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Abstract

Inter-user interference constitutes a limiting factor to network performance, especially when dense wireless

systems sustaining high tra�c loads are deployed. Interference cancellation (IC) policies have proved an

invaluable tool in order to counteract this problem. Nonetheless, the success of such IC schemes depends

heavily on the received power distribution. In this work, we consider a massive user spread-spectrum

Multiple Access (MA) network for wide area Machine to Machine (M2M) communications in which the

central node implements a Parallel Multistage Decision-Feedback (PMDF) strategy for MA Interference

(MAI) mitigation. In the user-asymptotic case, we make use of Variational Calculus (VC) techniques to

derive the optimum energy allocation function that maximizes the network throughput under synchronous

access when: (i) user transmissions are subject to a long-term average energy constraint; (ii) users share

the same practical Forward Error Correction (FEC) code and modulation scheme, characterized by a

known Packet Error Rate (PER) curve. Exhaustive simulations and comparative performance analyses

are carried out using two representative FEC codes.
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Resum

La interferència multiusuari constitueix el factor més limitant en el rendiment d'una xarxa, especialment

quan es despleguen sistemes densos sense �ls que suporten elevades càrregues de trà�c. Les polítiques de

cancel·lació d'interferències (IC) són eines inestimables per a combatre aquest problema. Tanmateix, l'èxit

d'aquest tipus d'esquemes IC depèn en gran mesura de la distribució de potència rebuda. En aquest tre-

ball, considerem una xarxa d'Accés Múltiple (MA) i espectre eixamplat amb un nombre massiu d'usuaris

per una àmplia àrea de comunicacions Màquina a Màquina (M2M) on el node central implementa una

estratègia Parallel Multistage Decision-Feedback (PMDF) per mitigar la interferència MA (MAI). En el

cas asimptòtic d'usuaris, fem ús de tècniques de Càlcul Variacional (VC) per derivar la funció òptima

d'assignació d'energia que maximitza el rendiment de la xarxa d'accés síncron quan: (i) les transmis-

sions dels usuaris estan subjectes a una restricció d'energia promig al llarg del temps; (ii) els usuaris

comparteixen el mateix codi Forward Error Correction (FEC) i esquema de modulació pràctics, carac-

teritzats per una corba Packet Error Rate (PER) coneguda. S'han dut a terme simulacions exhaustives i

anàlisis comparatives de rendiment utilitzant dos codis FEC representatius.
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Resumen

La interferencia multiusuario constituye el factor más limitante en el rendimiento de una red, especial-

mente cuando se despliegan sistemas densos inalámbricos que soportan elevadas cargas de trá�co. Las

políticas de cancelación de interferencias (IC) son herramientas inestimables para combatir este prob-

lema. Sin embargo, el éxito de tales esquemas IC depende en gran medida de la distribución de potencia

recibida. En este trabajo, consideramos una red de Acceso Múltiple (MA) y espectro ensanchado con

una cantidad masiva de usuarios para una amplia área de comunicaciones Máquina a Máquina (M2M)

donde el nodo central implementa una estrategia Parallel Multistage Decision-Feedback (PMDF) para

mitigar la interferencia MA (MAI). En el caso asintótico de usuarios, hacemos uso de técnicas de Cálculo

Variacional (VC) para derivar la función óptima de asignación de energía que maximiza el rendimiento de

la red de acceso síncrono cuando: (i) las transmisiones de los usuarios están sujetas a una restricción de

energía promedio a lo largo del tiempo; (ii) los usuarios comparten el mismo código práctico Forward Er-

ror Correction (FEC) y esquema de modulación, caracterizados por una curva Packet Error Rate (PER)

conocida. Se han realizado simulaciones exhaustivas y análisis comparativos de rendimiento utilizando

dos códigos FEC representativos.
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Chapter 1

Introduction

This thesis is the result of one year's work at the Signal Processing and Communications Group (SPCOM)

under the framework of VC-based IC strategies for massively populated wireless networks operating in

the user-asymptotic regime.

The present document provides a detailed exposition of the most important contributions achieved

during this period since the original formulation of the objectives. The initial stage of the research

involved an in-depth study on the foundations and tools of VC (mainly [1]), together with the support of

uno�cial interactive seminars on the subject taught by the directors of the thesis.

Progress towards a �nal and complete understanding of the solution, as is commonplace in research, has

been fraught with unexpected obstacles, both on the theoretical and practical sides of the problem. It is in

this respect that the author believes the most attractive way to present the corresponding developments

is one which re�ects, precisely, that evolution.

1.1 State of the art

The �fth generation (5G) of communication systems is expected to motivate the use of smart devices with

improved network and device capabilities [2, 3]. The arrival of 5G cellular systems will potentially be a

key driver for the yet to emerge global Internet of Things (IoT) [4]. IoT refers to a highly interconnected

heterogeneous network of entities providing new services and applications for human interests [5]. It is

envisaged that new technologies with several forms of data tra�c and di�erent delay, bit-rate, reliability

and energy consumption will arise in the following years [6]. In that respect, M2M communications were

conceived to make the totally autonomous operations of the networked devices possible. They enable

faster, safer and more reliable communications when compared with those under human supervision [7].

Today's communication systems should be able to serve large-population networks with a shared and

�nite amount of resources. However, nowadays, this is not feasible due to the fact that current networks

are not prepared to manage the increment in the number of users as a consequence of IoT. This will lead

to the need of developing very re�ned physical and media access control layer technologies that can better

exploit the radio channel [8].

Random Access (RA) communications have gained a lot of momentum in networks where the signalling

delay and/or the use of feedback channels makes the user coordination task di�cult [9]. The earliest de-

vised RA protocol is the well-known ALOHA [10], widely extended in satellite communications networks

of uncoordinated devices. Several variants have been developed, such as slotted-ALOHA, obtaining signif-

icant throughput improvements with respect to the baseline ALOHA, at the cost of requiring user packet

1



2 1.1. State of the art

synchronization (alignment) at reception [10]. Novel approaches have been conceived such as Diversity

Slotted Aloha, in which each packet is sent twice in di�erent slots, which improves the performance of

the prior ALOHA systems under moderate load conditions [11]. In all cases, the main limiting factor to

network performance is the amount of MAI.

Code-Division-Multiple-Access (CDMA) allows simultaneous user transmissions while sharing the same

broadband resource, which opens up the possibility of using CDMA in RA communications scenarios.

In this case, network subscribers spread their packets before transmission in order to access the channel in

a quasi-orthogonal way. Moreover, CDMA transmissions are also bene�cial thanks to a greater immunity

to channel impairments and dynamic channel sharing [12]. As an added advantage, user asynchronism

can be easily dealt with CDMA making use of multiuser receivers [13].

Multiuser detection (MUD) of simultaneous and independent CDMA user-transmissions has been

widely investigated by S.Verdú [14]. It is derived therein that the optimum detector needs joint user-

detection where perfect knowledge of all user-signatures and channel impulse responses is required. Max-

imum Likelihood Sequence Estimator (MLSE) is indeed the optimal detector. In the case of synchronous

access, the K-user MLSE consists of a bank of optimum single-user detectors operating independently,

whereas in the asynchronous case consists of a bank of single-user matched �lters followed by a Viterbi

algorithm [15]. In both cases, the computational complexity of such MUDs increases exponentially with

the number of users, which is not feasible for practical implementations, especially in networks with a

large number of users [16].

In low-rate communication scenarios over a dense user population, new access techniques have been

devised for exploiting inter-user collisions as a means of increasing spectral e�ciency [17, 18]. Di�erent

multiuser schemes implementing Direct-Sequence (DS) CDMA (DS-CDMA) together with IC policies

have been studied, obtaining improvements with respect to conventional CDMA [14,19,20]. In particular,

Successive IC (SIC) and multistage Decision-Feedback (DF) receivers with IC capabilities (parallel or

successive) have been presented as the main architectures with successful MAI mitigation [21,22].

Anyway, the performance of such IC schemes is highly dependent on the received power distribution

[23]. To enable power control, di�erent variants have been broadly investigated. As studied in [24],

there exist two alternative approaches for energy allocation: random and deterministic. In the �rst case,

users randomly select their transmitted energy from a continuous probability distribution, while in the

deterministic approach the transmitted energy is set depending on each user's current channel state.

For several years, asymptotic analyses of large-CDMA systems, where both the number of users and the

spreading gain increase to in�nity while keeping their ratio constant, have gained a lot of interest [12]. In

these user-asymptotic cases, several analyses techniques can be applied, such as: VC [24], Random Matrix

Theory [25] or the Replica Method [26], among others. In this work, we only employ VC techniques to

optimize a global utility (spectral e�ciency) in the user-limit case. In [27], the authors consider a many-

user SIC scenario for deriving the optimal signal-to-interference-plus-noise ratio (SINR) pro�le in terms

of spectral e�ciency. In [28], Sala et al. derive the user-asymptotic symbol energy pro�le that maximizes

the average spectral e�ciency when a constraint on the power imbalance of received users is enforced.

In [29], the optimum distribution of ordered energies throughout SIC stages when users are required to

ful�l an average energy constraint is determined.

To the best of our knowledge, few capacity studies have been carried out in terms of multistage IC

policies. In [30], it is concluded that parallel IC does not improve the channel capacity in the presence

of non-fading conditions. A single stage is enough to enable free-error probability in case of equal rate

and power allocation when optimal codes are used. No further analyses have been found, either with the

use of practical encoders or when considering imperfect cancellation. For that reason, some references
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involving SIC policies are shown. It is stated in [24], that the maximum-rate SINR pro�le throughout

SIC stages is uniform. This contrasts with the fact that when considering practical FEC codes along with

imperfect cancellation, the optimum SINR pro�le is a decreasing function of the user ordering [29].

One of the major obstacles to the application of SIC schemes in practical wireless systems is the

processing delay [31]. In dense DS-CDMA networks, unless the receiver works with clock frequencies

unboundedly high, a practical SIC implementation may be unreasonable, due to the fact that the receiver

must successively decode all users at every time slot. For that reason, we consider a parallel multistage

detector [14], sometimes referred to as bootstrap [32,33], in which the system's latency is controlled by the

number of stages, irrespectively of the number of users. Moreover, parallel multistage DF architectures

are also bene�cial under the near-far e�ects, since simultaneous processing encourages the use of similar

power levels between users. Additionally, these schemes also allow to mitigate the imperfect cancellation

e�ect, as a consequence of signal reconstructions being improved throughout the DF stages [31].

1.2 Statement of purpose

In this thesis, we consider the uplink of a massive-user network with the receiver implementing a PMDF

strategy in order to mitigate MAI. The goal of this work is focused on determining the optimal energy

allocation function of the coordinated spread-spectrum MA network, when user transmissions are enforced

to ful�l a long-term energy constraint while using practical FEC codes and modulation schemes with a

known PER curve.

We focus on the derivation of the optimal energy distribution using VC techniques [1]. Unlike VC

problems studied in the literature [27�29, 34], we explore discontinuous energy allocation functions as

candidates for maximizing the average spectral e�ciency over all users of the network described herein.

For several reasons, the proposed scenario is of interest in the M2M context over a massive user

population. Firstly, in terms of energy consumption at both the network and the device level, it is

convenient to limit energy transmissions; secondly, in terms of co-channel or out-of-band interference on

other neighbouring services, it is also bene�cial to reduce the average energy transmitted into the channel

by the whole machine network.

1.3 Thesis outline

For the rest of the document, this thesis is organized as follows;

InChapter 2, we present the considered MA scenario, the transmitter's characteristics and limitations,

the receiver's IC architecture, and the power control mechanism. We also develop a signal model for

the considered multiuser scenario. Furthermore, �nite and asymptotic user equations for the described

scenario have been derived.

In Chapter 3, we state the VC problem that allows to derive the optimum energy allocation function

that maximizes the throughput of the network presented in Chapter 2. For that reason, �rstly, we describe

the space of functions from which energy pro�le candidates are going to be considered; then, we formulate

the aforementioned VC problem and we make use of VC tools to address its resolution in the case of a

generic known channel. Its determination has required to derive the stationary point equation and the

related transversality conditions of the constrained VC problem. Additionally, a resolution method is

proposed for the case of uniform channel gains.

In Chapter 4, we evaluate the theoretical results over a representative interference-dominated scenario
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that follows the system model described in Chapter 3.

In Chapter 5, we conclude and summarize the main results of this work. Finally, we propose some

topics for further research.



Chapter 2

Problem Statement

The aim of this chapter is to present the studied problem. Particularly, in Section 2.1, we describe

the considered scenario. In Section 2.2, we introduce the adopted PMDF scheme and we derive some

expressions that model its behaviour. The following sections are devoted to stating the signal model and

to the derivation of �nite (Section 2.3) and asymptotic (Section 2.4) user models for the studied scenario.

2.1 Scenario description

Let us consider a massive population of 1 ≤ k ≤ K low-rate users transmitting on the uplink of a MA

channel towards a central node, equipped with strong multipacket reception capabilities. Users share

the same frequency band and time resources to establish communication using a non-orthogonal spread-

spectrum technique. The proposed scenario is depicted in Figure 2.1.

We consider a coordinated access scheme based on a slotted-time division indexed by n. At the

beginning of every time slot, users generate new information packets that are encoded together with a

Cyclic Redundancy Check (CRC) using the same FEC code. The CRC enables error detection at the FEC

decoder. In this way, erroneously decoded packets are discarded, and no retransmissions are contemplated.

We associate the shared encoder with a known PER curve, a scalar function of the Signal-to-Noise Ratio

(SNR) under the additive Gaussian model. For convenience, we will not specify the length of the appended

CRC. We assume that a su�ciently long CRC exists such that its error probability is negligible.

Figure 2.1: Multiple access scenario.

