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Dynamics of disordered systems
Alessandro Vispa

Departament de F́ısica, Universitat Politècnica de Catalunya

Abstract

Disordered systems are ubiquitous in nature and their study is complicated and often

leads to controversial results. In any case, the important role of such systems in science

and technological applications should not be ignored.

The characteristic properties of such systems seem to be driven by a fundamental

feature, the degrees of freedom. Although many problems still remain matter of debate,

the challenge posed in recent decades in the understanding of the impact of disorder in

the physical behavior of materials is of considerable scientific interest.

An exact description of a disordered phase is not possible since it is a many-body

problem hard to model. However, for some materials it is possible, upon cooling, to pre-

serve the disordered liquid-like structure having a state of high regularity. Therefore, for

the so-called glass formers, it is possible to freeze some degrees of freedom obtaining a

glass that presents some liquid-like properties with the high viscosity of a solid below the

melting temperature Tm.

The aim of the present PhD thesis is to present our understanding of disorder in related

experimental approaches using three different pure compounds: two plastic crystals (1-

Chloroadamantane and Freon113) and a liquid (Glycerol). To understand the behavior of

these kinds of materials neutron scattering and dielectric spectroscopy have been used.

These two powerful techniques allow us to investigate the dynamics of disordered phases

on a picosecond time scale. Furthermore, given the complexity of these disordered phases,

data analysis and model selection have been performed with a Bayesian approach that

provides a solid statistical ground based on probability distribution functions.

Such methods have been applied to study the above mentioned compounds dynamics

in order to provide an explanation of some open questions.

The plastic phase of Cl-Adamantane (C10H15Cl) has been investigated in order to

study the its short range order and its dynamics. In the temperature range where the

experiments have been performed, a thermal effect has been detected and it has been

linked to a dynamical and structural change. This has been supported by the thermod-

iffractograms that have been measured in a recent experiment at D1B. Here, a neutron

diffraction and spectroscopy study is reported. The analysis of the width permit us to have
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a consistent picture of the mechanism on a picosecond time scale, against which the most

recent models for Cl-Adamantane dynamics can be verified. Model selection, performed

with the fitting algorithm FABADA, give us a preliminary, qualitative description about

the motions of the molecules in the plastic phase.

The orientational glass former Freon113 (Cl2FC − CClF2) has been object of a dy-

namic and thermodynamic study in order to analyze its kinetic and thermodynamic

fragilities. By means of dielectric spectroscopy coupled with calorimetry and inelastic

neutron scattering we show that the high value of fragility (kinetic and thermodynamic)

is connected to a coupling between low-energy modes and acoustic phonon branches. Such

dynamics contribute to the excess entropy which it is the cause of the very high value of

fragility.

For what concerns the dynamics of one of the prototypical glass-forming liquid, glyc-

erol (C3H8O3), we report a quasielastic neutron scattering study as a function of temper-

ature. The spectral analysis has shown the presence of three different motions: one related

to the translation of the whole molecule and two confined and temperature-independent

movements. A thorough analysis, based on Bayesian inference, of the complete energy

range allowed us to perform a robust model selection.

In addition, a brief overview of the theoretical background for neutron scattering and

dielectric spectroscopy, as well as a description of the experimental setup and the conse-

quent data treatment and analysis, are given to deliver a comprehensive and consistent

view of the topic under consideration.

The results, presented in Chapters 6, 7 and 8, , represent a small step for a deeper

understanding of the disordered phases dynamics, giving a base for further investigations.
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Chapter 1

Disordered phases

1.1 From order to disorder

Order and disorder are quite complex concepts with several exceptions and shades, that

make difficult to give them a generally accepted and shared definition [1].

An example of a system highly ordered is given by a perfect crystal, which can

be reproduced knowing the symmetry and the arrangement of atoms and molecules in

the unit cell. Therefore a regular spatial matrix of atoms or molecules is the reference

configuration most appropriate for modeling a crystalline solid. Such a regularly ordered

structure is maintained, at least in principle, through the entire material, and this

regularity can be described by the concept of lattice (long range order) and locally by the

coordination number (short-range order). Hence a perfect crystal possesses translational

and orientational simmetries, this implies that relatively simple models can describe the

physical phenomena in solids, permitting a complete determination of the positions and

orientations of atoms and molecules (Figure 1.1a).

The concept of disorder is instead, in some way, easier [1]. Being strongly connected

to the concept of “aleatoric”, it can be defined as a state of lack or departure from the

state of order.

The exact reverse of the situation in a solid is given by the ideal gas, in which atoms

and molecules are subjected to greater thermal energy with respect to the attractive

forces. This results in a constant movement, where position and orientation are not

correlated and in which the probability of interaction between them is very low. Hence,
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c)a) b)

Figure 1.1: 2D diagram of the structure different phases of matter: (a) a solid, (b) a

liquid, and (c) a gas [2].

order is almost absent and the reference configuration can be described as random.

These make of an ideal gas a perfect disordered system (Figure 1.1c).

The competition between the forces exerted by the atoms and molecules, which favor

the order and the thermal agitation which leads to disordered systems, causes a physical

restriction for which no system is completely ordered or disordered.

It is clear that disordered systems play a fundamental role in daily life, in the life

sciences and natural sciences, as well as in technology development. Most of the phenom-

ena on this planet includes systems (gas, liquid and amorphous systems) that present

a certain degree of disorder, such as phenomena related to the environment as all the

processes that occur in the atmosphere, the physics of water, biological processes that

include liquids and amorphous systems. Such systems have also attracted considerable

interest because they have been the base in the development of new technological ap-

plications such as photovoltaic cells, pharmaceuticals, liquid-crystals, refrigerants and

building materials.

The scientific challenges offered by these systems is extremely complex, and modeling

can vary from simple semi-empirical models to computer simulations. However, each of

these models has its value in the understanding of disordered systems with regard to

their complexity from the dynamics, energetic and structural point of view.
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1.2 Liquids

Liquids occupy a very important position in physics, chemistry and technology [3]. At

present there is no unique, shared theory that gives a good approximation of the liquid

state, but there are models that tend to the solid and gas limits previously described.

Liquid properties such as densities ρ, thermal expansion coefficient α and compress-

ibility KT are typically not too different from the corresponding solid. Unlike the solid,

however, liquids, as well as the gases, have the ability to flow, even if the viscosities in

liquids are higher than those in the gases. This indicates that the molecules in fluids

move relatively easily. This is a consequence of the types of interactions that are present

in the liquid state. Such interactions allow to atoms or molecules, that compose it, to

move freely through the material, but at the same time, these constituents are held to-

gether by relatively weak forces, sufficient to not permit a behavior such as that which

occurs in the gaseous state.

The choice of a reference model in a liquid becomes therefore much more problematic,

in fact, although a long-range order is not present, there is a short-range order, and the

concept of coordination number (number of closest neighbor molecules around a given

one) is still valid for liquids [2]. The presence of a short-range kind of order implies that

the relative positions and orientations between nearest atoms or molecules are related

even if this correlation is not persistent over long distances. Thus, a liquid does not

show translational and orientational long-range order.

Liquids, as solids, present a quite high level of packaging of their constituents, that

implies a nearly incompressibility. In many compounds the volume occupied by an atom

in the liquid is similar to the volume occupied in the associated crystal. Therefore,

packaging determines the structure of many liquid systems, which results to be, at least

considering a small fraction of molecules in the liquid, very similar to the arrangement

of the elements that constitute the crystal (Figure 1.2). The number of covalent bonds,

for example, and with some exceptions, is on average the same between the liquid phase

and crystalline phase.

As a consequence of the thermal agitation and the absence of forces that maintain

the liquid particles in fixed positions, particles are free to move and the short-range

order can be viewed as a transient order.

While the thermal motion in a gas is easily visualized and leads to a random dis-
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b)a)

Figure 1.2: (a) Schematic picture of a regularly ordered system as a crystal, and (b) a

sketch of the disordered structure as can be found in liquids and glasses [4].

tribution of the positions and orientation of the constituent particles, in a liquid, the

problem becomes more complex.

In a highly packed liquid, many of the atoms or molecules are confined by their

neighbors so that each of them can move only in the space delimited by the “cage”

formed by the neighbors themselves. As soon as the atom or molecule moves away

from the center of the confinement, the collisions with the particles surrounding it,

reverses its speed and sends it back. Motions of this type have frequencies of the order

of 1012 − 1013 Hz, similar to those of the vibrational motions in a solid or of the

internal vibrations in a molecule, and may last on average for times of the order of a

few picoseconds before being damped out.

Nevertheless, the confinement is not rigid. After a certain characteristic time (re-

laxation time) which depends on how the thermal motion is altered by intermolecular

forces, the motions of the neighbors can allow the release of the central particle from the

confinement, starting a diffusive motion that will lead it far from its initial position. It

is therefore possible to visualize a picture in which the constituents are hopping along

a zig-zag trajectory composed of discrete microscopic linear motions and interspersed

with confined movements in residence sites. The hopping frequencies can be of the order

of 1010 − 1012 Hz. Macroscopically it is possible to find the evidence of diffusive mo-

tions noticing that two miscible liquids are slowly mixed together without applying any

external force to facilitate the blending. In this chaotic motion, the so-called Brownian
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motion (R. Brown 1827), the particles move irregularly because they undergo random

collisions with the constituents of the medium.

Such description can be used at the microscopic level to model the diffusing move-

ment of a liquid particle, on time scales higher than that of the movements localized

within the the confinement.

1.3 Plastic crystals

A plastic crystal is a crystal in which molecules interact weakly and possess some

orientational degree of freedom. In this state, an intermediate behavior between the

crystalline (translationally and orientationally long-range ordered) and the liquid phase

(translationally and orientationally long-range disordered) is present. Compounds that

show such state are also called orientationally disordered crystals (ODIC). In these

mesophase the positional degree of freedom is suppressed, and the molecules are only

allowed to rotate in a more or less free way, being their centers of mass forming an

ordered lattice (such compounds exhibit a perfect crystalline translational order whereas

orientations are dynamically disordered). Molecules can show an almost free rotation,

or they may jump between a restricted number of possible orientations.

Plastic crystals are generally composed by almost spherical objects and, due to their

lattice structure, they possess long-range order. Such an order can be seen through

the diffraction patterns that present sharp Bragg peaks (that characterize the average

ordered structure) and a strong diffuse intensity (that reflects the details of disorder in

the system).

1.4 Glasses

The glass transition is a broad phenomenon. Any system that shows a certain degree

of disorder can become a glass, arresting a determined degree of freedom in a state far

from the equilibrium. This results in a great variety of different types of glass.

Generally when the temperature of a liquid is decreased, the molecules that compose

it, begin to arrange themselves in a more regular way, in order to avoid tensions that

may arise between the attractive and repulsive forces. In this way, the density increases

and volume decreases (except for water) leading the system into a state in which each
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Figure 1.3: Scheme of the possible transitions of a liquid. Depending on the cooling

rate it is possible to achieve an ordered structure as a crystal or a glass. Upon fast

cooling supercooled liquids arrest their degrees of freedom becoming structural glasses,

while plastic crystal, that present only orientational disorder, vitrify in orientational

glasses [5].

molecule occupies a precise position in space. At the melting temperature Tm the liquid

crystallize, in such case the volume will experience a discontinuous change and then,

after further lowering of the temperature, it will contract at slower pace, effect that

reflects the fact that the coefficient of expansion of a crystal is generally less than that

of the respective liquid (Figure 2.1).

Since the crystallization is a probabilistic process, it is not always possible to obtain

an ordered phase. Indeed, for some systems and by means of different methods it is

possible to avoid the crystallization also below the melting temperature.

For instance, cooling fast enough a liquid continues to contract at the same pace. The
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liquid is now supercooled and the state is a metastable equilibrium state which maintains

essentially the same structure as above the melting temperature (Figure 1.3). Unlike

the liquid state the increase of viscosity in the supercooled region causes a decrease

of particle mobility, so that dynamics tends to assume a more cooperative character,

separating particles in clusters that exhibit slow and fast movements. Maintaining a fast

cooling rate, viscosity and relaxation time continue increasing, due to the slowing down

of the dynamics, as long as the system is trapped in a disordered structure (Figure 1.3).

The supercooled liquid becomes a structural glass (SG) at a temperature Tg, below

which the system becomes unstable. It maintains the molecular disorder (orientational

and translational) of its liquid phase. Examples of this kind of glass are given by windows

glass and optical components.

Even in the case of a plastic crystal, upon a further cooling, molecules exhibit a

slowing down of the molecular dynamics until to the point where it is possible to freeze

the orientational disorder of the system (Figure 1.3). The new system thus obtained is

said orientational glass (OG).

Another kind of glasses is given by those materials composed by molecules that

present more than one possible conformation. This conformational disorder can be ar-

rested lowering the temperature and so avoiding the switch between the possible molec-

ular conformations and leading to a conformational glass. Such disorder is independent

from the degrees of freedom related to the orientations or translations of the molecules,

that are still able to relax in their equilibrium positions.

1.5 Scientific cases

A brief overview is given here to enumerate the various scientific open questions that

have been tackled with the methodology presented in this work. An understanding of

the dynamics of the glass formers is central to explain those scientific problems. All

cases have been further explained in more detail in Chapter 6, 7 and 8.

1.5.1 Plastic-plastic transition in C10H15Cl

In recent years 1-Chloroadamantane (ClA from now on) has attracted great interest

because of the importance covered in nanotechnology and pharmaceutical applications.

Its plastic phase can be a promising test system for the study of liquids.
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Figure 1.4: Experimental heat capacities of l-Chloroadamantane. Phase transition and

fusion are observed at T = 248 K and T = 440 K, respectively. It is evident an anoma-

lous heat-capacity hump around T ≈ 310 K in the temperature range of plastically

crystalline phase [8].

The anomaly (Figure 1.5) evidenced by calorimetric experiments of Kobashi et al.

within the orientationally disordered phase, and the microscopic dynamics studies of

Bée et al. [6] motivated us to investigated if there is any change in the structure and/or

in the dynamics of ClA within the plastic phase as well as if there is a coupling between

dynamical disorder and structure. We fulfill this task, by coupling neutron diffraction

(ND) and quasi-elastic neutron scattering (QENS) techniques. Moreover, we have also

investigated if it is possible to gain some insight about the dynamics of ClA by using

a non-isotropic rotation model originally developed to describe polarization resolved

microscopy data [7]. To the best of our knowledge, this model has not been used before

for the analysis of QENS data.

1.5.2 High fragility Freon113

Typical strong glass formers (m reaching the minimal value ≈ 16, or D ≥ 100) are tetra-

hedral network liquids as SiO2 or GeO2. At present the highest values of fragility for

organic materials (exception made of polymeric materials) have been found in cis/trans-

decahydro-naphthalene (decalin), with m = 147 [9].
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formers. Fragility of Freon113 compared to other plastic crystals and to propylene car-

bonate, a typical fragile structural glass former. Strong glasses are closer to an Arrhenius

behaviour (m = 16) while fragile glasses depart from it

Plastic phases are usually quite strong, i.e. the activation energy as a function of the

temperature is quite constant. This low sensitivity to temperature changes is usually

being related to the suppression of the translational degrees of freedom. In spite of this,

Freon113 (1,1,2-trichloro-1,2,2-trifluoroethane, CCl2F−CClF2), has an extremely large

fragility closer to that of a canonical glass than that of a plastic crystal.

Hence, a dynamic and thermodynamic study of the orientational glass former Freon113

(1,1,2-trichloro-1,2,2-trifluoroethane, CCl2F −CClF2) has been performed in order to

analyze the kinetic and thermodynamic fragilities. The investigation was carried out

by means of dielectric spectroscopy, specific heat measurements and inelastic neutron

scattering.

1.5.3 Glycerol dynamics

An understanding of the dynamics of glass-forming liquids at temperatures significantly

above the glass transition still represents a coveted goal so as to establish a physical

framework to explore the undercooled liquid state. Although we have experimental ac-
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cess to the equilibrium states of the liquid at high temperatures, the very nature of

glasses makes it impossible to probe these at temperatures below the glass transition.

Therefore, if any theory or explanation is to be extrapolated to understand the under-

cooled regime from knowledge of high-temperature equilibrium states, a consensus must

first exists on the underlying physics of the liquid phase at temperatures above the glass

transition. Such a consensus remains a challenge to the field, and often the analysis of

experimental data is invariably colored by specific theoretical considerations.

The primary aim of this work is to provide a detailed and critical appraisal of quasi-

elastic neutron scattering (QENS) data by invoking physical models which are as simple

and as general as possible. In doing so, we address to two specific questions about the

dynamics of liquid glycerol, a prototypical glass-forming liquid: The first one concerns

how many distinct dynamical processes are present in glycerol in the sub-nanosecond

(ns) regime. The second one concerns whether a HomoGeneus (dynamically driven,

hereafter HG) [10,11] or HeTerogeneous (structurally driven, HT) [12–14] scenario bet-

ter describes the QENS data. To avoid the common pitfalls associated with “classical”

data-analysis procedures (e. g., use of additional parameters not justified by the infor-

mation content of the data), we make extensive use of Bayesian inference methods.

1.6 Outline of the work

In the present work it is presented a basic but as far as possible general and integrated

treatment of the behavior of the disordered phase, mainly directed to the study of

molecular dynamics in glass forming materials.

After introducing the required basic theoretical fundamentals, we have paid at-

tention to the investigation methods and the physical models since, despite the great

developments in simulations, they are useful to provide a qualitative understanding of

molecular motions. The analysis has been performed by means of Bayesian inference,

with the attempt to create a robust and transparent method based on probabilistic

foundation with which perform a model selection.

Thereafter, the studies on the systems are presented: 1-chloroadamantane, freon113

and glycerol. These three systems present respectively an increasing degree of disorder

and have been used to explain some of the dynamical properties of general value. The

objectives have been:
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• 1-chloroadamantane: Give an explanation of the plastic-plastic phase transition

by the coupling between dynamics and structure.

• freon113: To understand the microscopic origin of the huge fragility value ever

seen in plastic crystal analyzing the coupling between dynamics having distinct

origins.

• glycerol: Investigate the microscopic dynamic of one of most intensive studied

viscous liquid, glycerol, comparing two dynamical scenarios.

The analysis of the dynamics of such compound and the method used, that have

general validity, could contribute to a deeper comprehension of disordered phase phe-

nomenology.
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Part II

Theoretical framework





Chapter 2

Theory of glasses

In order to gain some insight about the glass transition, in this Chapter we give a brief

and general description of the theories behind glassy phenomena. A “up to bottom”

description will be followed, starting from the macroscopic classification of glasses re-

lated to the temperature dependence of their relaxation times, we will go deeper into

the microscopic origins of glassy behavior.

2.1 Temperature dependence of relaxation time

2.1.1 Strong and fragile

Lowering the temperature very fast some properties show a dramatic increase, the

liquid do not have time to relax to equilibrium and it forms a glass. In the (T, V )-plot

(Figure 2.1) this is shown as a deviation from the liquid line settling down in a nearly

parallel line to the crystal line.

The glass transition temperature Tg is not a constant characteristic of the material

like the melting temperature, but it is a “dynamic” temperature that depends on the

cooling rate: faster the cooling rate, higher the Tg value. Thus glassy state is not a

well-defined state but depends on the temperature (and pressure) history. The fact that

Tg is dependent from the cooling rate has been verified by experiments [15, 16], but

until the cooling rate is in the range 0.1 − 100 K/min, the variation of Tg is not so

meaningful. Furthermore, since in such state the viscosity reaches very high values, the

glass transition temperature is generally defined by η(Tg) = 1012 Pa s.
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Figure 2.1: Schematic illustration of measured property of liquid. Decreasing T liquid

can crystallize (blue line) with a dramatic decrease of the volume, or, depending on the

cooling rate, it can vitrify (red lines). Since Tg value depends on the cooling rate, a

liquid can follow the “glass 1” path or, cooling it more slowly, the system might follow

the “glass 2”. Tg is the temperature at which, on cooling, there is the departure from

the equilibrium liquid line.

It is useful, however, to give a more general definition based on relaxation time τ .

As we know, the relaxation time τ shows a sharp increase when we get close to the

dynamic glass transition Tg. By definition, τ is finite at Tg; in fact, Tg is defined as the

point where relaxation time is of order 102 − 103 s, which is finite.

Usually for most liquids at high temperatures the mechanism of relaxation is ruled

by a simple Arrhenius behavior of the relaxation time τ ,

τ = τ0 exp

(
Ea(T )

kBT

)
, (2.1)

in which the activation energy Ea is essentially temperature independent.

However, in some cases, the increase of the relaxation time is steeper with respect

to the purely Arrhenius behavior. As the temperature is decreased the relaxation time

often shows a stronger increase than that followed by the Arrhenius law, thus making

the associated activation energy to significantly increase when approaching the glass

transition Tg. Such phenomenon is usually viewed as resulting from a significant increase

of some characteristic cooperativity relaxation length. A solid nonlinear formula that



2.1 Temperature dependence of relaxation time 23

interpolates equilibrium data above Tg when approaching Tg is then necessary. It turns

out that such formula, found independently from any theoretical framework, is the

Vogel-Fulcher-Tamman (VFT) law. For the relaxation time, it can be written:

τ = τ0 exp

(
D · T0

T − T0

)
, (2.2)

where the temperature T0 is associated with an ideal glass transition and D is the

strength parameter.

The rise up of the relaxation time or, similarly, the viscosity increase, is generally

characterized by recourse to the concept of fragility [17, 18]. The fragility index, m,

which has been used to classify glass former materials and accounts for such a deviation

of the Arrhenius temperature dependence, is defined as:

m =

[
∂ log τ

∂(Tg/T )

]
T=Tg

. (2.3)

Those materials for which their characteristic relaxation times τ follows an Arrhenius

law are known as “strong” glass formers, whereas “fragile” glass formers are those which

exhibit super-Arrhenius behavior and therefore τ increases much faster with decreasing

temperature in such a way that the activation energy increases with decreasing tem-

perature when approaching Tg (see Figure 2.2). The fragility index m is a fundamental

parameter of the relaxational behavior of glass formers and it is used to classify the

slowing down of the dynamics, by measuring the deviation from the Arrhenius behav-

ior. Small values of the fragility m describe strong liquids, whereas larger values of m

indicate that the liquid is fragile.

The term fragile indicates how “abrupt” is the glass transition. Since in fragile

liquids it is quite easy to arrest one or more degrees of freedom, they are affected by

the increase in viscosity and relaxation time in a very narrow temperature range, for

this reason they are better glass formers with respect to strong materials [19].

The VFT formula seems reasonable also without providing any theoretical argument.

Its exponential nature agrees quite well with the very physical idea that activation rules

the dynamics at low temperatures [19]. Furthermore, the non-Arrhenius exponent char-

acterizes the difference between strong and fragile materials: by varying the parameter

T0 we can distinguish between the Arrhenius behavior that describes strong liquids

(T0 ≈ 0), to a steeper rise of τ (T0 increases) that is typical of fragile glass formers.
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ation time τ . The representation is normalized to the glass transition temperature Tg
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In conclusion it is useful to note the relation that exists between the strength pa-

rameter D and the fragility parameter m:

m =
D · T0

ln (10 · Tg)
·

(
1− T0

Tg

)−2

. (2.4)

2.1.2 Adam-Gibbs theory

Focusing the attention on the entropy it is possible to see that the entropy of the liquid

decreases faster with respect to the entropy of the crystal. This seems to be obvious

since
dS

dT
=

Cp(T )

T
(2.5)

where the specific heat, Cp(T ), of a liquid is larger than that of a crystalline solid.

The excess entropy is then defined as the difference between the liquid and the crystal

entropy:

∆Sexc(T ) = Sliq(T )− Scryst(T ) . (2.6)

Such a quantity decreases lowering the temperature. Plotting ∆Sexc(T )/∆Sexc(Tm) vs

T/Tm, as shown in Figure 2.3, we can notice that for some systems the excess entropy
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Figure 2.3: Excess entropy of some substances, scaled by their values at melting temper-

ature. For each sample the excess entropy seems to disappear at a non-zero temperature

TK [20].

vanishes at a determined temperature. This temperature is called Kauzmann’s tempera-

ture, TK (see Figure 2.1), and it is defined as the temperature for which ∆Sexc(TK) = 0.

For some compounds TK is finite and this suggests that, at T < TK , the entropy of

the supercooled liquid would be lower than the entropy of the stable crystal counterpart.

This phenomenon is known as Kauzmann’s paradox or entropy crisis.

The entropy of a liquid, Sliq in eq. (2.6), can be divided in two contributions: a

vibrational contribution corresponding to the short-time vibrational dynamics, and a

configurational contribution related to the position of its constituent particles

Sliq = Svib + Sc . (2.7)

Since the vibrational part is not so different from the vibrational entropy of the crystal,

we can assume Scryst ≈ Svib, and then

∆Sexc(T ) = Sliq(T )− Scrys(T ) ≈ Sc(T ) . (2.8)

Hence the excess entropy is approximately equal to the configurational entropy. In a

supercooled liquid Sc decreases when the temperature is lowered [19].
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On these thermodynamic grounds we can write the temperature dependence of re-

laxation time τ using the so called Adam-Gibbs equation:

τ = τ0 exp

(
C

TSc(T )

)
, (2.9)

where C is a constant factor. Equation (2.9) shows that the relaxation time increases

when the configurational entropy decreases. The exact behavior of Sc(T ) at low T is

unknown, however, using eq. (2.5) and (2.8), we can write:

dSc

dT
=

d

dT
(Sliq − Scryst) = Cliq

p − Ccryst
p = ∆Cp , (2.10)

hence

Sc(T )− Sc(TK) =

∫ T

TK

dT
∆Cp

T
. (2.11)

The difference in the specific heat between the liquid and the crystalline phase is tem-

perature independent. Using such approximation and the fact that Sc(TK) = 0 it is

possible to write for Sc(T ):

Sc(T ) = ∆Cp log

(
T

TK

)
expanding for T ≈ TK Sc(T ) ≈ ∆Cp

T − TK

TK
. (2.12)

The configurational entropy is then proportional to the crystal-liquid difference of the

specific heat ∆Cp. Approaching the dynamical glass transition, i.e. going towards Tg,

the specific heat value of the glassy phase becomes comparable to the value of the

respective crystal. Therefore, as expressed by eq. (2.12), the higher is the change in the

specific heat, the steeper is the configurational entropy decrease. Combining eq. (2.12)

and eq. (2.9) one obtains:

τ = τ0 exp

(
TK

∆CpT (T − TK)

)
and near TK τ = τ0 exp

(
A

T − TK

)
, (2.13)

that is a VFT relation. This thermodynamic fragility is correlated to the excess entropy

Sexc (the excess of liquid entropy over that of the crystal, that is generally taken as the

configurational entropy Sc [21] which appears in the Adams-Gibbs equation (eq. 2.9)),

scaled by the excess entropy at Tg, Sexc(Tg). Such thermodynamic “Angell plots” (i.e.,

Tg-scaled Arrhenius plots) Sexc(Tg)/Sexc(T ) vs. Tg/T (Figure 2.4) exhibited a very

similar behavior to that of classical Angell plots of the viscosity or relaxation time,

log τ vs. Tg/T , for many glass-forming systems [22].
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2.1.3 Dynamic and thermodynamic fragility

The relation between kinetic fragility, that describes the temperature dependence of

transport coefficients in viscous liquids, and thermodynamic fragility has been object of

several studies [22–26]. Thermodynamic fragility has been defined [26] in terms of the

temperature dependence of the excess entropy, scaled by the excess entropy at Tg and

compared to the kinetic one.

