

Accepted Manuscript

dataClay: a distributed data store for effective inter-player data
sharing

Jonathan Martı́, Anna Queralt, Daniel Gasull, Alex Barceló,
Juan José Costa, Toni Cortes

PII: S0164-1212(17)30101-2
DOI: 10.1016/j.jss.2017.05.080
Reference: JSS 9967

To appear in: The Journal of Systems & Software

Received date: 2 May 2016
Revised date: 31 October 2016
Accepted date: 22 May 2017

Please cite this article as: Jonathan Martı́, Anna Queralt, Daniel Gasull, Alex Barceló, Juan José Costa,
Toni Cortes, dataClay: a distributed data store for effective inter-player data sharing, The Journal of
Systems & Software (2017), doi: 10.1016/j.jss.2017.05.080

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2017.05.080
http://dx.doi.org/10.1016/j.jss.2017.05.080
montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
© 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• A distributed data store to share data in a secure and flexible way is

proposed.

• The system is based on the concepts of identity and encapsulation.

• Parceled control breaks de facto assumption of centralized administration.

• Impedance mismatch issues are resolved based on an Object Oriented data

model.

• A data access performance evaluation with popular benchmarks and ap-

plications.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

dataClay: a distributed data store for effective
inter-player data sharing

Jonathan Mart́ıa,∗, Anna Queralta, Daniel Gasulla, Alex Barcelóa, Juan José
Costaa, Toni Cortesa,b

aBarcelona Supercomputing Center (BSC)
bUniversitat Politècnica de Catalunya (UPC)

Abstract

In the Big Data era, both the academic community and industry agree that a

crucial point to obtain the maximum benefits from the explosive data growth

is integrating information from different sources, and also combining method-

ologies to analyze and process it. For this reason, sharing data so that third

parties can build new applications or services based on it is nowadays a trend.

Although most data sharing initiatives are based on public data, the ability

to reuse data generated by private companies is starting to gain importance as

some of them (such as Google, Twitter, BBC or New York Times) are providing

access to part of their data. However, current solutions for sharing data with

third parties are not fully convenient to either or both data owners and data

consumers. Therefore we present dataClay, a distributed data store designed to

share data with external players in a secure and flexible way based on the con-

cepts of identity and encapsulation. We also prove that dataClay is comparable

in terms of performance with trendy NoSQL technologies while providing ex-

tra functionality, and resolves impedance mismatch issues based on the Object

Oriented paradigm for data representation.

Keywords: data sharing, distributed databases, nosql, storage systems

∗Corresponding author
Email address: jonathan.marti@bsc.es (Jonathan Mart́ı)

Preprint submitted to Journal of Systems and Software May 29, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

For many years, databases have proven to be successful for sharing

data among different applications, centralizing all the data of an organiza-

tion. Databases follow the ANSI/SPARC architecture [1], a layered structure

that provides each user with access to a fragment of the database, and also5

abstracts how data is physically managed.

In this environment, where all the applications accessing the data live within

the borders of the same organization, this notion of centralized control is

associated to the database administrator (DBA), an identifiable person

who is responsible for the data. The DBA decides which data is stored in the10

system, and how and by whom it can be accessed. With this formula, DBA

tailors the database to the needs of different applications, since their users are

known and accessible.s

Based on this approach, Data Services [2] can be seen as its successors in

a globally connected world, adapting the same ideas to the current scenario15

where data sharing is being extended from a single organization to an ecosystem

of data owners and data consumers, what is usually referred as large-scale

data sharing [3]. In particular, a data service is an additional layer on top

of the database and/or other services that encapsulate access to data. This

allows data owners to make data accessible to external players in a controlled20

way, basically by disallowing arbitrary queries on the underlying data. But

in this case, the data owner does not have access to all the possible

users or applications, so he decides which data to store and to release

according to his own criteria.

However, in this context of large-scale data sharing, the fact that all deci-25

sions (and their implementation) are exclusive to the data owner does

not seem to be the best solution. Data is one of the most valuable assets of a

company and obviously its owner must control how it can be accessed, but this

should not prevent data consumers from adapting the accessible data

to their needs (one of the challenges of Big Data [4]). Specifically, it is vital that30

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

consumers are allowed to add additional views, new information that is

not present, or additional functionality for data processing; as long as

the security and integrity of the existing data are not jeopardized, providers’

do not lose control of their data, and existing users and applications are not

affected by these additions (unless they want to).35

Furthermore, offering this flexibility to consumers would help tackling an-

other key aspect to take into account for effective data sharing: data integration.

The lack of standards in conjunction with the vast amount of data formats and

APIs compels developers to spend a significant amount of time on coding ex-

plicit middle-ware to adapt data for its correct processing or for interoperability40

between different services or applications. Therefore, enabling the consumer to

adapt the accessible data from its source would ease the integration process.

In view of the above, and further detailed in the following sections, this

paper expounds a novel solution to fill the gaps of current data services and

database management systems in the area of data sharing. A novel distributed45

data store called dataClay is presented offering flexibility for the consumers to

add new functionality without jeopardizing providers’ requirements, and it is

designed to exploit the best of near future storage technologies grounded in the

concepts of identity and encapsulation.

dataClay relies on the structure and principles of the ANSI/SPARC archi-50

tecture, which has proven successful in many aspects, but breaks the de facto

assumption that each DBMS has a central administrator (or adminis-

trator team). In contrast with current database systems and data services, the

main feature of dataClay is that control is parceled, allowing different

users to share and reuse data while maintaining full control on their55

assets, both regarding the schema and the data itself. That is, any user

can participate in the definition of the data schema by adding those missing

concepts or functions he needs, but always based on the fragment that he is

allowed to access as granted by the owner. These enhancements of the original

schema are what we call enrichments, and can be shared with other users in the60

same way as the owner shares his original schema.

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In this context, it is essential that data never moves outside the data store

in order to guarantee full control on it (unless explicitly allowed by the owner).

To this end, we propose an identity-based data store, in contrast to the

usual value-based DBMSs. That is, every single piece of data can be65

uniquely identified and individually manipulated by means of the set of

operations that encapsulate it, which are executed inside the data store. That

is, data is manipulated in the form of objects, exposing only the operations

that can be executed on the data, instead of exposing the data itself.

This encapsulation guarantees data independence [1], and at the same70

time avoids the impedance mismatch between the application and the

specific data model of the data store, which requires around 30% of the

total of an application code to overcome [5]. Also,performance is increased since

the amount and size of data transfers between the data store and the application

is reduced.75

The rest of the paper is organized as follows. Section 2 is a conceptual

overview of the main pillars upon which dataClay is built. Section 3 describes

the main design decisions and technical details to fulfill the requirements and

implement the key dataClay features. Section 4 presents a performance eval-

uation comparing dataClay with trendy NoSQL databases. Finally, section 580

outlines the related work and the paper is concluded in Section 6.

2. Overview of the system

This section provides an overview of the main concepts on which dataClay

relies. For a better understanding, the explanation is based on the

different levels of the well-known ANSI/SPARC architecture [1] mapping85

them to the abstractions used in dataClay to structure and manage data. The

main goal of the ANSI/SPARC architecture is to guarantee data independence,

that is, the immunity of applications to changes in the way data is stored and

accessed. To this end, the architecture proposes three levels of abstraction: the

external level, the conceptual level, and the internal level. First, the conceptual90

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

level of dataClay is presented, and then how it is exported to users (external

level), and how it is mapped to the storage (internal level).

For the sake of clarity, we start exposing how dataClay maps with the three

different levels of the ANSI/SPARC architecture as if there was a single admin-

istrator for the whole data store. In this way we explore how dataClay works95

analogously to other data stores in respect the essential characteristics of the

ANSI/SPARC model that are still valid for us. However, we comment on the

differences at each level and finally present a last subsection describing how, in

contrast to what is assumed in ANSI/SPARC, dataClay divides data

management into different parcels that are separately controlled by100

independent users: dataClay parceled control.

2.1. Conceptual level

The conceptual level represents all the information contained in the database,

abstracting away physical storage details. This content is represented by means

of the conceptual schema, which is defined using the conceptual data definition105

language (DDL).

The conceptual level in dataClay follows an object-oriented data

model. The basic primitives are objects and literals or values. Each

object has an identity, represented by a unique object identifier (OID),

and can be shared (referenced) by other objects. Every object is an instance110

of a type or class, and a class has a number of attributes or properties, which

represent the internal state of the object, and a set of operations or methods

that can be applied to objects of that type. A class can be a subclass of another

class. Objects are encapsulated, that is, their internal structure is not visible

outside the object and its users only know which methods can be executed on115

objects of that type. This encapsulation provides data independence

by basing the manipulation of data on its identity and the methods

provided, rather than on its value.

In contrast to objects, literals have no identifier and do not exist as first-class

entities outside the object that contains them as values of properties. Examples120

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 1: UML class diagram representing dataClay’s main entities. In orange, all classes

related with the conceptual level. In green, classes related with external level. In blue, classes

for parceled control. All relationships are navigational through methods (which have been

omitted) or materialized attributes.

of literals are instances of primitive or built-in types, such as int, char or String.

Figure 1 depicts the information about classes and objects stored in data-

Clay, specified as a UML class diagram. The conceptual level corresponds to

classes in orange color, and the rest of the diagram will be introduced in the

following subsections.125

Following the object-oriented model, dataClay is aligned with the idea that

the ultimate objective of the conceptual schema is to describe not only the data

itself, but also how it is used [1], and at the same time provides users with a

transparent access to persistent data, thanks to the following principles [5]:

• Persistence independence: the persistence of an object is independent130

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of how a program manipulates that object, and vice-versa. That is, a piece

of code should work with persistent and non-persistent objects indistinctly.

• Persistence orthogonality: all objects of all types should be allowed to

be persistent and non-persistent.

The goal of dataClay is to fully support this object-oriented model135

in order to provide an identity-based data store. For this reason, the

conceptual layer includes not only the structural part of classes, but also their

methods. All this information is stored in dataClay, so that users can share

and reuse not only data, but also the methods that allow applications to ma-

nipulate it. In addition, the fact that dataClay stores the methods associated140

to classes enables their execution within the platform when invoked on objects,

which guarantees that data is indeed encapsulated and protected by

methods, with no possibility of bypassing them. As a side-effect, efficiency

is improved due to the fact that data transfers outside the data store

are avoided.145

The DDL that allows users to define the conceptual schema in dataClay can

be any object-oriented language that permit to the users to describe classes and

methods. The current implementation supports two well-known programming

languages: Java and Python. Despite being procedural languages, they can be

used to specify the structure of the information, as well as its associated behav-150

ior, in the form of classes. Data independence is then achieved by mapping these

language constructs to an internal dataClay representation of classes, which is

independent of the specific language used to define the class, as well as of the

physical representation of the data. Thus, each user may define his classes

in the language that he prefers.155

Given that the schema definitions are translated into an intermediate generic

representation, the fact that the conceptual DDL is language-dependent

is not a problem but rather an advantage to the users, since they do not

need to learn a new language to define the contents of the database. Using

directly the same languages used to write applications makes this task160

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

much easier for them. In addition, users can take advantage of the whole

expressiveness of these languages in order to implement additional behavior in

the conceptual schema itself, such as enforcing integrity constraints or doing

security checks.