5



6 2.1. Scenario description

Energy limitation

Let Es[k;n] be the transmitted symbol energy of the k-th user at time slot n. According to the energy e�-

ciency concerns of machine-type communications, users are encouraged to limit their power transmissions

according to a per-user average energy constraint over time of E Joules per symbol,

lim
n→+∞

1

n

n∑
i=1

Es[k; i] = E (2.1)

No further restriction is placed on the peak energy of the users to model the maximum amount of energy

that every user's transceiver can supply. We are only concerned with the long-term average energy that

users employ in their transmissions. In this situation, we allow users to access the channel using a very

high peak energy as long as they average out their transmission power on the subsequent slots in order to

satisfy (2.1). Of course, this corresponds to a non-practical scenario, and thus, we might force the system

to work in a regime that avoids this circumstance. Nonetheless, these type of constraints are typical in

the analysis of di�erent telecommunication systems, where, in general, the solution results in a �nite and

moderate peak energy (e.g. [34]).

Multiple access interference and interference cancellation architecture

The amount of MAI constitutes the major contributor to the limitation of the network's performance.

Several strategies may be formulated to mitigate MAI. For reasons of simplicity and without sacri�cing

IC capabilities, we have opted for a classical multiuser multistage detector scheme [14]. The receiver node

is set to perform a PMDF strategy in which users are simultaneously decoded and cancelled from the

input signal of the rest of users before proceeding to the subsequent stage. Later on, we will describe

thoroughly the mentioned PMDF policy.

Channel characterization and power control mechanism

Let h[k;n] be the channel power gain between the k-th user and the receiver at the n-th time slot, with

known probability distribution FH(h)
.
= Pr{H ≤ h}, independent and identically distributed over each

user, slowly time-varying for n 6= n′ and approximately �at over the packet duration.

For simplicity, during the mathematical development, we will set the user indices in descending order of

users' channel gains, as h[1;n] ≥ h[2;n] ≥ · · · ≥ h[K;n]. The reader may note that, as all users are going

to be processed simultaneously (parallel multistage architecture), re-ordering is not strictly necessary.

Nonetheless, re-labelling users simpli�es the rest of the work as long as the mathematical treatment is

simpli�ed.

As we consider the case of identically distributed channels over the user ordering, the long-term average

energy constraint (2.1) coincides with the average energy over the user population,

lim
K→+∞

1

K

K∑
k=1

Es[k;n] = E (2.2)

Under this in�nite-user model, the distribution of the channel coe�cients over all users converges to a

deterministic function irrespectively of n. That is, at every time slot, users in the system will perceive the

same channel realizations, but sorted di�erently. Therefore, and without loss of generality, we suppress

the explicit time slot index n.
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In order to guarantee the success of this PMDF scheme, we set a power control mechanism in which

each user selects its transmitted energy Es[k] = a(h[k]) according to a known energy allocation function

a(h) to be optimized [24]. Therefore, perfect channel knowledge needs to be available at every transmitter.

Several alternatives can be followed to enable perfect channel state information at transmitters. Without

entering into excessive detail, we will consider that the receiver node is regularly broadcasting a known pilot

signal on a low-rate control channel, from which every user estimates h[k] assuming channel reciprocity,

and that the channel coherence time is su�ciently long when compared with the symbol interval.

With the focus on the proposed scenario, we seek to determine the energy allocation function a(h)

that maximizes the throughput of the network presented herein, when:

(i) transmitters access the channel with a deterministic energy allocation strategy subject to a long-term

per-user average energy constraint of E Joules per symbol.

(ii) the receiver implements a PMDF approach in order to mitigate MAI.

The considered scenario may be exempli�ed if we envisage the uplink of a M2M mobile network under

the DS-CDMA model. The channel gains represent the path-loss component of each user with respect

to the station position, being corrupted by the instantaneous fast-fading conditions. Moreover, users

may be deployed over a scarce energy-source environment and they are endowed with energy harvesting

mechanisms in order to charge their batteries. Hence, users' transmissions may be power-limited so as to

save energy for future access attempts according to some prede�ned criteria.

2.2 Parallel multistage decision-feedback scheme

The key concept behind decision-feedback detectors is the creation of separate estimates of the MAI

generated by each user-contribution in order to subtract out the major part of the MAI seen by each

of them. Multistage DF schemes present similarities with respect to the decision-feedback equalizers

used to counteract inter-symbol interference [35]. Underlying the same principle, DF receivers have been

envisaged [31].

With the attention focussed on the studied scenario, we consider that the receiver node is equipped

with a bank of K single-user detectors that work in parallel along with their corresponding reconstructors,

which for convenience and simplicity, are going to be referred to as D&R (Detector and Reconstructor)

during the rest of the work. The central node is con�gured according to a multiuser parallel DF structure,

which has been denoted "bootstrap" in some publications [32,33] and appears depicted below:

r

+ 1st D&R
r̃1 r̂1 = s(r̃1)

+ 2nd D&R
r̃2 r̂2 = s(r̃2)

+ Kth D&R
r̃K r̂K = s(r̃K)

+

-

+

++

-

-

-

...

2nd D&R

Figure 2.2: Parallel multistage decision-feedback architecture.
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with r = [ r[1], r[2], ..., r[Ns] ]T the received packet (of Ns samples) obtained from sampling the received

waveform at a given chip rate, r̃k = [ r̃k[1], r̃k[2], ..., r̃k[Ns] ]T the input signal at the k-th D&R input,

r̂k = [ r̂k[1], r̂k[2], ..., r̂k[Ns] ]T the k-th user's reconstructed packet and s(·) the function implemented

by each D&R comprising the steps of de-spreading-demodulation-decoding and recoding-remodulation-

spreading.

In view of the needed signals, we de�ne the matrices R̃ and R̂, which contain by columns the input

and the output (reconstructed) packet signals of each D&R, respectively, as follows,

R̃
.
=


r̃1[1] r̃2[1] · · · r̃K [1]

r̃1[2] r̃2[2] · · · r̃K [2]
...

...
. . .

...

r̃1[Ns] r̃2[Ns] · · · r̃K [Ns]

 R̂
.
=


r̂1[1] r̂2[1] · · · r̂K [1]

r̂1[2] r̂2[2] · · · r̂K [2]
...

...
. . .

...

r̂1[Ns] r̂2[Ns] · · · r̂K [Ns]

 (2.3)

Therefore, we have that,

R̂ = s(R̃) = s(r · 1T − R̂) (2.4)

It is easy to see that the presented structure constitutes a discrete feedback system, since the input of

each user's D&R is connected with the output of the other users' D&R. From here, we will assume that

the system has at least one equilibrium point at which we are able to converge starting from the received

signal r. Still, no proof of the previous statement is available for the moment, nor of the conditions under

which that or those points exist. This will be intuitively justi�ed in the following lines.

This architecture reminds us of the computation of the output of an in�nite impulse response �lter,

and so as to determine the equilibrium point (stationary regime) of the system, we unfold the previous

structure into several stages of repeated architecture, as depicted in Figure 2.3. In this way, we are able

to converge towards a stability point as long as it exists. It should be remarked that given the noise

randomness and MAI, the uniqueness of this equilibrium point may be questioned.

r 0th Stage 1st Stage 2nd Stage

1st D&R
r̃1,0 r̂1,0

2nd D&R
r̃2,0 r̂2,0

Kth D&R
r̃K,0 r̂K,0

+ 1st D&R
r̃1,1 r̂1,1

+ 2nd D&R
r̃2,1 r̂2,1

+ Kth D&R
r̃K,1 r̂K,1

+ 1st D&R
r̃1,2

+ 2nd D&R
r̃2,2

+ Kth D&R
r̃K,2

...
...

...

· · ·

· · ·

· · ·

+

-

+
-

-

+
-

+

-

+
-

-

+
-

Figure 2.3: Parallel multistage decision-feedback architecture. Unfolded structure.

The unfolded structure in Figure 2.3 needs of some explanation in order to understand its behaviour.

Each D&R has a target user and at any stage (i), it only operates on its own signal r̃k,i. We de�ne a

D&R-stage as the process whereby a D&R de-spreads its input signal r̃k,i, demodulates, decodes its target

user, and reconstructs its user's packet if it has been correctly decoded r̂k,i, otherwise r̂k,i = 0. Then:

a) At the initial stage (i = 0), all D&Rs operate on the received signal r̃k,0 = r.

b) At the i-th stage, those D&Rs which successfully decode their packet (CRC checking) will reconstruct



Chapter 2. Problem Statement 9

r̂k,i and cancel it from the received signal of the rest of D&Rs.

c) At any DF stage, every D&R operates, regardless of its success during the last stage, on r minus

the contribution of all other D&Rs that satisfactorily decoded its user in the previous stage.

It is important to highlight that the intrinsic randomness of noise and MAI provokes that di�erent

users are successfully decoded in distinct stages of the decoding process. Nevertheless, and anticipating

the following sections, the fraction of successfully decoded users converges to a computable quantity.

Back to the equations that describe the outspread DF architecture in Figure 2.3, we have that,

R̂i+1 = s(R̃i+1) = s(r · 1T − R̂i) (2.5)

where we have introduced the sub-index i for denoting the i-th DF stage. Note that the receiver needs

enough memory to allocate the received packet r and the matrix of reconstructed packets R̂i, from which

it is able to generate the rest of variables. Of course, if the system allows an stability point (i → +∞),

then the previous equation matches (2.4),

R̂∗
.
= lim

i→+∞
R̂i+1 = s(R̃∗) = s(r · 1T − R̂∗) (2.6)

with the asterisk notation to indicate the convergence point.

Comparison with related IC policies

Relating this DF architecture with well-known multiuser schemes, it must be said that the stated structure

presents performance similarities when compared with those ones achieved with SIC receivers of a single

iteration. It is not possible to establish beforehand a comparison between the performance of both

architectures. Therefore, one must resort to direct evaluation at each scenario.

Naturally, under large population networks, the computational cost of the multistage detector increases

considerably with respect to SIC schemes, although it hopefully captures the essential features of a user-

asymptotic scheme while making a more simpli�es mathematical treatment possible.

Mitigation of the imperfect cancellation e�ect

For a point of view of a practical scheme, it is widely known that perfect cancellation is unrealistic as

long as the amount of MAI questions the reliability of the frequency, amplitude and phase estimations.

In this case, imperfect cancellation is assumed from which an energy-fraction of each user remains after

cancelling its contribution.

As opposed to SIC architectures, a DF scheme allows the mitigation of this imperfect cancellation e�ect.

Users signals are re-estimated at each stage, and due to the fact that the interference level is reduced

with each of them, this enables the users to work with higher SNRs as more stages are performed. This

is bene�cial seeing that the mentioned estimators enhance the accuracy of their estimates as more stages

are completed.

The following sections are devoted to the derivation of �nite and asymptotic user models of the DF

scheme described herein.
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2.3 System model and �nite user characterization

We consider the DS-CDMA model in which each user generates a sequence of D symbols sk. Random

and independent spreading sequences ck are designated to the network subscribers, with processing gain

N (long-code model), and assumed known at the receiver side [12]. Therefore, the transmitted complex

baseband signal by the k-th user is

xk(t) = Ak ·
D−1∑
i=0

N−1∑
m=0

sk[i] · ck[Ni+m] · p(t− (Ni+m)Tc) (2.7)

with Ak a complex amplitude factor, p(t) the chip pulse of unitary energy and Tc the chip period.

At the receiver, as a consequence of the access synchronism, users signals are obtained with perfect

packet alignment. Therefore, under the �at fading model, the complex equivalent baseband received signal

after down-conversion is

y(t) =
K∑
k=1

√
h[k] · xk(t) + n(t) (2.8)

with the received signal corrupted by additive Gaussian noise n(t).

At the receiver, we model MAI as additive Gaussian noise after de-spreading according to the long-code

model [12]. Under this model, an average cross-correlation between di�erent user-signatures of θ/N [36]

is assumed, with θ an average decorrelation factor that models timing misalignments and carrier phase

o�sets.

We consider the characteristic function of the FEC decoder, PER[Γ], a known function of the SNR (Γ).

Also, we assume imperfect cancellation, with ε(Γ[k]) ∈ (0, 1) the remaining energy fraction of the k-th user

after its signal cancellation (we consider a general implementation-dependent function for ε vs. Γ) [23].

Moreover, statistically independent decoding attempts between stages is assumed, provided that at each

DF stage a signi�cant portion of users is favourably decoded; intuitively, such an assumption is reasonable

in the sense that the signal's waveform at the input of every D&R has been substantially changed after

cancelling other users contributions.

Therefore, at the i-th DF stage, the SINR seen by the k-th user at the output of its de-spreader is, in

agreement with the large-spreading model, given by

Γi≥0[k] =
Er[k]

N0 + ξi[k]
(2.9)

with Er[k] = Es[k]h[k] the received symbol energy of the k-th user, N0 the noise power spectral density

and ξi[k] the MAI seen by the k-th user at the i-th DF stage, de�ned by

ξi≥1[k] =
θ

N

∑
j 6=k

ε(j|Γi−1[j])Er[j] (2.10)

with the initial value ξ0[k] = θ
N

∑
j 6=k Er[j] and ε(j|Γ) a binary random variable that takes values depend-

ing on the j-th decoder success: equal to 1 with probability PER[Γ] (decoding error) and equal to ε(Γ)

with probability PSR[Γ]
.
= 1− PER[Γ] (successful decoding).

It is important to emphasize that the assumption of independent decoding attempts between iterations

starts to take importance at this point of the work, given that, we consider independent realizations of

the random variable ε(j|Γ) at every DF stage i.
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2.4 Asymptotic system characterization

This section is devoted to deriving the equations of two asymptotic analyses related with the system

model showed in Section 2.3. First, in terms of users, we will consider that in�nite users use sequences

of large-spreading gain while keeping their ratio constant. Secondly, we also consider the receiver node

implementing the described policy in Section 2.2 with an asymptotically large number of DF stages in

order to evidence the equations that predict the stability point of the system.

2.4.1 User-asymptotic expressions

In the user-asymptotic case, we transform the discrete user index k into the continuous variable

t
.
= limK→+∞ k/K, in which the user indices k = 1, ...,K are compressed within the interval 0 < t ≤ 1 [28].

Also, we let N → +∞ so that the system's load factor α
.
= K/N is asymptotically �xed, given that K,N

increase in the same proportion. As well, we convert:

(i) the discrete variables Γi[k], Er[k], Es[k], h[k] into the continuous pro�les Γi(t), Er(t), Es(t), h(t), all

de�ned within the interval 0 < t ≤ 1.