First of all we have to notice that the Vogel temperature T0, where viscosity or relax-

ation time extrapolate to infinity by the VFT formula, and the Kauzmann temperature

TK , where the supercooled liquid entropy extrapolates to the crystal entropy, are not

quantities directly measured, in fact, one is a parameter coming from a fit procedure

(T0) and depends on the temperature interval over which the fitting is performed, and

the other (TK) is the result of a linear extrapolation of the data where the excess en-

tropy vanishes (remember that the configurational entropy is not exactly equal to the
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excess entropy).

Despite the singularities in T0 and TK discussed above, in many systems it is possible

to consider [21,27]:

T0 ≈ TK . (2.14)

This relation establishes a deep connection between two different frameworks: dynamics

(relaxation time) and thermodynamics (configurational entropy). Thus, the point in

which the dynamic divergence in the VFT fit is expected can be approximate to the

point where the configurational entropy vanishes.

To have a quantitative comparison between the two scenarios a definition of the two

fragilities has to be given. Using the Angell plot logη vs Tg/T , for the kinetic fragility

we have,

F1/2 = 2
Tg

T1/2
− 1 , (2.15)

where T1/2 is defined as the temperature half way between 1013 Pa s (or 102 s for the

relaxation time) characteristic of the glass transition, and 10−4 Pa s (or 10−14 s), the

common viscosity high-temperature limiting value for liquids. In the same way, a ther-

modynamic fragility F1/2 could be defined from the above mentioned Sexc(Tg)/Sexc(T )

normalized curves. Nevertheless, it was argued that for the thermodynamic fragility is

preferable to use the T3/4 line (the temperature at which Sexc(Tg)/Sexc(T ) = 3/4) to

avoid the need for too large extrapolations in the case of strong liquids

F3/4 = 2
Tg

T3/4
− 1 . (2.16)

As shown in Figure 2.5 and despite some exceptions, the fragilities of many substances

exhibit a correlation between the kinetic and the thermodynamic part.

2.2 Energy landscape

We have seen how phenomena that take place in glassy compounds can be reproduced

by means of simple models starting from basic notions. However, such description is

limited to the search for the fundamental mechanisms behind the slowing down of the

relaxation and the fall out of equilibrium of the slow degrees of freedom that induce

the glass transition. Those models are very helpful, because provide a link between

dynamics and glassy behavior, but they are not able to explain how these mechanisms



2.2 Energy landscape 29

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

Toluene
OTP

TPPPC

La2OB2O3Ca(NO3)2.4H2O
Phenolphth

H2SO4.2H2O

SalolBR-pentane

MTHF
Glycerol

CaAl2Si2O8

Se

ZnCl2

Propanol

As2Se3(1)

B2O3

As2Se3(1)

Nepheline

Orthoclase

NaAlSi3O8

GeO2

F 3
/4

F1/2

SiO2
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some compounds [22].

arise in real systems, such as, for example, the origin of energy barriers that give rise to

Arrhenius and super-Arrhenius character near Tg or the origin of stretched exponential

dynamics [28].

An attempt to give an explanation has been done putting the attention on how

the system evolves in the phase space, i.e. the space of all configurational degrees

of freedom [19]. This space, for a glass former system is complicated, for example,

considering a system composed by N particles of the same chemical species, with ν that

is the number of internal degrees of freedom of each particle (orientation, conformation,

etc.), then the dimension of the space will be (3 + ν)N + 1 [29]. Over the phase space

can be defined the potential energy of the system, which a surface is called potential

energy landscape. Each one of the system configurations may be represented as a point,

that, moving on the surface of the potential energy landscape determines the system

dynamics.

The potential energy hypersurface presents local minima that correspond to equi-

librium sites of the system. The absolute minimum (ground state) describes, of course,

the crystalline state, but there are also all the minima due to defects and dislocations
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state out of the equilibrium and to a stable equilibrium state, respectively [29].

of the crystal, which can be seen as excitations with respect to the ground state. More

interesting is the presence of others local minima, which describe the amorphous and

glassy state (lack of long-range order), and show a potential energy higher than the

crystal one.

The main idea of this approach is that at low temperatures a supercooled liquid

examines the phase space through jumps, overcoming barriers of potential energy that

separate different amorphous minima. The system does not perform, however, such

jumps in the attempt to reach lower minima, moreover we are considering a system

at equilibrium (although metastable), so that the average potential energy, where the

system is located, is constant in time. The system goes through minima that on average

have the same energy, resulting in equilibrium and therefore ergodic. A system is said

to be ergodic, when it has the same behavior if averaged over time or averaged over the

phase space, i.e., that all accessible microstates are equiprobable over a long period of

time.

At the glass transition temperature Tg, the system is blocked in a local minimum of
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the phase space, hence it cannot explore the phase space in the available time. In this

case the barrier cannot be surpassed, for that, once a system is trapped within a local

minimum it cannot escape and ergodicity is broken.

The potential energy landscape scenario offers a description in terms of two time

scales: a short time due to the vibrational relaxation within a potential energy minimum,

and a long time relaxation due to the transition between one minimum to another.

Since the jumping time becomes larger lowering the temperature, the second time scale

is longer than the vibrational one. The short and the long time scale can be seen

respectively as the β (fast) and α (slow) relaxation of the dynamic correlation function.

Considering such interpretation, vibrations in the potential energy minimum of the

phase space correspond to vibrations of particles within the confinement formed by

neighbors, whereas passing a barrier corresponds to the local diffusion of some particles

[19].

2.3 Two step relaxation

The nature of glass transition is purely dynamical, in particular, close Tg, the begin-

ning of glass transition is marked by the behavior of viscosity, that is the time integral

of a dynamic correlation function, called shear relaxation function. The same happens

with the diffusion coefficient, linked to the integral over time of the velocity-velocity

correlation function. The correlation function C(t) shows how rapidly correlations into

the system decay in time [19]. A short-time ballistic regime is expected at high temper-

atures, in which particles move freely, followed by a dissipative regime, described by a

normal exponential relaxation:

C(t) = C0 exp(−t/τ) . (2.17)

where τ is the only relaxation time in describing the system.

However, decreasing T the relaxation time τ grows precipitously, and the decay

of C(t) emerges approaching Tg. If the increase of τ with decreasing T was the only

effect, there would be no signal which characterizes the approach to the glass transition.

But it is not what happens. Approaching Tg a plateau is formed, hence the decay is

not described by a simple exponential correlation function (Figure 2.7). This kind of

behavior is called two step relaxation.
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intermediate scattering function I(Q, t)). Lowering the temperature, and approaching

Tg the simple exponential decay changes in a two step relaxation [19].

Two steps relaxation is the evidence of the approach to the glass transition. At

low temperatures the relaxation time increases, but only through the non-exponential

dynamic correlation function which one has the evidence of the proximity of the glass

transition. Furthermore, the presence of the plateau suggests a description based on

two time scales: a fast and a slow process. The former has a weak dependence on T ,

whereas the latter is strongly dependent on temperature. The two processes are said β

(fast process) and α (slow process) relaxation.

The shape of C(t) suggests a clearly division between two time scales, separation

that becomes more evident lowering the temperature. Important to notice that it is not

possible to define a temperature at which begin the non exponential relaxation behavior.

Thus the transition between the simple exponential and the two step relaxation can be

seen as continuous.

It is possible to visualize such effect imagining a particle confined by its neighbors.

The surrounding particles behave as a “cage”. Approaching the glass transition, the

viscosity increases and reduces the space available to the movements of each particle.

Thus the particle that is trapped will perform movements in the confined region until
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the cooperation of the surrounding neighbors permit to break the cage and let the

particle to diffuse. β relaxation is linked to the bouncing modes in the confined region,

and α relaxation is related to the diffusion. Upon cooling the relaxation time of a liquid

increases as well as the correlation length. Near Tg, particles have the tendency to form

clusters showing then an heterogeneous dynamics due to their cooperativity.

2.4 Homogenous or heterogeneous?

The departure of the dynamic correlation function from exponential relaxation can

be ascribed to the decay split into two steps. Evidence suggests that the Kohlraush-

Williams-Watts stretched exponential form,

C(t) = C0 exp
[
−(t/τ)βKWW

]
, β < 1 (2.18)

fits reasonably well the data. The stretched exponent βKWW is a parameter that can

be used to determine the cooperativity of the many-body relaxation dynamics. The

interesting point is that the exponent decreases lowering the temperature, emphasizing a

clear deviation from a simple exponential relaxation behavior. However, at high values of

T the exponent βKWW approaches 1, and the relaxation returns to a simple exponential.

The microscopical origin of the non-exponential relaxation is not fully understood.

Two generally accepted hypotheses are usually given: the homogeneous and heteroge-

neous scenarios. According to the first, relaxation is non-exponential in all the regions

of the material, so that the stretched behavior of the correlation function is given to a

proper phenomenon, also locally, due to the disordered environment that molecules see

around themselves. For the heterogeneous view, on the other hand, the whole system

is stretched because different domains have significantly different relaxation times, and

in this sense dynamics is considered heterogeneous. These spatial heterogeneities [29]

correspond to different regions distant few nanometers each other. Measuring the global

relaxation time, typically an average over different domains is performed, and a global

non-exponential decay is obtained.

It is believed that the heterogeneous dynamics is the basis of a phenomenon that

takes place at low temperatures. This phenomenon is the breakdown of the Stokes-

Einstein (SE) relationship between the viscosity and the diffusion coefficient.

Dη =
kBT

Cd
, (2.19)
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where C is a constant and d is the hydrodynamic effective diameter of the molecule.

In supercooled liquids close to Tg, the diffusion coefficient D and 1/η have different

functional dependence on T , so that the ration Dη/T is no longer a constant and the

Stokes-Einstein relation is violated [30,31].

A detailed explanation is given in [32]. Being the dynamics heterogeneous, the dif-

fusion is driven by the fast clusters, while structural relaxation by the slow ones. Thus,

at low T , diffusion and relaxation decouple, and the SE relation is broken.

Imaging now a simple system in which there are only two kinds of domains (fast and

slow), in which diffusion coefficients and relaxation times are respectively Df >> Ds

and τf << τs [19]. In general it is possible to assume τ ≈ η, so that SE relation reduces

to D ≈ 1/τ . The diffusion coefficient and relaxation time of the whole system are then

given by,

τ =
τf + τs

2
≈ τf

2
, D =

Df +Ds

2
≈ Df

2
. (2.20)

Hence,

D >>
1

τ
, (2.21)

so that the SE relation is violated: diffusion increases with respect the structural re-

laxation. The explanation is clearly oversimplified, but it gives a basic idea of this

phenomenon in a supercooled liquid.

Furthermore, measurements of various substances have shown the link between the

SE relation and the nature of the non-exponential decay of the dynamic correlation

function [32]. When the stretched exponent βKWW decreases the deviation from the SE

relation becomes bigger. It is then quite evident the connection between βKWW , the

dynamical heterogeneities and the SE equation.



Part III

Experimental methods





Introduction

In this part an overview of the most important theoretical relations relative to the

experimental techniques generally used for the analysis of soft materials will be given.

We will focus on the techniques used in the development of this thesis, in particular,

we will take into account neutron scattering and dielectric relaxation techniques. The

discussion will be followed by a brief description of how such formulas are connected to

the physical quantities measured in our experiments.

Given the complexity of the dynamics and the structure in the materials under ex-

amination, we wish to emphasize the complementarity between the techniques discussed

here, and that it is crucial to combine information from several of these techniques to

fully understand the underlying mechanisms of molecular motions [33] and eventual

connections with their structure. For a deeper description on the basics of neutron scat-

tering and diffraction and dielectric spectroscopy, we refer the reader to a wide range

of literature on theory [34–41] and on instrumentation [35,40–44].

Figure 2.8 presents a traditional view of the time (frequency) range accessible to

different techniques. It is important to note that scattering techniques have a significant

advantage due to an additional variable - the scattering angle. It provides information

on the geometry of the motion through the measurements of the scattering wavevector

Q. Thus, in Figure 2.8, the lengthscale (≈ 2π/Q) accessible to experimental techniques

is shown as the x-axis. Dielectric relaxation spectroscopy has no particular Q, and that

is the reason it is outside of the main sketch presented in Figure 2.8.

Furthermore, it is important to note that the way in which it is possible to get

information about the sample under analysis depends on the type of instrumentation

which is used. Considering that there are many types of instruments and of possible

configurations for each instrument, the use of a particular machine and therefore of a
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Figure 2.8: Sketch showing the frequency (time) and wavevector (length) ranges accessi-

ble with traditional experimental techniques. Longer times (not shown) can be accessed

by many techniques. IXS is Inelastic X-Ray Scattering and XPCS is X-ray Photon

Correlation Spectroscopy. Dielectric relaxation spectroscopy does not have a particular

length scale (Q), thus is placed outside of the main plot

particular technique of investigation delimits the length and the time scale that it is

possible to probe in the analyzed systems.

The main features about the instruments will be presented, paying particular atten-

tion to the functioning of the instruments used for subsequent analysis.



Chapter 3

Neutron scattering

3.1 Neutron scattering principles

The properties of neutron make it particularly suited for the study of matter. The

absence of charge implies that the interaction between neutrons and matter is confined

to short range, so that the neutron can penetrate deep into the sample. The wavelength

associated with the neutron is on the same order of magnitude of inter-atomic distances

of solids and liquids. This tells us that neutrons are particularly suited to the study of the

structure by means of diffraction experiments. Moreover, neutrons have an associated

kinetic energy, kBT , on the order of 25meV, which is a typical energy for collective

excitations in solids and liquids. Therefore, both wavelength and energy are ideally

suited to studies of the atomic dynamics of condensed matter by means of spectroscopy

technique.

Let us consider an ideal neutron scattering experiment in which a monochromatic

beam of neutrons, characterized by the wavevector ki, impact on a target (Figure 3.1).

During the collision the incident neutrons can exchange momentum and energy with

the sample. The change of direction and module of the wavevector, before and after the

diffusion process, is related to an exchange of momentum between the neutron and the

sample, conventionally described in terms of the transferred wavevector Q. The law of

momentum conservation is therefore:

Q = ki − kf . (3.1)
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Figure 3.1: Schematic diagram of a generic arrangement for neutron-scattering experi-

ments [36].

Generally the change in modulus of the vector k is related to an exchange of energy

between the neutron and the sample, whose conservation law can be written:

~2ki2

2mn
− ~2kf 2

2mn
= ~ω, (3.2)

where ~ω is the transferred energy. By analyzing the (3.1) and (3.2) it is possible to

notice thatQ and ω result to be not independent and determine a cinematic constriction

on the diffusion experiment. In fact the space (Q, ω) is not fully accessible, as can be

seen rewriting (3.1) in the following way:

Q2 = ki
2 − 2kikf cos θ + kf

2 . (3.3)

Neutron scattering is considered elastic, when the neutron does not change its energy

in the scattering process (Ei = Ef ). If neutrons either gain (~ω < 0), or lose energy

(~ω > 0) in the scattering process, the scattering is said inelastic.

3.1.1 What do we measure?

What we measure is the ratio of the neutrons scattered in a certain time interval and

the incidents neutrons during the same time interval. So, we can count the neutrons

which are diffused into a solid angle element dΩ around a final wave vector kf and with

a final energy between Ef and Ef + dEf . This amount is:

d2σ

dΩdEf
dΩdEf , (3.4)
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where the quantity d2σ/dΩdEf is called double differential cross section.

A physical comprehension of eq. 3.4 can be given in the following way: we know that,

when the incident neutron has a wavelength comparable with the interatomic distances

that characterize the structure of the sample, the neutron will undergo a deviation in

its direction. Furthermore, a neutron passing through a sample can gain or lose energy,

creating or annihilating movements within the material itself. If we are not interested

in such movements, one can eliminate the energy dependence by integrating over all

possible final energies Ef getting:

dσ

dΩ
=

∫
d2σ

dΩdEf
dEf , (3.5)

that is called differential cross section. Hence dσ/dΩ depends in an integral way on the

dynamics of the system but does not disclose a detailed information about the motions.

Similarly, a total scattering cross section for the system under investigation is defined

by:

σT =

∫
dσ

dΩ
dΩ , (3.6)

which can be measured in a simple transmission experiment. This observable depends

only on ki, and contains less information about the structure and dynamics of the

sample with respect to dσ/dΩ.

3.2 Scattering law

An incident neutron, passing near a nucleus of the sample, is subject to three distinct

events. The neutron can be transmitted, without any kind of interaction, absorbed and

so trapped by the nucleus or scattered. In the last case its direction as well as its energy

are changed [35,45] and can be measured placing a detector along the direction kf . To

describe the interaction between neutrons and nuclei, we need to use formalism that

comes from the quantum-mechanical theory of scattering.

In order to obtain information on the sample, from neutron scattering, we need to

define a general expression of the double differential cross section for a given system

transition from one quantum state to another, namely by the initial states |λi⟩ of the

sample and those |ki⟩ of the neutron to the final states of the sample, |λf ⟩, and of the

neutron, |kf ⟩. For a complete discussion we should describe the initial and final states

of neutron also from a state of spin (respectively |σi⟩ e |σf ⟩).
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Since the aim of this analysis is not study magnetic characteristics of the sample,

this aspect was not taken into account: measures were carried out with non-polarized

neutrons and it is therefore used a system of detection and analysis that is not sensitive

to polarization. In this case the potential of interaction is spin independent.

By summing over all possible final states λf of the sample, and doing an average for

the initial states with probability pλ, we obtain the following final expression for the

double differential cross section:

d2σ

dΩdEf
=

1

~
d2σ

dΩdω
=

=
1

N

kf
ki

(
mn

2π~2

)2∑
λi

pλ
∑
λf

|⟨kfλf |V̂ |kiλi⟩|
2
δ(~ω + Eλi − Eλf

) ,

(3.7)

where V̂ is the Fermi’s pseudopotential and the δ-function is included to ensure the

energy conservation. The Fermi’s pseudopotential depends by instantaneous positions

of the neutron and the nucleus respectively r and R, and by b, the scattering length.

The scattering length depends on the interaction, varies depending on the spin state

of the neutron-nucleus system and its sign and its intensity vary irregularly with the

atomic number and the mass number of the diffuser atom (see Figure 3.2).

Assuming that the isotopic and spin distributions, referred to the same type of

atomic element, are random, is possible to mean simply on the initials distributions, we

get:

1

~
d2σ

dΩdω
=

1

N

kf
ki

1

2π~

∫ ∑
d,d′

∑
j,k∈d,d′

b∗j bk

⟨
e−iQ·(Rj(0)−Rk(t))

⟩
e−iωtdt. (3.8)

where d and d′ refer to the case of a multi-component sample (in the case of a single

component system, d = d′ and we can omit the sum over d and d′), Q = ki − kf is

the transferred wavevector and ω = (Ei − Ef )/~ is the transferred energy between the

probe and the sample.

3.2.1 Coherent and Incoherent

We need to evaluate b∗j bk which is the average of the scattering lengths done on the

isotopic and spin distributions, varying on all the corresponding pairs of atoms d and

d′. Therefore we can write:

b∗j bk = b∗dbd′ +
(
|bd|2 − |bd|2

)
δjkδdd′ , (3.9)
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.

the substitution of (3.9) in (3.8), provides:

1

~
d2σ

dΩdω
=

1

N

kf
ki

∑
d,d′

b∗dbd′

∑
j,k∈d,d′

Sjk +
1

N

kf
ki

∑
d

(
|bd|2 − |bd|2

)∑
j∈d

Sj , (3.10)

The first term in (3.10) is the sum, over all possible pairs of atoms j and k, of the

correlation between the position of the atom j at time t = 0 and that the atom k at

time t. This therefore represents a term of interference and it said coherent cross section.

The second term, instead, is the sum of self-correlations of each individual atom between

its position at the initial instant and the one at time t; that term is said incoherent cross

section.

Let’s give an interpretation to the definitions introduced above for a single compo-

nent system: since the scattering length, b, varies depending on the isotope and depends

on the orientation of the nuclear spins, the potential of which is affected by the probe

is not uniform, but changes from one atom to another. Therefore, only the average
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potential (∝ |bd|) can give interference effects and give rise to coherent scattering. The

changes from the average potential, instead, are random and do not give rise to inter-

ference phenomena. This is incoherent scattering which is therefore proportional to the

mean square deviation (|bd|2 − |bd|2).

It is now possible to write the eq. (3.10) as the sum of two terms, a coherent and

an incoherent part:

1

~
d2σ

dΩdε
=

kf
ki

Nσcoh

4π
Scoh(Q, ω)︸ ︷︷ ︸

coherent

+
kf
ki

Nσinc

4π
Sinc(Q, ω)︸ ︷︷ ︸

incoherent

, (3.11)

where Scoh(Q, ω) and Sinc(Q, ω) are respectively the dynamic structure factor and the

incoherent dynamic structure factor and N the number of scattering centers.

The two functions can be expressed, respectively, as:

Scoh(Q, ω) =
1

2π~N
∑
j,k

∫ +∞

−∞

⟨
e−iQ·Rj(0)eiQ·Rk(t)

⟩
e−iωtdt ,

(3.12)

Sinc(Q, ω) =
1

2π~N
∑
j

∫ +∞

−∞

⟨
e−iQ·Rj(0)eiQ·Rj(t)

⟩
e−iωtdt .

The time Fourier transforms of eqs. (3.12) give a time-dependent functions known

as intermediate scattering function and self-intermediate scattering function:

Icoh(Q, t) =
1

2π~N
∑
j,k

⟨
e−iQ·Rj(0)eiQ·Rk(t)

⟩
, (3.13)

Iinc(Q, t) =
1

2π~N
∑
j

⟨
e−iQ·Rj(0)eiQ·Rj(t)

⟩
. (3.14)

The intermediate scattering functions are dimensionless, while the scattering func-

tions themselves are of dimension ω−1, as defined via eq. (3.8). As shown explicitly

by eq. (3.11), scattering functions are obtained via the measurement of double differ-

ential cross sections. Intermediate scattering functions are, instead, directly accessible

with neutron-spin-echo techniques [36].
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Quasielastic neutron scattering

Let us analyze the case of a liquid system. The simplest approach to describe these

systems is given by the classical approximation, i.e., considering a monoatomic liquid,

consisting of N particles of mass M which follow the Boltzmann statistics. This ap-

proximation, for most of the systems analyzed, it is widely accepted, since interatomic

distances are large compared to the wavelengths normally used.

Since a fluid is an isotropic system, in these expressions is considered only the module

of the wavevector Q.

We can show that the response function is the Fourier transform of the relaxation

function I(Q, t), namely:

S(Q,ω) =
1

2π

∫
e−iωtI(Q, t)dt . (3.15)

In the case of classical fluids we can write for the relaxation function:

I(Q, t) =
1

N
⟨ρQρ∗Q⟩ , (3.16)

that is true for the coherent part, while the single particle contribution is:

Is(Q, t) = ⟨eiQ·(R(t)−R)⟩ . (3.17)

It should be noted that equation (3.15), with relations (3.16) and (3.17) is attributable

to the result obtained (see section 3.2.1):

S(Q, ω) =
1

2π~N

∫ ∞

−∞
e−iωt

∑
jj′

⟨e−iQ·RjeiQ·Rj′ ⟩dt .

In the classical fluids theory we do not have a single expression for the response

function that is valid for each value of Q and ω; rather are used different models,

depending on the range of values of Q and ω we want to examine.

Is also useful to introduce the static structure factor. This is defined as the integral

in ω of coherent part of the response function:

S(Q) =

∫
S(Q,ω)dω =

1

N
⟨ρ2Q⟩ . (3.18)

From the definition (3.18) and from the definition of density operator ρ̂(r, t) =
∑

j δ[r−

R̂j(t)], it is clear that the static structure factor depends on the correlations between

different atoms at the same instant, is therefore a measure of the instantaneous ar-

rangement of the diffusion centers of the system. For example, in a perfect crystal, we
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Figure 3.3: (a) Example of static structure factor for a liquid. (b) Pair distribution

function.

have a set of delta functions of Dirac corresponding to the positions of the atoms in the

Q-space, while for systems with no long range order S(Q) has a trend similar to that

shown in Figure 3.3a.

To understand the analytic form of (3.16) and (3.17) we distinguish two regions:

one at high Q values and one at low Q values. At intermediate Q values an univocal

formulation does not exist, but only approximations that tend, in the respective limits,

to the situations that will be described later (see Figure 3.4).

By coherent scattering we have information about the positions and relative move-

ments of different particles in the liquid. As shown above, the intermediate scattering

function I(Q, t) is:

I(Q, t) =
1

N

∑
jj′

⟨e−iQ·Rj(0)e−iQ·Rj′ (t)⟩ ,

and it is the correlation function associated with this type of diffusion.

At t = 0, I(Q, t) is the static structure factor of the system S(Q), whose typical trend

is shown in Figure 3.3a. The main peak is followed by rapid oscillations that tend to

the asymptotic value S(∞) = 1.

The function S(Q) is related to the pair correlation function g(r) through the relation:

S(Q) = 1 + ρ0

∫
eiQ·rg(r)dr , (3.19)

where ρ0 = N/V is the particle density of the liquid. The static pair distribution

function g(r) is a measure of the probability of finding an atom at a distance r from



3.2 Scattering law 47

Ql << 1
 << 1

Ql >> 1
 >> 1

Ql ~ 1
 ~ 1

S
(Q

)

Q(Å-1)

intermediate 
regime

free particle 
regime

hydrodynamic 
regime

Figure 3.4: Scheme of a static structure factor S(Q). It is possible to distinguish three

regions: the hydrodynamic limit, an intermediate regime and the limit of free particle.

one placed in the origin (Figure 3.3b). In the inner region of the atom this probability is

practically zero, then rises rapidly up to a first peak, thus determining the oscillations

in the static structure factor at large Qs.

The single particle motion can be studied starting from the self intermediate scat-

tering function, associated with the particles density:

Iinc(Q, t) =
1

N

∑
j

⟨e−iQ·Rj(0)eiQ·Rj(t)⟩ .

Given the isotropy of a fluid, such a function, as well as S(Q,ω), will depend exclusively

by the module of Q. The frequency spectrum of the function Iinc(Q, t) is the incoher-

ent dynamic structure factor Sinc(Q,ω), tied to the incoherent diffused experimental

intensity:

Sinc(Q,ω) =
1

2π

∫
e−iωtIinc(Q, t)dt .

Even in the case of incoherent scattering, the two functions Sinc(Q,ω) and Iinc(Q, t)

provide information in a spatial range of the order of 2π/Q, but for what which concerns

the single particle motion.

Considering the relation between the wavevector Q and the average distance l be-

tween the particles and between the frequency ω and the mean time between collisions

τ , is possible to distinguish three extreme situations (Figure 3.4):
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• Ql ≪ 1 and ωt ≪ 1. It is a situation almost macroscopic, the system can be

described as a continuous fluid and the dynamics of its particles is essentially

diffusive. In this case the classical theory provides for Ss(Q,ω) a Lorentzian spec-

trum centered in ω = 0, with a full width at half maximum (FWHM) equal to

2DQ2 where D is the diffusion coefficient of the system.