The fact that each user can access data only by means of a limited set of165

operations could represent a problem if some of the operations needed by the

user are not available. However, and precisely because data is encapsulated,

any user can implement a new operation using only the available ones, as well

as additional data that this operation may need, to provide a new functionality

that does not exist in the class, without any danger for the already existing data.170

In dataClay this is called enrichment : if existing classes and methods do

not meet the requirements of user’s application, he can expand these

classes with new methods and/or new required properties. These new

properties and methods will be stored (and executed) in the data store as if

they had been defined by the creator of the class. Thus, once they are part of175

the schema, they can be used and shared like any other method. In section 2.4,

we describe how users can enrich existing classes, as well as adding new classes

to the schema, while controlling how these new elements are shared.

Enrichments are also a way to compensate the flexibility lost by disallowing

arbitrary queries in favor of methods: the enrichment mechanism can be used180

to structure objects according to the necessities of the application, by adding

attributes or methods that provide access to objects that are already organized

in the appropriate data structures. This provides a more efficient way of

accessing data, since queries can be avoided when they are known in

advance. Thanks to enrichments, we can also go one step further with regards185

to the object-oriented data model, and offer the possibility of having several

implementations for each method. This novel feature enables users to

enhance any existing method with their own algorithms, applying different con-

straints or considering specific environment variables that might be subject to

particular conditions. For instance, a method can have an extra implementation190

optimized for specific hardware features, such as available memory or processor

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

type.

2.2. External level

According to the ANSI/SPARC architecture, the external level is concerned

with the way data is seen by users. An external view is the content of the195

database as perceived by some particular user, and many external views may

coexist on top of a single conceptual view of the database. Thus, each user

perceives the same database in a different way.

Users interact with this level by means of a data sublanguage, which is

embedded in a host language. This data sublanguage is a combination of an200

external DDL which, in the same way as the conceptual DDL, supports the def-

inition of the database objects in the external schema, and a data manipulation

language (DML), which allows processing or manipulating such objects.

In the case of dataClay, the external level follows an object-oriented

data model like the conceptual level, thus preventing unnecessary205

data transformations. In order to define the external views, which are based

on the data models of the conceptual level, providers populate their data mod-

els by means of dataClay interfaces and model contracts (as shown in figure 1

represented by green classes). An interface is a subset of the methods of a class

that are made accessible to other users. Each class can have an unlimited num-210

ber of associated interfaces. A model contract is a set of interfaces of different

classes that are made accessible to a user for a certain period of time.

Therefore, a user’s external view consists of the union of all his model con-

tracts, which provides a subschema (a subset of the classes with a subset of the

contents of each class) that the user is allowed to access at a given time. Thus,215

several external views can exist at the same time for different users

by means of distinct interfaces and model contracts, and some users

can share an external view by means of different model contracts including the

same interface. In addition, a user may define an external view based

on another external view, by creating an interface of his own vision220

of the class and then including it in a model contract to other users

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(further detailed in subsection 2.4).

This mechanism also allows dataClay to guarantee data independence, since

new properties, methods or classes can be created without affecting existing

applications, which are based on the already existing external views.225

Regarding the DML, in dataClay the same host language, either Java or

Python as chosen by the user, is used as data sublanguage. Tight coupling is

convenient for the user and, in fact, the data sublanguage should ideally be

transparent [1], as is the case in dataClay.

To achieve this transparency, users retrieve the set of classes implement-230

ing their external view of the registered classes in dataClay according to their

model contracts (more details in subsection 2.4). These classes only contain

the methods visible to that user, and allow him to access shared objects as if

they were his own in-memory objects. This is because these classes hide all

the details regarding persistence and location of the objects. Thus, the DML235

in dataClay corresponds to the methods defined in the classes, and, the direct

users of dataClay are application programmers.

2.3. Internal level

The internal level is a low level representation of the database close to phys-

ical storage, but still not in terms of any device-specific issues. The internal240

view is described by means of the internal schema.

dataClay relies on other existing data stores to implement this physical level,

and thus there is a different internal schema for each data store. For each dif-

ferent product, there is a dataClay component that maps the concep-

tual schema to the specific technology used to store the objects. This245

mapping absorbs the changes in the internal schema, or even in the implementa-

tion of the internal database, and the conceptual schema remains invariant. This

allows dataClay to take advantage of the advances in technology, for instance

when new kinds of databases appear, or when current implementations of exist-

ing ones are improved, even if their interface changes. In the same way, as soon250

as new storage technologies such as non-volatile memories (NVRAM)

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

become a reality [6], dataClay will be able to exploit them without af-

fecting already existing applications, and benefit from their impressive access

times and fine access granularity just by implementing the appropriate map-

ping. Thus, any databases or storage technology can be interchanged at any255

point without affecting any other layer in dataClay or above, just by choosing

the one desired in a configuration flag.

Currently we have already implemented mappings for the object-oriented

database db4o [7], the key-value column oriented Cassandra [8], the Neo4j [9]

graph database, and the relational database PostgreSQL [10]. But furthermore260

we have also implemented a mapping for the novel Seagate’s Kinetic hard drives

[11], which are disks with a key-value interface instead of a block interface, and

we are also working in a mapping to NVRAM in a research collaboration with

Intel. Both NVRAM and Kinetic mappings enable dataClay to directly access

storage devices without the need to go through a 3rd party data store. In265

the case of NVRAM mapping, considering dataClay design, there

is a direct mapping between the conceptual and the internal level,

thus mitigating the performance penalties due to unnecessary data

transformations.

Either way, and as will be seen in section 3.2, the fact that in dataClay270

objects are only accessed by their OID enables the simplification of the internal

schema to its minimal expression. For instance, in the mapping to PostgreSQL

the schema consists of a single table that contains all objects. This table has a

column for the OID of the object, which identifies each row, and another column

containing the object represented as a byte array, that codifies all the values275

for the properties of the object. There is a row for each identifiable object,

and references to other objects are kept by means of the OID of the referenced

object. In section 3 we explain how objects are distributed in several locations,

and how their physical location is transparent to users.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.4. Parceled control: decentralizing database administration280

Traditionally, database administration is operated under the responsibility

of a single person or a specific team: the database administrators (DBAs). The

functions of DBAs traditionally include, among others, dealing with users to

understand their requirements, defining the conceptual schema, defining security

and integrity constraints, or defining the external schema.285

However, a DBA centralized approach becomes unfeasible in the

context of data sharing within a completely open environment, where

users from different organizations may develop applications with requirements

that are not always known by the data owner. In this scenario, the data owner

cannot allow consumers to run arbitrary requests on the data, so a set of func-290

tions that limit how data is accessed must be implemented preventing data from

moving outside the database without the appropriate control.

This scenario poses some difficulties both to data providers and to data

consumers. On the one hand, data providers cannot foresee all the possible

ways in which their data can be used, so they cannot implement all the functions295

that data consumers will need in order to build their applications. On the other

hand, data consumers cannot depend on the knowledge or availability of the

data owner to provide them with the functionalities they need. These functions

may be very specific to the domain of the data consumer, or they may even be

the base of his business model and, thus, nobody else can or should do this job.300

Therefore, an alternative mechanism to maintain the security and integrity

of the database is required. This alternative should provide flexibility to inde-

pendent users to build applications based on shared data without requiring any

kind of intervention of the data owner. This is what we call parceled control:

the same database stores objects from several owners, each of them305

controlling his part of schema and his objects, and possibly enriching

and consuming objects from other providers. Figure 1 shows in blue color

the entities concerned in parceled control and explained hereafter.

In a first step to support parceled control in schema sharing, we

defined a new abstraction for dataClay ’s data model called namespace . In par-310

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ticular, since dataClay is conceived for sharing data between independent users,

and a class name is not a universal identifier, classes are grouped into names-

paces preventing name clashing. Any user is allowed to create a namespace for

the schema that defines his data, i.e. the schema on which his applications are

based.315

This schema can be composed of new classes created in the namespace by

its creator, as well as already existing classes (enriched or not). That is, classes

from other namespaces can be imported in a specific namespace if the

owner of such a namespace has an active model contract including interfaces for

them. From then on, they can be used in the context of the namespace according320

to the interface specification, and the owner of the namespace can enrich

them with new properties, methods, or implementations as he does

with his own classes. Furthermore, these new elements enriching classes

potentially from other namespaces, will be managed by the owner of

the current namespace, who will be able to decide with whom they are325

shared and how long by means of new model contracts in the same way

as he does with the original classes of his namespace. This enables integrating

data from different owners.

On the other hand, an additional way of controlling access to data

is by parceling not only the schema but also the data itself in an330

orthogonal way. That is, in the same way that a user may create a namespace

that contains a set of classes, a user can also create a dataset, which contains a

set of objects from different classes. A dataset is simply a container of objects,

there is no direct relationship between namespaces and datasets, which provides

extra flexibility. For instance, a user can share the same interface for a given335

class with different users, but offer a different subset of the data to each of them.

The dataset creator grants access to a dataset by means of a data contract,

specifying the expiration date and whether he gives permission to create new

objects on that dataset.

As a summary, model contracts provide control on the schema, while340

data contracts provide control on the data. In other words, data contracts

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: User-dataClay interactions with commands launched from dClayTool and session

and execution requests launched from user-level applications. Logic Module and a 3-backend

Data Service are deployed in different nodes with the corresponding data and metadata in-

tercommunication.

allow providers to control which objects can be accessed by a user, while model

contracts allow them to control how these objects can be manipulated. For

instance, if no method to modify an attribute appears in the interface, the user

will not be able to modify it. This kind of access control is very fine-grained345

because it can grant write access to an attribute while only read access,

or no access, to another attribute in the same object.