(ii) the summations into integral forms with dt
.
= limK→+∞

1
K .

Therefore, in this user-limit regime, the energy constraint (2.2) becomes the following integral equation:∫ 1

0
Es(t) dt =

∫ 1

0

Er(t)

h(t)
dt = E (2.11)

As well, in this large-user regime, as each user constitutes an in�nitesimal unit in the user continuum, all

users will experiment the same MAI at every DF stage. That is, ξi[k] → ξi + o(1/N), with o(1/N) an

in�nitesimal term and ξi = E{ξi[k]} the common user-interference level at the i-th stage. The fact that ξi
converges to its mean value needs the assumption that function Er(t) must be su�ciently smooth so as to

consider that over every interval [t, t+ dt] there are enough users as to ensure the mentioned convergence

in probability. Therefore, (2.9 - 2.10) are turned into the following1

Γi(t) =
Er(t)

N0 + ξi
(2.12)

ξi = αθ

∫ 1

0
(1− (1− ε(Γi−1(t))) PSR [Γi−1(t)])Er(t) dt (2.13)

with the initial value ξ0 = αθ
∫ 1

0 Er(t) dt, that is, at the �rst stage all users see the overall interference.

Note that under this user-limit regime, the asymptotic continuous SINR pro�le Γ(t) is proportional to

the received symbol energy pro�le Er(t). For mathematical convenience, and, with the intention to relate

this work with previous works [29], we de�ne Φ[Γ]
.
= θ(1− ε(Γ))Γ · PSR[Γ], a known function which only

depends on the decoder's system implementation. Therefore, we de�ne

f(ξi)
.
= α(N0 + ξi)

∫ 1

0
(θΓi(t)− Φ [Γi(t)]) dt (2.14)

from which the subsequent interference level, ξi+1, can be obtained using f , as follows: ξi+1 = f(ξi).

Therefore, the interference level seen by users at each stage can be perfectly described by the succession

1The integrand of (2.13) is obtained by setting Er(t) with probability PER[Γi−1(t)] (packet loss) and ε(Γi−1(t))Er(t)
with probability PSR[Γi−1(t)] (successful decoding). Reorganizing terms, it can be proven the equivalence with (2.13).
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{ξi}i≥0 = {ξ0, ξ1, ξ2, ...} = {ξ0, f(ξ0), f(ξ1), ...}. At this point, in this user-limit regime, as every user

constitutes an in�nitesimal unit over the user continuum, one reader can erroneously think that user

contributions do not mitigate the overall interference. However, at each stage an in�nite number of

in�nitesimal user contributions are cancelled, and thus, the initial MAI is lessened. In fact, using bounds

on PSR[Γ] and ε(Γ), it is easy to see that the succession of interference levels decreases monotonically

under the assumption of PSR[Γ] and ε(Γ) being increasing and decreasing functions of Γ, respectively.

2.4.2 Fixed point user-asymptotic expressions

In this section, we analyse the user-limit expressions (2.12) and (2.14) when the PMDF detector performs

a large number of stages, so as to evidence the existence of a stability point along with its determination.

The results take the form of a �xed point (FP) equation.

Hence, with an asymptotic number of DF stages (i→ +∞), we obtain

Γ∗(t) =
Er(t)

N0 + ξ∗
(2.15)

ξ∗ = f(ξ∗) = α(N0 + ξ∗)

∫ 1

0
(θΓ∗(t)− Φ [Γ∗(t)]) dt (2.16)

where we have incorporated the asterisk sub-index for denoting the user-asymptotic SINR pro�le Γ∗(t)

at the �nal interference level ξ∗
.
= limi→+∞{ξ}i. Note that (2.16) constitutes a FP equation de�ned by

ξ∗ = f(ξ∗) whose associated sequence of interference levels {ξ}i≥0 = {ξ0, ξ1, ..., ξ∗} can be found using

recursive substitution.

From here, this section continues by deriving interesting properties of the function f (2.16).

(a) Property 1. Domain and codomain

It is easy to see that f : ξ ∈ R+ −→ (ξmin, ξmax), that is, f is bounded by (ξmin, ξmax) with

ξmax
.
= lim

ξ→+∞
f(ξ) = αθ

∫ 1

0
Er(t) dt = ξ0 (2.17)

ξmin
.
= lim

ξ→0
f(ξ) = ξ0 − αN0

∫ 1

0
Φ

[
Er(t)

N0

]
dt ≤ ξmax (2.18)

where ξ0 is the initial interference level value and ξmin denotes the minimum value that reaches f(ξ).

(b) Property 2. Continuity and di�erentiability

f(ξ) is a continuous and di�erentiable function over all points of its domain provided that the curves

PER[Γ] and ε(Γ) are chosen as continuous and di�erentiable too.

(c) Property 3. Monotonicity

We compute the derivative of f(ξ) (2.16), that we denote by f ′(ξ), below,

f ′(ξ) = α

∫ 1

0

(
Φ′ [Γ(t)] Γ(t)− Φ [Γ(t)]

)
dt (2.19)

with Φ′[Γ] = θ(1 − ε(Γ))(PSR[Γ] + Γ · PSR′[Γ]) − θε′(Γ)Γ · PSR[Γ] the �rst derivative of Φ[Γ]. It

is easy to see that f increases monotonically as long as PSR[Γ], ε(Γ) are strictly increasing and

decreasing functions of Γ, respectively. By de�nition, PSR[Γ] is increasing, and the assumption of

ε(Γ) to be decreasing is realistic given that the higher the SNR, the better the receiver is able to

reconstruct and cancel each user's signal.
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(d) Property 4. Limit on the interference level

As f is increasing and bounded, the sequence of interference levels {ξi}i≥0 is bounded too and

decreases monotonically until it reaches a minimum given by f(ξ∗) = ξ∗, with ξ∗ the convergence

point. Therefore, f has at least one FP.

Problematics of having multiple FPs

As stated in the previous lines, f is a bounded and continuous monotonic increasing function with at

least one FP, but, in general, its uniqueness cannot be guaranteed. The fact that f can have more than

one FP brings along some mathematical di�culties, as will be exempli�ed throughout the work.

The following paragraph is dedicated to clarifying why the equation f(ξ∗) = ξ∗ is not su�cient for

solving the posterior VC problem when multiple FPs exist. Let us consider a scenario in which the sys-

tem variables along with the selected energy pro�le generate a function f with several FPs. Since we

are only interested in determining the interference level at the best FP, it seems wise to introduce the

single constraint f(ξ∗) = ξ∗ over the optimization problem. Indeed, the optimization problem would seek

the optimum energy pro�le such that it generates a FP on the interference level as imposed by the said

constraint. However, the enforced restriction does not su�ce, since, in no case, does it ensure that the

FP ξ∗ can be attained from the initial interference level ξ0 according to the discrete algorithm described.

In other words, a potentially tough problem combining discrete mathematics (recursive substitution al-

gorithm) and continuous optimization seems to arise.

The question is now, whether a way exists to map this discrete algorithm onto a simple constraint so

as to be incorporated into the optimization problem.

Fixed point reachability constraint

Based on a geometrical interpretation (graphical proof) of the described recursive substitution algorithm,

we present an equation that allows to know if it is possible, given a �xed point of f , to achieve it from

the initial interference level ξ0.

Proposition: Let ξ∗ be a FP of f , f(ξ∗) = ξ∗. Therefore, a necessary and su�cient condition for

ensuring the convergence of the recursive substitution algorithm to ξ∗ from the initial value ξ0 is that

f(ξ) < ξ for ξ > ξ∗ (2.20)

It is easy to see in the example depicted in Fig-

ure 2.4 that the succession of interference levels

describe a staircase function (black line) starting

from the initial level ξ0 to the convergence level ξ∗.

Proof: Using Property 1, we have that ∀ξ, f(ξ) ≤ ξ0,

that is, f is always found below the initial point ξ0.

In particular, as ξ1 = f(ξ0) < ξ0 is veri�ed, and re-

calling the graphical proof in Figure 2.4, a necessary

and su�cient condition for ensuring the convergence

of the recursive substitution algorithm to the inter-

ference level ξ∗, starting from ξ0, is that (2.20) was

satis�ed with strict inequality.

Interference Level ξ

ξ Line

f (ξ)

FP iterations

Limits

ξ1

ξ0

Tunnel

ξmin

ξmax
ξ0

ξ1ξ∗

Figure 2.4: An example of the FP algorithm.
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Although in the attached �gure, and in the performed simulations, it is highlighted that f(ξ) > ξ for

ξ < ξ∗, it is not a necessary condition for ensuring the convergence of the algorithm to the FP ξ∗, and we

are not able to guarantee its accomplishment for an arbitrary scenario parameters.

Note that depending on the evaluated parameters and the selected energy pro�le, the stated constraint

may impose a situation in which the curve f(ξ) is practically tangent to the ξ line. In this case, we will

call the tunnel the space between both functions.

From a theoretical point of view, it does not pose

any additional problem other than the fact that the

receiver must perform a large number of stages in

order to pass the tunnel. This matter may lead to

latency issues. Let us de�ne the δ-constriction as

δ
.
= min

ξ
|f(ξ)− ξ|ξ>ξth (2.21)

which denotes the minimum tunnel width and ξth a

threshold value in order to discard ξ-points near the

FP ξ∗. The limit case would occur when δ → 0, and

thus, the receiver must perform an in�nite number

of stages in order to pass the tunnel.

ξ Line

f (ξ)

FP iterations

ξ Line

f (ξ)

FP iterations

Figure 2.5: Example of a constricted tunnel.

In Figure 2.5 we depict an example of a constricted tunnel (upper part). The lower part of the attached

�gure is zooming into this closed aperture in order to evidence what is happening inside the tunnel. As

shown, the algorithm slowly progresses inside the tunnel until it reaches the end. In particular, at each

DF stage, the receiver decodes a slightly greater fraction of users such that, the amount of inter-user

interference is diminished throughout DF stages by means of cancelling these users' contributions.

Moreover, there is an additional issue why it is not appropriate to have functions with constricted

tunnels. Contrary to the user-asymptotic case, in the �nite-user case, every user sees di�erent MAI levels

at any stage ξi[k]. This fact, may force the system to converge to an unexpected FP (crossing the ξ line).

In order to avoid that, it is worth to introduce a tunable parameter in order to control the closeness of

the curve f to the ξ line. Therefore, it is convenient to bound the function f from above by using an

arbitrary function g in order to keep the tunnels open.

Interference Level (ξ)

ξ Line

f (ξ)

FP iterations

g(ξ)

Interference Level (ξ)

ξ Line

f (ξ)

FP iterations

g(ξ)

Figure 2.6: Examples of f bounded from above by two di�erent g.
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In Figure 2.6 we show for the same f curve two examples of di�erent g bounds. In particular, we

depict the cases of g(ξ) = ∆(ξ − ξ∗) + ξ∗ (left) and g(ξ) = ξ − ∆ (right) corresponding to the cases of

variable and constant tunnel apertures, respectively. For now, the preference over what function g would

be the most reasonable of choice is unknown. We have solely presented examples with the aim of giving

a degree of freedom to the reader to decide and evaluate the function that best suits in his scenario.

For the attached �gures, we show a limit situation in which f is practically tangent to g. Both cases

will constrain the admissible energy pro�les given that f(ξ) < g(ξ) must be satis�ed. The reader should

note that by means of adjusting this function g, the receiver is able to control the latency throughout the

DF stages.

Nonetheless, the evaluation of this g function is out of the scope of this work, and from here, we will

consider the limit scenario in which we set g(ξ) = ξ. It is important to highlight that the presented

constraint in (2.20) must be enforced over the optimization problem with the non-strict inequality sign.

That is,

f(ξ) ≤ ξ for ξ ≥ ξ∗ (2.22)

Therefore, a limit situation will be forced, in which f may reach the ξ line, i.e. δ = 0. Afterwards, an

intentioned imbalance over the stationary point solution will be performed in order to open the tunnels.

Several strategies may be implemented in order to perform the mentioned imbalance. For reasons of

simplicity, and with the intention to relate this with the previously de�ned δ variable, we will consider a

load imbalance in which, once the optimum pro�le for the tra�c load α is determined, we keep reducing

α until the de�ned δ constriction is ful�lled.





Chapter 3

Problem Formulation

This section is dedicated to stating the VC problem that maximizes the overall system's spectral e�ciency

in the user-asymptotic case. Before that, in Section 3.1 we describe the function space from which energy

pro�le candidates are going to be considered. In Section 3.2, we derive the stationary point equation

along with the transversality conditions. In Section 3.3, we particularize the obtained expressions for the

case of constant channel gains and we end up with the solution procedure to the corresponding problem.

3.1 Function space description

Calculus of Variations or Variational Calculus is the �eld of mathematics that deals with the optimization

of functionals, i.e. mappings from a space of functions to the real �eld. Therefore, VC addresses the

problem of �nding the function that optimizes a global utility under prede�ned constraints. Before

stating the VC problem of interest, we �rst describe the considered function space, which, in general,

strongly determines the nature of the solution.

In the literature, there exist several works address-

ing VC problems in the framework of IC schemes

[27�29, 34] where the authors derive optimal energy

distributions when the user ordering is established as

a function of the channel gains. In all these works,

the authors considered continuously di�erentiable

energy allocation functions Es(t) along with a user

admission index t1, enabled when the tra�c load ex-

ceeds a threshold value for which the optimum energy

pro�le is set to zero: Es(t) = 0 for t ≥ t1. In our case,
we consider h(t) a continuous decreasing function of

the user variable t. Therefore, we expect that the

received energy pro�le Er(t) that optimizes the pre-

sented problem will be also a decreasing function of

the user ordering.
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)

t0 = 0

Ep(t)E1(t) E3(t) · · ·Ep−1(t)E2(t)

t = 1tptp−1t1 t2

Figure 3.1: Energy pro�le candidates.

For the moment, although the prior statement may lack mathematical rigour, it certainly makes sense

since users associated with better channel conditions are expected to achieve higher SINR at reception.

Hence, we will focus the subsequent derivation on the maximization of the spectral e�ciency over the

received symbol energy pro�le, an ordered energy distribution over the user variable t.