• Ql ≈ 1 and ωt ≈ 1. In this intermediate region are not possible immediate sim-

plifications, but the attempt is to introduce approximate models that tends to

explain the behavior of the diffusing particle. One of these models is that of cage

diffusion, which provides that the particle which diffuses remains trapped in a

cage constituted by the first neighbors for a finite time.

• Ql ≫ 1 and ωt ≫ 1. In this regime, the wavelength is much smaller than the

average distance l between the particles and the characteristic time is very lower

than the average collision time τ . So, every single particle does not perceive the

presence of the other and can be regarded as non-interacting. In this limit, the

classic spectrum for Ss(Q,ω) is determined by a statistical distribution of veloc-

ities and its form, in general, may be approximated by a Gaussian centered at

ω = 0 with an half width at half maximum (HWHM) equal to [2 ln2(kBT
m )]1/2Q,

tied to the mean square velocity of a particle ⟨v2
j ⟩ = 3(kBT/m).

Part of the present work is dedicated to the study of quasi-elastic scattering (QENS)

[35,46], which provides information on the dynamics of the random motions within the

sample. QENS concerns to those inelastic events in neutron scattering that are almost

elastic (Figure 3.5). Such term is usually used to describe a widening of the elastic line in

the energy spectrum rather than the discrete peaks representing inelastic processes. As

mentioned, neutron scattering - and thus also QENS - contains coherent and incoherent

components. The coherent component gives information about interference between

atoms or molecules. Incoherent scattering describes the scattering by single atoms: if

the atoms or molecules experience random motions during the scattering, a transfer of

energy to or from the neutrons is related to this single-particle scattering. This gives

a broadening of the line arising from elastically scattered neutrons, the width of which

is evidently connected to coefficient that controls the diffusion. Thus QENS can be

used to study diffusion, where an individual particle performs a random walk over the

sample [47,48].
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Figure 3.5: Diagram of an S(Q,ω). In elastic scattering there is no energy exchange

(~ω = 0) and ideally it should be represented by a delta function. Inelastic scattering

presents an energy exchange ~ω ̸= 0 due to processes that occur at discrete energy step

such as stretching modes, vibrational modes, etc. In quasielastic scattering the energy

exchange is different from zero but of the order of µeV. This is due to events occurring

with an energy distribution such as translations, rotations, etc [46].

In general, for a diffusing atom within a fixed volume, the incoherent scattering

function Sinc(Q,ω) in the elastic region is separable into a purely elastic component,

A0(Q)δ(ω), and a quasi-elastic component centered on ω = 0, A1(Q)L(ω), where δ(ω)

is the delta function and L(ω) is a Lorentzian function.

S(Q,ω) = A0(Q)δ(ω) +A1(Q)L(ω) . (3.20)

The elastic component is used to characterize the geometry of the underlying motion

and the Lorentzian term gives information on the time scale of the diffusion. The elastic

intensity as a function of Q can be represented by a structure factor called the elastic

incoherent structure factor (EISF), which can be written:

EISF =
A0(Q)

A0(Q) +A1(Q)
=

elastic intensity

total intensity
. (3.21)

For purely translational diffusion, the EISF is zero except at Q = 0. For the rotational

diffusion of a particle, the EISF is unity at Q = 0 and falls to a minimum at a Q value

which is inversely proportional to the radius of gyration of the rotating molecule. The

shape of EISF represents the geometry of the diffusional process.
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Another characteristic of the incoherent scattering function, the Q-dependence of

the quasielastic line width Γ(Q) of the central component, which is due to translational

long-range diffusion.

In a liquid the quasielastic contribution is almost always observed, even if generally

it is superposed on the inelastic processes. In the condition of small Q exchanged is

however possible separate this contribution from other processes [36].

Also in some crystals that display orientational disorder (called “plastic crystals”) is

possible to see the quasielastic contribution, in fact, molecules are subjected to reorien-

tations between a finite number of quasi-equilibrium configurations. This phenomenon

corresponds to the transport of individual atoms between quasi-equilibrium sites and,

thus, also gives rise to quasielastic features in the neutron-scattering response.

3.3 Time-of-Flight inelastic neutron scattering

The Time-of-flight (TOF) technique is a method for determining the kinetic energy of

a neutron, by the measure of the time it takes to cover a known distance between two

fixed points, since its velocity, after the moderation, is of the order of kms−1. Energy

(~ω) and momentum (Q) transfer are the quantities measured in inelastic experiments.

Spectrometers suitable for such measures can be divided into two categories:

• Direct geometry spectrometers: in which the incident energy, Ei (crystal or

chopper) is selected, and the final energy, Ef , is determined by time-of-flight.

• Indirect (inverted) geometry spectrometers: in which the sample is illumi-

nated by a white incident beam, whose energy is determined at the sample position

by the measurement of the time-of-flight and the final energy is measured by a

crystal.

At a pulsed source all spectrometers use the time-of-flight techniques, while on contin-

uous sources choppers are needed to provide a pulsed beam.

For direct geometry spectrometers ki is fixed and kf varies as a function of time

whereas the opposite is true for indirect geometry instruments. As seen in Section 3.1,

the conservation laws give:

Q2 = k2
f + k2

i − 2kfki cos(ϕ) ,
~2Q2

2m
= Ei + Ef − 2 (EiEf )

1/2
cos(ϕ) . (3.22)
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Figure 3.6: Cinematic ranges through (Q,ω) space. In (a) a direct geometry spectrom-

eter and in (b) an indirect geometry spectrometer for detector at the given scattering

angles (respectively 0, 20, 45, 60, 90, 120, 150 and 180◦). The graphs have been done us-

ing an energy transfer for both processes of 25 m eV.

For direct geometry Ef can be eliminated leaving

~2Q2

2m
= 2Ei − ~ω − 2 cos(ϕ) [Ei (Ei − ~ω)]1/2 (3.23)

These are parabolas in (Q,ω) space. To make optimum use of direct geometry spec-

trometers, they are equipped with large detector arrays, giving simultaneous access to

a large area of (Q,ω) space.

Similarly for indirect geometry, Ei can be eliminated giving

~2Q2

2m
= 2Ef − ~ω − 2 cos(ϕ) [Ef (Ef − ~ω)]1/2 (3.24)

The parabola are inverted. An important feature of the indirect geometry instrument

is the access to a wide range of energy transfers for energy loss (Figure 3.6).

3.3.1 The high resolution spectrometer IRIS

IRIS is a high-resolution quasi/in-elastic neutron scattering spectrometer (Figure 3.7).

It is an indirect geometry spectrometer, that means that neutrons scattered by the

sample are analyzed in energy by means of Bragg scattering from a crystal-analyzer

array. As in other instruments at a pulsed neutron source, the time-of-flight technique
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is used for data analysis. The instrument uses neutrons coming from a liquid hydrogen

moderator at 25 K and consequently it has access to a large flux of cold neutrons [49,50].

The primary spectrometer. The transport of the neutrons, from the moderator to

the sample position, is achieved using a neutron guide. At IRIS the guide is terminated

by a 2.5 m long converging Ni − Ti supermirror. The supermirror helps to focus the

beam at the sample position but also it is useful to increase incident flux (a factor of

≈ 3 at 5 Å). At the sample position the neutron flux is roughly 5.0 · 107 n cm−2s−1

(white beam at full ISIS intensity). After the moderation neutrons wavelength range

is defined by two disc choppers. These are rotating discs (operating at 50, 25, 16.6

or 10 Hz) that permit the passage of neutrons in the selected wavelength range. The

choppers are constructed with and absorbing material and each one presents small

adjustable apertures to let the neutrons pass. The upper and lower limits of the incident

wavelength range are defined by adjusting the chopper phases. Wavelength range defines

the energy resolution and energy-transfer range (inelastic) or d-spacing range (elastic)

covered during an experiment. Both choppers are synchronized to avoid problematic

frame overlap.

The secondary spectrometer. It is composed of the sample chamber and a part

consisting of a vacuum vessel containing two crystal analyzer arrays (Pyrolytic Graphite

and Mica), two detector banks composed of 51 ZnS scintillator element and a diffraction

detector bank at 2θ = 170◦ containing ten 3He gas tubes. Incident and transmitted

beam monitors are positioned before and after the sample position. To reduce the

background contributions the pyrolytic graphite analyzer is mantained at 10 K.

Operational mode and resolution. During a quasielastic neutron scattering exper-

iments, the scattered neutrons are energy-analyzed by means of Bragg scattering from

a large array of single crystals (Pyrolytic Graphite in our case). Only those neutrons

with the appropriate energy to satisfy the Bragg condition are directed towards the

detector bank. By recording the time of flight, energy gain and energy loss processes

may be investigated [49,50]. The scattering process is shown schematically in Figure 3.8.

The two disc choppers define the energy range of incident neutron. Consequently,

the time-of-flight, t1 , of each neutron along the primary flight path, L1 , is variable.
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Figure 3.7: IRIS Spectrometer [50]. Choppers select the desired neutron wavelength

whereas the supermirror focuses neutrons at the sample position.

However, since only those neutrons with a final energy, E2 , that satisfies the Bragg

condition, λ = 2d sin θ, are scattered toward the detectors. Thus:

E2 =
1

2
mn

(
L2

t2

)2

=
p2

2mn
=

1

2mn

(
h

2d sin θ

)2

, (3.25)

where d is the d-spacing of the analyzing crystal. The distance from the sample position

to the detector bank (L2) is well known, hence the time, t2, can be calculated using,

t2 =
2mnL2d sin θ

h
(3.26)

Finally measuring the total time-of-flight, t = t1 + t2, and having accurate knowledge

of t2, L1 and L2, can be determined the energy resolution:

∆E = E1 − E2 =
1

2
mn

[(
L1

t1

)2

−
(
L2

t2

)2]
. (3.27)

In our experiment we used an incident wavelength of 2.52 Å that provide an energy

resolution (FWHM) of 17.5 µeV. The energy range scanned has been from −0.5 and

0.5 m eV and the [002] reflection of the pyrolitic graphite analyzer permitted us to

explore the Q-range between 0.44 and 1.8 Å
−1

.
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Figure 3.8: An indirect-geometry inelastic neutron scattering spectrometer layout.

3.3.2 The time-of-flight Spectrometer TOFTOF

TOFTOF is a direct geometry multi-chopper time-of-flight spectrometer, located at the

research neutron source Heinz Maier-Leibnitz (FRM II) (Figure 3.9). It is suitable for

both inelastic and quasi-elastic neutron scattering and is ideal for material science inves-

tigations since it offers an excellent signal-to-background ratio, high energy resolution

and high neutron flux..

The instrument owes its name (TOFTOF) to the fact that it selects the incident

beam energy by a time-of-flight monochromatization (TOF-) in the primary spectrome-

ter, and after the collisions with sample the energy transfer is measured via tof technique

(-TOF).

The primary spectrometer. The s-shaped curved guide that transports neutrons

to the instrument, behaves as a filter for the neutrons with a cutting edge of 1.38 Å. The

chopper system consists of seven independent fast rotating disc choppers (up to 22 000

rpm) positioned in four separated housings. The chopper discs are made of carbon-fiber-

reinforced plastic and coated with 10B for neutron absorption. The first chopper pair

(numbers 1 and 2) is used as a rotating pulsing chopper producing short polychromatic

neutron bunches from the continuous neutron beam.

Each bunch broadens after a certain path, since each one is composed of neutrons

with different energies and, therefore, velocities. Thus, a further pair of chopper (6 and

7) is placed at the end of the primary spectrometer and used as monochromator. These

choppers cut a small wavelength range out of each pulse. Hence neutrons that are too
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Figure 3.9: TOFTOF layout [51]. First pair of choppers (1 and 2) are coupled with

the last one (6 and 7) and operate as a velocity selector. Choppers 4 and 5 suppress

the transmission of higher order wavelengths, and 3 is the frame overlap chopper. The

energy of scattered neutron is measured by the time of flight from the sample to the

detectors bank. The angular range covered by detectors is −15 ◦ to −7 ◦ and 7 ◦ to

140 ◦. Each single detector covers an angular range of about 0.5 ◦.

fast or too slow are absorbed by the boron coating. To suppress the transmission of

neutrons with higher order wavelengths, two more choppers (4 and 5) are used. In such

way the passing of neutrons with velocities different from the one selected is avoided.

The remaining single chopper can be used to reduce the neutron pulse frequency at the

sample to decrease the overlap of successive pulses due to energy gain and energy loss

of the neutrons by the interaction with the sample (so-called “frame overlap”) [52].

Each chopper presents two pair of slits, a wide and a narrow one, positioned oppositely

each other (Figure 3.10a). Since the wide slits are adapted to the width of the neutron

beam they represent a good choice with respect intensity and resolution of the primary

spectrometer. The narrow slits, instead, give the possibility to increase the resolution,

even if this is accompanied by an intensity decrease. The switch from one to another

slit is achieved by tuning the rotational frequency of the frame overlap chopper with

respect the one of the pulsing and monochromating choppers.

Furthermore, to avoid an overlap of slow scattered neutrons with the the following

neutron pulse one can acts on the chopper frequency. A good compromise is given by
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Figure 3.10: (a) Photo of a TOFTOF chopper disc. It is shown the narrow and a wide

slit pair. (b) Frame overlap ratios n for the TOFTOF spectrometer.

the equation:

νch = 1.978× 104
n

λi(Å)
, (3.28)

where νch is chopper rotation frequency of all choppers except the frame overlap chopper

and λi is the mean wavelength of incident neutrons. Relation (3.28) is illustrated in

Figure 3.10b for all the frame overlap ratios available at TOFTOF [52]. It can be used

to determine the frame overlap ratio for any instrument configuration. It is important to

note that the frame overlap ratio increases with increasing chopper speed for a constant

wavelength and this is accompanied by a decrease in the beam intensity that reaches

the sample.

The secondary spectrometer. It is composed by the sample chamber and the flight

chamber that contains the detectors bank. The sample chamber and the flight chamber

are filled with Ar and they separated by an Al foil. The detectors (Figure 3.9) are

mounted on eight racks, which are positioned around the flight chamber. The available

space allows the placement of 1006 detectors. The shielding of the racks is made by

a Cd coverage, which prevents rescattering of the neutrons not captured by detectors.

The detection at TOFTOF is made through the reaction of neutrons with 3He nuclei.

The neutrons captured by detectors cause a decay that produce a detectable current

pulse.
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Figure 3.11: (a) Calculated resolution curves of the TOFTOF spectrometer for different

chopper frequencies (wide slits). The curves are labeled with the values of the chopper

frequencies in rpm [52]. (b) Glycerol spectrum at T = 380 K and Q = 1.0 Å
−1

. Red

line shows the resolution peak with a FWHM of 55 µeV measured with vanadium rod.

Resolution. In a chopper time-of-flight instrument there is the possibility to regu-

late the resolution according to the needs of the experiment. The precision with which

the transmitted neutron energies are determined gives the energy resolution. It can be

improved choosing neutrons with lower incident velocities or increasing the chopper

rotational speed. The energy resolution diminishes by increasing the energy transferred

and it can be calculated in the form of the instrumental line width ∆E (FWHM). The

formula is not included in this work, but it contains all the geometrical and functional

information about the spectrometer and it is given in [52,53].

Also the divergence of the incident beam influences the resolution. Neutrons are re-

flected by the guide with an incident angle (degrees) of up to m · λ, where λ is the

neutron wavelength (in nanometres) and m is defined as the ratio between the angle of

total reflection of the neutron guide compared to the angle of total reflection of an hy-

pothetical neutron guide coated with nickel. This part of the resolution is only slightly

influenced by the wavelength of the neutrons.

To probe the dynamics for liquid glycerol in the nanoseconds time-scale has been

used a wavelength of 6.0 Å, that coupled to a choppers rotational frequency of 12000 rpm

has provided an energy resolution of 55 µeV (see Figure 3.11a). In our experiment, the

resolution in Q is not taken into account, this is because the energy-dependence of the
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incoherent scattering is evaluated and not the Q-dependence of the coherent process.

Thus the energy resolution has to be considered, and for this end, the resolution is

measured using a sample that does not show any quasielastic broadening. In our case

was used a vanadium sample for the determination of the resolution (see Figure 3.11b).

3.4 QENS data reduction

An ideal experiment is based on three fundamental conditions [54]: a perfect instrument,

an ideal sample and a direct correlation between the intensity I(θ, ω) and S(Q,ω). Be-

fore proceeding with the proper analysis it is necessary to perform appropriate modifi-

cations to the measured data.

The measure consists in the sum of various contributions. Of such contributions,

only the signal coming from the sample is of interest in the subsequent analysis. Thus,

all the contributions not belonging to the scattering signal have to be subtracted.

There are different programs which are capable of reducing the time-of-flight data.

In this thesis the standard data reduction and evaluation tool used in TOFTOF has

been Frida [55], while the one used in IRIS has been Mantid [56]. Although the programs

are different the data reduction procedure is similar, therefore, a general and common

description of data evaluation process will be given.

It is possible to calculate the scattering functions from the measured data in several

steps. However it is important to note that, depending on the need of the data treatment

and the characteristics of the sample, not all of these steps have been done in the

presented studies.

3.4.1 General data reduction procedure

Instrumental effects. Normally, the data have to be converted to be a function of

neutron energy transfer, the energy-dependent detector efficiency is corrected, and the

detector sensitivity is normalized using measurements performed on a vanadium sample.

An ideal detector measures all the neutrons that hit it as a function of the incident

neutron energy, Ef . In contrast, in a real detector, part of these neutrons are not re-

vealed for intrinsic reasons due to the detector operation principles. It is possible to

define the efficiency, η(Ef ), as the measure of the deviation from the ideal case. It is

the ratio between the detected neutrons and all the neutrons incident on the detector



3.4 QENS data reduction 59

Figure 3.12: Intensity Imeas
V an in the ideal case and in the real case [54].

as a function of the energy Ef . This quantity is dimensionless and its value is between

0 and 1. The detection process corresponds to the absorption, by the detector, of the

neutron. The efficiency also depends on the scattering angle 2θ; generally one proceeds

via normalization with the vanadium rod. This element diffuses the neutrons isotrop-

ically, since it has a completely incoherent cross section, so that its energy integrated

spectrum is, ideally, a constant value as a function of the scattering angle, while as a

function of energy it turns out to be an elastic diffuser. Eventual fluctuations of the

experimental spectrum highlight efficiency differences between the angles, and then be-

tween the detectors (Figure 3.12). Dividing the spectra for the normalized intensity

Imeas
V an (θ) is possible to correct such difference and also, in part, the effects due to the

angular resolution, since not all the angles have the same probability to be attained by

the diffused beam, because of the geometry of the experiment, the divergence of the

incident beam and of the finite dimensions of the detectors and the sample.

Experimentally we must also consider the energy resolution, in fact, both the incident

and diffused energy are affected by uncertainties due, in the case of a time of flight

spectrometer, to the spatial path or to the pulse duration. For these experiments, i.e.

for a time-of-flight spectrometers, the uncertainties on the flight time and on the path

of neutrons produce an energetic uncertainty which is function of them:

∆E =
h3

m2Lλ3
∆t+

h2

mLλ2
∆L ⇒ ∆E

E
=

2h

mLλ
+ 2

∆L

L
. (3.29)

If the energy resolution of the instrument was perfect, the response function should be

like R(ω, ωf ) = δ(ω − ωf ), whereby:

Imeas(ω) =

∫
R(ωf , ω)I

true(ωf )dωf = Itrue(ω) . (3.30)
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Actually, the response R(ω, ωf ) ̸= δ(ω − ωf ) and it is therefore necessary to be able

to calculate or measure it. To do this we need a sample such that Itrue(ω) ≈ δ(ω) and

whose intensity does not vary excessively with Q, an element that diffuses incoherently.

An element that falls within that category is precisely the vanadium. Its spectrum is

a measure of enlargement related to the energy resolution, and then, to the energetic

response function of the spectrometer. A further correction of the data is then given by

the convolution:

Imeas(ω) ≈
∫

Imeas
V an (ω − ωf )I

true(ωf )dωf . (3.31)

Imperfections of the sample. One must consider that passing through the sample,

the incident neutron beam undergoes an attenuation due to two possible processes:

absorption and scattering. Therefore, the obtained scattering function S(2θ, ω) has to be

corrected for these effects. These phenomena are usually corrected with the Paalman and

Pings algorithm [57]. The algorithm to correct the absorption of neutrons requires the

scattering and absorption cross sections of the sample and of the container and returns

the correction factors, that are dependent on the scattering angle and the energy transfer

dependent, that are used to scale the measurements. The scattering and absorption

cross section have been calculated using the “Neutron cross section calculation” tool

implemented in DAVE software [58].

Another contribution to consider is that due to the multiple scattering, i.e. the

contribution due to those neutrons that reach the detector after being scattered more

than once from the sample, from the cell or by both. In general, one can express the

measured intensity as

Imeas = Imeas
1 + Imeas

m , (3.32)

where Imeas
1 is the intensity of single scattering and Imeas

m is the sum of all the or-

ders of multiple scattering. The effects of subsequent diffusions can be of two types

(Figure 3.13a):

• attenuation, namely the removal from the original direction of an individually

diffused neutron;

• intensification of the single signal for an angle that differs from the original.

In the multiple scattering expression (eq. 3.32) the dominant term is the first, the dou-

ble scattering, while increasing the order of diffusion, multiple scattering becomes less

probable and less intense. In Figure 3.13b are displayed various examples of multiple
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a) b)

Figure 3.13: (a) Double diffusion cases. In the figure above the doubly diffused neutron

is removed from the original direction, causing an attenuation of the signal, while in

the lower figure, neutron goes to intensify the original signal. (b) Multiple scattering.

In the figure S indicates the sample and the C the cell.

scattering. An important aspect of multiple scattering is that there are different con-

tributions to it, depending on whether the beam interacts with the sample first and

then with the cell or viceversa, but also that interacts twice with the sample or twice

with the cell. Of course it is fundamental the type of material that the beam passes

through before and after the diffusion (Figure 3.13b). In order to minimize the effect of

multiple scattering, usually the cell thickness is selected in such a way that the relation

between the incident and the scattering intensities, Iscat = 0.1Iinc is satisfied. Since the

multiple scattering can not be measured, it must be calculated numerically, or simu-

lated. The second procedure provides a satisfactory result without imposing restrictive

requirements to the cell size or to the sample diffusive power with respect to the cell

itself.

Finally, the data were grouped into spectra at constant Q, resulting in the scattering

functions S(Q,ω) of the whole system in the beam.

The obtained Smeas(Q,ω) is not equal to the S(Q,ω). This is caused by the principle

of detailed balance. In real systems the occupation of excited states is not symmetrical

but it is driven by the Boltzmann-factor. Hence an energy transfer from the sample to

the neutron is less probable than the opposite process. This can be seen, writing:

Smeas(Q,−ω) = exp

(
~ω
kBT

)
Smeas(Q,−ω) (3.33)
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where ω > 0 denotes a neutron energy gain scattering process. At the high temperatures

and the low energy transfer the detailed balance factor can be considered constant, thus

such a correction has not been taken into account.

Background subtraction. From Smeas(Q,ω), the contribution of the samples has

to be extracted by subtracting the background contributions. This contribution is due

to the neutrons still present in the environment and the scattering of such neutrons

with other materials that are on the beam. It should be moreover considered the cell

that contains the sample. All these elements are in turn scattering centers and produce

an additional signal which reaches the detectors. This scattering effect, mainly elastic,

produces a background present in the flight channels.

To subtract such contribution is necessary to make two measurements: one of the

empty instrument and the other with an absorbent material (typically cadmium) inside

the cell. In this way one can determine the additional diffusion generated before and

after the scattering process with the sample. One defines with XS the intensity due

to the measure sample+cell, with XE the one due to the measure of empty cell and

with XA the contribution due to the measure absorber+cell. Then indicating with T

the transmission coefficient of the sample, with S the contribution to the intensity of

the sample, with C and A the terms of the empty cell and the absorber, respectively,

we can write:
XS = A+ S + T · C

XE = A+ C ⇒ S = (XS −XA)− T · (XE −XA) .

XA = A

(3.34)

3.5 Model description

The main idea, used in the present work, to study the dynamics in glass forming systems

is to separate the motions of a molecule in a translational part and a confined motion

in which the molecule performs movements in finite volume.

The effect of the confinement in the liquid state, can be described as a transient

trapping of molecules resulting by a decrease of temperature or by an increase of den-

sity. Microscopic density fluctuations in disordered fluids at high temperatures and low

densities usually relax quickly on time scales of the order of few picoseconds. Then, by

lowering the temperature or increasing the density in the liquid state, a rapid increase
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in local order which surrounds the particle leads to a substantial increase of the struc-

tural relaxation times. A particle trapped in the confinement, in the liquid state, can

only diffuse through the adjustment of a large number of molecules that surround it.

Therefore there is a strong correlation between the motion of a single particle and the

density fluctuations in the fluid.

In this Section some models for the description of such systems showing the thermal

evolution of relaxation times will be presented.

Let us recall the relation:

d2σ

dΩdω
= N

σ

4π

kf
ki

S(Q,ω) , (3.35)

where N is the number of molecules in the sample, ki and kf are respectively, the wave

vector of the incident and scattered neutrons, and S(Q,ω) is the dynamic single-particle

structure factor. Since N , σ, ki and kf are known quantities in a QENS experiment,

S(Q,ω) can be directly derived from the double-differential cross section.

In the Van Hove theory of neutron scattering [34], S(Q,ω) is given in terms of the

Fourier transform of the intermediate scattering function (ISF) of the atom, I(Q, t), in

accordance with the relationship:

S(Q,ω) =
1

2π

∫
I(Q, t)eiωtdt . (3.36)

It is possible to note that I(Q, t) is the quantity of main interest related to the experi-

ment.

3.5.1 The decoupling approximation

Considering the intermediate scattering function, eq. (3.14), we have to examine all the

movements performed by molecule. Being extremely difficult, it is used the decoupling

approximation that, generally accepted in QENS experiments, allows us to rewrite the

intermediate scattering function as a product of the various contributions (Figure 3.14)

[35,59–61].

I(Q, t) = I1(Q, t) · I2(Q, t) · I3(Q, t) · . . . (3.37)

The condition for which such approximation is considered valid is given by the sepa-

ration of time scales relative to the motions of the molecule. Simplifying and without

losing the general validity, the analysis can be restricted to cases of identical molecules,
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Figure 3.14: Dynamic structure factors are presented as a sum of different components.

Each contribution corresponds to a distinct movement performed by the molecule. In (a)

liquid glycerol at T = 380 K and Q = 1.0 Å
−1

that presents three distinct movements,

while in (b) plastic Cl-adamantane at T = 340 K and Q = 0.75 AA−1 shows two

contributions to the total scattering function.

in which only one kind of atom (such as hydrogen) can be seen. Moreover, these atoms

shall be regarded as dynamically equivalent. Therefore all the scattering laws are re-

stricted to the case of a single scatterer [35].

Analyzing the position vector R(t) of any atom in the molecule it is possible to

distinguish between intra- (translations and rotations) and inter-molecular (vibrations)

motions. Let us assume that the dynamics of each movement can be written separately,

obtaining:

R(t) = rintra(t) + rinter(t) , (3.38)

in which rintra(t) describes the instantaneous position of the whole molecule, at time t,

respect a coordinate system external from molecule, and rinter(t) is the displacement

from the equilibrium position caused by internal motions.