3. Design and technical details

This section describes the main technical aspects for dataClay implementa-

tion and is divided in two parts: Management Operations for Parceled350

Control and Application Execution. For a better understanding, figure 2

illustrates all the components concerned and the interactions between them, and

hereafter is shortly summarized before going into detail.

dClayTool is a user-level application that facilitates Management Operations

related with the data access control and the definition, evolution and355

sharing of the conceptual and external schemas. Users are also provided

with client libraries so their applications become enabled to open sessions and

submit requests to dataClay.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The resulting requests from dClayTool are sent to Logic Module (LM),

a service that after authenticating the user,processes them and stores the de-360

rived information in its own database. On the other hand, application requests

are sent to the Data Service (DS), a distributed service deployed in several

nodes (DS backends) that handles all object operations including persistence

requests: store, load, update and delete objects in the underlying database

(i.e. CRUD on objects); and execution requests: executing arbitrary code365

from methods of user classes on target objects. Persistence and execution re-

quests can be also produced from nested methods within a single DS backend

or backend-to-backend (intercommunication).

LM also handles a central repository of object metadata, thus DS backends

send LM the object metadata of new persistent objects, or retrieve missing370

object metadata from LM.

3.1. Management operations for Parceled Control

Management operations are those related with parceled control: schema

registration, enrichments, and data access granting. Schema registration

includes creating namespaces and registering classes, definition of interfaces,375

and model contracts signing. Enrichments include the registration of new

attributes and methods to existing classes, or new implementations for ex-

isting methods. Data access granting refers to dataset registration and data

contracts signing.

As stated before, dClayTool provides the user with a command-line appli-380

cation to handle Management Operations. In particular, the most relevant

commands are shown in table 1. Throughout this section it is assumed that

dClayTool sends user’s credentials to LM along the requests, so that LM can

authenticate the user. Finally, subsection 3.1.1 describes how users retrieve the

classes corresponding to their available data models, which is a key point to385

understand the details of next section 3.2 about Application Execution.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Schema Sharing

1 dClayTool -newNamespace <name>

2 dClayTool -newClass <namespace> <classname> <directorypath1, 2, ...N>

3 dClayTool -newInterface <interface-filepath> <interfacename>

4 dClayTool -newContract <begindate> <enddate> <beneficiary> <interface1, 2, ...N>

5 dClayTool -importContract <contract> <namespace>

6 dClayTool -importClass <contract> <class> <namespace>

7 dClayTool -enrichClass <namespace> <enrichmentclass-filepath> <classtoenrich>

8 dClayTool -getstubs <ddl> <contract1, 2, ...N>

Dataset Access Control

9 dClayTool -newDataset <datasetname>

10 dClayTool -grantAccess <begindate> <enddate> <dataset> <beneficiary> <permissions>

Table 1: Syntax for most relevant dClayTool commands related to schema sharing and

dataset access control.

3.1.1. Schema registration

Given a user wanting to register a schema defined with the classes shown

in figure 3 (developed in Java or Python), he uses dClayTool to firstly create a

namespace that contains them naming it with a string (command 1). Logic390

Module verifies that there is no other namespace with the same name and reg-

isters it in its database.

Now the user proceeds to register his classes in the created namespace

specifying the directory paths where they are stored (command 2).

At this point, dClayTool analyzes the code (source code in Python or395

byte-code in Java) to verify that all class dependencies are found in the given

paths, and automatically registers all the required classes transparently for the

user. In particular, dClayTool performs a dependency analysis that generates

a dependency tree by looking up references to other classes, which in the im-

plementation of the class will appear as: types of attributes, parameters400

or returning values of methods, types used in local variables, and

superclasses of the current classes to be registered.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Schema example with different kinds of associations and enrichments highlighted.

Company class is registered associated to a set of employees with at least one CEO. Employees

may use some cars, but it is assumed that a car cannot be used by different employees.

The leaf nodes of this dependency tree are either classes already registered or

language special classes (e.g. Object.class in Java). Already registered classes

are not registered again, and in the case of language classes, it is assumed that405

they are always accessible from the programming language itself, so they are

not registered either. On the contrary, non-leaf nodes correspond to user classes

that are transparently registered.

For instance, assuming that all the classes are in the directory /home/user/-

classes, the user executes:410

dClayTool -newClass myNameSpace Company /home/user/classes

The dependency analysis detects Employee as a dependency, and recursively

also finds Car and CEO classes, and all of them are registered automatically

in myNameSpace. In order to resolve cycles in class dependencies, classes are

marked as in-progress before registering their dependencies. Therefore, assum-415

ing that the implementation of class Employee has an attribute referring to his

company and class Company has an attribute referring to its employees, Com-

pany class is marked as in-progress until Employee is registered. In this way,

Company can be omitted when the dependency analysis finds that Employee

depends on it, preventing Company from being revisited.420

Eventually, all class information is sent to Logic Module that checks that

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

there is no class clash in the namespace and deploys the classes to Data Service

(further detailed in section 3.2.3).

At this point, the user might share his classes by registering model

contracts. To this end, he creates one interface per class (command 3),425

writing one XML file per interface defining the visible methods (with oper-

ation signatures) and implementations (with implementation identifiers)

for each corresponding class. Notice that applications access dataClay objects

only through methods, consequently interface definition does not include class

attributes. Given that multiple interfaces can be defined for a single class, the430

user assigns an interface name to easily identify them and, in this way, also

facilitates the model contract registration, providing the names of the inter-

faces for the contract, begin and expiration dates, and the beneficiary

(command 4).

3.1.2. Enrichments435

In line with the previous example, now the user wants to enrich class Car

to include a new attribute for the color and a new method isExpensive() that

returns a boolean, true if the price is higher than 20K, false otherwise. For the

new method, the user knows that the interface of class Car present in his model

contract includes the method getPrice() that retrieves the price of the car.440

It might be the case that class Car was already registered in another names-

pace and the user got access to it from one of his model contracts. In this

context, he would previously import the class Car into his namespace.

To this end, he might either import a whole model contract containing an

interface for class Car (command 5), or only the class Car from a specific445

model contract (command 6). As part of this process, Logic Module validates

that model contracts have not expired yet and that the same class names are

not already present in the target namespace of the user.

With class Car already present in the user namespace, either because he is

its owner or he imported it, he is now enabled to enrich it. The user codes the450

enrichments within a regular class E extending from Car (or, more precisely,

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the view of class Car according to his contracts). In particular, class E would

define the color attribute and the isExpensive() method. In this way, this class E

benefits from being a subclass of class Car enabling access to getPrice() method

needed for the implementation of isExpensive(), and if method isExpensive() was455

already present in class Car, the user could use overriding techniques to redefine

it with a new implementation.

Finally, the user registers the enrichments contained in class E with

command 7 (class E is not registered, it is intended for enrichment coding pur-

poses), and they become part of the vision of class Car in his namespace.460

The same dependency analysis used for class registration is applied, since any

new enrichment may require some classes for attribute types, method param-

eters or return values, or local variables in new implementations of existing

methods. If some class needs to be registered it is performed automatically.

Analogously to class registration, enrichment information is also sent to465

Logic Module for the corresponding checks and the deployment of the en-

richments to DS backends (further detailed in section 3.2.3).

3.1.3. Dataset Access Control

As explained in previous sections, every object registered in dataClay belongs

to a single dataset, so that data contracts granting access to a dataset are470

used to define common permissions for all the objects belonging to it. There-

fore, management operations also include dataset registration with a unique

name (command 9), and definition of data contracts (command 10) indicating

the dataset for which the contract grants access, the begin and end dates of

the validity of the contract, the beneficiary and permissions. Current version of475

dataClay assumes that a data contract grants the beneficiary to execute class

methods on all the objects registered within the offered dataset. However, cre-

ate/delete permission (createPerm in figure 1) is configurable to further control

whether the beneficiary of the data contract may create/delete objects in the

dataset or not.480

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.1.4. Stub classes

Stub classes (or stubs) implement the external schema representing

the particular vision of a user for the classes registered in dataClay, having one

stub per accessible class and containing only those methods for which the user

has been granted access via model contracts.485

Following the example described in previous subsections, let us assume that

a user is beneficiary of several model contracts including different interfaces for

the same class Car. Now, the user is developing an application that requires

accessing objects of class Car, so by means of command 8 he is able to retrieve

a stub of class Car for any of the supported languages (interoperability details490

in section 3.2.5). This stub is generated and returned by the Logic Module as

the union of the methods visible from all interfaces of Car included among his

model contracts.

At this point, the application can be compiled and executed using the stub

of class Car either to instantiate and persist new car objects, or to495

instance references to existing car objects. In both cases, the appli-

cation is then enabled to access persistent car objects through the

visible methods available in the stub.

Regarding the management of object persistence, stub classes extend from a

global dataClay class called DataClayObject supplied in a client application500

library. Currently, this client library has the form of jar file dataclay.jar for

Java and a dataClay package for Python. DataClayObject offers a set of methods

that can be called from any stub instance, the most important are:

• makePersistent (ds backend, [alias]): requests that the current stub

instance (object) is made persistent (becoming a persistent object) in the505

specified DS backend. Optionally, a string alias can be provided as a

user-friendly way to identify it.

• deletePersistent: removes the object referenced by current stub instance

from dataClay.

In the case of makePersistent method (further detailed in section 3.2.1), both510

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

parameters are optional, if the ds backend is not provided dataClay chooses

a random backend, and if no alias is given the object is only retrievable by

following a reference from any other object.

If the alias is supplied, the object can be retrieved afterwards using a static

class method called getByAlias present in all stub classes by default. This515

method starts by submitting the corresponding request to the Logic Module,

which returns the object metadata; and then builds a new instance of the stub

class with the returned OID and locations (which are attributes inherited

from DataClayObject as well).

Regarding the execution of methods not related with persistence520

management, stub methods have a different behavior depending on whether

the current stub instance refers to a persistent object or not. If the object is

persistent, the stub method generates an execution request for Data Service

containing any possible parameters for the execution of the method. But on

the contrary, if the object is not yet persistent, the stub method must be525

executed locally (that is, in the context of the application). To this end, the

stub methods are provided with one of the method implementations available

according to the model contracts of the user. Since there may be several im-

plementations available from different contracts, the LM resolves the collision

when generates the stub class by assuming that model contracts are530

sorted by priority order in the getStubs command, with the first model con-

tract having the highest priority. Therefore, the user has the possibility to affect

the choice of the implementation to be eventually executed among his accessible

ones.

In order to make stub methods aware of whether the target object is per-535

sistent or not, DataClayObject exposes a boolean attribute called isPersistent,

which is set to true either after the execution of makePersistent request, or from

a return value of a stub method containing references to existing persistent ob-

jects, or when using the getByAlias method.

Last but not least, stub classes also contain the implementation of two pri-540

vate methods (not visible for the application) inherited from DataClayObject :

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Data model of the chain of car repair shops.

serialize and deserialize. The serialize method prepares a byte-array for

the binary representation of the attribute values of the stub instance,

so it can be transferred within an execution request as the parameter of any

stub method or for a makePersistent call. The deserialize method is used to545

build a local object from its binary representation (serialized) coming from the

return value of a stub method.