17
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We extend the VC problems proposed in the aforementioned works by exploring discontinuous energy

allocation functions as candidates to maximize the system's throughput of the network described herein.

We consider p-piecewise continuously di�erentiable energy pro�les in the interval 0 ≤ t ≤ tp except

possibly at a �nite number of points 0 < t1, t2, ..., tp−1 < tp. In this case, it should be noted that tp takes

the role of a user admission index. For the rest of the document, 0 and tp will be denoted as end points

while each of the points t1, ..., tp−1 will be referred as corner points.

Therefore, we de�ne the normed space D, consisting of all p-piecewise continuously di�erentiable func-

tions E(t) (except at some points) de�ned within the users partition τ
.
= {t0 = 0, t1, ..., tp−1, tp ≤ 1},

as depicted in Figure 3.1. The following metric is used in [1] in case of continuous functions with discon-

tinuous derivative,

||E(t)|| .
=

p∑
k=1

(
max

tk−1≤ t < tk
|E(t)| + max

tk−1< t < tk
|∇tE(t)|

)
(3.1)

In our case, in order to allow discontinuous functions we may relax the previous norm up to

||E(t)|| .
=

∫ tp

0
|E(t)| dt (3.2)

Anyway, the scope of this work is not to evaluate the suitability of either of these metrics. However, the

reader needs to be familiarized with the metric under which we will assume di�erentiability.

Last but not least, it is important to highlight that, in VC problems, there is no such universal

space, and thus, it is not possible to �nd the best solution of a given problem, as it may depend on the

assumed space. In this work, we have tested that discontinuous functions provide better performance

when compared with that achieved using continuous ones. Under any circumstances, we consider that D
is, to all intents and purposes, a su�ciently general space.

3.2 Optimization problem: the known channel case

In the user-asymptotic case, we address the optimization of the overall system's spectral e�ciency

SE [bps/Hz]
.
= αpsr∗Rc log2(Nsym)/(1 + β), with Rc the FEC code rate, Nsym the number of sym-

bols in the constellation, β the roll-o� factor of the shaping pulse and psr∗ the average PSR over all users

at the FP ξ∗, de�ned below,

psr∗
.
=

∫ tp

0
PSR

[
Er(t)

N0 + ξ∗

]
dt =

p∑
k=1

∫ tk

tk−1

PSR

[
Er(t)

N0 + ξ∗

]
dt (3.3)

In D, we de�ne the constrained VC problem for maximizing the functional psr∗ (3.3) within the users

partition τ over the received energy pro�le Er(t),

max
τ, Er(t)

[
psr∗ =

p∑
k=1

∫ tk

tk−1

PSR

[
Er(t)

N0 + ξ∗

]
dt

]
(3.4)

s.t. E =

p∑
k=1

∫ tk

tk−1

Er(t)

h(t)
dt (3.5)

s.t. ξ∗ = f(ξ∗) = α(N0 + ξ∗)

p∑
k=1

∫ tk

tk−1

(θΓ∗(t)− Φ[Γ∗(t)]) dt (3.6)

s.t. 0 ≥ f(ξ)− ξ ∀ ξ > ξ∗ (3.7)
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We subject the VC problem to: (i) the transmitter's energy constraint (3.5); (ii) the FP equation (3.6)

along with the set of constraints (3.7) that guarantee the achievability of the FP, ξ∗, after performing an

intentional imbalance over the stationary point solution (see the end of Section 2.4).

It is important to highlight that, as in [27�29,34], we implicitly assume that the optimum distribution

of ordered energies that ful�ls the constrained VC problem is non-negative. That is, we do not impose

additional constraints over the stated problem in order to enforce the non-negativeness of Er(t), under-

standing that the admission user index tp will be enabled before Er(t) becomes negative. Anyhow, the

reader may feel free to replicate the stated VC problem by incorporating a function of slack variables in

order to impose the non-negativeness of the solution pro�le. In this case, since we address the determin-

istic channel case, it does not make sense to allocate zero energy to a user while assigning energy to a

user with worse channel conditions. Hence, this set of slack variables reduces to a single scalar denoting

the �rst user with zero-energy allocation, which seems closely related with the introduced user admission

index tp.

It should be mentioned that, in fact, the set of inequalities (3.7) only apply in the range ξ∗ < ξ ≤ ξ0.

Nonetheless, as ∀ξ f(ξ) ≤ ξ0 (see Section 2.4.2), we decided to extend the margin up to ξ∗ < ξ < +∞.

It can be proven that this abuse may imply consequences during the determination of the optimal energy

pro�le of the stated VC problem if we bound f from above with an ad-hoc function g(ξ) < ξ in order to

leave the tunnels open. Otherwise, the equivalence between both cases is guaranteed.

Let u
.
= ξ∗

N0+ξ∗
denote the normalized MAI with respect to the overall noise plus MAI at the FP ξ∗,

obtained dividing (3.6) by N0 + ξ∗,

u = α

p∑
k=1

∫ tk

tk−1

(θΓ∗(t)− Φ [Γ∗(t)]) dt (3.8)

which only depends on the SINR pro�le at this FP: Γ∗(t)
.
= Er(t)/(N0 + ξ∗). Therefore, (3.5) is re-

expressed as a function of the pair {u,Γ∗(t)}, as follows,

γ =
1

1− u
·

p∑
k=1

∫ tk

tk−1

Γ∗(t)

h(t)
dt (3.9)

with γ
.
= E/N0 the average transmitted symbol energy to noise power spectral density ratio (EsNo).

Furthermore, we substitute (3.8) in (3.9) to rewrite the constraints (3.5 - 3.6) into the single restriction

de�ned below,

γ =

p∑
k=1

∫ tk

tk−1

(
Γ∗(t)

(
h−1(t) + αθγ

)
− αγΦ [Γ∗(t)]

)
dt (3.10)

which only depends on the SINR pro�le Γ∗(t). Moreover, introducing the de�nition x
.
= N0+ξ∗

N0+ξ ∈ (0, 1),

it can be proven that the set of inequality constraints in (3.7) can be de�ned using the previous equation

when the SINR pro�le is substituted by x ·Γ∗(t) and the equality sign is changed by the inequality sign ≥,
as follows,

γ ≥
p∑

k=1

∫ tk

tk−1

(
x · Γ∗(t)

(
h−1(t) + αθγ

)
− αγΦ [x · Γ∗(t)]

)
dt (3.11)

Before entering into derivation details, we �rst de�ne the auxiliary function

R ≡ R(t,Γ(t))
.
= Γ(t)

(
h−1(t) + αθγ

)
− αγΦ [Γ(t)] (3.12)
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Therefore, pursuing the determination of the optimal SINR pro�le Γ∗(t), we rewrite the stated VC

problem (3.4 - 3.7) in terms of the previously de�ned function, as follows,

max
τ, Γ∗(t)

p∑
k=1

∫ tk

tk−1

PSR[Γ∗(t)] dt (3.13)

s.t. γ =

p∑
k=1

∫ tk

tk−1

R(t,Γ∗(t)) dt (3.14)

s.t. 0 ≥

(
p∑

k=1

∫ tk

tk−1

R(t, x · Γ∗(t)) dt − γ

)
0 < x < 1 (3.15)

At this point, the reader may wonder if both VC problems, in terms of Er(t) in (3.4 - 3.7) and Γ∗(t) in

(3.13 - 3.15), are equivalent. The answer is a�rmative, and Annex B is dedicated to address its proof,

together with stating the necessary procedure to determine the transmitted energy pro�le Es(t) once the

optimal SINR pro�le Γ∗(t) has been found.

Henceforth, the subsequent sections are dedicated to solving the stated VC problem, by deriving:

(i) the Stationary Point Equation (SPE).

(ii) the corresponding Transversality Condition (TC) at every point where the extremal has a corner or

a free end point.

3.2.1 Solution to the constrained VC problem: SPE and TC

We de�ne the Lagrangian J in (3.16) that includes the functional psr∗ (3.13) and incorporates (3.14 - 3.15)

using the function λ(x), with λ(x)x=1 used to set the equality constraint (3.14) and λ(x)x 6=1 a function

of slack variables in order to impose the inequality constraints (3.15), as follows,

J [Γ∗(t)]
.
=

p∑
k=1

∫ tk

tk−1

PSR(Γ∗(t)) dt −
∫ 1

0
λ(x)

(
p∑

k=1

∫ tk

tk−1

R(t, x · Γ∗(t)) dt − γ

)
dx (3.16)

We bear in mind that λ(x)x 6=1 ≥ 0 is introduced according to the Karush-Kuhn-Tucker (KKT) conditions,

and thus, its values are only active if it is strictly necessary, imposing the constraint with equality. Hence,

by construction, we expect that only few positions of λ(x) would be active, with λ(x)x=1 always active.

Advancing the solution, these positions would correspond to the FPs {ξ∗, ξ1
∗ , ..., ξ

M
∗ } at which f reaches

the ξ line. Anyway, we will proceed with the function λ(x), to evidence later on under which conditions

it may be discretized.

Moreover, we will assume that the regularity conditions (constraint quali�cation) for �rst-order local

optimality are ful�lled. In particular, we refer to the linear independence of the gradients of the constraints

at the solution. Applied to VC problems, this is usually denoted the normality condition, and it is

equivalent to requiring the matrix of constraint gradients at the solution to be of full rank [37].

From this point onwards, the rest of the section is completely dedicated to deriving the SPE and the

TCs that thoroughly describe the solution procedure to this VC problem. First, let us use the auxiliary

function below to group the terms inside the Lagrangian's integral (3.16),

F (t,Γ∗(t))
.
= PSR(Γ∗(t)) −

∫ 1

0
λ(x)R(t, x · Γ∗(t)) dx (3.17)
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Thereafter, we assume di�erentiability of (3.16) with respect to Γ∗(t), according to the chosen norm.

We consider variations v(t) over the SINR pro�le as Γ∗(t) + v(t) and independent scalar variations δtk
over each free corner and end point tk ∈ τ for k = 1, ..., p as tk + δtk, except at t0 = 0 where δt0 = 0.

In a general case, where F ≡ F (t,Γ∗(t),Γ
′
∗(t)) and free end/corner points are admitted, it is worth

taking into consideration variations δΓ∗(tk) over each tk, as shown in [1]. In our case, as F does not

depend on Γ′∗(t), it can be proven that the e�ect of adding these variations would have no impact over

the subsequent equations, except in one point at which this exception is clari�ed.

We de�ne the increment of the functional J , as ∆J
.
= J [Γ∗(t) + v(t)]− J [Γ∗(t)], with

∆J =

p∑
k=1

[ ∫ tk+δtk

tk−1+δtk−1

F (t,Γ∗(t) + v(t)) dt −
∫ tk

tk−1

F (t,Γ∗(t)) dt

]
(3.18)

For convenience, we expand the integral from [tk−1 + δtk−1, tk + δtk] into the three following subintervals:

[tk−1, tk] ∪ [tk, tk + δtk] ∩ [tk−1, tk−1 + δtk−1]. Therefore, we have that,

∆J =

p∑
k=1

[ ∫ tk

tk−1

∆F dt +

∫ tk+δtk

tk

F (t,Γ∗(t) + v(t)) dt −
∫ tk−1+δtk−1

tk−1

F (t,Γ∗(t) + v(t)) dt

]
(3.19)

with ∆F
.
= F (t,Γ∗(t) + v(t)) − F (t,Γ∗(t)) introduced with a little abuse of notation to symbolize the

increment associated with the function F . Hence, for in�nitesimal �rst-order variations v(t) and δtk, we

set ∆J → δJ and we expand it up to the �rst order, as follows,

δJ
∣∣∣
1st

=

p∑
k=1

[ ∫ tk

tk−1

(
∂F

∂Γ

)
v(t) dt + F (t−k ,Γ∗(t

−
k ))δtk − F (t+k−1,Γ∗(t

+
k−1))δtk−1

]
(3.20)

Moreover, we have introduced the notation t−k , t
+
k to indicate the left and right limits of every tk.

As well, ∂(·)/∂Γ denotes the partial derivative operator with respect to Γ, with

∂F

∂Γ
= PSR′ [Γ∗(t)] −

∫ 1

0
λ(x)

(
∂R

∂Γ

)
dx (3.21)

∂R

∂Γ
= x ·

(
h−1(t) + αθγ − αγΦ′ [x · Γ∗(t)]

)
(3.22)

where PSR′[Γ] denotes the �rst derivative of PSR[Γ].

Furthermore, a key concept necessary to understand VC problems is what is called admissible variations

(or admissible curves), which identi�es those functions that satisfy the constraints of a given VC problem.

In our case, we de�ne the set of admissible variations over the SINR pro�le, V, comprising the set of

functions (or curves) that verify the constraints (3.14 - 3.15), and the set of admissible variations over the

user indices, T , constrained by the user-index limits [0, 1] as follows,

V .
=

{
v(t) : 0 < x ≤ 1 ,

p∑
k=1

∫ tk

tk−1

(
∂R

∂Γ

)
v(t) dt ≤ 0

}
(3.23)

T .
=

{
δtk : 0 ≤ tk + δtk ≤ tk+1 + δtk+1 ≤ 1

}
(3.24)

where the set of inequalities in V only hold at those x-points where the function λ(x) is also active.
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Furthermore, we have that, for a di�erentiable functional, a necessary condition that an extremal

(optimum function) must satisfy is to have δJ
∣∣
1st

= 0,

p∑
k=1

[ ∫ tk

tk−1

(
∂F

∂Γ

)
v(t) dt + F (t−k ,Γ∗(t

−
k ))δtk − F (t+k−1,Γ∗(t

+
k−1))δtk−1

]
= 0 (3.25)

p∑
k=1

∫ tk

tk−1

(
∂F

∂Γ

)
v(t) dt +

p−1∑
k=1

[
F (t−k ,Γ∗(t

−
k ))− F (t+k ,Γ∗(t

+
k ))
]
δtk + F (t−p ,Γ∗(t

−
p ))δt−p = 0 (3.26)

which must be veri�ed for any variation v(t) ∈ V and δtk ∈ T . Therefore, this reduces to considering

the nullity of every term in (3.26), separately. For that reason, the ensuing sections are focussed on the

analysis of each of the mentioned terms.