For example, dealing with liquid samples the position vector rintra(t) can be divided

in a translational rT(t) component and a rotational rR(t) one around its own center

of mass. Then the dynamics of the hydrogen atoms can be thought as composed of

three components: the translation of the center of mass, the rotation around the center

of mass and the vibrational motion of the atom around its equilibrium position. The
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intermediate scattering functions becomes:

I(Q, t) = IT (Q, t) · IR(Q, t) · IV (Q, t) . (3.39)

When a bulk sample is treated, the molecule can not assume all the positions in

space and it is confined in a well-defined position. This lack of translational degree of

freedom, leads us to consider three cases:

• In crystalline phases, each molecule has a precise equilibrium position and orienta-

tion, which are subjected to small amplitude oscillations due to thermal agitation.

• In the fully-disordered phases, a molecule can access to any position and orienta-

tion in space. Thus the treatment of the dynamics of these phases can be learned

from the method originally developed for liquids.

• In cases of orientationally disordered phases, a convenient description of the molec-

ular rotational motions is related on the existence of equilibrium positions for

each molecule. Molecule fixed in its lattice position can rotate by instantaneous

jumps [35].

Then for orientationally disordered phases:

I(Q, t) = IR(Q, t) · IV (Q, t) . (3.40)

The hypothesis of independence for different molecular movements gives us such

formulation for ISF for a liquid sample (eq. 3.39) and for a bulk sample (eq. 3.40).

Given eq. (3.36), it is possible to rewrite eqs. (3.39) and (3.40) in terms of the scattering

functions:

Sliquid(Q,ω) = ST (Q,ω)⊗ SR(Q,ω)⊗ SV (Q,ω) (3.41)

Sbulk(Q,ω) = SR(Q,ω)⊗ SV (Q,ω) , (3.42)

where ⊗ denote the product of convolution. As stated in the Section 3.2.1, it is useful to

remember that the functions S(Q,ω) have a Lorentzian shape. For what concerns the

eq. (3.42) we must emphasize that, in this formulation, it has been completely neglected

the contribution originating from lattice modes.

Furthermore, one should note that the vibrational contribution can be well ap-

proximated by a Debye-Waller factor, exp [−1
3 ⟨u

2⟩Q2] , where ⟨u2⟩ is the mean square

vibrational amplitude of the hydrogen atom around its equilibrium position. Since in
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the energy range investigated the vibrational factor is hidden by the quasi-elastic peak,

then, the vibrational contribution has been neglected in the intermediate scattering

function.

Decoupled contributions

After having established the validity of the decoupling approximation, functions that

describe the translation and the confined motion will be discussed separately [62].

For the translational part we can write such function as a product of a short

time dynamics and a decay at long times, because the time scales for the motion in

the confinement and for the relaxation of the confinement itself are sharply separated.

One can assume that the translational dynamics at small times of the trapped molecule

can be treated as the motion of the center of mass in an isotropic harmonic potential,

created by the mean field of the neighboring molecules.

On the other hand, the relaxation of the molecules forming the confinement at long times

can be described with an exponential time decay. This relaxation model is characterized

by the structural relaxation time τT , which is Q-dependent. Therefore, the translational

ISF with the full time dependence can be written:

IT (Q, t) = IsT (Q, t) exp

[
− t

τT

]
≈ exp (−DQ2t) , (3.43)

where D is self-diffusion coefficient.

Without placing restrictions on the type of motion, in general, for the confined

part, in which the molecule can be considered immobile for infinite times, in a fixed

volume, the intermediate scattering function can be written as the sum of a constant

and an exponential decay:

I(Q, t) = const+ ex
FT⇒ S(Q,ω) = δ(ω) + L , (3.44)

where δ(ω) is a delta function and L is a Lorentzian function.

For sake of completeness an example of confined motion will be given. The case of

molecular rotation around the center of mass will be treated. Considering a vector b(t)

that originates in the center of mass, the rotational intermediate scattering function

assumes the form:

IR(Q, t) = ⟨e−iQ·b(t)e−iQ·b(0)⟩ = j20(Qb) +
∞∑
l=1

(2l + 1)j2l (Qb)Cl(t) , (3.45)
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in which jl(x) is the spherical Bessel function of the l-th order and Cl(t) is the rota-

tional correlation function of the order l. For a typical Q-range normally used in QENS

experiments (in our cases Q < 2.5 Å) such expansion is very useful. The advantage is

that the Q-dependence of the rotational ISF is exactly given and this calls for a model

with smaller orders of the correlation functions that are Q-independent.

In a similar way of what done for translational dynamics, the rotational correlation func-

tion of the first order can be separated into motion at short times in the confinement,

and a relaxation at long time. Then it is possible to write:

C1(t) = Cs
1(t) exp

[
− t

τR

]
, (3.46)

where τR is the rotational relaxation time. At small times the orientation of the molecule

is fixed by the presence of bonds with the first neighbors. Molecule performs harmonic

oscillations around the direction of the bond, described by Cs
1(t). At longer times, the

bonds break and the confinement begins to relax, so that the molecules can reorient,

losing memory of their initial orientation. Therefore, the rotational correlation function

decays through the exponential relaxation.

3.5.2 Homogeneous vs Heterogeneous scenarios

In the study of liquid phase a model selection using an homogeneous (HG) and an

heterogeneous (HT) scenario in describing the single particle dynamics has been per-

formed.

Generally it is inclined to think of single-component liquid as affected by a homoge-

neous dynamic. This interpretation is valid, partly because many important properties

can be derived from a modeling a liquid as a homogeneous continuum [63]. For example

the diffusion, viscosity, ion mobility, and the rate of chemical reactions are all described

on this basis. Beyond the contribution arising from the translational diffusion of the

center of mass, a model has been built with two further relaxation processes that, ho-

mogeneously, affect all molecules. In such case the entire scattering function can be

written:

SHG(Q,ω) = y0 +

[
δ(ω) +

(
ΓD

ω2 + Γ2
D

)]
⊗
[
a(Q)δ(ω) + (1− a(Q))

(
Γa

ω2 + Γ2
a

)]
⊗
[
b(Q)δ(ω) + (1− b(Q))

(
Γb

ω2 + Γ2
b

)]
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Figure 3.15: (a) Image of heterogeneous spatially dynamic. (b) Scheme of regions spa-

tially heterogeneous dynamics near the glass transition. In these clusters molecules

exhibit dynamics on different time scales. These regions are typically on the order of a

few nanometers and evolve over time [63].

= y0 + LD ⊗ [a(Q)δ(ω) + (1− a(Q))La]⊗ [b(Q)δ(ω) + (1− b(Q))Lb] .

(3.47)

Li are Lorentzian functions described by the FWHM, Γi.

The heterogeneous scenario is, instead, based on the assumption of the existence of

clusters, each one characterized by its own velocity that yields to a separation of regions

with faster dynamics from ones with slower dynamics. In such case not all the molecules

perform the same motions, a percentage of them realize faster movement respect the

others. These kinds of regions in which a group of molecules have the same dynamics

are called “island of mobility” (see Figure 3.15). In this case the scattering function is:

SHT (Q,ω) = y0 +

[
δ(ω) +

(
ΓD

ω2 + Γ2
D

)]
⊗

{
P

[
a(Q)δ(ω) + (1− a(Q))

(
Γa

ω2 + Γ2
a

)]

+(1− P )

[
b(Q)δ(ω) + (1− b(Q))

(
Γb

ω2 + Γ2
b

)]}

= y0 + LD ⊗
{
P [a(Q)δ(ω) + (1− a(Q))La]

+(1− P ) [b(Q)δ(ω) + (1− b(Q))Lb]
}
.

(3.48)

For what concerns the localized motions is possible to note that the heterogeneous

model has the same dynamic of the homogeneous one but with different percentages,
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described by the parameter P .

In both models the first term LD represents the movement associated with the trans-

lational diffusion. The spectral width of the Lorentzian associated with such motion has

a quadratic Q-dependence, ΓD = DQ2, where D is the translational diffusion coeffi-

cient. The other two motions, La and Lb, are the localized movements and describe two

movements that take place at different time scale. In both cases, the form factors a(Q)

and b(Q) relative to these dynamics give a measure of the length scales associated with

the localized movements.

3.5.3 Isotropic vs Anisotropic rotational model

In the isotropic rotational diffusion model, the molecular reorientation occurs via ran-

dom small angle rotations. The average on time, being in the presence of random ro-

tations, provides no preferential orientation for the molecule. Here we will present only

the main results of the model developed by Sears [64]. The relative ISF is written:

Iiso(Q, t) =

∞∑
l=0

(2l + 1)j2l (Qr)e−l(l+1)DRt , (3.49)

in which DR is the rotational diffusion coefficient and j2l (Qr) are the spherical Bessel

functions. The time-Fourier transform of eq. (3.49) gives the scattering function in the

form:

Siso(Q,ω) = A0(Q)δ(ω) +
∞∑
l=1

Al(Q)
l(l + 1)DR

ω2 +
[
l(l + 1)DR

]2 (3.50)

with

A0(Q) = j20(Qr) and Al(Q) = (2l + 1)j2l (Qr) . (3.51)

The characteristic time for the isotropic motions is defined as, τ−1
iso = l(l + 1)DR.

Besides the isotropic model, we tested an anisotropic model. The calculation of this

type of model that considers all possible orientations, is a difficult many-body problem

and being described in many textbooks, only the relations used in the present study

will be presented . An anisotropic rotational diffusion model lead us to write:

Iani(Q, t) =
∞∑
l=0

l∑
m=−l

Ale
−Γm

l t , (3.52)

where Γm
l = l(l + 1)Dz +m2(Dz −Dx). Time Fourier transform of Iani(Q, t) gives the
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scattering function S(Q,ω), that, in the anisotropic case, is:

Sani(Q,ω) = A0δ(ω) +

∞∑
l=1

Al

l∑
m=−l

l(l + 1)Dz +m2(Dz −Dx)

ω2 +
[
l(l + 1)Dz +m2(Dz −Dx)

]2 . (3.53)

We can note that the two scattering functions are expressed as a sum of infinite

contribution. Expanding the sum in (3.50) and in (3.53) only till the second term we

get:

Siso(Q,ω) = A0δ(ω) +A1L(2DR) +A2L(6DR) (3.54)

Sani(Q,ω) = A0δ(ω) + 2A1L(Dz +Dx) +A2L(2Dx) . (3.55)

In the anisotropic case the rotational diffusion coefficients Dx and Dy are considered

equal, but they differ from Dz. This assumption, in the case of ClA, is justified by the

value of the inertia momenta, in fact, Ix ≈ Iy ̸= Iz. The limit of isotropic rotation can

be achieved if Dz = Dx.



3.5 Model description 71

Neutron diffraction

Neutron diffraction or elastic neutron scattering is a powerful tool to the determination

of the atomic and/or magnetic structure of a sample. A diffraction experiment permit

us to obtain a diffraction pattern that provides information about the structure of the

material.

The formalism developed in the previous Sections finds an immediate application

in the study of solid state. It is therefore necessary to consider the neutron scattering

with respect to a solid with high-symmetry. However, since that the analysis of the

scattering by a single crystal with one atom per unit cell has been treated in depth

in numerous texts [34–38], the approach so far described will be applied to systems of

most interest for the purposes of our discussion. The theoretical description is therefore

focused on disordered and amorphous systems, materials in which it is not applicable

the assumption of periodicity and long-range order. Therefore the solid is defined as

a system in which each atom (or molecule) has a well-defined equilibrium position in

relation to the time of measurement and does not include solids in which the atoms are

subjected to translational diffusion.

3.5.4 Vibrations and harmonic approximation

Given the definition of solid, for each atom or molecule in the solid it is possible to

associate an equilibrium position rj . The position can therefore be written as a function

of the instantaneous displacement from the equilibrium site:

Rj(t) = rj + uj(t), j = 1, . . . , n . (3.56)

Using the equations corresponding to the coherent and incoherent scattering functions

for a monatomic solid, we get:

Scoh(Q, ω) =
1

2π~N
∑
j,k

∫ +∞

−∞

⟨
e−iQ·uj(0)eiQ·uk(t)

⟩
eiQ·(rj−rk)e−iωtdt (3.57)

and

Sinc(Q, ω) =
1

2π~N
∑
j

∫ +∞

−∞

⟨
e−iQ·uj(0)eiQ·uj(t)

⟩
e−iωtdt . (3.58)

Assume now that the forces acting in the solid are harmonics, i.e. they act, as a linear

function of the displacement, so as to bring back each atom in its equilibrium position.
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To evaluate the thermal average in the equations (3.57) and (3.58) we make use of the

quantum theory of the simple harmonic oscillator.⟨
e−iQ·uj(0)eiQ·uk(t)

⟩
= e−[Wj(Q)+Wk(Q)]e⟨Q·uj(0)Q·uk(t)|⟩ , (3.59)

where the first factor, the Debye-Waller factor, is a function of Q.

e−Wj(Q) = e−1/2⟨[Q·uj(0)]
2⟩ . (3.60)

For small displacements, the right-hand term can be expressed as:

e⟨Q·uj(0)Q·uk(t)⟩ = 1 + ⟨Q · uj(0)Q · uk(t)⟩+
1

2!
⟨Q · uj(0)Q · uk(t)⟩2 + . . . . (3.61)

The Debye-Waller factor is a multiplicative term to the cross section and for isotropic

systems can be written:

2W (Q) =
1

3
Q2
⟨
u2
⟩
, (3.62)

where
⟨
u2
⟩
is the mean-square displacement. This relation is widely used in the study

of disordered materials.

3.5.5 Elastic events

Ignoring the time-dependent terms in eq. (3.61), the coherent scattering function be-

comes:

Sel
coh(Q, ω) =

1

2π~N
∑
j,k

∫ +∞

−∞
e−[Wj(Q)+Wk(Q)]eiQ·(rk−rj)e−iωtdt (3.63)

=

 1

N

∑
j,k

e−[Wj(Q)+Wk(Q)]eiQ·(rk−rj)

 δ(ω) . (3.64)

The δ(ω) describes a purely elastic scattering. The delta function is the result of the

fact that in eq. (3.59) the correlation function remains finite at infinite time, and this

describes the existence of a well-defined structure over time. The integration of (3.63)

gives the elastic structure factor.

Sel(Q) =
1

N

∑
j,k

e−[Wj(Q)+Wk(Q)]eiQ·(rk−rj) . (3.65)

Similarly it is possible to obtain an expression for the incoherent scattering:

Sel
inc(Q, ω) =

 1

N

∑
j

e−2Wj(Q)

 δ(ω) , (3.66)
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integrating over energies, gives:

Sel
inc(Q) =

1

N

∑
j

e−2Wj(Q) , (3.67)

which contains an average of Debye-Waller factor for all atoms in the sample.

For a solid with a long-range order, the equilibrium positions rj can be described

by the relation rj = rl + rd, where rl is related to the center of the unit cell and rd to

the relative position of a lattice position within the cell. In the presence of an atom of

type d in the position rd , the set of vectors rl describes a perfect crystal lattice. The

elastic structure factor becomes:

S(Q)eldd′ =
(2π)3

V0
e−[Wd(Q)+Wd′ (Q)]eiQ·(rd′−rd)

∑
τ

δ(Q− τ) , (3.68)

where τ vectors are vectors of the reciprocal lattice and V0 the volume of the unit cell.

The equation (3.68) describes a series of peaks for each Q that is equal to a vector of

the reciprocal lattice τ . These peaks are called Bragg peaks, and from eq. (3.68) it is

possible to get the coherent elastic cross section(
dσ

dΩ

)el

coh

=
(2π)3

V0

∑
τ

|F (τ)|2 δ(Q− τ) , (3.69)

where

F (τ) =
∑
rd

b̄de
−Wd(τ)eiτ ·rd , (3.70)

that is the structure factor of the unit cell for the crystal. In the same way, the differential

cross section of incoherent elastic is:(
dσ

dΩ

)el

inc

=
∑
d

cdσ
d
ince

−2Wd(Q) . (3.71)

In the interpretation of neutron diffraction data from crystalline solids is fundamen-

tal to note that eq. rj = rl + rd assumes a single value of d relative to the center of the

unit cell. If there is a change in values d through the crystal, the translational invariance

is not guaranteed and it is necessary to consider eq (3.65). The presence of a transla-

tion and the loss of long-range order, as in the glasses and other amorphous materials,

requires a knowledge of the time-average atomic positions to be able to calculate the

S(Q).
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3.6 Diffractometers

Neutron diffraction is a very useful tool to investigate the structure of matter in a wide

range of disciplines. There are two types of different diffraction instruments. One is

the angle-scanning method with monochromatic neutrons, commonly used in steady-

state sources. In such case the scattering vector, Q, is selected by changing the crystal

angle and the scattering angle. The other, generally in pulsed neutron sources, is the

wavelength-selection method by TOF. The scattering vector is scanned by changing the

wavelength and keeping fixed the scattering angle. Both of them, of course, satisfy the

Bragg’s law, Q = 4π sin θ/λ.

3.6.1 High resolution neutron two-axis diffractometer D1B

D1B is a two-axis neutron diffractometer positioned in the guide hall at the Institute

Laue-Langevin (see Figure 3.16). It is dedicated to diffraction experiments requiring

a high neutron flux. The high flux and the efficiency of its detector bank make it the

appropriate instrument for a wide range of experiments with very small samples.

Three monochromators use the reflection [002] of pyrolitic graphite to provide a very

high flux (6.5 · 106 ncm−2s−1) focused onto the sample position with a wavelength of

2.52 Å. Using a germanium monochromator a second wavelength with λ = 1.28 Å is

available. D1B is furnished with microstrip 3He/CF4 position sensitive detector cov-

ering in total 128 ◦ ranged from 0.8 to 128.8 ◦ in 2θ. The efficiency of the detectors at

2.52 Å is 86%, which means that they can detect the 86% of the scattered neutrons.

A radial oscillating collimator (ROC) can be positioned between the sample and the

detector bank for reducing the signal due to the non vanadium based sample envi-

ronment [42, 65]. Due to the features of the instrument a complete scan of diffraction

patterns with temperature can be obtained in few hours. In disordered systems as the

plastic crystals the centers of mass of the molecules have a high positional symmetry

and form a regular lattice. Such materials (as 1-Clhoroadamantane) have few distinct

Bragg peaks that can be resolved through neutron diffraction and describe the its struc-

ture. Thanks to the temperature scans, structural changes of long range order could be

followed over phase transitions. In 1-Clhoroadamantane measurements has been used

an orange cryostat (1.7 to 300 K) and vanadium sample-cell with cylindrical geometry

were used to measure the samples. To take into account all the spurious contributions,
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Figure 3.16: D1B experimental scheme [65]. Neutrons coming from the guide are

monochromatized using the Bragg reflection over a crystal.

the empty cell and the empty instrument were measured to subtract to the sample.

3.7 Diffraction data refinement

Scattered neutrons that reach the detectors at D1B are affected by spurious contribu-

tions that are related to the signal coming from the sample. Such contributions have to

be removed to get the diffraction pattern typical of the sample investigated.

The refinement has been performed using LAMP [66], permitting the manipulation

of data in order to take into account the normalization to monitor counts, the differ-

ent efficiencies of each detector cell, grouping of numors that correspond to the same

measurement, and calculation of experimental errors.
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Detector efficiency The detection system on D1B is composed by 3He/CF4 position-

sensitive detector formed by 1280 cells of 10 cm of height with a separation of 0.1◦,

covering an angular range of 128◦. Nominally the detector efficiency is of 86% using

λ = 2.52 Å [65], that means that detectors, not always catch the same number of

neutrons.

To overcome this drawback, usually at each cycle beginning, a calibration is carried

out so as to provide a measure of the efficiency of the detector. These values are used to

correct the data detected by different detectors and possibly to discard malfunctioning

cells. The workstation that controls D1B permits efficiencies on-line correction of raw

data.

Monitor count normalization and raw data grouping Although the reactors

involved in the experiments related to this work have a constant neutron flux, they

may have small variations between different fuel cycles or even in the same cycle. Fur-

thermore, if for the same sample we have measurements with different duration, the

detectors will count more or less neutrons in dependence of the measurement time.

To consider these effects all measurements of D1B have been normalized to the

number of neutrons to the monitor by means of macro implemented in LAMP. This

number is proportional to the number of neutrons hitting the sample. In this way it is

possible to compare data sets belonging to different cycles or characterized by distinct

measurement times.

Each single raw data file is a measurement called numor (number of run). Usually to

explore the entire scattering range, several short runs are taken rather than a unique long

run. In this way it is possible to avoid problems that can occur during the measurement,

in fact, if a numor has to be rejected it is always possible to reconstruct the whole

scattering range.

Grouping procedure of different numors into a single measurement has been also

done by a LAMP macro (“sumnum2fileD1B”). This calculation takes into account the

offset angle of the detector bank during the measurement of each particular numor and

the detector geometry.
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Figure 3.17: Example of data reduction for a diffraction spectrum of 1-chloroadamantane

at T = 260 K. Subtraction of spurious contributions as the empty cell and the empty

instrument give the corrected data ready to be analyzed.

3.7.1 Data treatment performed with FULLPROF

All the corrections and normalizations performed with the program LAMP have per-

mitted to get a diffraction pattern of the neutrons scattered by the sample and by other

contributions. It is then necessary a further data treatment to eliminate the spurious

contributions and obtain the spectra relative only to the sample. The FULLPROF soft-

ware package [67] has been used to perform the background and empty cell attenuation

corrections to the diffraction data.

Non-sample contributions and multiple scattering Contributions that arise

from the sample environment and the sample container must to be removed to get

the sample contribution.

Even if in D1B the radial oscillating collimator (ROC), placed between the sample

and the detector bank, reduces considerably the signal of the environment, measure-

ments of the empty instrument (cryostat or furnace) and of the empty cell have been

performed to eliminate the background and container contributions (Figure 3.17).

Generally, if the sample is considered point-like or very small, the free path of neu-
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Figure 3.18: The contribution to the background of the neutrons passing through the

sample can be obtained by the subtraction of the empty cell IC and the absorber

material IA [54].

trons before the interaction with the sample will be bigger with respect to the sample

dimensions. Under such condition the majority of neutrons will not interact with the

sample and a small part of them will interact only once. However, in the real case in-

cident neutrons can undergo two different processes: absorption or multiple scattering.

Even if in our case the subtraction of the empty instrument and the empty container has

been enough to extract the diffraction pattern, a description of such further corrections

will be given.

The absorption measurement is usually carried out with a highly absorbing material

with the dimensions of the sample holder and placed at the sample position. This

permits to measure the contribution of those neutrons that do not pass through the

sample position and hence are not affected by its presence. Subtracting it to the total

background we have background contribution of neutrons that pass only through the

sample (Figure 3.18). The effective background contribution IB is then:

IB = IA + T (IC − IA) , (3.72)

in which IA is the intensity of the absorber (neutrons not passing at the sample position),

IC is the intensity of the empty cell (background contribution without the sample) and

T is the transmission coefficient of the sample.

Using the Paalman and Pings algorithm [57] is then possible to calculate the attenu-

ation correction. To determine the attenuation coefficients the geometry, the absorption

and scattering cross section of the sample and the sample holder must be known. The
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approach described does not take into account the effects due to multiple scattering.

Due to the geometry and composition dependence, multiple scattering contribution

of both sample and cell is quite difficult to determine. Generally it can be calculated

numerically assuming isotropic and elastic scattering [68–70] or by means of Monte

Carlo simulation that gives a more precise results [71,72].

Finally to determine the height, width and position of the reflection peaks, the

corrected diffraction pattern has been analyzed using the Rietveld refinement method

implemented in FULLPROF software [67,73].
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Chapter 4

Broadband dielectric

spectroscopy

4.1 Electrostatics

Applying an electric field to a dielectric, the atomic and molecular charges inside di-

electric are displaced or reoriented with respect to their equilibrium position, causing

the polarization of the material and the formation of macroscopic dipole moment.

Let us define the displacement field D as:

D = P+ ε0E , (4.1)

where P is the polarization, defined as the average dipole moment per unit volume,

that quantifies the capacity of a material to react to the application of an electric field.

The relationship between the polarization P with the field E within the dielectric:

P = χε0E , (4.2)

Combining eq. (4.1) and eq. (4.2) we get D = ε0εrE, where ε0 is the permittivity

of vacuum and εr is the relative dielectric constant. The relative dielectric constant

is defined as εr = 1 + χ, in which χ is the susceptibility of the material (both are

dimensionless).

Assuming that within the dielectric there are no free charges, the polarization P will

be the sum of the polarization due to induced dipoles Pi plus a contribution due to the
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permanent dipole Pp. Pi is the sum of the electronic polarization Pe, caused by the

displacement of the electrons with respect to the nuclei, and the atomic polarization

Pa, due to the movement of the nuclei compared to other nuclei in the material. If

the material has polar molecules, we must add another contribution to the polarization

due to the preferential orientation of permanent dipoles with respect to the applied

field, this contribution is called orientational polarization Po. The total polarization

will therefore be given by:

P = Pi +Pp = (Pe +Pa) +Po . (4.3)

Taking into account the induced polarization caused by N induced dipoles per unit

volume V , it is possible to express it as Pi = N/V αiEloc, in which α is the polarizability

and Eloc = E+P/3ε0 is the local field. Using P = ε0(εr−1)E and substituting, Mosotti

and Clausius [74, 75] deduced the relation between the polarization and macroscopic

electric field:

Pi =
N

V
αiEloc =

Nαi

V

(
εr + 2

3

)
E , (4.4)

that yields to the Clausius-Mosotti equation:

εr − 1

εr + 2
=

Nαi

3V ε0
(4.5)

Considering now the macroscopic volume density of all N permanent dipoles per

unit volume V , we define the orientational polarization, Po, as:

Po =

∑
i µi

V
=

N⟨µ⟩
V

, (4.6)

where ⟨µ⟩ is the mean dipole moment. It depends on the interaction between the local

electric field and the dipoles.

Assuming that the dipole are no-interacting, then the local field is equal to the macro-

scopic external electric field, and the mean dipole moment depends on the interaction

energy of a dipole in the electric field (W = −µ ·E) and on the thermal energy. Using

the Boltzmann statistics:

⟨µ⟩ =

∫
4π

µ exp
(

µ·E
kBT

)
dΩ∫

4π
exp

(
µ·E
kBT

)
dΩ

, (4.7)

in which kB is the Boltzmann constant, T the absolute temperature. The only contri-

bution is due to the parallel component to the electric field, in fact W = µE cos θ, being
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θ the angle between the dipole moment orientation and the electric field direction. If

W is smaller with respect the thermal energy, eq. (4.7) reduces to:

⟨µ⟩ = µ2

3kBT
E = α0E , (4.8)

with α0 that is the orientational polarizability.

Therefore the orientational polarization can be written:

Pp = Po =
N

V
αoEloc =

N

V

µ2

3kBT
Eloc . (4.9)

Considering the contribution to the polarization due to the induced and the perma-

nent dipoles, from eq. (4.4) and eq. (4.9) we get:

P =
N

V
(αi + αo)Eloc . (4.10)

Since Eloc = E+P/3ε0 and P = ε0(εs − 1)E, substituing in eq. (4.10):

εs − 1

εs + 2
=

N

3V ε0
(αi + αo) , (4.11)

where εs is the static permittivity that takes into account the contributions given by

the induced and permanent dipoles.