3.1.5. Data sharing and integration examples

Following the company data model presented in section 3.1.1, let us suppose

that there is an important chain of car repair shops that signs an agreement550

with the previous company, so that all cars of the company will be repaired

by the car repair chain. The data model of the car repair chain is illustrated

in figure 4. RepairShop class represents the information related to car repair

shops (address and phone number), and it is related to CarBrand class which

represents the information of all the covered car brands, i.e. cars that can be555

repaired in the available repair shops. Due to the agreement between the two

companies, both models should be integrated to provide a unified view of their

data. With dataClay, this integration can be done at different levels, ranging

from a loose integration in which only the company uses dataClay, to a tight

integration in which all the data is stored in the same datastore.560

In the first scenario, databases of the chain and the company are managed

in different infrastructures, and the chain does not use dataClay but offers a

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Data Service to consult the repair shops given a car brand. In this context, a

developer of the company codes a method for Car class connecting to this Data

Service to get available car repair shops using the car brand information from565

the class. This method is used every time a car needs to be repaired to get

the address and phone number of an available repair shop for the broken car,

thus the integration is on the basis of the interoperability between the company

and the existing chain services. Although data migrations are avoided, the

drawback is that this approach requires data transformations to perform Data570

Service dependent requests and responses.

A tighter level of integration can be achieved if the chain also uses data-

Clay to store its data. The chain starts creating a model contract to grant the

company access to the method getRepairShops(String carBrand) thus providing

a functionality analogous to the previous Data Service. The model contract575

also includes an interface for RepairShop class with access to getter methods for

the phone and number attributes. Finally the chain creates a data contract to

grant the company access to the object of RepairShop class. In this context, the

developer of the Company gets the stubs corresponding to the model contract

and codes the method to get available repair shops using them. In this occa-580

sion the external communication with the infrastructure of the chain is done

transparently through dataClay stubs, preventing user-level transformations.

Finally, full integration can be achieved if both the company and the chain

store their data in the same data store, for instance externalizing it to a dataClay

service in the cloud. They use different namespaces for their data models and585

different datasets for their objects to ensure that their data is isolated unless

they want to share it, but still want to integrate their data without losing control

(as shown in figure 5).

In this context, the company creates a model contract granting the chain ac-

cess to Car brand name attribute through its getter, plus the getCars method590

of Company class; as well as a data contract to offer its dataset. With these

contracts, the chain enriches the Car class with a new relationship at-

tribute availableRepairShops and codes an application that matches com-

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5: Schema of the data integration between the company and the chain of car repair

shops. Classes and associations in dashes means that are hidden for the non-proprietary of

these entities. In red, the enrichments added to the company data model to get repair shops

when needed.

pany cars with chain CarBrand information, filling the availableRepairShops

with references to RepairShop objects. Now the chain creates a model contract595

analogous to previous scenario but includes the getter method of availableRe-

pairShops, thus the company application uses it to navigate from car objects to

their corresponding repair shops.

This approach enables the company to access up-to-date information from

the chain (as in the first scenario), but also prevents user-level data conversions600

(as in the second scenario). With encapsulation and dataClay parceled control,

both the company and the chain are enabled to isolate the parts of the schema

and data that do not have to be visible from the non-proprietary party. En-

richments facilitate the integration between both data models, letting the chain

to adapt Car class to its needs and adding new functionality accessible for the605

company.

3.2. Application Execution and Object handling

This section details how the user-level applications actually interact with

dataClay to manage object persistence and stub method execution on

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

existing objects. It is assumed that the schema presented in previous section610

has been successfully registered and the owner of the namespace has defined a

model contract to share his classes with a certain user. The user beneficiary

of such a model contract has downloaded the corresponding stub classes and

develops two applications linked with them:

• AppInsertCompanyData (figure 6): creates and stores the data of the615

employees in a company.

• AppGetCompanyEmployees (figure 7): retrieves the names of all the em-

ployees of a company.

Analogously to the user authentication for Management Operations, applica-

tions wanting to interact with dataClay also need to perform an authentication620

process that, in this case, is performed through a session-based mechanism

detailed in section 3.2.4. Throughout this section it is assumed that the ap-

plication is already authenticated and has a session identifier for its execution

requests.

3.2.1. Data generation625

When executing AppInsertCompanyData, it starts creating local instances

for the stub classes of Employee and Car (with their corresponding associa-

tions). In order to illustrate different ways to persist objects, the application

calls makePersistent for each employee which transparently makes the associ-

ated car to be persistent too, i.e. serializing both car and employee data to be630

sent within the request. In contrast, makePersistent for the company object

omits serializing employees data since at this point they are already references

to persistent objects, i.e. OIDs. Thus, only these OIDs are serialized along with

the company name (which is also used as the alias for myCompany object) as the

state of myCompany object. In all cases, no particular DS backend is provided635

for makePersistent requests, so they are submitted to a random one based on a

hash function. The request includes the session ID for the proper checks

and to infer the dataset where objects are registered (more details about

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

public class AppInsertCompanyData {
public stat ic void main (St r ing [] a rgs) {

St r ing user = args [0] ; S t r ing pass = args [1] ;

S t r ing da ta s e t s [] = { ”myCompanyDataset” } ;

S t r ing da ta s e tS to r e = data s e t s [0] ;

dataClay . i n i t S e s s i o n (user , pass , dataset s , da ta s e tS to r e) ;

L i s t<Employee> employees = new LinkedList<Employee >() ;

int employeeID = 0 ;

for (int i = 2 ; i < args . l ength ; i = i + 2) {
St r ing employeeName = args [i] ;

F loat ca rPr i c e = new Float (args [i +1]) ;

Car c = new Car (ca rPr i c e) ;

Employee emp = new Employee (employeeName , employeeID , c) ;

emp . makePers i s tent (employeeName) ; // remote r e q u e s t

employees . add (emp) ;

employeeID++;

}
Company myCompany = new Company(”myCompany” , employees) ;

myCompany . makePers i s tent (”myCompany”) ; // remote r e q u e s t

}
}

Figure 6: AppInsertCompanyData Java code that initializes a session and generates persistent

objects corresponding to the employees of the Company and their cars.

session management in section 3.2.4). As objects are stored in the assigned DS

backends (further detailed in section 3.2.3), they send the corresponding object640

metadata to Logic Module (LM).

LM keeps an up-to-date metadata repository, equivalent to the database

catalog, with the following information per dataClay object: OID, a Univer-

sally Unique Identifier (UUID) generated when the stub class is instantiated;

dataset, for permission checks; ds backends, to know the locations of the645

object; and finally aliases, in order to resolve getByAlias requests.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

public class AppGetCompanyEmployees {
public stat ic void main (St r ing [] a rgs) {

St r ing user = args [0] ; S t r ing pass = args [1] ;

S t r ing da ta s e t s [] = { ”myCompanyDataset” } ;

S t r ing da ta s e tS to r e = data s e t s [0] ;

dataClay . i n i t S e s s i o n (user , pass , dataset s , da ta s e tS to r e) ;

// I n i t i a l i z e s tub ins tance comp using the company a l i a s

Company myCompany = (Company) dataClay . getByAl ias (”myCompany”) ;

// remote execu t ion r e q u e s t

St r ing [] employeesNames = myCompany . getEmployees () ;

for (S t r ing employeeName : employeesNames) {
System . out . p r i n t l n (employeeName) ;

}
}

}

Figure 7: AppGetCompanyEmployees Java code that initializes a session with the dataset

where Company objects have been previously registered, and after retrieving the reference to

myCompany object obtains its employees’ names through remote execution request.

3.2.2. Remote execution

With the objects already stored, the user executes AppGetCompanyEmploy-

ees, which starts retrieving the Company object from its alias myCompany by

means of the static method getByAlias (introduced in section 3.1.4) accessible650

from Company stub class.

From then on, stub methods of Company behave as Remote Procedure Calls

(RPCs) for the myCompany object, and the resulting execution requests are

submitted to one of the DS backends where the object is located, including

the parameters for the method and the session information, which655

are serialized in TCP packets in binary format for the underlying binary

communication protocol used in dataClay (e.g. in Java, client library uses Netty

[12] framework). Types of parameters might be literals, language classes,

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

or user registered classes. Both literals and language classes are serialized

to dataClay compliant types in order to translate their contents to a common660

binary representation, whereas parameters of user registered classes use the seri-

alize method from the corresponding stub classes. In case of persistent objects,

only the OID is serialized. However, in the example no parameter is needed and

the application directly calls myCompany.getEmployees().

At this point, DS backend DS1 receiving the resulting execution request665

validates the session and, considering permissions of the corresponding data

contracts, checks that myCompany object is actually accessible. To this end,

DS backends are allowed to access to session information and object meta-

data from Logic Module, that are requested on-demand (when they are

missing or out-of-date) and saved in internal LRU caches in order to im-670

prove performance avoiding subsequent requests, and to prevent Logic Module

from becoming a bottleneck.

With session validated, DS1 loads myCompany object in its memory context

and executes getEmployees() method. To this end, DS1 has so-called execu-

tion classes analogous to stub classes used to load objects from database675

to memory or to update objects from memory to database. In both cases, anal-

ogous serialization and deserialization mechanisms as for the communication

protocol are used (further detailed in section 3.2.3). Therefore, getEmployees()

method iterates through the accessible Employees from myCompany object and

for each employee object emp executes its method getName() to eventually re-680

turn all employees’ names.

It might happen that some of the objects are not present in DS1, so instances

of Employee execution class are actually referring to objects stored in other

backends. In this case, DS1 generates requests for getName() to other DS

backends in the same way as an application does. That is, execution classes685

use the same serialization and communication protocols as stub classes and the

session identifier is propagated so the target backend is also enabled to

check the corresponding dataset permissions for the required employee

objects.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, employee objects already present in DS1 are loaded690

in the same memory space as myCompany object (which is also present in

DS1) and the references from myCompany to employee objects will be

materialized into native language references. In Java, objects will meet

in the heap of the Java Virtual Machine (JVM), and in Python, objects will

be mapped and navigable within the memory space of the interpreter. In this695

way, execution workflow is analogous to a user-level application with a single

memory space for the objects present in the same DS backend.

Consequently, the JVM heap memory acts as an object cache and objects

are present there until the Garbage Collector “decides” to remove them. In

this case the finalize() method, (present in all Java objects from Object.class)700

is called, and in dataClay it is overridden through DataClayObject class in order

to propagate any missing updates to the database before the object is actually

removed. Analogously, in Python the method del () (present in all Python

objects) is executed when the reference count reaches zero, meaning that

the object is inaccessible and can be deleted from the main memory, thus this705

method is overridden to update the values in the database before the object is

actually deallocated.