Stationary point equation

For the �rst terms in (3.26), we have that the following must vanish for any admissible variation v(t) ∈ V,

p∑
k=1

∫ tk

tk−1

(
∂F

∂Γ

)
v(t) dt = 0 (3.27)

At this point, the reader should be familiarized with the Fundamental Lemma of the Calculus of Variations

(FLCV), which states that any extremal will satisfy ∂F
∂Γ = 0 for tk−1 < t ≤ tk when null variations at each

end/corner point v(tk) = 0 are considered. In our case, it is straightforward to see from [1] that in case

of having no dependence in Γ′∗(t), the previous statement is also ful�lled even if v(tk) 6= 0.

Therefore, using (3.22), we obtain the following set of k = 1, ..., p SPEs,

PSR′ [Γ∗(t)] =

∫ 1

0
x · λ(x) ·

(
h−1(t) + αθγ − αγΦ′ [x · Γ∗(t)]

)
dx tk−1 < t ≤ tk (3.28)

Transversality conditions

Moreover, from the second terms in (3.26), we get the transversality conditions at every corner t = tk
given by the set of subsequent k = 1, ..., p− 1 equations,

F (t−k ,Γ∗(t
−
k )) = F (t+k ,Γ∗(t

+
k )) (3.29)

that is, the left and right δtk variations must match at the corner points, which constitutes one of the

Weierstrass-Erdmann (WE) conditions held at every tk where the extremal has a corner. Substituting

(3.17) into (3.29), we obtain the following k = 1, ..., p− 1 equations,

PSR
[
Γ∗(t

−
k )
]
−
∫ 1

0
λ(x)R(t−k , x · Γ∗(t

−
k )) dx = PSR

[
Γ∗(t

+
k )
]
−
∫ 1

0
λ(x)R(t+k , x · Γ∗(t

+
k )) dx (3.30)

In addition, for free variations over the admission user index tp < 1, we have that Γ∗(t
+
p ) = 0. Hence,

F (t−p ,Γ∗(t
−
p )) = 0 (3.31)

PSR
[
Γ∗(t

−
p )
]
−
∫ 1

0
λ(x)R(t−p , x · Γ∗(t−p )) dx = 0 (3.32)
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We should understand that considering a space of functions allowing discontinuous solutions is not

enough to guarantee that the solution will be strictly discontinuous. In fact, to guarantee that a discon-

tinuous solution is permissible, the said extremal must ful�l the WE transversality conditions at every

point where it has a corner.

3.2.2 Concerns about the inequality constraints

At this point of the work, any reader may be eager to know how many of the imposed inequality constraints

should be active in order to satisfy the stated VC problem. This section is devoted to achieving this goal.

The hypothesis that we have defended from the beginning of Section 3.2.1 is that the solution pro�le

does not correspond to a continuous subset of active inequalities. Therefore, activating �nite number

of positions of λ(x) is enough to ful�l the stated problem. Thus far, it was only a conjecture, which is

addressed in the following lines.

Let us assume the contrary, that there exists a

continuous set of slack variables activated so that a

SINR pro�le can be found that ful�ls the constrained

VC problem. In terms of the interference function

f , this means that there exists a continuous region

ξ1 ≤ ξ ≤ ξ2 such that f is exactly found over the

ξ line, and that by construction, f(ξ) = ξ and

f ′(ξ) = 1, as depicted in Figure 3.2.

Alternatively, the same rationale can be followed us-

ing the function R and the inequalities in (3.15).

ξ Line
f(ξ)

Interference level ξ ξ1 ξ2

Figure 3.2: An example of an impossible f .

It is easy to see that, by construction, if the previous rationale holds, f would be non-di�erentiable at

ξ1, ξ2, fact that contradicts the de�nition of f (see Section 2.4).

Given the results, we are able to state that at the stationary point, λ(x) takes the form

λ(x) =

M∑
i=0

λiδ(x− xi) (3.33)

with λi the i-th coe�cient associated with the active position xi (x0 = 1), δ(x) the Dirac's delta function

and M the number of active inequalities. Non activated inequalities have null associated multipliers. For

convenience, during the rest of the document we are going to refer

Λ
.
= [ λ0, λ1, ... , λM ]T (3.34)

x
.
= [ 1 , x1, ... , xM ]T (3.35)

It is important to point out that, although at the stationary point λ(x) can be discretized, any solution

with an arbitrary discretization of such λ(x) must guarantee that the initial constraint set by λ(x) is met.
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3.2.3 Constraints over the VC problem

This section is dedicated to explicitly show the constraints over the formalized VC problem as a conse-

quence of the discretization shown in Section 3.2.2.

At the FP ξ∗, that is, for x = 1, as imposed from the beginning, we have that (3.14) is veri�ed,

p∑
k=1

∫ tk

tk−1

R(t,Γ∗(t)) dt =

p∑
k=1

∫ tk

tk−1

(
Γ∗(t)(h

−1(t) + αθγ) − αγΦ [Γ∗(t)]
)

dt = γ (3.36)

Another relevant aspect is what are the equations that those active inequalities must ful�l. For a better

understanding of the following rationales, we depict in Figure 3.3 an example of the relation between both

f and R functions,

ξ Line

f (ξ)

ξ1
∗

ξ∗

γ Line
∫
R dt

γ

x1 =
N0+ξ∗
N0+ξ1

∗

x0 = 1

Figure 3.3: An example of the relation between f and R.

At those active inequalities {x1, ..., xM}, (3.15) is hold with equality. Hence, for i = 1, ...,M ,

p∑
k=1

∫ tk

tk−1

R(t, xi · Γ∗(t)) dt =

p∑
k=1

∫ tk

tk−1

(
xi · Γ∗(t) · (h−1(t) + αθγ)− αγΦ [xi · Γ∗(t)]

)
dt = γ (3.37)

Furthermore, by construction, as
∫
R dt ≤ γ is veri�ed along the variable x (see the right part of Figure

3.3), this implies to acknowledge that those points where the inequality is hold with equality must be

tangent to the γ line. Mathematically, we take the derivative with respect to the variable x at both sides

of (3.37) obtaining

p∑
k=1

∫ tk

tk−1

∂R

∂Γ

∣∣∣∣
xiΓ∗(t)

Γ∗(t) dt =

p∑
k=1

∫ tk

tk−1

(
h−1(t) + αθγ − αγΦ′ [xi · Γ∗(t)]

)
Γ∗(t) dt = 0 (3.38)

It is important to highlight that we are dealing with the determination of a extremal function in a

space of in�nite dimensions. For that reason, in terms of computational-complexity, the determination

of the optimum pro�le that veri�es the stated equations would not be easy to address and its resolution

would become, in all likelihood, a hard-computational problem. In the following section, we address a

simple case in which the solution procedure of the stated VC problem is easier.
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3.3 Optimization problem: the constant channel case

Given the computational complexity presented by the stated equations in the generic case of a known

channel, we consider a simpli�cation where we assume users subject to uniform channel gains h(t) = h.

Without loss of generality, we will incorporate these channel gains into the average EsNo by setting

γ = E · h/N0.

In this case, there is an ambiguity in the establishment of the user ordering as a function of the channel

gains, given that all users perceive equal channel coe�cients. This can be related with the fact that, when

considering uniform channel gains, the deterministic energy allocation strategy coincides with a random

energy selection from a continuous probability function. Therefore, with the focus on the described

scenario, as we consider the deterministic energy allocation case, the feedback channel is required to

assign each user its order over the variable t.

3.3.1 SPE, TCs and constraints over the VC problem

Similarly to Sections 3.2.1 and 3.2.3, in this Section we present the SPE, TCs and the constraints over

the VC problem particularized for the case of uniform channel gains.

The k = 1, ..., p SPEs (3.28) are turned into the following

PSR′ [Γ∗(t)] =

∫ 1

0
x · λ(x) ·

(
1 + αθγ − αγΦ′ [x · Γ∗(t)]

)
dx tk−1 < t ≤ tk (3.39)

Moreover, the WE transversality conditions (3.30) at every corner tk for k = 1, .., p− 1 result in

PSR
[
Γ∗(t

−
k )
]
−
∫ 1

0
λ(x)R(x · Γ∗(t−k )) dx = PSR

[
Γ∗(t

+
k )
]
−
∫ 1

0
λ(x)R(x · Γ∗(t+k )) dx (3.40)

and the additional equation (3.32) only valid when the user admission index tp < 1 is turned into

PSR
[
Γ∗(t

−
p )
]
−
∫ 1

0
λ(x)R(x · Γ∗(t−p )) dx = 0 (3.41)

In this case study, (3.39) does only depend on Γ∗(t) and not on t, and thus, the optimum SINR pro�le,

Γ∗(t), should be constant within each interval, yielding a multi-uniform function. Therefore, the solution

would be the function with levels Γ∗ according to the user intervals ∆t, as de�ned below,

Γ∗
.
= [ Γ1

∗ , ... , Γp∗, 0 ]T (3.42)

∆t
.
= [ ∆t1, ... ,∆tp, ∆tp+1 ]T (3.43)

with ∆tk
.
= tk − tk−1 the length of the k-th user interval and ∆tp+1

.
= 1 − tp introduced to de�ne the

fraction of users assigned with zero energy.

Furthermore, with these de�nitions, the constraints over the VC problem (3.36 - 3.38) are analysed in

the following lines. In particular, as the solution is uniform in each interval, we are able to change the

integrals of every constraint for summations:

(i) For x = 1, (3.36) is turned into the following,

∆tTR(Γ∗) = ∆tT (Γ∗(1 + αθγ) − αγΦ [Γ∗]) = γ (3.44)
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(ii) The inequality constraints at those active positions {x1, ..., xM} (3.37 - 3.38) are converted into,

∆tTR(xi · Γ∗) = ∆tT (xi · Γ∗(1 + αθγ) − αγΦ [xi · Γ∗]) = γ (3.45)

(∆t ◦ Γ∗)
TR′(xi · Γ∗) = (∆t ◦ Γ∗)

T
(
1 + αθγ − αγΦ′ [xi · Γ∗]

)
= 0 (3.46)

with ◦ denoting the Hadamard product operator.

The following section is devoted to addressing the derivation of the second variation of J , given that, in

previous works, it has been a great help during the resolution of VC problems.

3.3.2 Second variation analysis

We derive the expression for the second variation of J in order to evidence under what conditions the

obtained solution is the extremal that maximizes the functional psr∗.

We continue considering variations v(t) over the SINR pro�le Γ∗(t) and scalar variations δtk over each

free corner and end point tk. For second order variations on v(t) and δtk, we take (3.19) and we expand

it up to the second order, as follows,

δJ
∣∣∣
2nd

=

p∑
k=1

∫ tk

tk−1

[(
∂F

∂Γ

)
v(t) +

1

2

(
∂2F

∂Γ2

)
v2(t)

]
dt

+

p∑
k=1

[
F (t,Γ∗(t))δt +

(
∂F

∂Γ

)
v(t)δt +

(δt)2

2
∇tF (t,Γ∗(t))

]t−k
t+k−1

(3.47)

At the stationary point, we have that ∂F/∂Γ = 0, that is, the �rst variation vanishes along with many

second order cross-terms. Furthermore, in case of uniform channel gains we have that ∇tF |SP = 0.

Hence, we set δJ |2nd → δJ |2nd,SP, and the second variation reduces to the following

δJ
∣∣∣
2nd,SP

=
1

2

p∑
k=1

(
∂2Fk
∂Γ2

)∫ tk

tk−1

v2
SP(t) dt (3.48)

∂2Fk
∂Γ2

= PSR′′[Γk∗] + αγ

M∑
i=0

λi · x2
i · Φ′′[xi · Γk∗] (3.49)

with the k-th sub-index indicating the evaluation for the k-th piece of the solution pro�le and where the

variations vSP(t) are subject to the admissible conditions (3.23) at the stationary point. At this point,

the reader may notice that δJ |2nd,SP only involves variations v2
SP(t) over the SINR pro�le. Therefore,

a su�cient condition for ensuring that the multi-uniform pro�le maximizes psr∗ is to set δJ |2nd,SP < 0,

which must be veri�ed for any v2
SP(t). Naturally, as

∫
v2

SP(t) dt > 0, the negativeness of (3.49) for all k

is a su�cient condition to have a local maximizer. As (3.49) depends on the solution pro�le, it must be

checked during the resolution procedure.

Nonetheless, we seek for an additional condition that allows us to predict the behaviour of the solution

pro�les. In Annex C, we derive that p ≤M + 1 must be veri�ed in order to guarantee that the solution

is not a saddle point. For several reasons the obtained inequality has become relevant during the work:

(i) The number of levels of the solution pro�le p is bounded by the number of FPs in f , M + 1.

(ii) Intuitively: every time a new level appears, 2 new degrees of freedom are needed to be solved (i.e.

the level value and its interval length), which coincides with the 2 equations imposed by every active

inequality (3.45 - 3.46).
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3.3.3 Solution procedure

In the previous section, we showed that VC reduces the search of the optimum SINR to a multiuniform

structure. Henceforth, we make use of classical optimization tools to address its resolution. There are

two alternative ways of computing the solution of the former problem,

(i) Solving the system of equations constituted by the set of SPEs, TCs and constraints obtained from

particularizing the derived equations of the VC problem for the case of constant channel gains.

In this case, we consider a discretization of the function λ(x), comprised by the set of multipliers Λ

at the positions x (see Section 3.2.2), and we make a summary of the number of unknowns to be

determined (left) and the equations we have derived (right),

Unknowns

SINR levels Γ∗ : p

User intervals ∆t : p+ 1

Multipliers Λ : M + 1

{x1, x2, ..., xM} : M

Number of unknowns : 2p+ 2M + 2

Equations

SPEs (3.39) : p

TCs (3.40 − 3.41) : p

Constraints (3.44 − 3.46) : 2M + 1

1T∆t = 1 : 1

Number of equations : 2p+ 2M + 2

The stated system constitutes a set of 2p+ 2M + 2 equations/unknowns that needs prior knowledge

of the variables p and M .

