also affected by the magnitude of the internal stress 

in the sub-layers where cracks tend to propagate perpendicular to the surface when the stress 

is low and parallel when the stress is high. The coherency between sublayers is sustained 

through the annealing in the case of the w-ZrAlN/c-TiN multilayers, which retains the 

compressive stress. Thus, the cracks in w-ZrAlN/c-TiN are running mostly parallel to the 

coating surface, i.e. along the sub-layer interfaces inside coatings. This is distinctly different 

compared with w-ZrAlN/c-ZrN, where the cracks propagate across the sub-layer interfaces all 

the way to the surface. This results in a higher degree of deformation.  

The more extensive crack propagation in w-ZrAlN/c-ZrN system makes it more prone 

to surface damage [29] and as a consequence wedge spallation takes place in the annealed 

state at high load [26, 46, 60]. This is in contrast to the milder damages seen in w-ZrAlN/c-

TiN multilayers caused by cohesive failure, which is also corroborated by its higher 

resistance to cracking.  

 

5. Conclusion 

  Arc evaporated w-ZrAlN/c-TiN and w-ZrAlN/c-ZrN multilayers are studied with 

respect to stability of structural and mechanical properties under thermal annealing. Depletion 
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of Zr from the w-ZrAlN sublayers results in formation of the secondary phase Ti(Zr)N in w-

ZrAlN/c-TiN during annealing. The formed phase contributes to a sustained compressive 

strain during isothermal annealing at 1100 ºC whereas relaxation takes place in w-ZrAlN/c-

TiN. In addition, w-ZrAlN sublayers form coherent interfaces with c-TiN and the interfaces 

sustain semi-coherent after 1100 ºC annealing for 2 hours. In contrast, incoherent interfaces 

in w-ZrAlN/c-ZrN are found for both as-deposited and annealed states.  

These variations in phase and strain evolution strongly affect the hardness and 

fracture toughness properties. The hardness increase is only retained for w-ZrAlN/c-TiN 

multilayers after annealing at 1100 ºC and the resistance to crack propagation is strong. One 

of the contributions to the phenomenon is the sustained compressive strain. Also, the 

thermodynamically stable coherent interfaces c-TiN (111)ǀ ǀ w-ZrAlN (0001) are essential 

for the strength of interfaces within the sublayers, which presents less damaged coatings 

under indentations and sliding contact load compared with w-ZrAlN/c-ZrN.  

In summary, the w-ZrAlN/c-TiN multilayer exhibits superior hardness and crack 

resistance also after being exposed to elevated temperatures, where the stable, coherent 

interfaces between c-TiN, c-Ti(Zr)N and w-ZrAlN contribute to enhanced mechanical 

properties.  
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Figure 1  Bright-field TEM of as-deposited (a) w-ZrAlN/c-TiN and (b) w-ZrAlN/c-ZrN multilayers 
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Figure 2  X-ray diffraction results of (a) w-ZrAlN/c-TiN (dashed filled curves are w-ZrAlN (0002), dashed non-

filled are c-TiN (111)) and (b) w-ZrAlN/c-ZrN multilayers; SAED patterns of (c) w-ZrAlN/c-TiN and (d) w-

ZrAlN/c-ZrN multilayers at as-deposited (a.d.) and annealed states. The white dashed squares are magnified as 

shown below the overall SAED patterns. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

26 
 

 

Figure 3  APT proxigrams (a, c) and 2D contour plots (b, d) of w-ZrAlN/c-TiN multilayers in the as-deposited 

state (a, b) and after annealing at 1100 °C for 2 hours (c, d). 
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Figure 4  In-plane strain evolution of (a) c-TiN in w-ZrAlN/c-TiN and (b) c-ZrN in w-ZrAlN/c-ZrN multilayers 

during annealing. 
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Figure 5  HRTEM micrographs of the w-ZrAlN/c-TiN multilayer in its (a) as-deposited state and (b) after 

annealing at 1100 °C for 2 hours, with FFT of two sub-layers with zone axis of c-[110] and w-[10-10]. 
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Figure 6  HRTEM micrographs of the w-ZrAlN/c-ZrN multilayer in its (a) as-deposited state and (b) after 

annealing at 1100 °C for 2 hours. 
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Figure 7  Hardness of w-ZrAlN/c-TiN (black) and w-ZrAlN/c-ZrN (red) multilayers in the as-deposited and 

annealed states. 
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Figure 8  SEM investigation of nano-scratch tracks on (a) w-ZrAlN/c-TiN and (b) w-ZrAlN/c-ZrN multilayers 

under as-deposited, 900 °C and 1100 °C for 2 h; higher resolution images in the dashed box for (c) w-ZrAlN/c-

TiN and (d) w-ZrAlN/c-ZrN multilayers; (e) Penetration depth during nano-scratch tests for two samples after 

1100 °C for 2 h. 
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Figure 9  Cross-sections of as-deposited (a, b) and 1100 °C annealing for 2 hours (c, d), with inset of higher 

resolution on cracks of w-ZrAlN/c-TiN (a, c) and w-ZrAlN/c-ZrN multilayers (b, d). 
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Figure 10  SEM images of imprints from cube-corner indentations on (a-c) w-ZrAlN/c-TiN and (e-f) w-

ZrAlN/c-ZrN multilayers under as-deposited, 900 °C and 1100 °C for 2 hours under 500 nm penetration depth. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

34 
 

 

 

Figure 11  Critical load for forming the first surface crack on w-ZrAlN/c-TiN (black) and w-ZrAlN/c-ZrN (red) 

multilayers coatings in their as-deposited and annealed states. 

 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

35 
 

Highlights 

 Coherent interfaces between sublayers are observed for w-ZrAlN/c-TiN multilayers. 

 Ti(Zr)N phase formed during annealing at w-ZrAlN/c-TiN interfaces. 

 Enhanced mechanical properties of w-ZrAlN/c-TiN coating annealed at 1100 ºC. 

 Damages during scratch and indentation are studied related to fracture toughness. 
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