Finally, all employees’ names are serialized and returned from DS1 to

the application AppGetCompanyEmployees. In this case, the returning value

is an array of literals (strings), so the getEmployees method of the execution710

class serializes all the strings in binary format and produces a return message

containing them along with the size of the array, so the stub method getEm-

ployees executed from AppGetCompanyEmployees deserializes the array and the

execution is resumed.

3.2.3. Execution classes - object handling715

Execution classes are used in DS backends analogously to user stub

classes at application level. That is, an execution class is instantiated in order

to load objects in memory and has the serialization and deserialization function-

alities to update or read objects from the underlying storage or to transfer them

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

either to client applications or other backends (as a return value or parameters).720

Moreover, execution classes as well as user stubs, contain the proper code to

execute RPCs on the methods that involve remote backends (when accessing

objects not stored in the current backend).

However, there is a major difference between an execution class and a user

stub, which is that the former contains the whole set of attributes and725

methods of the corresponding registered class (including all its enrichments)

while the latter is only based on certain user’s model contracts. This is a re-

quirement, since DS backends must be able to execute any possible method of

any class, and are not specialized to store objects instantiated from any partic-

ular stub class. To this end, whenever a class is registered or enriched, Logic730

Module deploys the corresponding execution class to all DS backends

which store it as a regular class file in their local filesystems separated by

namespaces, i.e.one directory per namespace.

In the case of enrichments, the deployment process updates the correspond-

ing execution class stored in DS backends. Objects already stored with previous735

versions of the class are loaded considering that any possible new attribute is

initialized to default value of its type. When objects are updated in the underly-

ing database, values of the new attributes are also stored (if any). Consequently,

objects are eventually in the form of the newest version of the class

without breaking any constraint while they are still in the old form.740

In Java, classes are managed via ClassLoaders, which are part of the Java

Runtime Environment and dynamically load Java classes into the Java Virtual

Machine. In dataClay, DS backends handle one ClassLoader per namespace

and load the corresponding execution classes from the underlying filesystem

on demand. Given that ClassLoaders cannot reload a class dynamically, there745

might be objects in memory being instances of early loaded classes prior to

enrichments. In order to overcome this issue, dataClay reacts to enrichments by

pausing upcoming execution requests that depend on newer versions of loaded

class, waits to in-progress execution requests to finish (that were using previous

versions of the classes), and when they finish creates a new ClassLoader instance750

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to load newest classes and resume the previously paused execution requests.

Notice that this will only affect the objects instancing classes of the namespace

of the enrichments, and all other objects will see no delays in their execution .

However, in order to avoid pausing execution requests in highly utilized classes,

dataClay can be configured to apply enrichments once a day (at a particular755

hour).

On the other hand, in Python, there is no exact counterpart for the concept

of ClassLoader and two objects might be loaded in memory as instances of

different versions of a class while still being considered of the same class. The

only problem is the built-in isInstance function, which is expected to return760

the same result regardless the version of the class, but stub classes override this

method to make it behave as expected.

Regarding the mapping of objects to the underlying storage, DS backends

store the serialized objects (with serialize method) coming from makePersistent

requests (from a stub or an execution class) directly to the database. That is,765

objects are stored in the database without having to deserialize them in memory,

in a table with two columns using the OID as the primary key and a byte-

array for the object data (all other attribute values or references). Analogously,

when an object is read from the database, the deserialization method in the

execution class is used to load it in the backend execution memory context:770

heap of the Java Virtual Machine in Java, or the memory space of the Python

interpreter in Python.

Similarly if a method execution (different from makePersistent) requires

sending an object as a return value or parameter from one backend to an-

other (return value or parameter of an execution request) the source backend775

uses the serialization method and transfers the serialized object to the target

backend. Then, the target backend deserializes the object with the deserial-

ization method and loads it in the corresponding execution memory context.

If it is a persistent object only the OID is serialized/deserialized (as

a reference) thus reducing data transfers significantly.780

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.2.4. Session Management

In the context of the dClayTool, the credentials are always included within

the requests so that Logic Module authenticates the user for every management

operation. On the contrary, in the context of a user-level application where the

execution time is critical, we have implemented a session-based authentica-785

tion mechanism in order to authenticate the user only once for the lifetime

of the application. In particular, the application uses a client library provided

with dataClay that offers the following function:

dataClay.initSession(user, password, datasets, dataset_for_store)

This method submits a request to Logic Module, which validates the user790

and checks that he can access the provided datasets from any of his cur-

rent data contracts (not expired ones). The user also defines one of these

datasets as the dataset used by default in the session, meaning that all the

objects made persistent in the context of this session will be registered in the

indicated dataset (dataset for store). Finally, LM generates a session iden-795

tifier (sessionID) which is returned and saved in the client library and, from

then on, it is sent serialized within the data of any upcoming client requests

(e.g. along the parameters of a stub method execution). LM infers the session

expiration date by taking the most restrictive expiration date among the data

contracts corresponding to the datasets specified for the session.800

3.2.5. Interoperability

With the abstraction of the conceptual schema, dataClay allows to retrieve

stub classes in any of the supported languages regardless the language used to

code their corresponding registered classes. This means that, for instance, a

class implemented in Python, as well as its existing objects, can be used from a805

Java application, and vice versa in transparent way to the programmer.

In previous example, let us assume that the user who registered the concep-

tual schema coded the classes in Java, registered them, and created an interface

of Company class to offer the method getEmployees() through a model contract.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Its beneficiary codes AppGetCompanyEmployees either in Java or in Python by810

previously downloading the Company stub class in the required language. The

stub instance myCompany of Company class is accessed via getByAlias method,

and the application will access it as a Java object or Python object, so that

getEmployees() is accessible in the same way because internally the string ar-

ray of Employees names will be deserialized taking the language into account.815

This is plausible because string arrays are one of the types supported to be

serialized and sent from the Java execution class of the DS backend (where my-

Company object is actually located) to be deserialized in the Python stub class

of Company for the application.

Beyond string arrays stated in the previous example, dataClay currently820

supports the translation between any basic type (integer, boolean, float,

etc.), arrays of basic types, and equivalent built-in types in both lan-

guages (e.g. LinkedList), and user-defined classes. However, other complex

types with a non-straightforward equivalence (e.g. ConcurrentLinkedQueue)

cannot be converted from one language to the other in our current implementa-825

tion. Consequently, the retrievable stub methods for a language different than

that of the corresponding class, are those having parameters and return values

compatible between both languages and supported by dataClay.

As described in section 3.1.4, stub methods are provided with one of the

available implementations for local execution (i.e. for method calls made while830

the object is not persistent). This means that, in addition to serialization of pa-

rameters and return values, another issue to be faced is code translation. Today,

this is a work-in-progress feature, so stub classes generated in a language differ-

ent than the original class do not contain implementations for their methods.

Consequently, these stub classes cannot be used to create local instances but to835

refer to already persistent objects. However, dataClay provides an intuitive way

to persist new objects from these stub classes. In particular, these stub classes

are supplied with a customized implementation of the constructors

that produce a remote execute request for the original constructor

and immediately after a makePersistent() call is submitted to persist the840

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

object. From this moment, the object can be accessed as any other persistent

object with the only limitations about serialization compatibility commented

before.

3.2.6. Concurrent execution

It might be the case that simultaneous execution requests are targeting the845

same object (e.g. from different user level applications). In this context, data-

Clay allows concurrent object access as in a regular multi-threaded application.

That is, dataClay does not force any locking or transactional mechanism, but

the schema developers are allowed to use any built-in mechanisms of the pro-

gramming language to fulfill their concurrency requirements. For instance, in850

Java, a user might register a class using the ReentrantLock built-in type to force

a reentrant mutual exclusion behavior on a particular piece of code within a

method; and in Python, the threading module of the standard library offers

analogous mechanisms to control concurrent execution. This prevents users

from having to pay the penalty of concurrency control in those cases where it is855

not required by their applications.

4. Evaluation

This section presents two evaluation studies. The first study is conducted

with Yahoo Cloud Serving Benchmark (YCSB [13]), a well-known benchmark in

recent literature [14] that allows us to compare dataClay with popular NoSQL860

solutions in terms of latencies and throughput. The second study shows how

dataClay improves the performance in the execution of data analytics applica-

tions implemented as Map-Reduce workflows.

4.1. CRUD operations - Latencies and Throughput

First of all, we want to prove that besides novel features presented along the865

paper, dataClay can be compared in terms of I/O performance with other trendy

databases. In particular, we show a comparison between dataClay, Cassandra

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(version 2) [8] and MongoDB (version 3) [15]; both in terms of throughput (op-

erations per second) and latencies when performing read and update operations.

We chose Cassandra and MongoDB because they are two of the topmost popu-870

lar NoSQL databases [16] and have become key technologies to resolve common

storage issues in Big Data scenarios [17] [18]. Finally, we also present an analysis

on the potential overhead produced by enrichments, a key dataClay feature for

effective data sharing.

4.1.1. Methodology - YCSB875

The kernel of YCSB has a framework coded in Java with a workload gen-

erator that creates the test workload and a set of workload scenarios. YCSB

assumes that every DBMS to be tested exposes a table where each record is

represented by one string field as the primary key and a set of byte-array fields

(values). The workloads of YCSB are characterized by the following main op-880

tions: number of records (for the table), number of operations (to be executed on

records),percentage of operations of each type and access distribution (zipfian,

uniform, etc.). A Zipfian distribution is the most commonly used [19] since it

represents a realistic behavior where some records are more popular than others,

therefore is the default distribution and the one we used in our tests.885

Once a workload is defined, YCSB launches a multi-threaded workload ex-

ecutor that calls the operations to the database following the workload specifica-

tion with equal load-balancing between the threads. To this end, the workload

executor relies on an abstract class called DB that defines a set of methods to be

implemented by specific driver classes, having one driver class per database, i.e.890

each driver overrides DB methods with its database-dependent implementation.

In the case of Cassandra and MongoDB, YCSB already provides the corre-

sponding drivers to execute the benchmark, and for dataClay we implemented

our own driver analogous to the other two. Every 10 seconds, YCSB out-

puts stats on global throughput in operations/second (aggregating throughputs895

from all threads) and the latency per operation in microseconds.