However, the reader should note that there is no guarantee that any SINR solution pro�le verifying

the previous system of equations will satisfy the constraints of the initial VC problem. In fact, as

the function λ(x) has been discretized, for every solution pro�le we found we must check if the

initial constraint imposed by λ(x) is met.

(ii) Solving the following discrete optimization problem, obtained from changing the integrals of the VC

problem (3.13 - 3.15) for summations,

max
∆t, Γ∗

psr∗ = ∆tTPSR [Γ∗] (3.50)

s.t. γ = ∆tTR(Γ∗) (3.51)

s.t. γ ≥ ∆tTR(x · Γ∗) 0 < x < 1 (3.52)

s.t. 1 = 1T∆t (3.53)

s.t. ∆t ≥ 0 , Γ∗ ≥ 0 (3.54)

which constitutes a non-convex discrete optimization problem that needs prior knowledge of the

number of levels p. Moreover, the reader should note that (3.52) constitutes an equation with

a continuous set of constraints to enforce, which must be discretized in a �nite but large set of

inequality constraints.

Still, even in the uniform channel case and for an arbitrary combination of scenario parameters, the

derived equations do not provide further information as to know how many pieces p the solution pro�le

has, neither the number of tangencies M that are involved.

We have developed an own method that allows us to compute the optimal SINR pro�le in a more

comfortable and easy way. The following section is devoted to explain the said algorithm.
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3.3.4 Solution procedure. Incremental method

We are interested in designing an algorithm that allows the reader to reach the saturation point of the

system as fast as possible. The described algorithm mixes both previous stated resolution methods.

Preliminaries

First, we will explain some steps which are necessary to understand the algorithm rationale.

The reader should note that, when the system works at very low load α → 0, no active inequality is

set, and thus, the optimal SINR pro�le is uniform with p = 1 and M = 0.

We will propose an incremental method in the tra�c load α that allows the computation of the SINR

pro�le Γ∗,∆t along with the required variables Λ,x of the former problem. The underlying idea behind

this incremental method is that solution pro�les corresponding to closer tra�c loads (α and α+ dα) are

not substantially di�erent. Naturally, this assumption is realistic in those regimes where the values of

p and M are maintained. At those points where the optimum SINR pro�le needs an additional level

or tangency, the solution may be drastically di�erent, and hence, a more sophisticated search over the

optimum values must be performed.

For simplicity during the rest of this section, we re-de�ne the variables

Γ∗
.
= [ Γ1

∗ , ... , Γp∗ ]T (3.55)

∆t
.
= [ ∆t1, ... ,∆tp ]T (3.56)

x
.
= [ x1 , ... , xM ]T (3.57)

where we have suppressed the last positions of Γ∗,∆t and the �rst position of x.

Under an initialization (X0) close enough to the optimum point, the discrete optimization problem in

(3.50 - 3.54) results equivalent to the following

max
Γ∗,∆t, x

(X0) ∆tTPSR [Γ∗] (3.58)

s.t. γ = R
[
ΓT∗
]
∆t (3.59)

s.t. γ · 1 = R
[
x · ΓT∗

]
∆t (3.60)

s.t. 0 = R′
[
x · ΓT∗

]
(Γ∗ ◦∆t) (3.61)

s.t. 1 = 1T∆t (3.62)

s.t. ∆t ≥ 0 , Γ∗ ≥ 0 , x ≥ 0 , x ≤ 1 (3.63)

where we have discretized the set of in�nite inequalities (3.52) into 2M equality constraints (3.60 - 3.61).

It should be highlighted that the solution of this discrete optimization problem corresponds to the closest

optimum to X0.

Description of the incremental algorithm

Let X (α) = {α,E,N0,PER[Γ],Φ[Γ]} be the set of parameters of the considered scenario for which we

want to compute its optimal SINR pro�le, with α the system's tra�c load. Let α0 be a tra�c load for

which the uniform SINR pro�le optimizes the stated problem for the parameter set X (α0).
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Let us start the algorithm with α0, tra�c load for which the optimum SINR pro�le is known, i.e.

uniform SINR pro�le. From this known pro�le, the next step is to increase the tra�c load by α+ dα and

solve the discrete optimization problem (3.58 - 3.63) using as initialization seed the obtained solution for

the previous iteration (α0). For su�ciently small dα, the solution pro�les from consecutive loads will not

di�er too much. Thus, the proposed initialization results in a intelligent way to counteract the ignorance

of the variables that involve the optimum pro�le. The following lines are dedicated to detail the proposed

iterative algorithm,

(i) At the 0th iteration (i = 0), consider the initial tra�c load α0 and initialize p = 1 and M = 0.

Using the energy pro�le Er(t) = E for 0 < t ≤ 1, compute the interference level ξ∗ from ξ∗ = f(ξ∗).

(ii) De�ne the initialization point for the 1st iterationX0, as the concatenation of Γ∗ = [ E/(N0 +ξ∗) ],

∆t = [ 1 ] and x = [ ].

(iii) Update variables α→ α+ dα and i→ i+ 1.

(iv) Solve the discrete optimization (3.58 - 3.63) problem using the initialization seed X0.

(v) Compute Λ from the SPE and WE TCs and check constraints of the VC problem.

(vi) If the constraints are:

(a) OK: Save results. Update the initialization point X0 with the obtained optimum variables

Γ∗,∆t,x. Return to (iii).

(b) Not OK: Analyse results computing
∫
R dt for 0 < x < 1.

(i) If a new tangency appears:

Set M →M + 1 and p→ p+ 1.

Modify the used initialization point in order to include the new variables.

Return to (iv).

(ii) The system has reach its saturation point (Enable user admission index tp < 1).

Set p→ p+ 1. Modify the used initialization point in order to include the new variables.

Return to (iv).

The reader should note that, in fact, when a new tangency is set, it does not imply that a new level

should be activated. Nonetheless, we decided to set the new level in order to include an additional degree

of freedom, allowing the algorithm to use it when the time is right.

In fact, in this section we make use of the knowledge obtained during the simulations, where it is

highlighted that pro�les with higher levels provide better performances. However, to reach local optima,

it is not necessary to include a new level in the point where a new tangency appears, step (vi.b.i) in the

algorithm.





Chapter 4

Simulations and Results

As the derived asymptotic expressions in Chapter 3 depend on the considered FEC code, we have evaluated

the performance of the proposed PMDF scheme for two representative FEC codes of rate Rc = 1/2:

(a) The classical convolutional code (CC) with constraint length K = 7 and generator polynomials 133oct

and 171oct adopted in the standards DVB-S [38] or IEEE 802.11 [39] with soft symbol decisions.

(b) The quasi-cyclic Low-Density Parity-Check (LDPC) code of the DVB-S2 standard [40].

The LDPC is selected as example of an abrupt PER[Γ] curve whereas the CC is used to evaluate the

performance of the proposed scheme for a smoother PER[Γ] curve. Anyhow, the results in this section

can be repeated for any modulation and coding scheme as long as perfect knowledge of its PER curve is

available. Figure 4.1 depicts the PER[Γ] (left) and PSR[Γ] (right) curves of both aforesaid codes, which

we use as lookup tables instead of performing the real encoding and decoding processes.
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Figure 4.1: PER[Γ] and PSR[Γ] curves of the LDPC (blue) and CC (red) codes.

Diamond markers denote the simulated Monte Carlo points corresponding to the LDPC (blue) and CC

(red) codes. In continuous line, we show the interpolated PER[Γ] and PSR[Γ] = 1−PER[Γ] curves within

the region de�ned by the simulated Γ-points, while dashed lines indicate their linearly log-extrapolated

regions. For the CC, asterisks show further Monte Carlo simulations that validate the extrapolation.

Small discrepancies appear for the LDPC while a negligible mismatching between both the Monte Carlo

and the interpolated/extrapolated models is evidenced for the CC. However, at the extrapolated regions,

notorious dissimilarities would appear for increasing Γ, and thus, exact PER and PSR values should only

be assumed true within the simulated Γ points. Anyway, we decided to use the present models given that

their derivatives result well de�ned (see Appendix E for further clari�cations).
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4.1 User-asymptotic simulations

We have evaluated the asymptotic theoretical expressions for a representative scenario under uniform

channel gains h(t) = 1 that follows the described system model in Chapter 2. We consider QPSK-

modulated spread-spectrum users transmitting with a shaping pulse of roll-o� factor β = 01 and an

average EsNo γ = 15 dB. At the decoder, for lack of knowledge of the residual interference power function

ε(Γ), we will assume it independent of Γ, with ε(Γ) = 0.1, and the decorrelation factor is set to θ = 1.

4.1.1 Spectral e�ciency and average system's PER over all users

We depict in Figure 4.2 the average spectral e�ciency over all users for the computed optimal pro�les

and for both described codes. Also, in order to evidence the bene�t of the studied PMDF scheme, we

have evaluated the correlator bank introduced in Appendix F (black line).
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Figure 4.2: Spectral e�ciency vs. tra�c load α for the LDPC (left) and the CC (right) codes. Dashed lines
indicate the critical loads from which: an additional energy level is appended (change loads) or the user admission
index is enabled, while maintaining the number of non-zero energy levels (collapse loads). For p = 1, both the
change and the collapse loads coincide.

The continuous blue line illustrates the spectral e�ciency achieved with a single energy level, which

coincides with the extremal that maximizes the system's performance in the space of continuous functions

with a user admission index. In our considered space D, the throughput of the system is signi�cantly

improved by introducing more levels into the ordered energy distribution. For both simulated codes, the

�rst level (p = 1) is maintained until it collapses. Contrarily, for the rest of levels it is convenient to

switch to a pro�le with one more level before they collapse.

For the sake of simplicity, we stopped the simulations at p = 5 for both the LDPC and the CC codes,

but more levels are expected for increasing loads. As expected, since the LDPC is more powerful than

the CC, it accepts more load for the same number of levels. For the performed simulations, the maximum

accepted load for each code is α = 1.6348 and α = 1.3684, respectively. In both cases, the spectral

e�ciency exceeds 1 bps/Hz, the theoretical limit value for orthogonal multiple access.

Moreover, it should be noted that the throughput maximization problem resulted in an optimization

task with multiple solutions (multimodal). In that respect, as to evidence the discrepancies between the

di�erent optima, we illustrate in Figure 4.3 the average PER over all users at the FP ξ∗, per∗ = 1− psr∗,

for the computed optimal pro�les and for both described codes.

1The selection of the roll-o� factor results in a proportionality factor over the spectral e�ciency. The chosen value does
not correspond to a practical case, but it has been chosen in order to simplify the interpretation of the results.
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Figure 4.3: Average PER over all users vs. tra�c load α for the LDPC (left) and the CC (right) codes.

For those tra�c loads in which many extremal functions appear, the absolute optimum corresponds

to the pro�le with more levels. Nevertheless, near the change loads (black dashed lines), there is an

insigni�cant performance degradation when considering local optima with a lower but close number of

levels than the pro�le associated with the absolute optimum point.

4.1.2 Optimum EsNo pro�les

In this Section, we present the optimum EsNo pro�les as a function of the tra�c load. For a better

understanding, we divide this section in two main parts. First, we only depict the values associated with

the absolute optimum solution pro�les, for later on evidence their evolution for the local optimum cases.

Absolute optimum EsNo pro�les

We detail in Figures 4.4 and 4.5 the evolution of the absolute optimal EsNo levels and their associated

user intervals, respectively, as a function of the tra�c load.
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Figure 4.4: Absolute optimum EsNo levels vs. tra�c load α for the LDPC (left) and the CC (right) codes.

At every change load, a new level appears from the �rst or second strongest EsNo level. At these loads,

the magnitude of the imbalance between levels is lessened the more abrupt the PER curve of the used

FEC code is. The lowest EsNo level continuously decreases as the load increases. Near the collapse load
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of p = 5 (blue dashed line), all the EsNo levels, except the strongest one (red line), fall asymptotically to

zero unless the admission user index is enabled.
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Figure 4.5: Absolute optimum user intervals vs. tra�c load α for the LDPC (left) and the CC (right) codes.

As a general rule, the new EsNo levels are incorporated with few users contained in them, and keep

increasing their lengths while the tra�c load increases. Moreover, for FEC codes with abrupt PER

curves, the new incorporated levels that appear present similar user intervals (e.g. for α = 1.5 we have

∆t1 ≈ · · · ≈ ∆t4 ≈ 0.15 and ∆t5 ≈ 0.4); such that, in practice two di�erent interval values appear.

Additionally, the lowest EsNo level is the one containing the higher fraction of users. For the simulated

cases, the collapse load of p = 5 corresponds to the case in which its EsNo levels are equally distributed

over the user ordering, that is, ∆t1 = · · · = ∆t5 = 0.2.

Local optimum EsNo pro�les

Over the previous �gures, we also depict in dashed lines, the EsNo values corresponding to the local

optimum pro�les, that is, the pro�les resulting of not appending additional levels, at the change loads,

over the user ordering.
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Figure 4.6: EsNo levels vs. tra�c load α for the LDPC (left) and the CC (right) codes.

At the collapse loads, lower energy levels fall asymptotically to zero unless the admission user index is

enabled. It should be remarked that, due to this asymptotic behaviour, the determination of the optimal

pro�les turned out very di�cult since strong numerical issues appeared.
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Figure 4.7: User intervals vs. tra�c load α for the LDPC (left) and the CC (right) codes.

In these local optimum pro�les, the user interval corresponding to the lowest energy level decreases

while, in general, the rest of intervals increase until they collapse. The collapse load of each pro�le

occurs when their levels are equally distributed over the user ordering, e.g. for p = 2 we have that

∆t1 = ∆t2 = 0.5.

Monte Carlo simulations

We have validated the results of the discrete non-linear optimization by evaluating the asymptotic ex-

pressions for random generated multi-uniform energy pro�les and by computing between 108 - 109 Monte

Carlo simulations for each tra�c load.

In that respect, the dimensionality of the searching space is 2p − 2 (2p degrees of freedom for each

pro�le and 2 equations (energy constraint and user interval length)). For the low dimensionality cases,

we show in Figures 4.8 and 4.9 the Monte Carlo points depicted as diamond markers over the previous

Figures 4.6 and 4.7.
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Figure 4.8: EsNo levels vs. tra�c load α for the LDPC (left) and the CC (right) codes. Monte Carlo simulations.