Because eq. (4.5) is valid only around 1012 and 1015 Hz that are the characteristic

frequencies of ionic and electronic movements, εr can be substitutes by the constant

value ε∞ (Figure 4.1), so the Clausius-Mosotti equation can be rewritten:

ε∞ − 1

ε∞ + 2
=

Nαi

3V ε0
, and eq. (6.1) becomes:

εs − 1

εs + 2

ε∞ − 1

ε∞ + 2
=

N

9V ε0

µ2

kBT
. (4.12)

The latter is the Debye formula and, considering permanent dipoles as non-interacting,

describes the interaction between induced dipoles. Extending such result including the

permanent dipole interaction [76] and writing in function of the dielectric strength ∆ε:

∆ε = εs − ε∞ =
F

3ε0

N

V

µ2

kBT
, with F =

εs(ε∞ + 2)2

3(2εs + ε∞)
. (4.13)

A further correction was introduced by Kirkwood and Fröhlich [77–80] to model the

interactions between dipoles respect the ideal case of non-interacting dipoles [41]. They

introduced the correlation factor g given by:

g =

⟨∑
j µj

∑
k µk

⟩
Nµ2

=
µ2

µ2
gas

, (4.14)
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Figure 4.1: Kinds of polarization and corresponding dielectric constant εr as a function

of frequency [41].

where µ2
gas is mean square dipole moment for non-interacting dipoles, that can be

measured in the gas phase or in dilute solutions. A first procedure to calculate g and

for practical calculation is to consider only the first neighbors of a given dipole. In that

way g can be approximated by:

g = 1 + Z⟨cosφ⟩ , (4.15)

with Z coordination number and φ is the angle between the test dipole and one of the

neighbors. Correlation factor g will differ from 1 when ⟨cosφ⟩ ̸= 0 that is, when there is

a correlation between the orientations of neighboring molecules. When ⟨cosφ⟩ > 0 and

g > 1, molecules tend to direct themselves with parallel dipole moments, while when

g < 1, molecules arrange themselves with antiparallel dipoles. If there is no specific

correlation, then g = 1. If the correlations are not negligible, detailed information

about the molecular interactions is required for the calculations of g, but being difficult

to calculate theoretically, it can be experimentally estimated from the value of the

dielectric strength:

∆ε = εs − ε∞ =
F

3ε0
g
N

V

µ2

kBT
. (4.16)
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The correlation factor is extremely useful in understanding the short-range molecular

mobility and interactions in self-assembled systems.

4.2 Dielectric relaxation

Within the linear response theory, dielectric relaxation for small electric field strengths

is a particular case. Applying an external field to a dielectric, the polarization reaches

its equilibrium value, not instantaneously but after a period of time. This delay is

mainly due to orientational polarization that is slower than the induced polarization,

which reacts instantaneously to the application of the field. Likewise, when the field is

switched off, the polarization decay caused by thermal motion follows the same law as

the relaxation or decay function of dielectric polarization ϕ(t):

ϕ(t) =
P(t)

P(0)
, (4.17)

where P(t) is the time-dependent polarization vector. If a stationary periodic field

E(t) = E0 exp(iωt) is used, where ω is the angular frequency, eq. (4.2) becomes:

P(ω) = χ(ω)ε0E(ω) ⇒ D(ω) = εr(ω)ε0E(ω) , (4.18)

with εr(ω) = ε∗(ω) = ε′(ω)− iε′′(ω) . (4.19)

The latter is a general expression of the complex dielectric function. The real part,

named permittivity, is a measure of the energy stored in the system, while, the imaginary

part, called dielectric loss, is proportional to the energy dissipated in the material.

Plotting ε′′(ω) vs log(ω) we get an asymmetric peak shape (Figure 4.2) whose posi-

tion gives the characteristic relaxation time τ that is dependent by the temperature T .

The characteristics of the peak depend on the material under investigation and on the

interactions between molecules and from such peak it is possible to extract information

on molecular dynamics. Analyzing Figure 4.2, we can note that in correspondence of the

peak the real part present a step-like behavior with height ∆ε = εs− ε∞ that is related

with the strength. εs that corresponds to the maximun value of the polarization is the

static permittivity, while ε∞ is the relaxed permittivity and represents the contribution

to the total polarization due only to electronic and atomic effects.

It is necessary to take into account also the motion of the charges going down at low

frequencies. The dielectric response of the material must thus include the contribution
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Figure 4.2: Types of polarization as a function of frequency. In figure are shown the

real part, ε′(ω) (black line), and the imaginary part, ε′′(ω) (red line), of the complex

dielectric function [41].

of the conductivity. The relationship that links these two quantities is:

σ∗ = iωε0ε
∗(ω) , (4.20)

where σ∗ is the complex conductivity. Considering all contribution we have to add a

term to the imaginary part of the dielectric permittivity:

ε′′(ω) = εor +
σ0

(ε0ω)s
, (4.21)

in which εor contains all the dielectric information, σ0 is the DC conductivity and s is an

exponent that indicates the ohmic (s = 1) or non-ohmic (s < 1) conduction character.

In presence of an ohmic behavior, in the lower frequencies limit, the real part of ε∗ does

not depend on ω (Figure 4.3).

Another effect due to charges motion is the electrodes polarization (non-ohmic behav-

ior), due to the formation of a charge layer at the electrode-sample interface that change

the perception of the field by the sample and cause a change in the slope of the con-

ductivity contribution (dashed lines in Figure 4.3). Since this effect do not affect the

sample, it is normally not considered.
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Figure 4.3: Diagram of the real ε′(ω) (solid blue line) and the imaginary ε′′(ω) part

(solid red line) of the complex dielectric function for a relaxation process and an ohmic

conductivity. In the case of a non-ohmic conductivity (dashed lines) it is observed the

electrode polarization.

4.3 BDS equipment

Dielectric spectroscopy technique is particularly suited for the investigation of the molec-

ular dynamics. This is due to the wide frequency range (between 10−6 Hz and 1015 Hz)

accessible by this technique [41,81,82].

The dielectric spectroscopy is normally performed in the frequency domain, and by

varying the frequency of the applied AC field it is possible to carry out the measure-

ments, but anyway one has to choose the appropriate configuration depending on the

frequency range that one wants to explore (Figure 4.5).

The quantity to measure is the complex impedance Z∗(ω) of the sample that is

linked to the complex dielectric permittivity by:

ε∗(ω) =
1

iωZ∗(ω)C0
. (4.22)

in which C0 is capacitance of the capacitor in the vacuum.

An experimental layout is shown in Figure 4.6, where the temperature control is

achieved by means of a nitrogen-gas heating/cooling system. Such system is the Novo-

control Quatro Cryosystem [83, 84]. It is composed by a cryostat where the sample
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Figure 4.4: Schematic representation of the frequency dependence of the dielectric loss

of a supercooled material near the glass transition temperature. The response of a glass

presents well-defined peaks [41].

holder can be placed for the measurements, a gas heating unit, a liquid nitrogen unit

and a liquid nitrogen Dewar with vacuum system and pressure control (see Figure 4.6).

Temperature is determined by the use of a resistor sensor made of Pt (PT100) always in

contact with the capacitor. The system has an accuracy of 0.01 K and operates between

116 and 773 K.

The Alpha-analyzer was also used with a second cryostat connected to a closed-

cycle helium compressor. This cryostat, that originally was employed to produce liquid

nitrogen, has been modified to use it as a vacuum chamber with temperature control

(in this case we have to use an hermetic capacitor). The helium cryostat permits to

reach very low temperature (thermal range is between 16 and 320 K). For these kind

of measurements the capacitor stays directly on the top of the cold finger inside the

cryostat where a diode sensor, placed inside the cold finger, is used to determine the

temperature with a precision of the order of ≈ 10 mK.
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Figure 4.5: Different measurements techniques in the typical frequency range accessible

(10−6 − 1015 Hz) for a BDS experiment.

Figure 4.6: A heating device controls the pressure in the liquid nitrogen Dewar vessel to

create a constant nitrogen stream. Two channels of the Quatro controller are designed

to control pressure and temperature in the Dewar vessel. The nitrogen stream flows

directly through the sample cell placed in the cryostat. Other two channels are devoted

to the measure of the gas and sample temperatures.
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4.4 BDS data correction

Measurement procedures, registration and storage are carried out automatically in the

modern BDS systems. The measurements are performed in an on-line mode and the

results can be shown in both frequency and time domain. There are several features of

the modern software that control the process of measurement and calibration. The cal-

ibration parameters can be saved in a configuration file, allowing further measurements

using the same parameters and without additional calibration. Data processing software

generally includes the options of signal correction, such as correction of DC-conductivity

and electrode polarization. The control of the analyzers or the temperature systems and

the data treatment are often performed by means of different software programs. The

Novocontrol software [83] contains all the features of practical importance.

WinDETA is implemented in the Novocontrol software and performs the measure-

ment control, basic data evaluation and data representation. All devices are controlled

by an unique user interface. WinDETA supports value lists for the independent quanti-

ties such as frequency and temperature. Temperature control is performed automatically

and heating or cooling rates can be set. From the measurements of impedance all di-

electric quantities like the dielectric spectra, conductivity, etc. are determined. Data,

exported as ASCII files, have been analyzed with FABADA software (see Chapter 5).

DC-conductivity problem. The conductivity contribution in dielectric experiments

is often an unwelcome phenomenon caused by the presence of charged impurities in the

sample. In the frequency domain the DC-conductivity σ0 provides to the imaginary

part ε′′ an additional term σ0/(εoω). This term makes difficult the relaxation processes

analysis mostly when the conductivity contribution is greater than the amplitude of the

relaxation and processes are present in the low frequency range. Even if in our case the

conductivity is well separated from the relaxation processes encountered some details

of such kind of correction will be given.

The modulus representation M∗(ω) = 1/ε∗(ω) of dielectric data is one of the most

efficient way for the analysis of DC-conductivity, since it transforms in a defined peak

the power law behavior of the conductivity [85]. However, there are several problems

in using such representation especially when the conductivity peak overlaps with the

relaxation process. Since in such a situation the shape and position of the relaxation
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Figure 4.7: Electrode polarization is highlighted by the strong increase of the real part

(blue line) of the dielectric complex function (ε′). It is shown also the imaginary part

ε′′.

peak depend on the conductivity, the real component of the modulus, that contains the

DC-conductivity, does not permit to discriminate between different relaxation processes.

On the other hand the Kramers-Kronig relation [86] links the real and the imaginary

part of the complex dielectric function. Since DC-conductivity is contained only in the

imaginary part of the complex dielectric permittivity the conductivity can be calculated

directly by means of the Hilbert transform.

Electrode polarization. This effect is a parasitic phenomenon that affects dielectric

measurements masking the signal of the sample [41]. It is due to the stop of charges

at the sample-electrode interface, where the separation between positive and negative

charges causes an additional polarization. The magnitude and the frequency position

of the electrode polarization are dependent from the conductivity of the sample.

To have only the signal coming from the sample, the contribution of the electrode

polarization must be eliminated. Methods to determine this contribution are based on

the model description of such process or there are estimation that can be subtracted to

the data.

Electrode polarization can be seen as a large step of ε′(ω) at low frequencies. Since

electrode polarization does not contain information about the sample, the part with the
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electrode polarization is often not taken into account for the analysis (see Figure 4.7).

4.5 Relaxation models for dielectric data

The complex dielectric function, and consequently its real and imaginary parts have

a specific frequency and temperature dependence. The features of such dependence

originate from different processes, such as:

1. the motion flow of mobile charge carriers (translational diffusion);

2. microscopic movements of molecular dipoles (rotational diffusion);

3. the charge separation at the interfaces that leads to an additional polarization.

As stated in Chapter 4.2 the relaxation process is characterized by a step-like evolution

of the real part (ε′) and by a peak in the imaginary part (ε′′) of the complex dielectric

function (Figure 4.8). The information concerning the dynamics of a molecular group

can be obtained by analyzing the dielectric function, this is because dipoles can be con-

nected directly to the entire molecule or to a part of it (chemical groups, etc.). Therefore,

the characteristic shape of the dielectric function depends on the correspondence be-

tween the frequency (ν = ω/2π) of the external field applied and the characteristic

time τ of movements of the molecular dipoles. The information needed to describe a

dielectric relaxation can be extracted by the evolution of the real and imaginary parts

of the dielectric function. The dielectric strength ∆ε can be determined by the height

of the step in ε′ or by the area under the peak in ε′′. The frequency of maximum loss

νp is related to the characteristic relaxation time τp = 1/ωp of the dipoles. From the

shape of the loss peak it is possible to derive the distribution of relaxation times.

In the description of the loss peak (connected with dielectric relaxation), a single

lineshape function or a combination of several functions can be used, permitting us to

extract information, through the fitting procedure, about the dipolar molecular dynam-

ics.

4.5.1 Debye relaxation

The simplest way to determine the time dependence of the dielectric behavior, was

proposed by Debye. It is based on the assumption that the change of the polarization
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is proportional to its actual value, and can be described by the following differential

equation [41,87]:
dP (t)

dt
= − 1

τD
P (t) . (4.23)

In the previous equation τD is the characteristic relaxation time. For what concerns the

correlation function ϕ(t), it is possible to note that can be derived from eq. (4.23) and

leads to a simple exponential decay:

ϕ(t) =
⟨∆P (t)∆P (0)⟩

⟨∆P (0)2⟩
= exp

[
− t

τD

]
. (4.24)

The validity of this hypothesis is verified when: (1) the dipoles do not interact, (2)

the equilibrium is achieved through a unique process, (3) all the dipoles are considered

equivalent, and therefore the characteristic time is common to all molecules.

In any case, in the limit t → 0 the correlation function described by eq.(4.24) does not

satisfy the mathematical conditions required and it is replaced by a Gaussian function.

The complex permittivity as a function of frequency assumes the form [80]:

ε∗Debye(ω) = ε∞ +
∆ε

1 + iωτD
, (4.25)

that is known as the Debye equation. Eqs. (4.24) and (4.25) are linked by a Fourier
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transform, in fact:

ε∗ − ε∞
∆ε

=
1

1 + iωτD
= Φ∗(ω) = F

[
− dϕ(t)

dt

]
. (4.26)

The real and the imaginary part of the complex dielectric function can be separated

in two contributions:

ε′(ω) = ε∞ +
∆ε

1 + (ωτD)2

(4.27)

ε′′(ω) = ∆ε
ωτD

1 + (ωτD)2
,

where ∆ε = εs− ε∞ is the dielectric strength with εs and ε∞ that are the low and high

frequency limits of dielectric constant, determined by all slower and faster processes

that are present in the material under investigation, and the characteristic time τD is

linked to the position of the maximum of the loss peak through ωp = 2πνp = 1/τD. The

loss peak (Figure 4.9) is a symmetric peak with a half width ωD of 1.14 decades.

4.5.2 Non-Debye relaxation

Usually dielectric functions are broader than that predicted by the Debye function

and also present an asymmetric peak. Therefore the dielectric relaxation can not be

described by equations (4.24) and (4.25). Several functions have been developed for

non-Debye relaxation behavior.

A symmetric broadening of ε′′ can be described by the Cole-Cole (CC) function

(Figure 4.9) [88]:

ε∗CC(ω) = ε∞ +
∆ε

1 + (iωτCC)α
. (4.28)

In this case the real and the imaginary part of (4.28) are:

ε′(ω) = ε∞ +
∆ε(1 + ωτCC)

α cos(απ/2)

1 + (ωτCC)α cos(απ/2) + (ωτCC)2α

(4.29)

ε′′(ω) = ∆ε
(ωτCC)

α sin(απ/2)

1 + (ωτCC)α cos(απ/2) + (ωτCC)2α
.

The parameter α varies in the range [0, 1]. The CC relaxation time τCC is related to the

maximum of the loss peak by ωmax = 1/τCC . For α = 1 Debye relaxation is recovered.

Some samples as liquid and glass forming materials present an asymmetric peak,

as shown in Figure 4.9. Such behavior can be described by Cole-Davidson (CD)
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equation [89]:

ε∗CD(ω) = ε∞ +
∆ε

(1 + iωτCD)β
. (4.30)

β parameter (0 < β < 1) characterizes the asymmetric broadening of the loss peak for

frequencies ω > 1/τCD, where τCD is the CD relaxation time related to the position of

the peak maximum by ωmax = 1/τCD tan[π/(2β + 2)]. For β = 1 Debye function is

achieved. The real and imaginary parts of CD function are given by:

ε′(ω) = ε∞ +∆ε cos (ωτCD)β cos (ωτCDβ)

(4.31)

ε′′(ω) = ∆ε cos (ωτCD)β sin (ωτCDβ) ,

Generalizing, the description of relaxation is achieved by a combination of CC and

CD functions, called Havriliak-Negami (HN) function [90,91].

ε∗HN (ω) = ε∞ +
∆ε

[1 + (iωτHN )α]
β
, (4.32)
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where α and β vary between 0 and 1, and from them depend the position of maximal

loss

ωmax =
1

τHN

[
sin

απ

2β + 2

]1/α [
sin

αβπ

2β + 2

]−1/α

. (4.33)

The real and imaginary parts of the complex dielectric function are described by quite

complex equations:

ε′(ω) = ε∞ +∆ε
[
1 + 2(ωτHN )α cos(απ/2) + (ωτHN )2α

]−β/2

· cos

[
β arctan

(
sin(απ/2)

(ωτHN )−α + cos(βπ/2)

)]
,

(4.34)

ε′′(ω) = ∆ε
[
1 + 2(ωτHN )α cos(απ/2) + (ωτHN )2α

]−β/2

· sin

[
β arctan

(
sin(απ/2)

(ωτHN )−α + cos(βπ/2)

)]
.

Debye relaxation is recovered for α = β = 1. Only the HN-function is able to describe

the data in the entire frequency range (Figure 4.9). This means that for a complete

description of an isolated relaxation region is required at least a series of four parameters

[41].

For the analysis of samples that present several relaxations it is necessary a sum of

several contributions, each one described by one of the function showed above.

In several cases of non-Debye relaxation behavior in the time domain, the correlation

function does not have the form of a simple exponential decay, it is then used the

Kohlrausch-Williams-Watts (KWW) function [92]:

ϕ(t) = exp

[
−
(

t

τKWW

)βKWW
]
, (4.35)

where τKWW represents the characteristic relaxation time and βKWW is a stretching

exponent ranging between 0 and 1 which depends on the material and on the external

conditions such as temperature and pressure. Despite not having an analytical Fourier

transform in the domain of frequency, KWW function and HN function are connected

[93]. The exponents and the relaxation times of the two functions are related in the

following manner:

βKWW = (αβ)1/1.23 (4.36)

ln

(
τHN

τKWW

)
= 2.6(1− βKWW )1/2e−3βKWW . (4.37)
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The validity of the aforementioned equations was tested by means of dielectric mea-

surements, performed around the primary relaxation. However, these relations are not

analytical, since, as already mentioned, the HN and KWW relaxation functions are not

exactly the Fourier transforms of each other. In any case these are the most widely used

relations in the experimental results reported in the literature.

4.5.3 Kinds of relaxations

The contributions due to the relaxation are fundamental features in the dynamics stud-

ies of glass-formers near the glass transition point. Let us distinguish now between the

types of relaxation that we find by analyzing the dielectric spectroscopy data (Fig-

ure 4.4). The precise explanation of the origin of the relaxation peaks needs a very

careful approach.

In many glass-forming systems the relaxation spectrum shows different relaxation

processes “traditionally” termed α, β, γ etc. beginning with the higher temperature

peak. This notation however does not concern with the mechanism behind such re-

laxations. It is possible, in fact, to distinguish between two types of mechanisms that

plausibly play a role in this cooling process: (i) slow mechanisms, mainly involving

many molecules, that practically lead the structural relaxation, and (ii) fast interac-

tions, which occur on a shorter timescales, that are characterized by relaxation processes

that are quick enough to remain in thermal equilibrium lowering the temperature (Fig-

ure 4.10) [94].

Thus, another notation is to call α-relaxation the process that yields to the deter-

mination of the glass transition temperature, while the sub-Tg transitions are called

secondary relaxations and can display an intra- or inter-molecular character.

The α-relaxation

This kind of relaxation is strongly connected with the glass transition and describes

the structural cooperative and collective rearrangement of molecules. This structural

α-peak displays an evolution to high frequencies with the increase of the temperature.

The α relaxation is related with viscosity, that is perhaps the less understood of glass

properties despite its ubiquitous operational use in industry.

As said in Chapter 1, the point at which the viscosity, or relaxation time, reach
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Figure 4.10: Diagram of the dynamics processes present in glass former. A dielectric loss

spectrum for two temperatures is shown: the dynamic glass transition (α-relaxation),

the slow β-relaxation, the fast β-process and the boson peak. It is important to note

that not all these loss processes are always present in a glass-forming system [41].

1012 Pa s or 100 s, respectively, is called the glass transition temperature. This transition

temperature discriminates between a glass and an undercooled liquid. There are two

typical phenomenological behaviors of the viscosity as a function of the temperature,

as temperature decreases towards the glass transition, that have been identified so far.

The first one is the so-called Arrhenius relaxation, according to which the viscosity

grows exponentially at a low temperature, whereas the second one is the Vogel-Fulcher

law, that diverges even faster than the Arrhenius one. Both laws indicate a very large

increase in viscosity or, equivalently, in relaxation time, preventing the material from

reaching thermal equilibrium. During the last decades two categories of glasses have

been distinguished according to the above-mentioned temperature dependence around

the glass transition: the strong glasses and the fragile glasses. The materials belonging

to the Arrhenius family are designated as strong, while the materials whose viscosity

follows the Vogel-Fulcher law are designated as fragile.
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Secondary relation processes

In dielectric loss spectra ε′′, a second peak in addition to that related to the α relaxation

is present. Depending on temperature, it is mostly observed in the Hz − MHz range,

at frequencies beyond that of the α peak. All the processes that take place sub Tg are

called secondary relaxations. Usually, these kind of relaxations show smaller strength

with respect the α peak. In general, this secondary relaxation is called β relaxation and

it can be divided in slow and fast relaxations. This subdivision depends on the values

of their relaxation times [94].

Typically the slow secondary β process shows a symmetric loss profiles, an Arrhenius

temperature dependence of the relaxation time and they they are also present below the

glass transition temperature Tg. The origin of such process is frequently adduced to the

motion of polar side groups or to some internal conformational molecular change, even if,

Johari and Goldstein [95] have demonstrated that these kind of relaxations are present

also in rigid molecules, where internal modes are absent and in some polymers where

there are not rotable side group [96]. Such kind of relaxation is strictly connected to

the glassy phase and is called JG β relaxation [94,97–100] (different from the relaxation

caused by the internal motions). Currently there is no an accepted physical theory

able to explain the origin of JG relaxation. A trial has been done considering the

relaxation that comes from molecules with higher mobility in confined regions, the so-

called “islands of mobility” [95,101–103].

Another process is present in the GHz−THz range. Such contribution is supposed to

arise from the “rattling” movement of a particle in the transient confinement formed by

its neighbors and is stable on a short time scale. It is called “fast β relaxation” [104–109].

It should be noted that the fast β process is not identical with the JG β relaxation.

A further peak, named Boson peak, is visible over the terahertz frequency region.

Although it seems to be linked to the inter-atomic vibrational mode there are no satis-

factory explanations of the origin of this relaxation. Several models have been proposed

to explain its existence, among others the MCT [110].
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Chapter 5

Analysis methods

An overview on the analysis methods used in the thesis will be given. Generally, data

fitting is performed using a mathematical model that describes correctly the data and

from which it is possible to extract the parameters which describe the physical process

under consideration.

Typically this is done by a χ2 minimization, that is fast and reliable when one has

simple models, but that presents some problems in case of more complex models.

A Bayesian method for the exploration of the parameter space, that is based solely

on the probability laws that underlie the χ2 figure of merit, will be here presented.

The ability to not get stuck in local minima of the parameter space, the possibility of

taking into account the correlation between the parameters in a natural manner and

the opportunity of showing the complexity of the problem by expressing the parameters

through the probability distributions functions, make this method a very powerful tool

for data analysis. The properties and the advantages of Bayesian approach contained

in FABADA software, with which the fit procedure and the model selection have been

performed, will be presented in the last part of this Chapter.

5.1 Frequentist vs Bayesian

Once the data have been corrected the process of data fitting is the common way to

ascertain how well a model describes experimental data and get the parameters that

characterize the physical processes. In the presence of various hypotheses one should
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look to the one that better describes the results with the highest probability. However,

it is necessary to take into account that increasing the number of elements of the

hypothesis the description of data will be easier and more accurate. It is therefore

necessary to find a hypothesis that has a good agreement with the data, but at the

same time that is as simple as possible.

The most widely used methods are the Frequentist methods such as Levenberg-

Marquardt, that are based on the minimization of a cost function, usually χ2. In such

cases the purpose is to obtain an agreement between the values of the parameters with

their associated errors (Pi± εi) and the experimental data. To quantify the goodness of

the agreement between the experimental data and the optimal values of the parameters

it is used the minimum value of the cost function χ2. Therefore one attempts to verify

the validity of an hypothesis, which, in this case, can be described by a mathematical

model. The problem arises from the fact that starting far away from global minimum

or using a complex model, the Frequentist method could get stuck in local minima of

the χ2 hypersurfaces. This stems from the fact that such method assumes the existence

of only one minimum in the χ2{Pi} hypersurface, that the functional dependence of

χ2{Pi} is quadratic for each parameter (the error bars are therefore symmetrical) and

that there is no correlation between the parameters.

Unlike Frequentist approximation, Bayesian inference does not make any assump-

tion on the χ2{Pi} landscape [111]. Bayesian analysis uses a completely different way

to express the fitting parameters and a different figure of merit which describes the

complexity of the problem under analysis. It makes use in fact of the probability distri-

bution function (PDF) that can be obtained directly from the exploration of the χ2{Pi}

hypersurfaces.

The main differences between Bayesian approach with respect the Frequentist method

are summarized in Table (5.1).

5.2 The χ2 definition

Generally, to verify the goodness of the agreement between the experimental data and

any model which describes them is done by the function called χ2. Lower the value of

χ2 lower will be the difference between the data and the empirical model points.

Given a set of experimental data Dk (k = 1, . . . , n), each one with its own error
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Classical Method Bayesian Inference

• Downhill changes of χ2 are allowed • Uphill changes of χ2 are permitted

• Parameters expressed by Pi ± εi • Parameters are described by the PDF

• Correlations not considered • Correlations are taken into account

• Invisible multiple minima • Multiple minima are visible

• A χ2 PDF is assumed • No assumption is made on χ2 PDF

Table 5.1: Main differences between Frequentist and Bayesian approaches.

σk (k = 1, . . . , n) and a set of points described by the hypothesis Hk{Pi} (k = 1, . . . , n),

which depend on the value of the parameters {Pi} (i = 1, . . . ,m), the χ2 function is

defined as:

χ2 =

n∑
k=1

(Hk{Pi} −Dk)
2

σ2
k

, (5.1)

where k labels each point, n is the total points number and i labels the parameters to

distinguish them each other.