In our tests, we used a cluster of 4 nodes interconnected with a 10-Gbit

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Ethernet switch (0.3 milliseconds RTT) and each node equipped with 16 Intel

Xeon processors with 24GB of DDR3 RAM. We dedicated 1 node for the

client running the YCSB workload executor, and 3 nodes for the database900

services (i.e. 3 nodes for distributing the records of the table) to deploy a dis-

tributed environment with all the different actors for each DBMSs, in dataClay :

LM and 3 DS backends (LM sharing a node with one DS backend); in Mon-

goDB: 1 config server, and 3 router+shard servers (config server is in a shared

node); and in Cassandra: 1 seed and 2 non-seed nodes. In the case of dataClay905

we used PostgreSQL in the DS backends for the internal level representation,

i.e. where objects are eventually stored. Given that YCSB uses only one node

for the client-side, spreading data in more than 3 nodes did not produce any

significant effect in the performance since the amount of concurrent requests is

limited.910

We specified two main workloads, workload WR and workload WU, to an-

alyze the performance outcome in basic data I/O operations. WR is based on

workloadC of the benchmark, focused on read operations. In contrast, WU

only performs update operations. Both workloads are configured to execute

1,000,000 operations on a distributed table of 1,000,000 records, and each915

record with 1,000 bytes in size distributed in 10 fields. The values in each field

are random strings of ASCII characters, 100 bytes each. The workload executor

uses up to 16 threads (number of CPUs) and all threads execute the same

amount of operations, thus we have: 1 single thread executing 1M operations

(1*1M), 2 threads running 500K operations (2*500K), 4 threads with 250K920

operations each (4*250K), 8 threads doing 125K (8*125K), and 16 threads

performing 62,500 each (16*62,5K).

4.1.2. Comparison with NoSQL databases

YCSB binding for Cassandra assumes that there already exists a table (which

is created using CQL) on a specific keyspace containing 11 varchar fields, one for925

the primary key and the other for the values. In the case of MongoDB, records

are embodied in BSON documents grouped in a collection that represents the

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: Results of WR and WU workloads. In bars, throughput in thousands of ops/sec

(left axis); in pointed lines, latencies in milliseconds (right axis). X-axis shows #threads *

#ops per thread of the evaluated subcases.

table; each document is identified by the key field and is filled with 10 byte-

array entries for the values. In dataClay, every record is an object instancing a

user-defined class with 10 byte[] attributes for the values, and the key field is930

stored as the object alias.

The results obtained for workloads WR and WU are presented in figure 8

showing throughputs and latencies for all the cases stated in previous subsection.

In the case of read-only workload WR, all DBMSs present a linear scala-

bility and dataClay achieves between 33% and 17% better throughput935

than Cassandra, but performs between 10% worse than MongoDB.

This is also reflected in latencies, where MongoDB keeps values between 600

and 800 microseconds, dataClay between 700 and 900, while Cassandra achieves

latencies around 1 millisecond. It is worth mentioning that early results on Cas-

sandra were similar to dataClay and MongoDB when using cassandra-10 client940

binding of YCSB, but it turned out that Thrift API used in this binding was

deprecated and cassandra2-cql must be used instead (CQL API), which obtains

the presented results. Anyhow, the maximum performance is obtained in data-

Clay and MongoDB with variations produced due to differences in serialization

(different ways to represent data) and communication protocols.945

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, in update-only workload WU, MongoDB achieves best

results in the single thread execution but tends to increase its latencies and

gets stalled when the amount of threads is greater than 4. This is due to

reader-writer locks used in MongoDB, which allow concurrent readers accessing

to a collection of documents, but force exclusive access in write operations.950

Consequently, zipfian distribution, which makes some objects or documents

particularly popular, tends to penalize MongoDB. On the contrary, Cassandra

and dataClay achieve similar results outperforming MongoDB when

using 4 to 16 threads, and present again an almost linear scalability. In the

case of dataClay, this is a consequence of having no implicit control or locking for955

concurrent accesses to objects (as explained in section 3.2.6). In Cassandra, this

is due to its eventual consistency in transactions and concurrency granularity at

row level, and also because Cassandra upserts (operation for insert or update)

do not need to read rows before updating them. Therefore, Cassandra ends up

obtaining results for WU 25% better than WR.960

4.1.3. Enrichment overhead

One of the key features of dataClay is the possibility to enrich data models,

and thus it is important to evaluate the overhead of using such mechanisms.

Especially because many enrichments may be performed without the data user

being aware of them.965

Figure 9 compares the original dataClay scenario presented in previous re-

sults with other scenarios based on enrichments. In particular, the class for

record objects is now registered empty and enriched afterwards with the ten

byte-array attributes. Enrichments can be applied in several enrichment steps

until the final class represents the record schema. In particular, figure shows970

the cases for one (Enriched1), two (Enriched2) and five (Enriched5) enrichment

steps. Thus, Enriched1 means that a single class extending from the record class

has been used to specify all missing 10 byte-array attributes. Enriched2 means

that the record class has been enriched first with 5 byte-array attributes, and

afterwards with the other 5. Thus Enriched5 means that the record class has975

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 9: dataClay with and without enrichments for WR (left) and WU (right) workloads.

Bars represent the ratio of the throughput respect to the original dataClay execution (left

axis), lines represent the ratio of the latencies (right axis). X-axis shows #threads * #ops per

thread of the evaluated subcases.

been enriched 5 times with 2 attributes in each case.

Results show that both the throughput and latencies are almost the

same in all the evaluated cases, which follows that using enrichments incurs no

extra penalty and no matters how many enrichment steps are used to enrich a

class. This was the expected behavior since the execution class resulting after980

deploying all the enrichments has exactly the same code as the execution class

deployed from the record class registered with all the attributes from the very

beginning.

The only penalty to be considered regarding enrichments is produced when

an object created with a previous version of the class is loaded for the first985

time with a newer version of the class containing new attributes. These new

attributes must be initialized to fulfill the new schema, basic type attributes

to the corresponding default values and non-basic types (references) to null.

However, the elapsed time to initialize an attribute (in 1K executions on one

of the cluster nodes) is about 2 microseconds in Java and 1 microsecond in990

Python, which are negligible times unless there are hundreds of enrichments

being applied simultaneously.

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2. Map-Reduce applications

In this section we present a weak scaling study on the execution of two well-

known data analytics algorithms implemented in Java as Map-Reduce work-995

flows: Wordcount and K-means. We coded both of them following a parallel

programming model to separate Map methods from Reduce methods. In this

way, we measured the elapsed times required to compute the applications in

different scenarios, and compared them with the results obtained when using

dataClay as the execution environment and underlying data store (i.e. following1000

the processes described in 3.2).

The experiments were conducted in the Mare Nostrum III supercomputer

[20] using 16-CPU nodes with 32GB of DRAM each (2GB DRAM per CPU)

interconnected via an FDR10 Infiniband network. The applications are exe-

cuted using COMP Superscalar (COMPSs [21]), a framework developed in the1005

Barcelona Supercomputing Center that provides a master-worker runtime to

orchestrate parallel workflows considering task/method dependencies and avail-

able computation resources. In this way, applications are managed from a mas-

ter thread (in a dedicated node) which submits their parallel tasks to worker

threads, mapping one worker thread per CPU.1010

4.2.1. Wordcount

Wordcount is a classical algorithm to count the appearances of all the dif-

ferent words in a file or a set of files. The application parses the input files

splitting their text lines into words and maintaining a data structure to keep a

counter per word. It finally produces an output presenting the final counters1015

for each unique word.

The application is implemented with a Map stage comprising the paralleliza-

tion of word counting in a per file basis (one task per file). In the Reduce stage,

all the partial results obtained from the Map tasks are put together following

a binary tree strategy to combine all partial results. That is, results are com-1020

bined in pairs so that all files processed by a worker are locally merged, then

workers work in pairs to combine their results, and finally the last result (the

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 10: Weak scaling study of the integration of COMPSs with dataClay. Y-axis represents

the elapsed times, in milliseconds for Wordcount, in seconds for K-means. X-axis shows the

number of nodes. In Wordcount, 16 files of 256MB are processed per node. In K-means, 16

fragments of 12800 100-dimensional vectors are processed per node.

tree “root”) is sent to the master (application executor).

When using dataClay files are no longer necessary. Instead, their contents

are mapped to persistent objects instancing a TextFile class, which represents1025

the text of a file as a list of strings. Given that texts are represented as objects of

a user class, dataClay allows to define methods for them. Therefore the method

Map<String, Integer> wordCount() is provided from the TextFile class, which

is called from COMPSs workers to compute the result of each text object within

the dataClay execution environment.1030

Left side of figure 10 illustrates the elapsed times (in milliseconds) obtained

in Wordcount evaluation with 1, 2, 4 and 8 nodes. Every node computes 16

files of 256MB each (4GB per node), achieving a parallelization of 1 file per

computing unit, i.e. one Map task per CPU. The Reduce stage is negligible

in comparison to the Map stage since texts have been created with a Lorem1035

Ipsum word generator of 400 words, thus every partial result (a file wordcount)

produces a short map of 400 counters. This is intended to focus the problem on

the impedance mismatch issues, whereas next section covers the effects of data

serialization and inter-node communication (with K-means evaluation).

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Results show that using dataClay instead of files, the execution is boosted1040

reducing the elapsed time up to a 43%. This is due to the lack of data trans-

formations since dataClay works directly with the text stored within a TextFile

object. Without dataClay, although files are cached and accessed in parallel

(Mare Nostrum III uses GPFS [22]) every read operation incurs one I/O system

call producing the observed impact in the execution times.1045

4.2.2. K-means

K-means clustering is a method of vector quantization that is popular for

cluster analysis in data mining. The algorithm partitions N observations repre-

sented as multi-dimensional vectors into K clusters, in which each observation

belongs to the cluster with the nearest mean. These cluster means are also rep-1050

resented as a multi-dimensional vector that serves as a prototype of the cluster.

A typical implementation of the K-means algorithm [23] uses an iterative

approach that starts defining K random means in the range of the observation

values, and recomputes them in every iteration until it converges up to a cer-

tain epsilon value (sum of variances) which represents the maximum tolerated1055

distances between observations and the final means. The problem is NP-hard

so the number of iterations is limited to a maximum amount regardless of the

epsilon value. In this context, the Map stage of each iteration performs the com-

putation of all the distances between the N observations (grouped in fragments

to enhance parallelism) and the current selected K means, while Reduce stage1060

gathers the resulting values and adjusts the K means for the next iteration. At

the end of each iteration the algorithm checks whether the result has already

converged or the maximum number of iterations has been reached. In either

case it finishes and returns the final K means.

Unlike in the Wordcount study, we now focus on the problems derived from1065

the communications produced in the Reduce stage when gathering the partial

results obtained in the Map stage. To this end, instead of parsing files, our K-

means tests (with and without dataClay) start creating a random set of values

on behalf of the N observations to be clustered. These N observations are

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

fragmented into objects of the same size, forcing the Map stage to comprise1070

one fragment per core (CPU) to best exploit the parallelism. Fragments are

represented as Java objects instancing a Fragment class that contains, for each

observation in the fragment, one double-typed array storing the values of each

dimension.