Results show the matching between both the discrete optimization and the Monte Carlo simulations,

and highlight the bene�t of using the proposed incremental algorithm described in Section 3.3.4 at the

cost of computing the optimal pro�les associated with the preceding tra�c loads.
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Figure 4.9: User intervals vs. tra�c load α for the LDPC (left) and the CC (right) codes. Monte Carlo simulations.

4.1.3 Optimum SINR pro�les

As the SINR level values are also relevant for the evaluated expressions, we depict in Figure 4.10 the

values of the optimum SINR pro�les at the FP ξ∗.
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Figure 4.10: SINR levels vs. tra�c load α for the LDPC (left) and the CC (right) codes.

As a general rule, it is bene�cial to decrease the values of the lower SINR levels as the load increases.

On the contrary, stronger users (red line) are able to practically maintain their SINR levels or even increase

them. In particular, for both codes and p ≥ 3, the strongest SINR level (red line) is increased with every

new appended level.

4.1.4 Evolution of the number of levels p and the tangencies M

As we are interested in evidencing whether the obtained solution maximizes the functional psr∗ according

to the derived expressions in Section 3.3.2, we depict in Figure 4.11 the evolution of the variables {p,M}
as the tra�c load increases.

We show the achievable region, which describes where the inequality p ≤ M + 1 is satis�ed. That is,

inside this shadow region, the multiuniform function obtained in Section 3.2 maximizes psr∗.
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Figure 4.11: Evolution of p and M vs. tra�c load α for the LDPC (left) and the CC (right) codes.

As can be seen in Figure 4.11, the behaviour of the �rst level is di�erent when compared with the

other ones. For the uniform pro�le (p = 1), once the �rst tangency appears, it is convenient to change to

a pro�le with two levels. This is because the uniform pro�le does not have any degree of freedom to force

that f does not exceed the ξ line. In any other case, once a new tangency appears it is worth maintaining

the same number of levels during a certain amount of load. After that, it is bene�cial to introduce a new

level into the users pro�le. Moreover, the mentioned amount of tra�c load is reduced the more abrupt

the PER curve of the used FEC code is.

4.1.5 Dependence with the average transmitted EsNo

In Section 4.1.1, we showed the average PER over all users when using two di�erent codes while main-

taining the same working EsNo γ = 15 dB. This section is devoted to illustrating the deviation of the

system's performance, in terms of average PER, with the working average transmitted EsNo γ, which for

simplicity it is only presented for the CC.

We have evaluated the asymptotic equations for di�erent γ values. In particular, we depict in Figure

4.12 the average PER over all users at the FP ξ∗ for the average EsNo values: γ = {10, 15, 20} dB.

As the average EsNo γ increases, the pro�les

with the same number of levels are able to accept

more tra�c load before appending a new level.

In other words, the collapse loads are displaced

towards increasing loads. These movements are

more notorious the more levels the target pro�les

have, e.g. at the change load from 1 to 2 levels,

the di�erence between collapse loads of 10dB and

20dB is ∆α ≈ 0.10 while in the change load from

4 to 5 levels is ∆α ≈ 0.16.

Additionally, in terms of average PER, it can be

seen that the shape of the depicted curves is the

same but they are displaced along the y-axis.
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Figure 4.12: Average PER vs. tra�c load α for the
CC and di�erent γ values.

For the same increment in γ, a signi�cant performance improvement is experimented for moderate γ

values (10dB) while, for high EsNo values (15dB), this gain is reduced.
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4.1.6 Dependence with the δ constriction

This section is dedicated to showing the dependence of the system's performance as a function of the

tunnel width δ. For simplicity, we will only evaluate this section for the CC and the same EsNo pro�le,

the one associated with the collapse load of 2 levels (α = 1.077), since the obtained results can be easily

extrapolated for any considered pro�le.
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Figure 4.13: Collapse EsNo pro�le of 2 levels for the
CC computed with δ = 0.
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Figure 4.14: Function f that generates the collapse
EsNo pro�le of 2 levels for the CC with δ = 1 · 10−4.

We also show in Figure 4.15, the evolution, throughout DF stages i, of the common MAI level ξi (left)

and its associated average PER over all users (right).
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Figure 4.15: Interference level (left) and average PER (right) throughout DF stages (i) for di�erent δ values.

The system performs more iterations at the regions in which it crosses each one of the tunnels. The

common MAI level is practically static over small changes on δ (see the left part of Figure 4.15) while the

number of DF stages necessary to get the FP is signi�cantly reduced. For the simulated cases, the overall

PER su�ers from negligible deviations. Nonetheless, these deviations may depend on the working point

at the PER curve at which the system works.

An increase of the δ parameter results in an improvement of the average PER, but it must be remarked

that it is the consequence of a reduction in the tra�c load. The present load imbalance is only optimal

when an in�nitesimal reduction is performed and the system's latency is not constrained. Otherwise,

in case of latency constrained systems, it is worth to reformulate and solve the stated VC problem by

introducing a function g(ξ) in order to open the tunnels.
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4.1.7 Evolution of the optimal pro�les

This section is completely devoted to showing the evolution of the optimum EsNo pro�les and the in-

terference function, f , they generate as the tra�c load increases. This section may be of interest given

that the proposed algorithm in Section 3.3.4 is based on the similarity assumption between solutions

corresponding to closer tra�c loads.

In the following �gures, we depict the mentioned evolution, that, for simplicity, is only presented for

the CC. In particular, in all the subsequent �gures, three pro�le examples with the same number of levels

are illustrated. They correspond to three di�erent tra�c loads: �rst, near the change load; second, after

a new tangency appears; and �nally, at the collapse load. The absolute optimum pro�les are shown in

continuous lines while the local optimum ones are depicted in dashed lines.

Anyway, any reader may be free to infer the major part of the subsequent rationales, extracted from

the CC, for any code in order to predict the evolution of its optimum functions as the tra�c load increases.
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Figure 4.16: Optimum EsNo pro�les of 1 (above) and
2 (below) levels for three tra�c load values.
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Figure 4.17: Function f that generate the depicted
pro�les of 1 (above) and 2 (below) levels.

For low tra�c loads, the optimum pro�les are uniform (see the upper part of Figure 4.16, where the

three pro�les are overlapped). The interference function that this pro�le generates for very low tra�c

loads (e.g. α = 0.1000, blue line) is practically �at over the variable ξ, as depicted in the upper part of

Figure 4.17. As the tra�c load increases, f (red line) gets closer to the ξ line (black line) until they are

tangent (yellow line).

The natural tendency of the function f , as the tra�c load increases, is to surpass the ξ line, which

would not satisfy the constraints of the stated VC problem in Section 3.2. Therefore, the load α = 0.7311

becomes the collapse load of the uniform pro�le, and hereupon, a new inequality multiplier is activated,

which sets a tangency such that the constraints imposed over the stated VC problem are veri�ed.

As depicted in the lower part of Figures 4.16 and 4.17, near the change regions between 1 and 2 EsNo

levels (α = 0.7500), it is bene�cial to convert the uniform pro�le into a bi-uniform one. This pro�le

contains a high EsNo level with few users whereas the rest of the users are allocated to a lower EsNo

value (blue line). As shown in the lower part of Figure 4.17, a single tangency is hold (blue line). For

subsequent tra�c loads, it is convenient to modify the prior pro�le by adding more users into the strong

EsNo level. At the load α = 0.8626 (red line) a new tangency appears, and thus, another inequality

multiplier is activated in order to ful�l the constraints over the stated VC problem.

At this point, two options appear: (i) continue with p = 2, or, (ii) set p = 3. In the �rst case, the

highest EsNo level continues increasing its value along with the fraction of users that it contains. On the
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contrary, the lowest EsNo level decreases its value as well as its number of users. The stated behaviour is

preserved until both levels are equally distributed over the user ordering i.e. ∆t1 = ∆t2 = 0.5 (yellow line).

Regarding the interference function f , both tangencies are moved over the ξ line in opposite directions

(see the lower part of Figure 4.17). Further from this collapse load, the user admission index should be

enabled in order not to degrade the system's performance. However, after the new tangency appears,

it seems bene�cial to introduce a new level into the ordered energy distribution as stated in previous

sections. In fact, during a certain amount of load, the new appended level is set equal to one of the

previous levels, meaning that only 2 levels are necessary. Later, the last introduced level is imbalanced

from the others resulting in a tri-uniform pro�le.
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Figure 4.18: Optimum EsNo pro�les of 3 (above) and
4 (below) levels for three tra�c load values.
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Figure 4.19: Interference function f that generate the
depicted pro�les for three tra�c load values.

As illustrated in the upper part of Figure 4.18, the �rst tri-uniform pro�le does not follow the same

behaviour when compared with the initial bi-uniform pro�le in Figure 4.16. In this case, it is convenient

to append a new energy level between both previous levels with few users comprising in it (blue line). The

interference function that generates such a pro�le has M = 2 tangencies (see the blue line on the upper

part of Figure 4.19). Regarding the EsNo levels, the �rst level increases while the rest of levels decrease.

For the new energy level, its user interval increases while it decreases for the rest of the levels (blue line).

This behaviour is maintained until a new tangency, between the previous ones, appears (red line).

Again, we set a new inequality multiplier and, from here, two options arise: (i) continue with p = 3; (ii)

set p = 4. In the �rst case, the �rst level increases its EsNo level while the second and the third one

decrease theirs. Moreover, the lengths of the two highest EsNo levels keep increasing whereas the length

of the lowest one decreases until they are equally distributed i.e. ∆t1 = ∆t2 = ∆t3 = 1/3 (see the yellow

line on the upper part of Figure 4.19). As far as the tangencies are concerned, the tangency with greater

interference level is moved towards increasing positions while the other ones decrease their positions.

As depicted in the lower part of Figure 4.18, in case of p = 4 (blue line), the new appended level

has the second greatest EsNo level. Before the new tangency appears, its EsNo levels remain practically

static although the highest and lowest EsNo levels experiment a slight increase and decrease, respectively.

The user intervals of the �rst and last level decrease while the intermediate ones increase. Once the new

tangency appears (red line), the highest EsNo level increases while the rest of ones decrease, and their

intervals increase, except the last one, until they are equally distributed (yellow line).
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In Figure 4.20, we present the optimum EsNo pro-

�les for p = 5 levels (above) and the interference

function that they generatee (below). In this case,

the new EsNo level appears the third level into

the ordered distribution with few users comprised

therein (blue line). As the tra�c load increases,

the �rst 2 levels increase their EsNo values while

diminishing their user intervals. On the contrary,

the rest of levels decrease their EsNo values and

increase their lengths except the lower level, which

decreases its user interval (red line). Again, after

a new tangency appears, the optimum EsNo pro-

�le evolves until their levels are equally distributed

over the user ordering i.e. ∆t1 = · · · = ∆t5 = 0.2.
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Figure 4.20: Optimum EsNo pro�les of 5 levels
(above) and the interference function f they generate
(below) for three tra�c load values.

To conclude this section, we summarize the main contributions evidenced during the evolution of the

optimal EsNo pro�les:

(i) The uniform pro�le is held until it collapses while the rest of pro�les are changed after a new

tangency appears.

(ii) Every time a new level is appended, it is worth introducing few users.

(iii) Before a new tangency appears, the pro�les evolve in such a way that, the highest EsNo level

increases and the lowest one decreases. Their user intervals progress depending on the number of

levels p of the optimum pro�le.

(iv) Tangencies are shifted along the ξ line as the tra�c load variates.

(v) Local optimum pro�les can be maintained until their levels are equally distributed over the user

ordering.





Chapter 5

Conclusions and Future Work

In this thesis, we have investigated the throughput maximization of a dense multiple access network

of low-rate and energy-limited users sharing the same FEC code and whose central node implements a

parallel multistage decision-feedback scheme for MAI mitigation. In the user-asymptotic case, we have

employed VC techniques for determining the optimum energy allocation function that maximizes the

spectral e�ciency of such a multiple access network when user transmissions are constrained to ful�l a

long-term per-user average energy constraint. This constitutes a scenario of interest for massive wide area

M2M communications, currently an area of active research.

Although VC provides valuable tools for addressing the optimization of global utilities over a space of

functions (e.g. aggregate packet error rate), it has been seldom applied in communication contexts. In this

respect, massive multiple access has revealed itself a specially suitable �eld. Therefore, in contrast with

related problems in the literature on massive IC receivers, our main contribution has been to adopt the

more general class of piecewise continuous (discontinuous) energy pro�les or energy allocation functions

as candidates to ful�l the stated VC problem. This has brought to light the possibility of considering

such functions (also known as broken extremal solutions) in other VC problems related with IC.

For a proof-of-concept scenario with uniform channel gains, we have shown that the optimal energy

pro�le (i.e. the distribution of ordered energies) has the structure of a multi-uniform function. Hence, the

throughput of the network is signi�cantly improved by introducing more levels into the optimum energy

distribution as the system's tra�c load increases. In fact, we have proved through simulations that

energy pro�les with a higher number of levels achieve better performances. In the mathematical terms of

the work, these pro�les generate an interference function f(ξ) that has M tangencies with the identity

function g(ξ) = ξ (the so-called ξ line). New levels are incorporated to the ordered energy distribution as

new tangencies appear. Empirically, we have shown that the number of levels p of the optimum pro�le

is, in fact, bounded by M ≤ p ≤M + 1.

In somewhat more detail, the collapse of the �rst energy level has been found to coincide exactly with

the appearance of the �rst tangency. From this point onwards, the change loads do not coincide with the

occurrence of a new tangency. In fact, once the new tangency is set, it is bene�cial to maintain the same

number of levels over an interval of tra�c loads. A new level is thereafter appended to the optimum energy

distribution, improving the performance of the prior pro�le. New levels contain comparatively fewer users

(in the asymptotic sense) and appear between the highest levels. Their imbalance with respect to the other

levels is reduced as the PER curve becomes more abrupt. Moreover, their user intervals keep growing as

the tra�c load increases. In fact, we have shown that local optimum pro�les with a �xed number of levels

can be maintained until their levels are equally distributed over the user ordering. Intensive Monte Carlo

simulations have allowed us to validate the obtained results.
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Finally, we have shown that the system's latency is conditioned by the tunnels' widths, a feature

related with the smallest gaps between the interference function f(ξ) and the ξ line. For the proposed

method, we have illustrated that the number of decision-feedback stages needed to pass the tunnels is

very sensitive to variations over their widths. Thus, the system's latency can be adjusted in exchange

for a small reduction in the system's load. In case of having several tunnels, this load reduction only

allows to tune the width of the narrowest tunnel, the one closest to the �xed point ξ∗ associated with the

interference level.