The fitting procedure consists on finding a set of parameters {Pi} that minimizes

the value of the χ2 function. The result of this procedure for each parameter is given

by the parameter value accompanied by its own error (Pi ± σi) and by the χ2 value

that provides the quality of the agreement between the experimental points and the

hypothesis.

5.3 The Bayesian method

Bayesian inference is a statistical inference approach in which probabilities are not

interpreted as frequencies, proportions or analogous concepts, but rather as levels of

confidence in the occurrence of a given event.

Unlike frequentist approach, where assumptions are somehow hidden, in the Bayesian

method these are made explicit assigning to them a probability distribution (prior) and

mixing with the information derived from experimental data, thus contributing to the

final result (posterior).

Bayesian inference associates to the parameters fitted a probability distribution

(prior) that must be known. This initial information given by the prior is subsequently
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modified by the data and provides the posterior which is nothing more than a new

probability distribution for the magnitude under examination. Therefore a Bayesian fit

provides the probability distributions of the parameters, which indicate the probability

that the parameter assumes within a confidence interval.

The method is based on the Bayes theorem [112], and it has the aim of finding the

probability that a hypothesis is true given some experimental evidence. Bayes theorem

can be written:

P (Hk|Dk) =
P (Dk|Hk) P (Hk)

P (Dk)
, (5.2)

in which the probability P (Hk|Dk) that the hypothesis describes the data is the poste-

rior and the probability that data are described by the hypothesis P (Dk|Hk) is called

likelihood. P (Hk) and P (Dk) are, respectively, the knowledge expressed as probability

density function we have about the hypothesis (prior), and a factor for normalizing the

integrated posterior probability to unity.

Considering a mathematical model constituted by several parameters and a set of

data Dk, the aim of the fit procedure is to determine the value of the parameters that

best fit the mathematical model to the experimental data. Assuming the maximum

prior ignorance, i.e. a lack of knowledge of the probability distribution of the measured

quantities, Bayes theorem assumes a simpler form:

P (Hk|Dk) ∝ P (Dk|Hk) ≡ L . (5.3)

In eq. (5.3), L indicates the likelihood, that is the probability of obtaining a specific

set of points given a hypothesis considered true.

In a counting experiment, the probability that a single data Dk=i is described by

the hypothesis follows the Poisson distribution. However, one have to consider that

increasing significantly the number of counts, such a distribution can be approximated

with a Gaussian distribution. Thus for a single experimental point (k = i with i =

1, . . . , n) one gets:

P (Hk=i|Dk=i) =
HDk

k · e−Hk

Dk!
≈ 1√

2πσ2
k

exp

[
− 1

2

(
Hk −Dk

σk

)2]
. (5.4)
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where σk =
√
Dk. The likelihood for a full set of data can be therefore written as:

L =

n∏
k=1

[
− 1√

2πσ2
k

exp

[
− 1

2

(
Hk −Dk

σk

)2]]

=

[
n∏

k=1

− 1√
2πσ2

k

]
exp

[
− 1

2

n∑
k=1

(
Hk −Dk

σk

)2

︸ ︷︷ ︸
χ2definition

]

∝ exp

(
− χ2

2

)
. (5.5)

As one can see from eq. (5.5), the χ2 function is closely linked to the likelihood (χ2 ∝

−2 lnL ). Minimize the χ2 is equivalent to maximize the likelihood L . So the χ2 gives a

measure of the probability that the data are described by the model if data points follow

a normal distribution. In the case in which the points follow a Poisson distribution, the

likelihood assumes other forms [113].

Even though the method is general, in this thesis will be treated the case of measured

data following a Gaussian distribution.

5.3.1 Markov chain Monte Carlo method

A stochastic markovian process or Markov process is a stochastic process in which the

transition probability that determines the transition to a state of the system depends

only on the previous state of the system and not by how it has come to such state.

The Monte Carlo methods based on Markov Chain (MCMC) are a class of algorithms

for sampling from probability distributions based on the construction of a Markov chain

having as equilibrium distribution (or stationary distribution) the desired distribution.

The state of the chain after a large number of steps is then used as a sample of the

desired distribution.

The exploration of the χ2 hypersurface allows to get a set of parameters that can

fit with the experimental data. Understanding χ2 in a probabilistic way permits to de-

fine a unique method for the fitting procedure. The method is based in the Metropolis

algorithm [114], properly modified in order to have a regulation system of the param-

eter changes, modification that is essential for finding the global minimum of χ2{Pi}

hypersurface. Starting from stochastic values of a set of hypothesis parameters Pold, the

algorithm allows to generate a new set of parameters values Pnew by changing randomly
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one of them:

P i
new = P i

old +R · P i
jump , (5.6)

where the parameter P i
jump is linked with the parameter change and expresses the max-

imum change allowed for the parameter and R is a gaussian random number, generated

from a distribution centered at 0 and with a unity standard deviation. New parameter

sets is automatically accepted if χ2 is lowered, but they are also accepted with a given

probability if they increase the χ2 value. The main consequence of this feature is that

the algorithm can travel uphill along the hypersurface χ2 in order to overcome small

barriers. The probability of accepting a new set of parameters, given a particular set of

old parameters, is the quotient of the likelihoods, and can be written as:

P =
Lnew

Lold
=

P (Hk{P i
new}|Dk)

P (Hk{P i
old}|Dk)

=
e−χ2

new/2

e−χ2
old/2

= exp

[
− 1

2
(χ2

new − χ2
old)

]
. (5.7)

Using the classical way of fitting the initialization of parameters is a crucial step

for the convergence of the algorithm. Tuning the parameter jump P i
jump, it is possible

to adapt the sampling to the fitting parameter. Then, it is the jump parameter that

decides the success of the fitting process and therefore the efficiency in finding the global

minimum in the χ2{Pi} hypersurface. If the jump is too small, there is the possibility of

getting lost in no relevant details of the χ2{Pi} landscape and the algorithm will always

accept any change of the parameter, on the other hand, if the jump parameter is chosen

to be too large, the parameters will hardly be accepted and the algorithm might get

stuck. Before the algorithm starts the iteration, an assumption has to be made for the

jump parameter P i
jump, although this choice is not relevant since, for appropriate values,

the algorithm converges quickly. One should note that after a number of iterations N

carried out with this parameter jump, the acceptance ratio Ri
real of each parameter

is evaluated and is performed a comparison with the desired one Ri
des. The maximum

jump parameter is then changed according to the law:(
P i
jump

)
new

=

(
P i
jump

)
old

· R
i
real

Ri
des

=

(
P i
jump

)
old

· Ki/N

Ri
des

, (5.8)

in which Ki is the number of jumps accepted for the parameter i. If Ri
real/R

i
des = 1 the

jump parameter is not changed.

This equation increases the jump of the parameters often accepted and decreases the

jump of parameters which are rarely accepted, by setting different sizes of jump for
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each parameter. This results in an efficient exploration of the parameters space in all

directions.

Finally, we need a criterion that will tell us when the fit has reached the convergence.

This is given by:

χ2
old − χ2

new

χ2
old

< CC , (5.9)

which says that the parameter i has converged when after a step in the algorithm, its

change leads to a relative decrease of the χ2 to below a certain value (CC = convergence

criterion).

5.4 FABADA

FABADA (FittingAlgorithm forBayesianAnalysis of DAta) is a software that permits

to perform Bayesian Data Analysis in a simple way [115]. The program is written in

Fortran77, is an open code [116] and works for Windows and Linux operative systems.

The graphics are generated from a data file, and then displayed using Gnuplot (not

integrated). Recently FABADA has been implemented in the Mantid Project [56] that

provides a support for computing and visualization of experimental data. At present

Mantid is used at ISIS, SNS and HFIR, but other, such as PSI and ILL have joined

lately.

The software is based on the MCMC method and Bayesian approach described in

Section 5.3 [116]. The algorithm generate at every step a new set of parameters, that

will be accepted or refused depending on its consistency with the experimental data

and its error. It can be divided in two parts: the fitting procedure and the MCMC chain

generation (Figure 5.1).

The first one leads the parameter to converge. In such process the parameters that

better fit the data (parameters that minimize χ2 or maximize the likelihood L ) are

always accepted, but also parameters that leads to an increase of χ2, but are compatibles

with experimental error, are accepted. As already said, FABADA is able to move in any

directions of the χ2 hypersurface, avoiding that the program gets stuck in local minima.

The MCMC chain generation permits to obtain the probability distribution functions

related to the parameters and to the χ2, leading to deeper analysis based on solid

statistical background (Figure 5.2).
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Figure 5.1: χ2 plot as a function of the steps during FABADA process. It is possible

to distinguish the fitting part in which all the parameters reach to convergence and

the analyzing part that leads to the MCMC chain generation. In the right part an

enlargement of the analyze part [117].
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Figure 5.2: Example of MCMC chain for any parameter. The MCMC chain allows to

describe the parameter using the probability distribution function (PDF) as shown in

the right panel.
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Using eq. (5.6) FABADA, after the parameters have reached the convergence, con-

tinues working (see Figure 5.1) to generate the MCMC chain. In order to prevent the

correlation between two successive sets of parameters and to decrease the quantity of

data it is possible to choose a saving rate that permits to save the parameters after a

certain number of steps.

It is also possible to obtain an explicit representation of the correlation between the

parameters plotting their chains as dependent on each other.

5.5 Model Selection

Generally it is always possible to analyze the experimental data using more than one

interpretation. Inevitably this leads to consider several models that describe different

physical mechanisms for the explanation of the results. It is therefore necessary to be

able to choose between different models looking for a method to quantify the goodness

of the chosen model.

Usually the criterion that is used for the selection of the model is based on the

concept of “better fit”, considering as “better fit” the one that leads to a lower value of

χ2 cost function, without adding any further explanation on the choice of a model over

another. This assumption is valid only in case the under consideration models have the

same number of parameters and these are completely uncorrelated. This means that in

general it will be easier to get the best fit by increasing the number of parameters that

describe any model. To avoid this problem, in the frequentist approach the reduced χ2

is used to take into account the number of parameters. It is defined as:

χ2
red =

χ2

n−m− 1
, (5.10)

in which n is the number od experimental points,m the parameters number and n−m−1

the number of degrees of freedom. So, if two models have the same value of the χ2,

the model with fewer parameters, i.e. the one that has the lowest value of the χ2
red

will be favored. This is nothing more than a manner of enunciating the Ockham’s

razor principle, which says that among competing hypotheses, the one with the fewest

assumptions should be selected.

Model selection performed with the frequentist approach needs a number of as-

sumptions with respect the χ2
red space: there is a single minimum that has a square
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Figure 5.3: χ2 distribution for a different number of fitting parameters m. The inset

shows the terms associated with the goodness of the fit exp(−χ2/2) together with the

one depending on the number of parameters m of the model (χ2)m/2−1 [118].

dependence with all parameters, and the parameters are considered uncorrelated. In

such case the probability distribution function takes the form [112]:

P (χ2) ∝
(
χ2

)m/2−1

· exp
(
− χ2

2

)
, (5.11)

where m is the number of the parameters that describe the chosen model. The term

exp (−χ2/2) is independent from the number of parameters and it decreases with the

goodness of the fits or with increasing values of the errors associated with the experi-

mental points. The term (χ2)m/2−1 increases with the parameters number. Eq. (5.11)

is shown in Figure 5.3.

On the other hand using FABADA that is based on the Bayesian method, χ2 PDF

is directly found exploring the parameter space, without the assumptions that are nec-

essary in the frequentist approach. One has to note that the PDF, in this case, will not

be exactly in the form of eq. (5.11), even if it will be similar. One should also make at-

tention on the fact that all the advantages deriving on the use of the Bayesian approach

could be lost if one considers only the minimum value of the χ2 probability distribution.

As shown in Figure 5.4, it is possible that a model presents a set of parameters that lead

to a smallest value of χ2 with respect to another model. However, considering all the
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Figure 5.4: Probability distribution functions for two models. Model 2 presents the

smallest χ2 values, but the most probable values of model 1 are smaller (the peak of

the distribution is at smaller χ2 values) than probable values of model 2. With the

frequentist approach one could wrongly choose model 2 as favorite model.

information contained in the probability distribution functions, the model that shows

the peak of the χ2 distribution at lowest values will be favored.

Therefore Bayesian model selection is a very powerful tool especially in the presence

of complex models, in fact, using the PDF obtained by FABADA, the algorithm allows to

get conclusions about models without the disadvantage of any frequentist supposition..

5.5.1 Example: How many lines are there?

Let us show the capacity of the Bayesian algorithm FABADA through an example

that highlights the potentiality of this software [119]. The problem is to determine the

number of processes that describe a given set of data.

The quasielastic (QENS) scattering spectra are generally quite complicated, this

complexity derives from the fact that the number of processes remain unknown and that

all of them are centered in the elastic response of the sample. The problem becomes more

complex when the characteristics time scales of the various processes are comparable

and therefore a selection based on the “better fit” visual check criteria is not sufficient.

To solve such a problem and demonstrate the validity of the used method, a set of

QENS data was generated as a sum of three Lorentzian processes and then convoluted
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Figure 5.5: Synthetic QENS data. In Figure are shown the generated data with the

associated errors (black circles) and the three components composing used. Lorentzians

for data generation with three different FWHM values, 0.04 (dashed green line), 0.4

(dotted red line) and 2 meV (dash-dotted blue line) are shown [119].

with a gaussian resolution function with a FWHM of 0.01 meV. It was then carried

out a model selection getting the χ2 probability distribution functions in order to check

whether the results are consistent with the already known information. Lorentzians for

the generation of synthetic QENS data have been taken with three different FWHM

values, respectively, 0.04, 0.4 and 2 meV, with the same amplitude (A = 1) and centered

in ω = 0. To make the data more realistic, after the convolution, a Gaussian-distribute

relative error of 6% has been applied to the data (Figure 5.5).

The model selection was made considering 5 models, each with an increasing number

of Lorentzian (from 1 to 5).

Ln =

n∑
i=1

Li(Γi) with n = 1, . . . , 5 . (5.12)

All fit were performed under the same conditions. From the Figure 5.6 it is possible

to see how the model with a single Lorentzian (L1) does not describe well the data and

can therefore be discarded. The same could be said for the model with two Lorentzian

(L2) looking in detail the peak, but we can not make assumptions about what concerns

L3, L4 and L5 which appear to be equally in accordance with the data. For this reason

it is necessary deeper analysis using the probability functions (PDF) relating to the χ2
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Figure 5.6: Fits to generated data with five different models composed by an increasing

number of Lorentzians modes: L1 (solid blue line), L2 (dotted green line), L3 (dash-

dotted red line), L4 (dashed orange line) and L5 (solid purple line). Note that is not

possible to distinguish, between L3, L4 and L5 which the model that better describes

the data [119].
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Figure 5.7: (a) Probability distribution functions relative to χ2. In the inset an enlarge-

ment of L3-L5 PDF. The analysis of the spectra based on PDFs shows that L3 is the

best model to describe experimental data. (b) Values of the χ2 PDFs relative to the

peak of each distribution. In the inset it is evident that the addition of parameters does

not lead to better fits [119].
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cost function.

By analyzing the probability distribution function (Figure 5.7), L3, L4 and L5 share

the same area. We may note, however, as the peak position moves to the χ2 values higher

by increasing the parameters of the models used (from L3 to L5). So the addition

of parameters over L3 is not justified by the experimental data. We must also focus

attention on the fact that L2 PDF does not overlap with L3 PDF, this indicates that

there is no combination of two Lorentzian that gives a better fit than that obtained

with three Lorentzian.

This simple example shows the strength and robustness of fitting procedure and

model selection performed with FABADA.



Part IV

Scientific cases





Chapter 6

Dynamics and structural

changes in plastic

1-Chloroadamantane

6.1 Introduction

In recent years great effort has been done to investigate the properties of the glass form-

ing liquids to detect dynamical changes. Nevertheless, most of the good glass materials

that allow “easy” investigations are molecular liquid in which translational, orienta-

tional and internal degrees of freedom contributions are strongly mixed and hardly

decoupled. These facts make very difficult to investigate the detection of such dynamic

transitions.

To have a clear view of distinct processes at the molecular level we need model

compounds that not present mode-mixed dynamic. In order to gain some insights about

the role of disorder in the properties of matter, systems with a constrained disorder are

very interesting since they represent a series of phases hierarchized by the level of

degrees of disorder. In the case of plastic phases, they lack only of orientational order,

since the molecular centers of mass are forming an ordered lattice. This fact makes

these systems very interesting models for canonical liquids. Specifically, they are useful

to investigate if disordered phases are described by a single parameter, like density, or if
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another order parameter describing molecular local ordering is necessary, the so called

two order parameter descriptions of liquids [120–126]. In this work, we are interested if

the same happens within plastic phases, such as that of ClA.

The plastic phase formed by the quasi-globular molecules of ClA is especially in-

teresting since a maximum in specific heat reveals a change of the degrees of freedom

of molecular movement, i.e. there is a disorder-disorder transformation that occurs

without a first-order phase transition. This system can thus give some hints about the

properties of the elusive liquid-liquid phase transition. In this Chapter the microscopic

mechanisms behind this plastic to plastic transition by the concurrent use of Diffrac-

tion and Quasielastic Neutron Scattering experiments will be presented: the first one

allowed us to determine if there are any changes in the structure, and the second in the

dynamics along the calorimetric anomaly. These experiments show that together with

a decrease of the density there is an increase of the freedom of rotation in the same

temperature region where the calorimetric anomaly happens.

6.2 Previous works

Calorimetric experiments performed by Kobashi et al. found an anomaly in the temper-

ature region where the plastic phase is stable: a broad heat capacity hump at a temper-

ature T ≈ 330 K [8] is seen. Considering the size of the abnormal heat capacity and the

strong cooperativity of the compound under study, this jump does not seem to be related

to a Schottky anomaly, as confirmed by Kobashi et al., but rather to a change in the ori-

entational arrangement or/and in its dynamics. ClA, together with some other adaman-

tane derivatives, has been object of several studies by means of broadband dielectric

spectroscopy (BDS) [5, 127], nuclear magnetic resonance (NMR) [128, 129], differential

thermal analysis (DTA) [130, 131], x-ray scattering [132–136], IR experiments [137],

calorimetry [8], quasi-elastic neutron scattering (QENS) [6,138] and molecular dynamic

(MD) simulations [139,140].

For what concerns the microscopic dynamics, the studies of Bée et al. [6], stated

that the motion of ClA in the plastic phase cannot be explained by an isotropic rota-

tion. They described the molecular motion through a model that describes the dynamic

structure factor as the sum of uniaxial rotations plus rotations around the [111] lattice

directions instead. They found that there was no correlation between these two motions,
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being the combination of both movements compatible with an isotropic rotation only

at high temperatures. Dielectric spectroscopy has also been performed to study the

dynamics of this compound [5, 127] finding a good correlation with the times obtained

with the previous work of Bée et al. using QENS. Also NMR was performed to inves-

tigate the changes in the dynamics from the ordered crystalline phase to the plastic

phase [128, 129]. None of these works found an indication of a change in the dynamics

at a temperature of 330 K. On the other hand, a change in the dynamics within the

plastic phase has been detected by the concurrent use of Molecular Dynamics NMR and

Raman scattering [139, 140] that was associated in that work to a “local orientational

ordering”.

6.3 Properties of Adamantane and its derivatives

These hydrocarbons are ringed compounds with a diamond-like structure formed by a

series of six carbon rings fused together. Adamantane and its derivatives have shown

many applications in medicine, such as drug delivery and targeting, DNA directed

assembly, the formation of nanostructures DNA-amino acid, and were used as models for

crystallization of catalysts and synthesis of high-temperature polymers. It is therefore

great the interest in these compounds both in the field of fundamental research and

in applied research. Besides the interest they arise, these organic structures can cause

serious problems in the production of oil and gas. Therefore to reduce the problems due

to the precipitation of diamondoids in the oil production process, the knowledge of the

phase behavior of these compounds with hydrocarbons is very important [141].

Diamondoid molecules are cage-like and hydrocarbons. The first and simplest mem-

ber of the diamondoids group, adamantane (see Figure 6.1a), is a tricyclic saturated

hydrocarbon. In the solid state these compuonds melt at much higher temperatures than

other hydrocarbon molecules with the same number of carbons in their structure. Since

they also possess low strain energy, they are more stable and stiff, resembling diamond

in a broad sense. Many of the diamondoids possess structures rich in tetrahedrally-

coordinated carbon, and they have a very high strength-to-weight ratio.

ClA (C10H15Cl), showed in Figure 6.1b, is a rigid spherical-like molecule. It is ob-

tained from the adamantane cage-like molecule (C10H16) substituting a methane hydro-

gen with a chlorine atom. When heating the low temperature solid crystalline phase,
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Figure 6.1: (a) Molecular structure of adamantane with chemical formulas C10H16.

(b) C10H15Cl molecular structure. Carbon atoms are in blue, hydrogens in white and

chlorine atom in red. Dashed lines represent the molecular inertial axes. The z-axis is

located in the bond direction between the chlorine atom and one of the carbons.

ClA displays a first solid-solid phase transition at 244 K, which on further heating

transforms to the plastic phase (space group Fm3m) and a plastic-liquid transition at

442.5 K [136,142]. The compound used for the experiments was purchased from Sigma

Aldrich Chemical Co. with a purity grade of 98% and no further purification was per-

formed. A deuterated sample was used in diffraction experiment, while a hydrogenated

one for quasielastic measurements.

6.4 Experimental details

6.4.1 Neutron Diffraction

Diffraction measurements were performed using D1B diffractometer presented in Sec-

tion 3.6.1 with a deuterated sample. The instrument is a two-axis spectrometer and

the pyrolitic graphite monochromator provide a very high flux with a wavelength of

λ = 2.52 Å focusing onto the sample [42]. Sample was held in a cylindrical aluminum

cell with a thickness of 0.1 mm (Figure 6.3a). The temperature of the sample was

controlled by a cryo-furnace and the measurements were performed between 220 K and

380 K using a scanning rate of 0.2 Kmin−1. To take into account possible contamination

a measurement of the empty container and of the empty instrument were performed to
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Figure 6.2: Two sets of ClA diffraction data at 260 K (open circles) and 360 K (open

diamonds). Lines show the refinement pattern matching procedure performed with Full-

Prof Suite, blue line for 260 K and red line for 360 K. In the inset an enlargement of

the area relative to the peaks that correspond to [111] reflection.

subtract the spectra.

After correcting the data, as stated in Section 3.7, Bragg peaks have been indexed,

their positions and subsequently the lattice parameters were refined and determined by

the full pattern matching analysis of the neutron diffraction spectra by least-squares

minimization. Figure 6.2 shows the refinement for two diffraction spectra of ClA.

6.4.2 QENS

Quasi-elastic neutron scattering (QENS) experiments were carried on IRIS time-of-flight

spectrometer described in Section 3.3.1 with a hydrogenated sample. To minimize the

effects of multiple scattering and achieving a transmission of ≈ 90% a Chloroadaman-

tane sample of 0.25 mm of thickness was kept in a flat aluminum container com-

posed by two slabs with a thickness of 0.1 mm (Figure 6.3b). Sample holder was

put in a closed-cycle cryostat at 45◦ respect the incident beam to collect data at

T = 260, 280, 300, 320, 340, 360 K. The wavelength of incident neutrons used in the

experiment was λ = 2.52 Å (12.88 meV) with an energy resolution of 17.5 µeV. The

analyzer bank used the reflection [002] of pyrolitic graphite to record 51 neutron spectra
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b)a)

Figure 6.3: (a) Vanadium-aluminium cylindrical sample holders used in D1B. (b) Flat

aluminum sample container used on IRIS.

simultaneously, corresponding to a scattering angle (2θ) range between 25◦ − 160◦ and

then to a Q-range from 0.442 to 1.854 Å−1. In energy, spectra were evaluated from

−0.5 to 0.5 meV. Data reduction, including empty cell subtraction, calibration with a

vanadium rod, and conversion into constant Q spectra, was performed with the pro-

gram MANTID [56]. Calculating the momentum transfer Q from the scattering angle,

spectra were then grouped together in bins of 0.1 Å−1.

The structure factor maximum appears at ≈ 1.15 Å−1 [143], therefore, being inter-

ested in the study of the incoherent scattering related to the molecular dynamics, the

spectra were analyzed in the Q-range 0.45− 1.05 Å−1, where the coherent contribution

can be neglected.

Analysis of QENS data has been performed using the software package FABADA

(Section 5.4) [111,115,118,119,144,145]. Bayesian inference performed with this method

is done in two parts. First of all the fitting leads to the set of parameters that better

describes the data. To analyze the results, i.e. to obtain the PDFs associated with all

parameters (that have into account their correlation) and to χ2, in a second step the

software generates a complete Markov chain. The adaptive algorithm and the Bayesian

methodology has been described in Chapter 5 and in previous publications [111, 115,

118,119,144–148], and the readers are referred to them for technical details.

In order to avoid an over interpretation of QENS data on ClA we have first de-

termined the optimal value of processes we can describe given the information content
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Figure 6.4: [111] reflection planes through a fcc Bravais lattice.

of data, basically determined by the errors and the limitation in energy and momen-

tum transfer. To do that we have used a simple model consisting on a superposition of

Lorentzian curves (L1, L2, L3). The scattering law S(Q,ω) can be then described as a

function of momentum (~Q) and energy (~ω) transfer by:

S(Q,ω) = A0δ(ω) +
n∑

i=1

Ai
1

π

Γi

ω2 + Γ2
i

, (6.1)

where Γi is the width of the i-th Lorentzian function and Ai are the weights for each

Lorentzian.

The models containing physical information about the microscopic dynamics of ClA

tested on the obtained data were two: an isotropic rotation and an anisotropic rotation

(Section 3.5.3). The first model reads:

Siso
inc(Q,ω) = A0δ(ω) +

∞∑
l=1

Al
l(l + 1)DR

(ω)2 + [l(l + 1)DR]2
, (6.2)

with Al(Q) = (2l + 1)j2l (Qr). DR is the isotropic rotational diffusion and jl(Qr) the

Bessel spherical functions. The isotropic rotational model has into account that there is

not a preferred axis of rotation around any of the principal axis of the molecule. However,

on regards the molecular shape it is more plausible that the rotation resembles that of



124 Dynamics and structural changes in plastic 1-Chloroadamantane

a symmetric top. For this reason we have taken an anisotropic model [7] adapting it to

the description of QENS data, obtaining the following scattering law:

Sanis
inc (Q,ω) = A0δ(ω) +

∞∑
l=1

Al ·
l∑

m=−l

Γm
l

ω2 + (Γm
l )2

, (6.3)

with Γm
l = l(l + 1)Dx + m2(Dz − Dx). Dz is the uniaxial rotational coefficient along

the molecular symmetry axis, and Dx is the rotation around the perpendicular axes

(see Figure 6.1b). The use of this model is justified by the values obtained for the

inertia momenta around each of the principal axes since Ix ≈ Iy (Iz = 295 a.u. · Å2,

Ix = 591 a.u. · Å2 and Iy = 589 a.u. · Å2). The scattering laws of these two models are

calculated as a series of infinite terms. If expanded only up to the second term they

read (the utility of that will be seen later on):

Siso
inc(Q,ω) = A0δ(ω) +A1L(2DR) +A2L(6DR) (6.4)

Sanis
inc (Q,ω) = A0δ(ω) + 2A1L(Dx +Dz) +A2L(2Dx). (6.5)

It is important to note that the fits to these physically relevant models have been

performed using the whole scattering law, i.e. a single function has been used to fit all

Q-values, i.e. the fit has been performed using the complete two dimensional function

Sinc(Q,ω). This point is very important since the obtained results are robust and so are

the conclusions obtained from the fits, since more data is described with a minimum

number of parameters.