Whent no using dataClay, fragments are created in COMPSs workers mem-1075

ory heap so that Map stage is fully parallelized having one computation task per

fragment (i.e. one task per CPU). The Reduce stage is executed combining all

partial results in pairs as a binary tree that starts from its leaves up to the root.

The “root” or final result is then gathered by the master node to normalize it

and start the next iteration.1080

When using dataClay, fragments are represented as persistent objects of the

Fragment stub class and are distributed analogously along the Data Service

backends (one DS backend per node). Partial results are also persistent objects

to reproduce the same behavior in the Reduce stage.

Right side of figure 10 illustrates the elapsed times (in seconds) of the1085

K-means computation with 1, 2, 4 and 8 nodes. Every node computes 16

fragments, thus having 16, 32, 64 and 128 fragments respectively. Each frag-

ment represents 12800 different points (observations), and each point is a 100-

dimensional double-typed array, resulting in 10MB per fragment. K is set to

1000 clusters and the maximum amount of iterations is set to 10. All 10 iter-1090

ations are computed since we configured the epsilon value to be extremely low

(0.0001), so we can focus on the serialization problem of the Reduce tasks of

every iteration.

The impact of inter-node communications is revealed considering the bad

scalability shown in the results. Unlike Wordcount application, K-means re-1095

quires transferring a larger amount of data between nodes for the Reduce stage

(which in addition is repeated 10 times, once per iteration). However, results

show that thanks to serialization mechanisms provided by dataClay through

stub/execution classes we can outperform Java serialization mechanisms used to

transfer the partial results. The stub classes resulting from registered classes an-1100

44

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

alyze class attributes to create a customized serialization of the objects, whereas

Java serialization uses reflection techniques that penalizes the Reduce stage res-

olution. For this reason, when only one node is used the difference is almost

irrelevant since no communications (and thus, no serialization) are actually per-

formed, but on the contrary, when 2, 4 or 8 nodes are involved in the computa-1105

tion dataClay boosts the execution times achieving an improvement of up to a

39%.

5. Related Work

Current solutions for efficiently sharing data in a flexible way, without

jeopardizing data providers’ constraints, are limited for the following reasons:1110

• Providers have no easy way to restrict how the consumers access data

(which specific methods or implementations are accessible and for whom).

• Providers cannot enable the consumers to enrich existing schema (with

new attributes, methods or implementations) while keeping full control

and different rights per consumer.1115

• Developers have to understand and deal with different data represen-

tations, as well as the mappings between the persistent and the non-

persistent environments.

• Some storage systems or DBMSs cannot execute stored procedures or pro-

cessing methods to exploit data locality and prevent data from leaving1120

the storage infrastructure.

5.1. Security models

Current Database Management Systems (DBMSs) have a centralized secu-

rity management system based on the Database Administrator (DBA) who is

in charge of granting certain rights to the users registered in the DBMS. To1125

this end, Role-based access control (RBAC) is the mainstream security model

in both SQL databases like Oracle [24] or Microsoft SQL Server [25] and NoSQL

45

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

databases like Cassandra [8] or MongoDB [15]. RBAC is normally based on a set

of rights profiles offered by the DBMS (in some cases can be customized by the

DBA) that define special permissions. These profiles can be grouped as DBA1130

deems suitable by defining roles, so when users need some of the capabilities to

perform a particular operation requiring special privileges, DBA assigns them

the corresponding roles.

The drawbacks of this approach are the centralization of the system and

the importance of the DBA. The security management is centralized because1135

all the constraints rules or permissions are checked and validated in the core of

the system. Of course this can be an advantage for a Data Service or DBMS

that acts as the unique data provider, but when dealing with a system where

every user is a potential model and/or data provider, the centralization would

incur an ineluctable bottleneck effect.1140

The parceled control in dataClay does not assume that there is a single

DBA acting as the “root” of the DBMS, but on the contrary data administra-

tion is actually managed by the providers themselves. Both the schema

developers and the data owners, by defining model contracts and data contracts

(respectively), are acting as the “DBAs” of what they are sharing.1145

In addition, the security management is decentralized thanks to the per-

method validation (methods being the only way to access data) and with the

support of the session-based authentication mechanism.

5.2. Data locality

Computing close to the data has become a must in the last decade, not only1150

because of the vast amount of data generated, but also because it is usually

produced so fast that moving it to an external infrastructure becomes unfeasible.

In this sense, traditional RDBMs, like PostgreSQL [10], already support stored

procedures that are actually computed inside the database engine, or NoSQL

databases like Neo4j [9] which enable the administrator to install plugins or1155

coprocessors; also solutions like Hadoop [26], that is designed to enable the

MapReduce [27] workflow abstraction to allow processing on immobile datasets.

46

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

On the other hand, Active Storage [28] is becoming a ground-breaking tech-

nology that aims to move the computation to the storage devices, thus freeing up

the CPU for other tasks, eliminating the need to move data into main memory1160

and removing interferences on the different links and caches.

dataClay offers an easy and effective way to execute code in the

same infrastructure where the data is, but also in a transparent way to

the programmer. The application code does not need to be adapted to

the underlying data engine since the execution is performed through1165

stub classes which are like regular classes for the application.

5.3. Sharing while enriching

Data enrichment is a general term that refers to processes used to enhance,

refine or improve existing data. In many cases, the term refers to annotating

data with additional semantic information, either manually or automatically, to1170

improve search and retrieval of different kinds of data [29] [30] [31]. In dataClay,

we use the term enrichment in a slightly different sense, understanding the

additional semantic information as part of the data itself, not as metadata as is

usually done, which requires the ability to extend the schema.

In this sense, current schema-less DBMSs like MongoDB [15] and Neo4j1175

[9] support the free addition of new attributes to documents or graph nodes re-

spectively, and stored javascript functions or plugins (i.e. stored procedures

being called via REST API or RPCs), but only permit the system administrator

to install and share them with others.

In the same way as RDBMSs, schema-based NoSQL solutions like Inter-1180

systems Caché [32], db4o [7], HBase [33] and Cassandra [8] support schema

evolution by offering the possibility to add or delete attributes from existing

schemas dynamically (i.e. alter table or view). However, none of them supports

sharing the schema in a way that it can be enriched with the enrichments being

controlled by their creator.1185

On the contrary, dataClay provides the flexibility to deal with

and publish enrichments as any of the original attributes or methods

47

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

based on the contract-based model sharing.

On the other hand, there are Dynamic Software Updating (DSU) solutions

like JavAdaptor [34] or Rubah [35] that enable the developers to modify the1190

schemas of their applications in real time directly affecting any execution in

progress for instance to apply security fixes on a live vulnerable system. The

drawback is that these modifications affect to all running applications, so that

there is no way to keep different versions of the same data in the case that users

are concurrently accessing it.1195

To tackle this problem, dataClay keeps objects in memory while

the associated execution requests are running, and realizes the changes

derived from the enrichments in background (enrichment deployment

to execution classes) so that they are eventually available to upcoming

execution requests.1200

5.4. Persistent vs. volatile data

Traditionally, data has been represented and designed in a different way de-

pending on whether it is treated within a persistent (non-volatile) environment

or a non-persistent (volatile) one. In a non-volatile environment, the application

has to deal with a persistent storage such as a file system or a database. In the1205

first case, the data is contained in files with different formats (or not formatted

at all) and the programmer handles them by performing specific direct I/O op-

erations or, in the best case, using existing parsers or serialization mechanisms.

In the second case, data is handled within a database with specific structures

and relationships like in relational databases and it can be accessed with specific1210

query languages; or it can be stored and accessed in newer NoSQL databases

for instance via a REST API.

On the other hand, in a volatile environment the applications allocate free

memory to load the data in, for example creating a set of objects in an Object

Oriented programming language where the data model is designed to navigate1215

through object references, iterators, etc.; thus processing and analyzing data

efficiently.

48

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

This situation compels the programmers to face the problem of dealing with

two different data models and the mappings between them. For this reason, in

the 80s emerged Object Relational Mapping (ORM) frameworks emerged1220

to provide the necessary mechanisms to automatically convert data between

different type systems. However, current approaches like Hibernate [36] or

DataNucleus [37] are not enough to fulfill our goals. For instance, Hibernate ad-

dresses object-to-database impedance mismatch problems by replacing direct

persistence-related database accesses with high-level object handling functions.1225

However, the user must explicitly specify how the objects map to the database,

thus not preventing the programmer from handling two different data models.

In addition, persistence-related issues such as indexes, primary keys, or foreign

keys must be explicitly handled by the programmer by means of annotations in

the classes.1230

In this case, OODBMSs such as db4o [7] or Intersystems Caché [32], make

the persistence of objects transparent to the programmer. Furthermore, In-

tersystems Cach also offers a good level of interoperability between different

languages such as C++ and Java, thus having the capability to store and access

objects from applications coded in any of the supported languages, as dataClay1235

does. However, both db4o and Intersystems Cach present a lack of flexibility

in model sharing, as stated in the previous section, so makes them not valid to

fulfill all our requirements.

Last but not least, it is worthwhile to mention emerging hardware solutions

like new storage devices such as NVRAM or Storage Class Memories (SCM)1240

[38] that are included into the storage/memory hierarchy. Given that the nature

of these new devices will be closer to memory than to storage (low latencies,

high bandwidth, and byte-addressable interface) using a data model close to

applications, like OO, might exploit better its benefits (instead of using them as

block devices for a file system). dataClay is perfectly in tune with these new1245

upcoming memory technologies, since it is intended for in-memory

working by design.

49

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6. Conclusions

In this paper we present dataClay, a distributed data store based on the

concepts of identity and encapsulation, designed to share data in a secure and1250

flexible way thanks to parceled control.

Controlled access to data is ensured by making data accessible only and

through methods with explicit granted access. To this end, dataClay uses stub

classes to connect user-level applications with the stored objects in the back-

ends. On the other hand, flexibility is effectively supported by allowing schema1255

evolution through enrichments. Enrichments allow to expand classes with new

attributes, new methods, or even new implementations of existing methods; and

can be applied by any user that is granted access to the corresponding classes

through model contracts.

To be competitive in terms of data access performance, dataClay exploits1260

data locality and overcomes impedance mismatch issues with an Object Ori-

ented data model for data representation supporting interoperability between

different languages (currently Java and Python). To analyze data access per-

formance, we executed YCSB in different scenarios comparing dataClay with

trendy NoSQL databases: MongoDB and Cassandra. Results show that in a1265

read-only workload dataClay achieves similar throughputs and latencies to those

obtained by MongoDB, which was the best in this case. On the other hand,

in update-only workload dataClay obtains similar performance to Cassandra’s,

which was the best in this case. In all cases, dataClay shows an almost linear

scalability regarding the number of threads, whereas MongoDB gets stalled in1270

update-only workload.