6.5 Results

6.5.1 Structural change

The results obtained from the analysis of diffraction measurements show a step-like

evolution of the peak position relative to the reflection [111] as shown in Figures 6.4 and

6.5b. The peak position moves to lower angles increasing the temperature and exhibits

an abrupt change in its slope in the same temperature range where an anomalous

heat-capacity hump, measured by Kobashi et al. [8] takes place. The lattice parameter

obtained from the pattern-matching process previously described show also a step-like

shape when increasing the temperature.
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Figure 6.5: (a) Zoomed region making evident the heat-capacity anomaly. Digitize from

[8]. (b) Peak position relative to the [111] reflection. Peak moves to lower angle increasing

the temperature and shows an abrupt change in the same T-range where the anomalous

heat-capacity hump takes place. (c) Lattice parameter of the cubic cell. It is evident a

step-like behavior in the same range in which the calorimetric hump was seen.
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Figure 6.6: Data fits for 1−Chloroadamantane at T = 340 K and Q = 0.75 Å−1 using

different models: one lorentzians (L1, green line), two lorentzians (L2, red line) and three

lorentzians (L3, blue line). Using the same colors, the inset shows the corresponding χ2

PDFs.

6.5.2 Dynamical scenarios

The first question to be answered about the obtained results of QENS is to know the

maximum amount of processes that are justified to use to describe the data. In order to

determine the optimal number of lorentzians that describe our data we have calculated

the χ2 PDFs for one, two and three lorentzians. To perform model selection we can find

three scenarios:

• When two non-overlapping PDFs are found this means that the model with lower

values of χ2 is clearly preferred since any combination of parameters of the best

model is able to describe better the data than with the competing model

• When the PDFs of two models overlap, the maximum of the χ2 distribution should

be chosen as a criterion to find the best model. However, in this case we should

be aware that it is possible that any new piece of information or data can reverse

the model selection

• If the two PDFs are so similar that no clear difference in minima is to be seen,
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Figure 6.7: Anisotropic (purple line) vs Isotropic (dashed orange line) models for

C10H15Cl data set at T = 340 K and Q = 0.75 Å. The models are presented with

two contributions (isotropic model has been truncated at l = 2. It is evident, even

at first glance, that the anisotropic model better describes the data). In the inset an

enlargement of the tail, confirming the better accordance of anisotropic model with

respect the isotropic one.

following Occam’s razor criterion, the model with less parameters should be cho-

sen.

A first glance at Figure 6.6 makes evident that one peak is not able to correctly describe

the data (both looking at the fit and the χ2 PDF in the inset). The problem arises when

determining if two or three lorentzians should be chosen to describe the data since they

describe correctly the data and also have a similar PDF with maxima located at more or

less the same position. We have chosen the model with only two lorentzians following the

aforementioned criteria. In order to gain some insight about the microscopic mechanism

that is ruling the dynamics of ClA in the plastic phase we have used two models to

describe QENS data: an isotropic rotation and an anisotropic one. In Figure 6.7 we show

the fits of both the isotropic and anisotropic models at a relatively high temperature.

First of all we should point out that the values obtained for DR (≈ 0.03 meV at

T = 340 K) from the analysis of the isotropic model show agreement with the results



128 Dynamics and structural changes in plastic 1-Chloroadamantane

650 700 1600 1620 1640 3680 3700 3720
0.00

0.01

0.02
l=3

l=2

 isotropic rotational model
 anisotropic rotational model

P
D
F l=1

Figure 6.8: PDFs obtained from global fits over the entire scattering function. Solid

area describes the anisotropic model while lines describe isotropic ones.

obtained in the previous work of Bée [6] (from 0.042 to 0.056 meV at T = 353 K).

As it can be seen the anisotropic model is able to better describe the experimental

data. We would like to point out that, although we show only one instance, the fit

was performed using the whole scattering law. For this reason and also to be sure

that the added complexity of the anisotropic model is justified we show in Figure 6.8

the χ2 PDFs for the isotropic and anisotropic models. When truncated at the second

term it is clear that the anisotropic model describes the data much better that in the

isotropic one: there is not an overlap of the distributions. Even if expanded to three

terms (Figure 6.8) the anisotropic model is a better option to describe the data. This

model selection has been performed for all temperatures getting the same result, for

this reason even at high temperatures the isotropic model is not able to describe the

data correctly in comparison with the anisotropic model. Once the anisotropic model is

established to describe better the data than an isotropic model for all the temperature

range studied we can study the physical parameters obtained from that model. The

rotational diffusion coefficients values Dx and Dz obtained by the anisotropic model

differ about one order of magnitude (Figure 6.9), describing a rotational around z-

axis much faster than around the perpendicular axes, as expected. Also as expected

the difference between them decreases with an increase of the temperature, however
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Figure 6.9: (color online) Rotational diffusion coefficients for all the measured temper-

atures. It is evident that rotational diffusion coefficients Dx and Dz obtained for the

anisotropic model exhibit a kink at ≈ 320 K

even at the highest temperature they still differ about a decade. Rotation around the

symmetry axis z (see Figure 6.1b) seems to have a small temperature dependence in

the low temperature region, but at higher temperatures this behavior changes leading

to an increase of the rotational diffusion coefficient Dz. This change in the behavior of

the dynamics goes along with a change of slope of Dx as it is seen in Figure 6.9.

6.6 Discussion and conclusions

It is clear from Figures 6.5, where the evolution of the lattice parameter is shown, and

from Figure 6.9, where the rotational coefficients are shown as a function of temperature,

that there is a change in structure and dynamics where the calorimetric hump is seen.

Concerning the structure, the slope of the lattice parameter as a function of tem-

perature both at high and low temperature seems to be similar, and therefore there is

not a significant change in the expansivity of the material in these two regions. However

there is a jump in the lattice parameter at about 330 K. Therefore it seems that the

degrees of freedom increase in these region causing both the jump in density and in

specific heat.

Figure 6.9 shows the change in the dynamics of the rotation of the molecule around



130 Dynamics and structural changes in plastic 1-Chloroadamantane

260 280 300 320 340 360

10

11

12

13

14

15

16

17

 Degree of anisotropy

=D
z/D

x

T (K)

Figure 6.10: Degree of anisotropy δ = Dz/Dx. This quantity tells us how far the CIA

molecule is from free rotation around its principal axes.

its symmetry axis z, and the rotation associated with the jumps between equivalent

orientations of the molecule in the lattice. Taking into account the momentum of inertia

of the molecule, we can calculate the value that should be obtained for the ratioDz/Dx if

this molecule was performing a free rotation around each of its principal axes: Dz/Dx =√
Ix/Iz. This calculation leads, for ClA a value of Dz/Dx = 1.4. In order to figure out

how far away for free rotation around its principal axes the molecule of ClA is, we

show in Figure 6.10 the value for Dz/Dx in all the temperature range getting values

much bigger than those expected from molecular geometry. It is clear thus that the

dynamics of the molecule is affected by its structure. Indeed together with the jump in

density there are changes both in the uniaxial rotation around z-axis and in the crystal

reorientations quantified by Dx and Dz: there is an increase of the slope as function of

temperature, and thus an increase of mobility.

The changes in the structure of the plastic phase of ClA go along with changes of

the dynamics associated both with the uniaxial molecular rotation and with that of the

molecular reorientations. Three main conclusions can be obtained from the results of

our work. First of all, that there is a clear interplay between structure and dynamics

associated with the calorimetric effect detected by Kobashi et al. [8]. The second con-

clusion is that, contrary to the findings of Bée et al. [6], it seems to be a correlation
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between uniaxial rotation and reorientation motions. Finally, our results indicate that

within a disordered phases there might be changes associated with the structure and

dynamics that must be described by the addition of a second parameter to describe

them. Our results thus support a two order parameter theory of disordered phases.
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Chapter 7

The most fragile plastic

crystal: Freon113

7.1 Introduction

In plastic phases molecules rotate in a more or less free way, being their centres of mass

ordered in a crystalline structure. As it happens with canonical glasses, it is possible to

freeze the rotation of the molecules by lowering the temperature at a fast enough pace.

Because only a degree of freedom is frozen, plastic phases are simpler to study with

respect canonical glasses.

Freon113 provides a well-known example of compound exhibiting plastic crystal

phases [145,149–153]. This simple molecule displays internal molecular degrees of free-

dom which promote the appearance of distinct conformers (trans and gauche (Fig-

ure 7.1)), with low frequency internal modes that are able to couple with lattice motions,

giving rise to a complex energy map [145,149].

Moreover, because of these degrees of freedom, nucleation of the ordered phases is

hindered, and the high-temperature disordered (plastic) phase is easily supercooled.

The easiness to arrest these orientationally-disordered phases has indeed been linked to

the existence of internal molecular degrees of freedom for a similar compound, Freon112

(1,1,2,2-tetrachloro-1,2-difluoroethane, CCl2F−CCl2F ). Interestingly, for Freon112 the

value for the fragility was reported to be the highest for a plastic crystal (m = 68) [154].
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In addition, a previous study on thermal conductivities of Freon112 and Freon113

compounds [152] shows that quasilocalized low-energy vibrational modes emerge at very

low energy, lower than the values of the maximum of the boson peak, when compared

to other OG. These low-energy modes in glassy systems promote additional scattering

that leads to a decrease of the mean free path of vibrations and then to an increase

of the vibrational density of states g(ω) and, consequently, of the heat capacity excess

(Cp,exc) over the classical Debye behavior CD ∝ T 3.

Interestingly, some authors [155] proposed a correlation between the (Cp,exc)max/CD

ratio, (Cp,exc)max being the maximum of the excess specific heat, and the fragility for

glass-forming systems. They seem to have a linear correlation, the higher the fragility

index, the smaller the ratio.

In this Chapter a dynamic and thermodynamic study of the orientational glass for-

mer Freon113 will be presented, in order to analyze its kinetic and thermodynamic

fragilities. Its orientational dynamics studied by means of dielectric spectroscopy to-

gether with the microscopic origin of its specific heat and the vibrational density of

states determined by inelastic neutron scattering have revealed the highest fragility

value, both thermodynamic and kinetic, found for this orientational glass former.

The excess in both Debye-reduced specific heat and density of states (boson peak)

evidences the existence of glassy low-energy excitations. We demonstrate that the pro-

posed correlations between the boson peak and the Debye specific heat value are elusive

as revealed by the clear counterexample of the studied case.

7.2 Previous studies

Plastic crystals show typically low kinetic fragility, as cyclooctanol (m = 33) [156,157],

cycloheptanol (m = 22) [158], ortho-carborane (m = 20) [159], cyano-adamantane

(m = 17) [5, 160], adamantanone (m ≈ 16) [5, 161], ethanol (m = 48) [5], or mixed

molecular crystals NPA0.7NPG0.3 (m = 30) [162–164]. The most fragile OG known

to date are the Freon112 (CCl2F − CCl2F ) with m = 68 [154] and a solid-solution of

succinonitrile (60%) and glutaronitrile (40%) with m = 62.

In the investigation for understanding the glass transition, many attempts to connect

the kinetic fragility associated with the relaxation time behavior as a function of tem-

perature, with the thermodynamic behavior have been reported [22,23,26,165–168]. In
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gauche conformer

a) b)

trans conformer

Figure 7.1: 3D diagram two geometrical conformations of Freon113. Carbons are in

blue, fluorine atoms in yellow and chlorine in orange. The two structural conformations

are linked to each other by a rotation of about 120 ◦ around the C − C bond. The

conformers that exhibit a trans position of two C − Cl and C − F bonds have a C1

symmetry, whereas the ones that show a gauche position of all the C − Cl and C − F

bonds, have a Cs symmetry.

his studies on glass-forming systems, Angell [165] showed that more fragile liquids (and

also plastic crystals) exhibited larger and sharper jumps in their relative specific heat

curves at the glass transition, associated with larger configurational excess entropies.

The only exception was found for some alcohols, which although having intermediate

fragilities presented larger heat-capacity changes than for the fragile liquids, a fact which

was attributed to the peculiarities of hydrogen bonding.

To quantify such correlation, kinetic fragility F1/2, defined in eq. (2.15), is compared

to the thermodynamic fragility F3/4 defined in eq. (2.16).

Furthermore, a more extensive compilation of data for small organic molecule, poly-

meric, and inorganic glass-forming liquids by Huang and McKenna [166] revealed many

deviations from the earlier claimed correlation between kinetic and thermodynamic

fragilities. Specifically, they compare the kinetic fragility index m (eq. 2.3) with the

ratio of the liquid to the glass specific heats at Tg, Cp,liq/Cp,gl, as a measure of ther-

modynamic fragility. Although they confirmed the positive correlation between m and

Cp,liq/Cp,gl for inorganic glass formers, the opposite correlation was observed for poly-

meric glass formers, whereas m was found to be nearly constant and independent of
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Cp,liq/Cp,gl for small organic and hydrogen-bonding molecules.

7.3 Freons

Chlorofluorocarbons (CFC) are organic compounds that typically contain carbon, chlo-

rine, and fluorine atoms. Freon is a trade name, often used to refer to CFCs, which have

been used in a wide range of applications. They are produced as a volatile derivative of

methane, ethane, and propane. CFCs are highly effective refrigerants that were devel-

oped in response to the pressing need to eliminate toxic and flammable substances, such

as sulfur dioxide and ammonia, in refrigeration units and air conditioners. Used also as

aerosol propellants, solvents, cleansing agents for electrical and electronic components

and foaming agents in shipping-plastics manufacturing they are odorless, colorless, non-

toxic, and nonflammable.

Freon113 or CFC-113 is a chlorofluorocarbon and belongs to the halogen-ethane

series (C2X6−nYn, with X, Y= H, Cl, F, Br). Its formula is: Cl2FC − CClF2. Such a

molecule has gained great interest for its role in the depletion of stratospheric ozone.

CFC-113 is very unreactive and remains in the atmosphere about 90 years, sufficiently

long that it will cycle out of the troposphere and into the stratosphere, where it can

be broken up by ultraviolet radiation (190 − 225 nm, UV-range), generating chlorine

radicals (Cl·), which start the degradation of ozone.

Freon113 used in our experiments has been purchased from Aldrich Chemical Com-

pany with a purity of 99%. It is liquid at room temperature and presents a melting

point at T = 238 K and a boiling point at T = 320 K.

7.4 Experimental details

The broadband dielectric spectroscopy measurements were performed using a Novocon-

trol Alpha-analyzer (10−2 to 107 Hz) equipped with a Quatro temperature controller

(±0.1 K) working down to 100 K and a closed-cycle helium cryostat for lower tempera-

tures (see Section 4.3). The prepared sample were located into a parallel-plate stainless

steel capacitor with the electrodes separated by 50 µm-thick silica spacers (Figure 7.2).

The volume of the sample is determined using glass fibers spacers (50 µm or 100 µm

are available) in such a way that there is no contact between the capacitor faces.



7.4 Experimental details 137

Figure 7.2: Diagram of the sample cell with the features used in the experiments.

Spectra were taken in the temperature ranges between 118 K and 94 K every 4 K

and between 90 K and 70 K every 2 K with the helium cryostat and the Alpha ana-

lyzer. Broadband dielectric spectroscopy spectra have been fitted by means of FABADA

software (Section 5.4). Figure 7.3 shows imaginary part of the dielectric permittivity

at T = 88 K. Dielectric loss spectra were fitted according to a superposition of one

Havriliak-Negami and two Cole-Cole functions, giving the relaxation time of the differ-

ent dynamic processes. Then, the fitting function is given by:

ε∗(ω)− ε∞ = dCC1

(
∆εCC1

1 + (iωτCC1)αCC1

)
+ dCC2

(
∆εCC2

1 + (iωτCC2)αCC2

)
+ dHN

(
∆εHN

[1 + (iωτHN )αHN ]βHN

)
, (7.1)

where τCC1, τCC2 and τHN are the relaxation times for the different dynamical motions.

In order to quantify the thermodynamic fragility of Freon113, we have obtained

the corresponding entropy curves for the OG/plastic crystal (crystal I) phases from

specific-heat measurements performed by means of adiabatic calorimetry.

The boson peak that dominates the low-frequency vibrational spectrum of glasses

has been measured by both inelastic neutron scattering and specific heat. Inelastic
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Figure 7.3: Solid line is an example of the fits using Havriliak-Negami and Cole-Cole

fitting functions. Dashed lines show the contributions of the main α-relaxation and the

slower processes for the spectrum at 88 K.

neutron scattering data were acquired using the chopper spectrometer MARI at ISIS

neutron facility in Oxford, UK.

7.5 Results

7.5.1 Dynamical processes and kinetic fragility determination

The dielectric loss spectra were fitted according to eq. 7.1 with a βKWW exponent.

Fittings to the imaginary part of the dielectric permittivity are shown in Figure 7.4a.

The main non-Arrhenius α-relaxation process is accompanied by two slower processes

associated with internal degrees of freedom (Figure 7.5). They show an Arrhenius be-

havior with a very similar energy barrier (see Figure 7.5). We can tentatively relate this

behavior to the jumps between trans and gauche configurations, being the difference in

time due to a different dynamics caused by different molecular surroundings. In order to

confirm such hypothesis, molecular dynamic simulation with a variable energy barrier

between configuration would be needed.

The βKWW exponent was calculated according to the Alvarez-Alegria-Colmenero

equation (βKWW = (αβ)1/1.23) [93], and the so-obtained values were ranged between
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Figure 7.4: (a) Obtained dielectric spectra for several temperatures ranging from 70 to

118 K. (b) βKWW exponent as a function of temperature.
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Figure 7.5: Relaxation time as a function of reciprocal temperature for both α (red cir-

cles) and other slower relaxations (23.24 kJmol−1 for green diamonds and 23.26 kJmol−1

for black squares) .

between 0.27 (at 70 K) and 0.62 (at 90 K). It strongly decreases with decreasing tem-

perature, thus highlighting the increase of cooperativity due to strong orientational cor-

relations between nearest neighbors. The temperature dependence of the α-relaxation

time τα is much more pronounced than a (simply activated) Arrhenius behavior, and it

was modeled with the VFT equation.



140 The most fragile plastic crystal: Freon113

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-10

-8

-6

-4

-2

0

2

F1/2=0.615

F3/4=0.856

 Freon 113

 Freon 112

 Freon 112a

 Pentachloronitrobenzene

 1-Cyanoadamantane

 Propylene carbonate

 Ortho-carborane

 Meta-carborane

 2-Adamantanone

 Cyclooctanol

 Ethanol

 DHN

 60SN-40GN

m=200

m=16

lo
g 1

0[
(s
)]

Tg/T
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(Angell plot). VFT parameters for Freon113 are: T0 = 58.9 ± 0.6 K, τ0 = (2.9 ± 1.6) ·

10−12, D = (6.4± 0.5). Fragility calculated according to eq. (1) is m = 127.

Moreover, the α-relaxation time reaches 102 s, the conventional relaxation time for

glass transition, at 71 ± 1 K. The calculated kinetic fragility index (eq. 2.3) provides

a value of m = 127. Such value is the highest so far reported for an OG, as can be

seen in Figure 7.6, in which relaxation time for several plastic crystals and some highly-

fragile canonical glass formers are plotted as a function of the normalized temperature

Tg/T . As far as the kinetic fragility F1/2 and F3/4 concerns, values of 0.615 and 0.856,

respectively, are found.

7.5.2 Thermodynamic fragility

In Figure 7.7, we present previously published data [152] focused on the temperature

range relevant here, around the glass-like transition between the OG and the plastic

crystal, that is Tg = 72 K. They are in close agreement with the value obtained by

dielectric measurements 71 ± 1 K. The inset shows for several substances a frequently

used measure of thermodynamic fragility, namely the heat capacities Cp curves around

Tg normalized to their corresponding values in the glassy state Cp,gl. A large Cp,liq/Cp,gl

ratio would indicate a high “thermodynamic fragility” whereas a low one would corre-



7.5 Results 141

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

0.7 0.8 0.9 1.0 1.1 1.2

1.0

1.4

1.8
C

p  (JK
-1m

ol -1) 

T (K)

Tg=72 K

Cp= 51.4 JK-1mol-1

T/Tg

 

 60SN 40GN
 Freon112
 Cyclohexanol
 Thiophene
 Freon113

C
p/C

p,
gl

PC (liquid)
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tom: succinonitrile 60 - glutaronitrile 40; Freon112; cyclohexanol; thiophene; Freon113.

(Adapted from [168], also including data for Freon113).

spond to a “thermodynamically strong” glass former [166].

The entropy curve for the glassy crystal/plastic crystal (crystal I) phase below 125 K

is shown in the inset of Figure 7.8, obtained after numerical integration of the corre-

sponding specific heat curve of Figure 7.7, whereas the entropy data for the reference

stable crystal II is taken from Kolesov et al. [169]. By subtracting the latter from the

former one obtains the excess entropy Sexc(T ) of the glassy phase. The so-obtained

excess entropy for Freon113 is presented in Figure 7.8 following the thermodynamic

fragility plot introduced by Martinez and Angell [22]. One can see that Freon113 be-

haves as a very fragile glass-former thermodynamically too, with Tg/T3/4 = 0.988 and

hence F3/4 = 0.976.

Debye-reduced vibrational density of states g(ω)/ω2 and specific heat Cp/T
3 are

plotted in Figure 7.9 for both Freon112 and Freon113. The boson peak of Freon113 is

higher and occurs at a higher energy (1.9 meV, 5 K) than that of Freon112 (1.5 meV,
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4.5 K).

7.6 Discussion and conclusions

The fragility of glass-forming liquids has been correlated with their low-energy anoma-

lous behavior in the glass state, as mentioned above. Sokolov et al. [155] found a negative

correlation between the height of the boson peak in Cp/T
3 relative to the reference De-

bye level and the degree of fragility of the liquid, that is, the stronger the glass-forming

liquid the higher its boson peak. We have plotted in Figure 7.10 the data tabulated by

Sokolov et al. [155] as (Cp,exc/T
3)max/CD, where the numerator stands for the maxi-

mum Cp/T
3 at low temperature whereas the denominator stands for the Debye specific

heat, as a function of the usual fragility index m.

In addition to those data from structural glasses, we have also plotted some data
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Figure 7.9: Debye-reduced vibrational density of states divided by g(ω)/ω2 for Freon112

(open red squares) and for Freon113 (open black circles) determined at 5 K by means of

inelastic neutron scattering at MARI spectrometer. Inset shows the molar heat capacity

divided by T 3 for Freon112 and Freon113 [152] together with the calculated Debye values

and the fits (dashed lines) corresponding to the soft potential model in a semi-log plot.

for OG including our current data for Freon113. The clear excess of low-frequency ex-

citations in the density of states (Figure 7.9) for both Freon112 and Freon113, together

with the evidence of their scattering with thermal acoustic phonons found through the

thermal conductivity measurements [152] reveals the hybridization between intramolec-

ular (torsional) degrees of freedom and acoustic phonon branches, an experimental fact

that gives rise to the broad maximum in the reduced specific heat Cp/T
3 (inset in

Figure 7.9).

Within the framework of the multidimensional energy landscape [174], the potential

energy function ϕ{ri} of the whole system which depends on the spatial location ri for

each of the pertaining particles, represents the “topography” of the configuration space

of the many-body system, the minima being the stable arrangements of the system.

These minima, their number and their depth, depend on the specificities of the system

and, mainly, on the molecular structure and the inter- and intra-molecular interactions.

Thus, the higher the number of distinct accessible states, the higher the number of
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minima on the potential energy hypersurface. In other words, an increase in the con-

figurational entropy, due to the vibrational contributions or to the existence of other

excitations, in excess over the crystal, as those coming from the different conformers

and torsional degrees of freedom, should provide a faster decrease of the relaxation time

τ (according to the Adam-Gibbs equation). As demonstrated by means of molecular dy-

namics simulations [175] fragility depends on changes in the vibrational properties of

individual energy minima and how the number of minima is spread in energy. This

would mean that the low-energy intramolecular excitations increase such modes and

consequently, increase the configurational entropy. The material studied is representa-

tive of systems with a high value of the configurational entropy due to the intramolecular

modes, clearly emerging at the dielectric susceptibility as slower processes than the main

α relaxation (Figure 7.5), as well as in the density of states (Figure 7.9).

As stated in Section 2.1.3, it is a common belief that the Kauzmann temperature

TK and the Vogel-Fulcher-Tammann temperature T0 are close together, and that this
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similarity connects the similar values between thermodynamic and kinetic fragility [22].

The easiest way for such connection is provided by the Adams-Gibbs equation (eq. 2.9),

through the assumption that the configurational entropy Sc ≈ Sexc (i.e., the vibrational

entropy of the supercooled phase is approximately equal to that of the crystal phase)

can be calculated by means of the specific heat difference between the glass and the

supercooled liquid as a reciprocal function of temperature, ∆Cp = K/T , K being a

constant. Within these assumptions, VFT equation is directly obtained with T0 = TK

and D = C/∆Cp(TK) [176]. Despite such an analytical approach, Tanaka revealed

the existence of a linear correlation between fragility and TK/T0, from which fragility

decreases with the increase of Tk/T0. The correlation, based on the two-order-parameter

model [177,178], ascribes the decrease of the fragility with the increase of TK/T0 to the

increase of the of short-range bond ordering which gives rise to a decrease in the entropy.

The Freon compounds here presented are representative cases of van der Waals

molecular interactions but with strong short-range order [145] due to strong orienta-

tional correlations. These correlations are the result of the small energy difference be-

tween conformers but put apart by a large energy barrier, which strongly decreases with

temperature, giving rise to strong coupling between these low energy frequency modes

and the lattice motions. A consequence of the strong orientational correlation is evi-

denced by the extremely low value of the βKWW exponent close to Tg (see Figure 7.5c).

Such a picture would indicate that, on one hand, strong orientational correlation pro-

duces high kinetic fragility and, on the other, the low-energy excitations gives rise to

an extra contribution to the excess entropy.

Moreover, the excess of low energy frequency modes contributing to the excess heat

capacity over the Debye value CD at the boson-peak maximum [Cp,exc]max (see Fig-

ure 7.10) are not related to the acoustic modes of the ordered phase (CD) and thus,

correlation between [Cp,exc]max as a function of the fragility index m (Figure 7.10) can

break up.

The activation energy, which is found to decrease upon approaching Tg for these

low-temperature glasses, increases in Freon113 as usually found for normal glasses. As

a conclusion, we have demonstrated that the high values of kinetic and thermodynamic

fragilities of Freon113 (the highest values found in a plastic crystal to the best of our

knowledge) are accompanied by a strong coupling between low-energy modes due to

the high number of intramolecular degrees of freedom and acoustic phonon branches.
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Such modes contribute to the low temperature specific heat and to the density of states

and, thus, to the excess (configurational) entropy, which makes the system thermody-

namically and kinetically fragile. Finally we conclude that low energy frequency modes,

which in an obvious way appear in the excess heat capacity over the Debye value CD

at the boson-peak maximum, are in most cases uncorrelated with those of the modes of

the ordered phase, this making difficult a correlation between fragility and the excess

specific heat, i.e., the boson peak.