With YCSB, we have also shown that enrichments, one of the key features

in dataClay, have a negligible effect on the performance results. This was the

expected behavior since they are actually deployed as part of the code of any

registered class in the system with no special treatment.1275

Finally, we have presented a performance analysis on the basis of two well-

known data analytics applications: Wordcount and K-means. Both applications

50

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

are implemented as Map-Reduce workflows to evaluate their execution times on

an HPC environment and throughout different workloads. This study shows

how dataClay overcomes impedance mismatch difficulties and improves data1280

serialization for inter-node communications. The former is proven by using

dataClay instead of files in the computation of Wordcount, which reduced the

elapsed times in up to a 43%. The latter is revealed by using dataClay instead

of default language serialization techniques, which boosted up to a 39% the

K-means execution.1285

Acknowledgements

This work has been supported by the Spanish Government (grant SEV2015-

0493 of the Severo Ochoa Program), by the Spanish Ministry of Science and

Innovation (contract TIN2015-65316) and by Generalitat de Catalunya (con-

tract 2014-SGR-1051).1290

Special thanks go to Dr. Oscar Romero (Universitat Politècnica de Catalunya)

for providing helpful feedback on the paper.

References

[1] C. J. Date, An introduction to database systems, 3rd Edition, Addison-

Wesley Pub. Co, 1981.1295

[2] M. J. Carey, N. Onose, M. Petropoulos, Data Services, Commun. ACM

55 (6) (2012) 86–97. doi:10.1145/2184319.2184340.

[3] I. M. Faniel, A. Zimmerman, Beyond the data deluge: A research agenda for

large-scale data sharing and reuse, International Journal of Digital Curation

6 (1) (2011) 58–69. doi:10.2218/ijdc.v6i1.172.1300

[4] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Pa-

tel, R. Ramakrishnan, C. Shahabi, Big data and its technical challenges,

Communications of the ACM 57 (7) (2014) 86–94. doi:10.1145/2611567.

51

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[5] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, R. Morrison,

An Approach to Persistent Programming, The Computer Journal 26 (1983)1305

360–365. doi:10.1093/comjnl/26.4.360.

[6] S. Pelley, T. T. F. Wenisch, B. T. B. Gold, B. Bridge, Storage management

in the NVRAM era, Proceedings of the VLDB Endowment 7 (2) (2013)

121–132. doi:10.14778/2732228.2732231.

[7] Versant Corporation, db4o (database for objects), db4o.com, (accessed1310

2015-09-30).

[8] Apache Software Foundation, Apache cassandra project, cassandra.

apache.org, (accessed: 2015-10-2).

[9] Neo Technology, Neo4j, neo4j.com, (accessed: 2016-1-14).

[10] The PostgreSQL Global Development Group, Postgresql, postgresql.org,1315

(accessed: 2016-3-8).

[11] Seagate, Kinetic hard drive for scale-out object storage, seagate.

com/products/enterprise-servers-storage/nearline-storage/

kinetic-hdd, (accessed: 2016-2-1).

[12] The Netty Project, Netty, netty.io, (accessed: 2015-12-2).1320

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Bench-

marking cloud serving systems with YCSB, Proceedings of the 1st ACM

symposium on Cloud computing - SoCC ’10 (2010) 143–154doi:10.1145/

1807128.1807152.

[14] C. Bazar, C. S. Iosif, The Transition from RDBMS to NoSQL. A Com-1325

parative Analysis of Three Popular Non-Relational Solutions: Cassandra,

MongoDB and Couchbase, Database Systems Journal V (2) (2014) 49–59.

[15] MongoDB Inc., Mongodb, mongodb.org, (accessed: 2015-11-7).

52

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[16] DB-engines, Knowledge base of relational and nosql database management

systems, db-engines.com/en/ranking, (accessed: 2016-3-18).1330

[17] T. Rabl, S. Gómez-Villamor, Solving big data challenges for enterprise ap-

plication performance management, Proceedings of the VLDB Endowment

5 (12) (2012) 1724–1735. arXiv:1208.4167, doi:10.14778/2367502.

2367512.

[18] Y.-S. Kang, I.-H. Park, J. Rhee, Y.-H. Lee, MongoDB-Based Repository1335

Design for IoT-Generated RFID/Sensor Big Data, IEEE Sensors Journal

16 (2) (2016) 485–497. doi:10.1109/JSEN.2015.2483499.

[19] L. a. Adamic, B. a. Huberman, Zipf’s Law and the Internet, Glottometrics

3 (2002) 143–150.

[20] B. S. Center, Mare nostrum iii, https://es.wikipedia.org/wiki/1340

MareNostrum.

[21] E. Tejedor, R. M. Badia, COMP superscalar: Bringing GRID superscalar

and GCM together, in: Proceedings CCGRID 2008 - 8th IEEE Interna-

tional Symposium on Cluster Computing and the Grid, IEEE, 2008, pp.

185–193. doi:10.1109/CCGRID.2008.104.1345

[22] F. Schmuck, R. Haskin, GPFS: A Shared-Disk File System for Large Com-

puting Clusters, Proceedings of the First USENIX Conference on File and

Storage Technologies (January) (2002) 231–244.

[23] W. Zhao, H. Ma, Q. He, Parallel K-means clustering based on MapRe-

duce, in: Lecture Notes in Computer Science (including subseries Lec-1350

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), Vol. 5931 LNCS, Springer Berlin Heidelberg, 2009, pp. 674–679.

doi:10.1007/978-3-642-10665-1_71.

[24] Oracle, Oracle database, oracle.com/database, (accessed: 2015-12-3).

53

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[25] Microsoft, Sql server, microsoft.com/es-es/server-cloud/products/1355

sql-server, (accessed: 2015-12-4).

[26] Apache Software Foundation, Apache hadoop, hadoop.apache.org, (ac-

cessed: 2016-1-11).

[27] J. Dean, S. Ghemawat, MapReduce : Simplified Data Processing on Large

Clusters, Communications of the ACM 51 (1) (2008) 1–13. arXiv:10.1.1360

1.163.5292, doi:10.1145/1327452.1327492.

[28] J. Piernas, J. Nieplocha, E. J. Felix, Evaluation of active storage strategies

for the lustre parallel file system, Proceedings of the 2007 ACMIEEE Con-

ference on Supercomputing SC 07 (1) (2007) 1. doi:10.1145/1362622.

1362660.1365

[29] K. Guo, W. Pan, M. Lu, X. Zhou, J. Ma, An effective and econom-

ical architecture for semantic-based heterogeneous multimedia big data

retrieval, Journal of Systems and Software 102 (2015) 207–216. doi:

10.1016/j.jss.2014.09.016.

[30] G. Touya, A Road Network Selection Process Based on Data Enrichment1370

and Structure Detection, Transactions in GIS 14 (5) (2010) 595–614. doi:

10.1111/j.1467-9671.2010.01215.x.

[31] R. C. F. Wong, C. H. C. Leung, Automatic semantic annotation of real-

world web images, IEEE Transactions on Pattern Analysis and Machine

Intelligence 30 (11) (2008) 1933–1944. doi:10.1109/TPAMI.2008.125.1375

[32] Intersystems Corporation, intersystems.com/our-products/cache, (ac-

cessed: 2016-9-8).

[33] Apache Software Foundation, Hbase, hbase.apache.org, (accessed: 2016-

1-5).

[34] M. Pukall, C. Kästner, W. Cazzola, S. Götz, A. Grebhahn, R. Schröter,1380

G. Saake, JavAdaptor - Flexible runtime updates of Java applications,

54

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Software - Practice and Experience 43 (2) (2013) 153–185. doi:10.1002/

spe.2107.

[35] L. Pina, L. Veiga, M. Hicks, Rubah: DSU for Java on a stock JVM, Pro-

ceedings of the 2014 ACM International Conference on Object Oriented1385

Programming Systems Languages & Applications - OOPSLA ’14 (2014)

103–119doi:10.1145/2660193.2660220.

[36] Red Hat, Hibernate, hibernate.org, (accessed: 2016-1-14).

[37] DataNucleus, Datanucleus, datanucleus.org, (accessed: 2016-2-5).

[38] R. F. Freitas, W. W. Wilcke, Storage-class memory: The next storage1390

system technology, IBM Journal of Research and Development 52 (4.5)

(2008) 439–447. doi:10.1147/rd.524.0439.

55

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Vitae

Jonathan Mart́ı

Jonathan Mart́ı is a researcher and PhD student in the Storage-System1395

Group at the Barcelona Supercomputing Center (BSC) since 2006. He holds a

BSc in Computer Science and a MSc in Computer Architecture Networks and

Systems, both received from Universitat Politècnica de Catalunya (UPC). His

research interests are programming models and distributed and parallel data

stores for data-sharing and data integration.1400

Anna Queralt

Anna Queralt is a senior researcher in the Storage-System Group at BSC

since 2012. She received her PhD in Computer Science from UPC in 2009,

where she was a faculty member. She also was a part-time lecturer at the

Open University of Catalonia, and nowadays she lectures in Big Data courses1405

at the UPC School of Professional and Executive Development, and at the

ESADE Business School. She is also a member of the Steering Committee of

the Standard Performance Evaluation Corporation (SPEC) Research Group.

Her research interests are data-sharing and integration of persistent data in the

programming model.1410

Daniel Gasull

Daniel Gasull is a developer in the Storage-System Group at the BSC since

2012. He holds a BSc in Computer Science received from UPC in 2012. His top-

ics of interest are design, specification, leadership and development of research

projects, applications and simulations.1415

Alex Barceló

Alex Barceló is a Junior Developer and PhD Student in the Storage-System

Group at BSC. He has studied in the UPC and currently holds a Mathemati-

cal degree and two Engineering degrees in Computer Science and Telecommu-

nications. His research interests are computer architecture and programming1420

models.

56

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Juan José Costa

Juan José Costa is a Collaborating Lecturer at UPC since 2010. He received

his PhD in Computer Science from the same university in 2011, where he has

also been teaching operating systems courses since 2002. He also collaborated1425

with the Storage-System group at the BSC since 2014 to 2016. His main re-

search interests are distributed shared memory, cluster computing and operating

systems.

Toni Cortes

Toni Cortes is the manager of the Storage-System Group at the BSC and1430

associate professor at UPC. He received his PhD in computer science in 1997

from UPC. Since 1992, Toni has been teaching operating system and computer

architecture courses at UPC where he also served as vice-dean for international

affairs. His research concentrates in storage systems, programming models and

operating systems. He has published more than 125 technical papers. In ad-1435

dition, he has also advised 10 PhD thesis and has been involved in several EU

and industry projects.

57