Chapter 8

Dynamical Scenarios in a

Glass-forming Liquid

8.1 Introduction

The lack of a unique and shared theory in the microscopic description of liquid phase

dynamics has led us to conduct a study, based on Bayesian inference methods through

which a new perception about the sub-nanosecond dynamics has been given. The sample

used for this purpose has been one of the prototypical glass-forming liquid, glycerol. This

material is a structural glass former and, since it is used in wide range of applications,

arouses a great scientific interest.

To this end, QENS data as a function of temperature have been analyzed using a

minimal set of physical assumptions. On the basis of this analysis, we prove the pres-

ence of three distinct dynamical processes in glycerol, i.e., a translational diffusion of

the molecular centre of mass and two additional localized and temperature-independent

modes. The neutron data also provide access to the characteristic length scales asso-

ciated with these motions in a model-independent manner, from which we conclude

that the faster (slower) localized motions probe longer (shorter) length scales. Careful

Bayesian analysis of the entire scattering law favors a heterogeneous model for the dy-

namics of glycerol, where molecules undergo either the faster and longer or the slower

and shorter localized motions.
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In this Chapter we will first examine the characteristic time scales of these processes.

Since our experiments have been performed as a function of temperature, we will also

compare relaxation times with those obtained from dielectric spectroscopy, in order to

gain additional insights into the nature of βJG-relaxation phenomena. Finally, we ask

whether our QENS data are better described by the HG or HT via recourse to two

first-order models built with a minimum number of assumptions.

8.2 Previous works

Glycerol has been the object of several experimental investigations [179, 180]. The dy-

namics of glycerol have been studied by dielectric spectroscopy (DS) [81, 82, 181–183],

depolarized light scattering [184], Nuclear Magnetic Resonance (NMR) [185, 186], and

QENS [187–191]. Moreover, Molecular Dynamics (MD) simulations have been per-

formed in order to explore the dynamics of this glass-forming liquid [192]. An early

and quite extensive analysis of QENS data on glycerol was performed by Wuttke et

al. [109, 193, 194] in the context of Mode Coupling Theory (MCT). This study made

extensive use of phenomenological Kohlrausch-Williams-Watts (KWW) line shapes to

describe the slow dynamics.

Despite such a high scientific efforts, a comprehensive, model independent, theoreti-

cal explanation of the microscopic driving mechanisms is still elusive. Many experiments

were done using neutron scattering, but obtaining the diffusion coefficients from the

measured quasielastic spectra requires a very high experimental care.

Very recently, Cicerone et al. [13] have shown that the picosecond (ps) dynamics

of glycerol and other glass-forming liquids might be studied by recourse to a two-state

scenario where tightly and loosely caged domains coexist. Moreover, the liquid dynamics

seem to be driven primarily by structural features.

8.3 The properties of glycerol

Glycerol is an exceptional utility material with many application areas. The key of its

versatility is a unique combination of physical and chemical properties, the compati-

bility with many other substances, and the non-toxicity to human health and to the

environment. Due to its combination of not common properties, glycerol finds appli-
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Figure 8.1: 3-D sketch of C3H8O3 molecular structure in the vacuum. Carbon atoms

are in blue, hydrogens in white and oxygen atoms in red.

cation in a wide variety of end uses, whose applications include some variety of areas

ranging from food, to medicine, to urethane foams.

Glycerol has an important role in nature and is closely linked to the same processes

on which life is based, being a fundamental component of all the cells. It occurs naturally

in the form of triglycerides, the chemical combinations of fatty acids and glycerol which

are the main constituents of almost all vegetable and animal fats and oils.

Chemically, Glycerol (C3H8O3), shown in Figure 8.1, is a simple polyol compound

(sugar alcohol) extremely stable in different conditions, and capable of producing mul-

tiple reactions, in fact because of its hydroxyl groups, it may react to form a unusually

high number of derivatives. Glycerol is a clear, almost colorless, viscous liquid with a

high boiling point and miscible in water and alcohol, and it is a good solvent. Among

its most important features there are: the hygroscopicity, i.e. the ability to absorb hu-

midity from the atmosphere, and the low vapor pressure, a combination that produces

an exceptional plasticity.

The low vapor pressure allows the permanence of the glycerol in the products and it

is closely linked to the hygroscopicity in the efficacy of glycerol to attract and retain the

humidity (humectant). It is practically non-volatile at normal temperatures of use. In

addition, between 0◦C and 70◦C temperature changes have little effect on the relative

vapor pressure of glycerol solutions.

A direct plasticizing effect is produced, in most of the applications for glycerol, as a

humectant-plasticizer because glycerol and water act together to increase the softness
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Figure 8.2: (a) The Tg scaled Arrhenius presentation of viscosity data for glycerol.

The scaling temperature is the calorimetric glass transition temperature [195]. Data

were collected from different sources: orange diamonds [196], full red circles [195], green

squares [197], light blue triangles [198] and blue stars [199]. (b) Sketch of freezing points

of glycerol-water solutions [200].

and flexibility and to prevent drying. The plasticizing effect, however, is more than just

the result of glycerol to retain water. Even when there is not presence of water, glycerol

can perform a direct function of plasticizing effect [201].

The high viscosity (Figure 8.2a) is one of the most characteristic traits of glycerol,

such quality is of great worth in various mechanical applications that use glycerol as a

hydraulic fluid or special lubricant, but the most important commercial use, given its

viscosity, is the ability of densification for liquid preparations, syrups, emulsions and

gels. At low temperature, concentrated glycerol solutions tend to a supercooled regime.

In this regime, at first its viscosity increases slowly, and then have an abrupt increase,

up to the glass transition which occurs at about 185 K.

Hence, through the use of glycerol, it is possible to avoid the crystallization, the

phenomenon that adversely affects the quality and preservation of the products. The

freezing points of various glycerol concentrations are shown in Figure 8.2b. These values

explain why the pure glycerol, with a freezing point of about 291 K, is rarely seen in

the crystalline state. As it is evident from these data, even the small amount of water
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generally present in most of the formulations of glycerol depress the freezing point. A

combination of two parts of glycerol to one part water form a eutectic mixture (a mixture

of substances whose melting point is lower than that of the individual substances that

compose it) which freezes at 227 K [201].

In the present study, all measurements were performed using a glycerol sample

purchased from Sigma Aldrich with a purity greater than 99%.

8.4 Experimental details

QENS experiments were performed using the TOFTOF spectrometer, described in Sec-

tion 3.3.2, using a resolution of 55 µeV (full width at half maximum) [202]. The samples

were kept in hollow aluminium cylinders with a sample layer thickness of 0.1 mm. This

thin layer ensures a transmission of ∼ 85%, thereby rendering multiple scattering effects

small. The sample temperature was controlled with a closed-cycle refrigerator, to collect

QENS data at T = 292, 316, 345, 380 K, corresponding to Tg/T = 0.65, 0.60, 0.55, 0.50.

The program FRIDA [55] was used for data reduction. From the time-of-flight of the

neutrons, the energy transfer between neutron and sample was calculated; the measured

double differential neutron scattering cross section was transformed into the scattering

function; an angle- and energy-dependent absorption correction was performed on both,

the sample measurements and the measurement of a vanadium standard which was

used to determine the detector efficiencies and the instrumental resolution; the detector

efficiencies were normalized; and finally the momentum transfer Q was calculated from

the scattering angle and the energy transfer and slices of constant Q were grouped

together in bins of 0.1 Å
−1

. As shown in Figure 8.3, the Q-range analyzed is between

0.6 Å−1 and 1.3 Å−1 where the coherent contribution is negligible. In energy, the spectra

were evaluated in the whole accessible region.

The analysis of the data has been performed using a Bayesian approach described

in [39,111,115,203] and in Chapter 5. Model selection is then performed by considering

the information content of entire χ2 probability density functions (PDFs). All data

analysis presented herein have been performed using the FABADA (Section 5.4).

QENS data have been fitted with a free or parametrized distribution of modes so

that the scattering function S(Q,ω) can be described as a function of momentum (~Q)
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and energy (~ω) transfer by [204]:

S(Q,ω) = A(Q)δ(ω) +
n∑

i=1

Bi(Q,Γi)
1

π

(
Γi

ω2 + Γ2
i

)
(8.1)

where Γi is the energy width of the i-th Lorentzian function and Bi(Q,Γi) is the weight

for each Lorentzian, being thus the collection of {Bi(Q,Γi)} , i = 1, ..., N the normalized

probability distribution function describing the dynamics of the system. Bi(Q,Γi) can

be easily transformed to the time domain so that the intermediate scattering function

I(Q, t) can be written down as a distribution of simple exponential functions weighted

by Bi(Q, τi) [204].

In order to perform the analysis, the theoretical function S(Q,ω) must be convolved

with the instrumental resolution R(Q,ω) in the energy dimension before comparison

to the measured data. When the width of the theoretical function Γ is close to the

width of the energy bins of the data ∆ω, the convolution process artificially increases

the broadening Γ [205]. This artifact is especially prominent when fitting a diffusion
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Figure 8.4: Experimental data together with the bests fit to two different models: Diffu-

sion + Brownian oscillator (left) and Diffusion + Rotational motion (right) for Glycerol

at T = 380 K with a resolution of 55µeV. For these two models are presented two spec-

tra and relative fits at the same Q values (open diamonds for Q = 0.5 Å
−1

and open

circles for Q = 1.1 Å
−1

).

process, since in this case Γ is proportional to Q2. The calculated value of Γ is therefore

larger than the true one in the lowQ region. In other words, as soon as the line width Γ is

similar to the energy bin width ∆ω, a deviation from the Q2 behaviour is observed which

is not related to any physical process, but to a numerical problem of the convolution. In

order to avoid this effect, the bin width must be chosen smaller than twice the extracted

line width, i.e. ∆ω ≤ 2Γ [205].

8.5 Results

8.5.1 Preliminary analysis

The first stage of our analysis has been based on the large amount of information in

the literature concerning the dynamics of glycerol in the liquid phase [103,109,180–182,

185, 187–190, 206]. On these basis spectra were evaluated in the region between −0.5

to +0.5 meV. In order to investigate which motions are taking place at a microscopic

level. We have tested two physical models, both including a diffusion term and a confined

motion.

First of all we checked in model where the particle executes a Brownian motion in
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an harmonic potential, the so called Brownian Oscillator (BO) [207]. The quasielastic

scattering function is thus described in terms of a Lorentzian function related to the

diffusion (D) with a broadening ΓD(Q) = DQ2, and the broadening related to the

Brownian oscillator, ΓBO. The scattering law can be written as:

S(Q,ω) = L(ΓD)⊗

(
A0(Q) +

∞∑
m=1

Am(Q)
1

π

m · ΓBO

ω2 + (m · ΓBO)2

)
(8.2)

with A0(Q) = e−Q2ϵ2 and Am(Q) = (Q2mϵ2m)/m! .

For the second model a rotational motion has been assigned to the confined motion.

We called this model Diffusion + Rotational motion (D+R) and the scattering law can

be expressed as:

S(Q,ω) = L(ΓD)⊗

(
A0(Q) +

∞∑
l=1

Al(Q)
1

π

Γrot

ω2 + (Γrot)2

)
(8.3)

with A0(Q) = j20(QR) and Am(Q) = (2l + 1)j2l (QR) ,

where Γrot = l(l + 1)Drot and jl are the spherical Bessel functions of l-th order.

Fits were performed to the data at all Q-values simultaneously, in a way to fit, at

once, both processes and avoid cumulative errors. In Figure 8.4, we show two examples

of the best fits to the data at two values of momentum transfer (Q = 0.5 Å
−1

and at

Q = 1.1 Å
−1

).

As can be seen, at first glance, both models are able to fit the data reasonably well

in the quasielastic peak region (ω ≈ 0), however, the low quality of the fit on the tails

is also evident. This has inevitably caused questions on the effectiveness of the used

models, and especially on the number of modes present in glycerol dynamics.

Furthermore, given the absence of inelastic contributions in the energy range mea-

sured, lead us us to reconsider the whole energy range in which to perform the fit

procedure.

8.5.2 Determination of the number of processes

To determine how many dynamical processes are present in the measured dynamics

of glycerol, a series of plausible and widely used models has been analyzed, namely: a
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two Lorentzian model (2L), a distribution of modes described by two Gaussian PDFs,

and another one described by a KWW plus a Gaussian PDF (G+KWW). We have

also compared all of these two-component models with a simple three-Lorentzian model

(3L) and, for the sake of consistency, also to a single KWW distribution. In all cases,

fits to the data were performed after convolution with the spectral resolution of the

instrument. Figure 8.5 shows the results of such analysis and the resulting χ2 PDFs

at T = 380 K and Q = 1.0 Å
−1

. Model selection has been performed with FABADA

[111,115,144] at Q = 1.0 Å
−1

because the dynamic range and, therefore, the information

content of QENS spectra are maximal at this particular Q. This momentum transfer

is dominated by incoherent scattering, as it lies significantly below the first and most

pronounced maximum of the measured structure factor located at Qmax = 1.4 Å
−1

(see

also Figure 8.3).

Inspection of the resulting χ2 PDFs evinces that the 3L model provides the best

description of the experimental data (see Figure 8.5). Although one might argue that

this conclusion could very well be the result of an increase in the number of fit pa-

rameters relative to simpler models, inspection of the underlying and well-separated χ2

PDFs rules out this possibility in glycerol. In other words, the two-component model

fits using any combination of parameters are invariably worse than those corresponding

to the 3L model.

Given the popularity of the G+KWW model, we have also performed a series of

additional fits to obtain values for the “stretching” parameter βKWW at Q = 1.0 Å
−1

as a function of temperature. At the lowest (highest) temperature, we find βKWW ≈

0.5 (0.7). These values are in closer agreement with dielectric spectroscopy [81,181–183]

than previous QENS studies [194]. Notwithstanding this encouraging result, we stress

that our Bayesian analysis does not favour this particular model, as evidenced by the

results shown in Figure 8.5.

8.5.3 Model comparison: homogeneous vs. heterogeneous

In order to gain further insights into the physical basis of the three processes described

by the 3L model in glycerol, we have performed further model selection on the entire

scattering function S(Q,ω) accessible in the QENS experiments. The aim is to elucidate

whether, in addition to the expected translational diffusion of the molecular centre of
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Figure 8.5: (a) Data fits for glycerol at T = 380 K and Q = 1.0 Å
−1

using different

models: two lorentzians (2L), three lorentzians (3L), a single KWW relaxation (KWW),

KWW plus a Gaussian distribution of relaxation times (KWW+G), and two Gaussian

distributions (2G). Using the same colors, panel (b) shows the corresponding χ2 PDFs.

mass, all molecules are subjected to: either two additional (and distinct) relaxation

processes affecting the entire ensemble (HG); or if some molecules are moving faster

than others giving rise to so-called islands of mobility (HT) [95, 208]. Let us recall the

two models presented in Section 3.5.2. Mathematically the HG can be described by a

multiplicative ansatz of dynamical processes in the time domain and, as such, it affects
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Figure 8.6: Q-dependent linewidth Γd (HWHM) of S(Q,ω) for different temperatures.

At each temperature, a clear Q2 dependence of Γd is observed, compatible with a

diffusive motion. The lines show the best fits of the function Γd = DQ2 to the data. It

is evident that diffusion coefficients D obtained for the two models HG (full symbols

and solid lines) and HT (open symbols and dashed lines) are very similar.

all molecules on the time scale of the α-relaxation. The HT, on the other hand, is

based on the arithmetic sum of two processes, each one affecting a certain percentage of

molecules at α-relaxation time scales. With these considerations in mind, the simplest

(two-state) incoherent scattering functions for the HT and HG read, respectively,

S(Q,ω)HG = y0 + LD ⊗ [a(Q) · δ(ω) + (1− a(Q))La]⊗

[b(Q) · δ(ω) + (1− b(Q))Lb] (8.4)

S(Q,ω)HT = y0 + LD ⊗ {P [a(Q) · δ(ω) + (1− a(Q))La] +

(1− P ) [b(Q) · δ(ω) + (1− b(Q))Lb]}. (8.5)

where LD is a Lorentzian line describing translational diffusion with a spectral width

proportional to the square of the momentum transfer, that is, Γ = DQ2, where D is

the translational diffusion coefficient. We note the intrinsic (linear) dependence of D

on Q2, a relation that has been used to describe the experimental data as a function
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of Q using a single fit parameter D. The remaining (localized) motions are described

by [Pi(Q) · δ(ω) + (1− Pi(Q))LPi ] with Pi = a, b. The dependence of the form factors

a(Q) and b(Q) on Q provides a measure of the associated length scales for these motions.

In order to establish whether the spectral widths Γi associated with localized motions

are Q-independent, we have allowed these to vary across Q at all temperatures.

Results for T = 380 K are shown in the inset of Figure 8.6 and demonstrate that,

within experimental uncertainties, they are Q-independent. In view of the above, we

have replaced a total of 16 parameters (2 Lorentzian widths across 8 independent Q-

values) by 2 Q-independent spectral widths which were then fit simultaneously across

all Q slices. This reduction in the number of adjustable parameters results in a drastic

decrease in error bars of parameters. As explicitly shown by eqs. (8.4)-(8.5), the use

of Q-independent spectral widths to describe the localized modes does not imply that

the resulting Lorentzian modes present a constant width, since convolution with the

translational component necessarily leads to spectral features of width Γi +DQ2.

The results of this analysis at two Qs are shown in Figure 8.7a (an overview over all

fits are shown in Figure 8.8), demonstrating that both scenarios can describe the QENS

data well. The resulting χ2 PDFs are shown in Figure 8.7b, where χ2 values correspond

to global values across all energy and momentum transfers probed by QENS. Figure 8.7b

serves to highlight a significant overlap of the χ2 PDFs for both models, which means

that model selection in this particular case is certainly more ambiguous than in the

previous case dealing with a determination of the total number of distinct dynamical

processes. Although in this case the HT is preferred (both the minimum and maximum

of the χ2 PDF are located at lower values), it is still possible that additional information

encoded in an improved prior (or new measurements over a wider range of length and

timescales) could change the above conclusion. In any case, given the information at

hand, the HT is favored.

Physical parameters

In both models, the peak is described by a Lorentzian line shape with a half width at half

maximum (HWHM) Γd which is related to the diffusion coefficient D by Γd = DQ2. The

diffusion coefficient is obtained for each temperature and for the two tested models (see

Figure 8.6). Across the whole temperature range, the value of the diffusion coefficient

is basically independent of the employed model (HG or HT).
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Figure 8.7: (a) Representative QENS spectra for glycerol at T = 380 K and associated

fits for the HT/HG (solid/dashed lines); (b) χ2 PDFs obtained from global fits over the

entire scattering function as discussed in the main text.

Figure 8.9 reports the relaxation times τi = ~/Γi obtained for all three processes

of the HT and HG model. First of all, we find that the obtained τis are independent

of the model chosen and, therefore, their determination is robust. In addition to the

relaxation times τslow and τfast associated with the two localized processes, we also show

the relaxation time τmax at Qmax, a dynamical quantity that describes the collective

dynamics. As shown in Figure 8.9, the temperature dependence of τmax is in good
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agreement with collective α-relaxation data measured with DS [81, 181–183]. These

two datasets deviate slightly from each other as the temperature is lowered because the

timescales associated with translational diffusion increase and, as a result, they approach

the intrinsic energy resolution of the QENS experiments [53]. As discussed previously

[209], the translational diffusion coefficients obtained from the QENS data are in line

with literature values. Thus, we may conclude that our quantitative determination of

translational diffusion coefficients is robust, further corroborating the physical validity

of the priors defined by eqs. (8.4)-(8.5). Concerning the localized modes, we find τfast =

0.2 ps and τslow = 5.5 ps, and both are insensitive to temperature.

This insensitivity to temperature has been observed in other prototypical strongly

associated liquids like hydrogen fluoride [210,211]. Whether this behavior is character-

istic of this family of complex liquids remains an open question. On the basis of these

considerations, it is unlikely that the βJG relaxation measured by DS [82] is related to

these dynamical processes probed by QENS (see Figure 8.9).

The analysis of the neutron scattering spectra does not only allow to extract the

rates or relaxation times of the processes but it is also possible to determine the length

scale of the two confined motions. The terms describing these motions of the molecule
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Figure 8.10: Q-dependence of the parameters a (panels a and b) and b (panels c and

d) for each temperature extracted from both, the HG model (panels a and c) and HT

model (panels b and d). Also shown are fits of C exp(−π2σ2Q2).

and tagged as slow and fast, respectively, are given in the scattering function by [Pi(Q) ·

δ(ω) + (1− Pi(Q))LPi ] where Pi = a, b. In Figure 8.10 we present the Q-dependence of

parameters a and b for the two models and at all temperatures. These parameters exhibit

the same overall behaviour, namely they decrease with increasing Q or T . Length scales

σ associated with slow (τslow) and fast (τfast) dynamical processes have been obtained

by considering the first term of the cumulant expansion of the structure factor [212,213],

a Gaussian term in Q that may be written as C exp
(
−π2σ2Q2

)
. The prefactor C in this

cumulant expansion is used to account for multiple-scattering effects, which translate

into an effective reduction of the Elastic Incoherent Structure Factor obtained from the

QENS data [205]. The fits to the data can be seen in Figure 8.10.

For both the HT and HG, we find that the shorter length scales correspond to
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“slow” movements taking place in the picosecond time range and longer length scales are

associated with “fast” movements. This somewhat counter-intuitive result is physically

plausible provided that these two motions conform to different microscopic mechanisms.

In this context, the microscopic picture recently proposed by Cicerone et al. [13] offers

a natural explanation of our results.

The σ values are model dependent both in terms of their magnitude and overall

temperature dependence, but in both the HT and HG, they increase with temperature

and are invariably larger for faster motions. For the HT, however, both length scales are

distinctly different over the entire temperature range investigated in this work, whereas

for the HG both length scales converge to the same value at the highest temperature

investigated – while the two motions stay well separated with regards to their speed.

The HT scenario consists of two populations (slow and fast molecules) the ratio of which

shifts with rising temperature in favor of more fast molecules (Figures 8.11-8.12).

8.6 Discussion and conclusions

The analysis of the QENS data leads us to the unequivocal conclusion that there are

three distinct dynamical processes taking place in liquid glycerol: one associated with

the centre-of-mass translational diffusion of the molecule as a whole; and the other two

corresponding to localized picosecond (slow) and sub-picosecond (fast) motions, both

of which are insensitive to temperature. This result, together with our finding that
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in the HT scenario.

fast (slow) motions take place over long (short) length scales are independent of the

underlying model chosen to fit the experimental data.

Concerning the localized motions, it has to be noted that the information provided

by the measured scattering function is not sufficient to establish a clear-cut preference

for either physical scenario; the HT is favored over the HG but we cannot exclude that

additional information might revert this order.

For the less likely HG, all molecules would be subjected to the same two types of

motions, which we call rattling and hopping, at all times and also these two mechanisms

would need to hold at all temperatures. The (smaller) rattling motion would need to

occur on a slower time scale than the (larger) hopping and, at temperatures approaching

T =380K, the two length scales merge (Figures 8.11-8.12), although their associated

relaxation times are still clearly different (Figure 8.9). Our results for the HG scenario

at high temperatures are also compatible with the microscopic mechanism proposed by

Mamontov [191], with rattling motions described by confined diffusion on a sphere and

fast motions by intramolecular localized motions.

Given the information encoded in our QENS data, the HT is the more plausible

option, whereby a sizable and temperature-dependent fraction of the molecular ensemble

undergoes faster motions over longer length scales. Following the work of Cicerone et

al. [13], these motions would be associated with molecules belonging to regions in the

fluid dominated by collective dynamics. The remainder of the ensemble would then
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move more slowly over shorter length scales, a contribution that one could tentatively

ascribe to “normal-liquid regions” [12]. These motions are well separated in relaxation

time over the entire temperature range investigated, and show no signs of merging into

a single dynamical process.
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Conclusions

This thesis aimed to study the molecular dynamics in different compounds. The knowl-

edge of the molecular motions in disordered systems is fundamental to understand their

behavior in the microscopic scale. The study of the dynamics in disordered materials,

however, is intrinsically complex due to the presence of many interactions. Thus, there

is not a univocal physical description and many assumptions have to be made. Driven

by this scientific challenge, the study of the dynamics in different compounds by means

of different methods of investigation have been grouped in this thesis.

Bayesian approach allows to make few assumptions with respect other analytical

methods, taking into account the correlations between parameters, and showing the

complexity of the fit through the probability distribution functions. Using this method

three compounds, showing different kinds of disorder, were studied: 1-chloroadamantane

and freon113 exhibit an orientational disorder, while glycerol molecules, being in liquid

phase, presents both orientational and translational disorder.

For what concerns 1-Chloroadamantane, Bayesian analysis has been used to prove

the number of dynamical processes that better describe the data obtained from quasielas-

tic neutron experiment in its plastic phase temperature range. A model selection through

χ2 PDFs shows that the anisotropic rotational model is favored and the analysis of the

spectra has permitted to determine the rotational diffusion coefficientsDx andDz. Both

show a kink around 320 K.

Furthermore, the analysis of the diffraction patterns has evidenced a step-like behavior

of the lattice parameter around the same temperature.

These two phenomena could be related with the anomalous calorimetric effect detected

by Kobashi [8]. Thus, the dynamical changes in rotations and the change in structure

seem to be correlated.
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A dynamic and thermodynamic study of the orientational glass former Freon113

(1,1,2-trichloro-1,2,2-trifluoroethane, CCl2F-CClF2) has been presented in order to an-

alyze its kinetic and thermodynamic fragilities. The properties of this material, in partic-

ular the internal molecular degrees of freedom, give rise to a complex energy landscape.

Through the study of the orientational dynamics obtained by means of dielectric spec-

troscopy, together with the specific heat and the vibrational density of states from

inelastic neutron scattering, we show that the high values of kinetic and thermody-

namic fragilities of this OD phase (the highest values found in a plastic crystal) are

accompanied by a strong coupling between low-energy modes due to the high number

of intramolecular degrees of freedom and acoustic phonon branches. These modes con-

tribute to the low temperature specific heat and to the density of states and, thus, to

the excess (configurational) entropy, which makes the system thermodynamically and

kinetically fragile.

Glycerol is one the most studied glass-formers. Here, a robust model selection, based

on statistical assumption, has been presented. Line-shape analysis has shown the pres-

ence of three distinct processes in the description of molecular dynamics in liquid phase.

One of such motions is associated with the translation of the center of mass of the whole

molecule, while the other two are fast and slow movements that describe the transient

confinement of the molecule created by the surrounding molecules.

Although the model selection has not clarified the problem, the heteregeneous model

seems to be the one that best describes the quasielastic data. Probably this can be

ascribed to the presence of heterogeneities, temperature-dependent domains, in which

a fraction of molecules is subjected to faster movements (associated with the collective

dynamics) and regions where molecules move slower over shorter length scales. The

relaxation times of such motions are well separated and they do not seem to merge in

single dynamical process in the temperature region examined.

The methods and procedures described in this work can be used to increase our

knowledge in the dynamics of disordered systems. Although it remains a lot to do for a

complete understanding of the behavior of disordered materials, this contribution will

help to give some hints for further experiments and analysis.
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