5.1 Further research topics

During the development of this work, some loose ends have been left dangling for future research. In the

following lines, we enumerate the most promising topics that should be investigated:

(i) Saturation point of the system. We have shown that the optimum distribution of ordered

energies yields a multi-uniform structure. However, the number of levels of such distribution remains

unsolved for an arbitrary scenario parameters. In the simulations section, we obtained optimum

pro�les with p = 5 levels but more levels are expected for increasing loads. The saturation point of

the system, characterized the number of levels that the optimum pro�le has and the tra�c load at

which this occurs, is still unknown.

(ii) System's latency. As stated at the end of Section 2.4.2, the proposed architecture presents latency

issues especially in case of constricted tunnels. In the VC problem introduced in Section 3.2, we only

address the limit situation in which f(ξ) is bounded from above by the ξ line. From the authors'

view, it seems interesting to see the deviation of the optimum level values, the change/collapse loads,

and the throughput degradation when f(ξ) is bounded from above by an ad-hoc function g(ξ), so as

to tune the tunnels apertures, and thus, the system's latency. Certainly, the identi�cation of which

g(ξ) function is the most suitable is also a future research line.

(iii) Mitigation of the imperfect cancellation e�ect. As clari�ed at the end of Section 2.2, the

proposed multistage DF structure allows improving the reconstruction of each user's signal through-

out DF stages. In Chapter 4, we considered an imperfect cancellation function independent of the

SINR. It would be convenient to evidence the e�ect of considering a real residual interference en-

ergy function in order to evaluate the gain in terms of throughput that is achieved when this DF

architecture is implemented.

(iv) Finite user evaluation of the asymptotic expressions. As it has been shown during the

document, we only address the case in which the number of users and the spreading gain tend

to in�nity. Naturally, this assumption is unrealistic, but it captures the essential features of a

user-asymptotic scheme while simplifying the mathematical treatment. Hence, it is appropriate to

evaluate from which number of users the �nite user expressions start matching the user-asymptotic

ones, similarly to [41] where the statement is veri�ed for K ≥ 128.



Appendix A

Acronyms

5G Fifth Generation Wireless Systems

CC Convolutional Code

CDMA Code-Division-Multiple-Access

CRC Cyclic Redundancy Check

D&R Detector and Reconstructor

DF Decision-Feedback

DS Direct Sequence

DS-CDMA Direct-Sequence Code-Division-Multiple-Access

EsNo Energy per Symbol to Noise Power Spectral Density Ratio

FEC Forward Error Correction

FLCV Fundamental Lemma of the Calculus of Variations

FP Fixed Point

IC Interference Cancellation

IoT Internet of Things

KKT Karush-Khun-Tucker

LDPC Low-Density Parity-Check

M2M Machine To Machine
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MA Multiple Access

MAI Multiple Access Interference

MLSE Maximum Likelihood Sequence Estimator

MUD Multiuser Detector

PER Packet Error Rate

PSR Packet Success Rate

PMDF Parallel Multistage Decision-Feedback

QPSK Quadrature Phase-Shift Keying

RA Random Access

SIC Successive Interference Cancellation

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

SPE Stationary Point Equation

TC Transversality Condition

VC Variational Calculus

WE Weierstrass-Erdmann



Appendix B

Equivalence Between VC Problems

As described in Section 3.2, even when pursuing the aim of �nding the optimum energy allocation function

Es(t) or Er(t), it is convenient to transform the problem in terms of the SINR pro�le Γ∗(t).

This annex comprises two parts. The �rst one is focused on proving the equivalence between both

stated VC problems (3.4 - 3.7) and (3.13 - 3.15). The scope of the second section is to derive the equations

that allow us to compute the energy pro�les Es(t) and Er(t) once the optimum SINR pro�le Γ∗(t) is found.

Equivalence between VC problems

Let us retrieve the previously presented VC problem in terms of the SINR pro�le (3.13 - 3.15),

max
τ, Γ∗(t)

p∑
k=1

∫ tk

tk−1

PSR[Γ∗(t)] dt (B.1)

s.t. γ =

p∑
k=1

∫ tk

tk−1

R(t,Γ∗(t)) dt (B.2)

s.t. 0 ≥

(
p∑

k=1

∫ tk

tk−1

R(t, x · Γ∗(t)) dt − γ

)
0 < x < 1 (B.3)

Using the relation x = N0+ξ∗
N0+ξ , the former problem can be converted, in terms of the received energy pro�le

Er(t), as follows,

max
τ, Er(t)

p∑
k=1

∫ tk

tk−1

PSR

[
Er(t)

N0 + ξ∗

]
dt (B.4)

s.t. γ =

p∑
k=1

∫ tk

tk−1

R

(
t,

Er(t)

N0 + ξ∗

)
dt (B.5)

s.t. 0 ≥

(
p∑

k=1

∫ tk

tk−1

R

(
t,
Er(t)

N0 + ξ

)
dt − γ

)
ξ > ξ∗ (B.6)

where the set of constraints from 0 < x < 1 is mapped onto ξ > ξ∗. At this point, it is clear that the

problem evinces ambiguity in its resolution, since any pair {Er(t), ξ∗} such that Γ∗(t) = Er(t)/(N0 +ξ∗) is

solution to the stated problem. This is due to the fact that we have combined the energy constraint (3.5)

and the �xed point equation (3.6) to constitute a unique constraint in terms of the SINR pro�le Γ∗(t).
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This result highlights the fact that the solution in terms of Er(t) requires an additional equation which

can help us solve the present ambiguity. For instance, the energy constraint (3.5) or the �xed point

equation (3.6) should be included. In both cases, the problem becomes equivalent to (3.4 - 3.7).

The intuitive idea behind this equivalence is that, in fact, as the involved functions PER[Γ] and ε(Γ)

depend on Γ, the relevance lies in the SINR values of the optimal pro�le. In other words, the energy and

MAI values are not important by themselves. What is crucial is their quotient through the SINR.

Computation of the energy pro�les from the SINR pro�le

Let Γ∗(t) be the optimum SINR pro�le obtained as the result of solving the VC problem (B.1 - B.3).

We express the transmitted energy pro�le Es(t) as a function of the SINR pro�le Γ∗(t), as follows,

Es(t) = (N0 + ξ∗)
Γ∗(t)

h(t)
(B.7)

The reader should note that it is not possible to obtain directly Es(t) from Γ∗(t), given that both {Es(t), ξ∗}
are unknowns of the previous equation. In order to solve this ambiguity, we make use of the average energy

constraint E, resulting in,

Es(t) = E · Γ∗(t)/h(t)∫ tp
0 Γ∗(t)/h(t) dt

Er(t) = E · Γ∗(t)∫ tp
0 Γ∗(t)/h(t) dt

(B.8)



Appendix C

Second Variation Analysis

This annex is included to continue the second variation analysis performed in Section 3.3.2. First, we

recover the expressions of the second variation previously derived therein,

δJ
∣∣∣
2nd,SP

=
1

2

p∑
k=1

(
∂2Fk
∂Γ2

)∫ tk

tk−1

v2
SP(t) dt (C.1)

∂2Fk
∂Γ2

= PSR′′[Γk∗] + αγ
M∑
i=0

λi · x2
i · Φ′′[xi · Γk∗] (C.2)

where vSP(t) are de�ned by the set of admissible variations particularized at the stationary point, which

comprises (3.23) evaluated at those positions where λ(x) is active (i.e. x),

p∑
k=1

Qk

∫ tk

tk−1

vSP(t) dt = 0 (C.3)

with Qk
.
= Qk(x) and Qk

.
= ∂Rk/∂Γ introduced in order to simplify posterior computations. We seek

a closed-form expression that helps us to ensure the negativeness of the derived second variation. Cer-

tainly, if the maximum of δJ |2nd,SP is negative, then, δJ |2nd,SP < 0 for any not-null considered variation.

Therefore, the following VC problem over the admissible variations v(t) at the SP needs to be addressed,

max
v(t)

[
δJ
∣∣∣
2nd,SP

=
1

2

p∑
k=1

(
∂2Fk
∂Γ2

)∫ tk

tk−1

v2
SP(t) dt

]
(C.4)

s.t. 0 =

p∑
k=1

Qk

∫ tk

tk−1

vSP(t) dt (C.5)

We de�ne the functional G that includes (C.4) and incorporates (C.5) using the set of Lagrange multipliers

β = [β0, β1, ..., βM ]T . As a di�erent VC problem is formulated, new variations need to be contemplated.

In particular, we consider in�nitesimal �rst order variations w(t) over vSP(t) as vSP(t) + w(t), and we

derive the �rst variation of G,

G[vSP(t)]
.
=

p∑
k=1

∫ tk

tk−1

(
1

2

∂2Fk
∂Γ2

v2
SP(t)− (βTQk) vSP(t)

)
dt (C.6)

δG
∣∣∣
1st

=

p∑
k=1

∫ tk

tk−1

(
∂2Fk
∂Γ2

vSP(t)− βTQk

)
w(t) dt (C.7)
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Following the rationales explained in Section (3.2.1), we use the FLCV to obtain the SPEs of the former

problem. Consequently, the following k = 1, ..., p equations must be accomplished,

∂2Fk
∂Γ2

vSP(t) = βTQk tk−1 < t ≤ tk (C.8)

Once again, as the previous SPE does only depend on vSP(t), the p-step function, with levels v
.
=

[v1, ..., vp]
T de�ned within the user intervals ∆tv

.
= [∆t1, ...,∆tp]

T , is an extremal of the stated VC

problem. Hence, substituting into (C.4), we have that,

δJ
∣∣∣
2nd,SP,max

=
1

2

p∑
k=1

(
δ2Fk
δΓ2

·∆tk · v2
k

)
(C.9)

0 =

p∑
k=1

(Qk ·∆tk · vk) (C.10)

Now, substituting (C.8) into (C.9) and using (C.10) we obtain δJ |2nd,SP,max = 0, which is not a su�cient

condition for ensuring that the multiuniform solution Γ∗(t) is a local maximizer of psr∗, provided that

this maximum is not achieved for the trivial case of v = 0. In this case, the proof would be invalid owing

to the fact that, by de�nition, the variations v(t) over the SINR pro�le must be non-null.

We are going to evidence under which conditions v = 0 is the unique solution that ful�ls (C.10).

In matrix form we have, 
Q1(x0) · · · Qp(x0)

Q1(x1) · · · Qp(x1)
...

. . .
...

Q1(xM ) · · · Qp(xM )




∆t1v1

∆t2v2
...

∆tpvp

 =


0

0
...

0

 (C.11)

which constitutes the linear system Q · u = 0, with Q and u de�ned by context. It is easy to see that,

given that ∆tv 6= 0, v = 0 is the unique solution of the previous linear system of equations if and only if

p ≤M + 1 as long as Q is a non-singular matrix.

For the rest of the document, we will assume that this matrix is of full-rank, and thus, the derived

inequality p ≤ M + 1 is a su�cient condition for having a solution that does not correspond to a saddle

point.

Concretely, we cannot be sure that the obtained extremal in (C.8) corresponds to a local maximum or

minimum of (C.4 - C.5). Nonetheless, by taking the second variation of this problem, it can be proven

that, in order to ensure its negativity a new VC problem equivalent to the one stated in (C.4 - C.5) is

required. Due to the recursion of the problem, it can be proven that the solution is coherent under the

initial assumption δJ |2nd,SP < 0. Henceforth, in order to verify this assumption, we will only consider

those solutions such that all terms in (C.2) are negative and the derived inequality is ful�lled.



Appendix D

Relationship with Previous Works

In this section, we relate the obtained mathematical expressions with previous works, mostly developed

by the advisors of this thesis. In particular, we will focus our attention on [29], in which the authors

derive the optimum energy allocation function of a massive uncoordinated spread-spectrum MA network

when:

(i) Users share the same encoder with known PER curve and may limit their power transmissions

according to an average energy constraint over the user population.

(ii) The receiver node implements a SIC strategy (of a single iteration) in order to mitigate MAI.

As in this work the authors only consider continuously di�erentiable ordered energy distributions over

the user interval 0 ≤ t ≤ t1 ≤ 1, we will center the subsequent comparison on the same case. Moreover,

uniform and unitary channel gains are assumed.

We take the SPE in [29], denoted the Invariance Equation, as depicted below,

ρ =
PSR′[Γ∗(t)]

Nt(t) − αI(t)Φ′[Γ∗(t)]
(D.1)

with I(t)
.
=
∫ 1
t Er(τ) dτ the integrated remaining energy pro�le and Nt(t) = Es(t)/Γ(t) the noise plus

interference term. In the following lines, we will compare the SPE of both IC schemes in order to assess

whether the behaviour/performance of one of the schemes can be predicted from the other one,

λ(x0) =
PSR′[Γ∗(t)]

1 + αθγ − αγΦ′[Γ∗(t)]
(D.2) ρ =

PSR′[Γ∗(t)]

Nt(t) − αI(t)Φ′[Γ∗(t)]
(D.3)

As in can be seen, both equations present close similarities that we can relate with the fact that

di�erent IC strategies are considered. In our case study (parallel architecture), we have that, Γ∗(t) = Γ∗
is a solution of (D.2). Moreover, for the SIC case, if we take (D.3) for t = 0 we have that I(0) = E and

Nt(0) = N0 + αθE. Substituting into (D.3), we have that,

λ(x0) =
PSR′[Γ∗]

1 + αθγ − αγΦ′[Γ∗]
(D.4) ρ =

PSR′[Γ∗(0)]

N0 + αθE − αEΦ′[Γ∗(0)]
(D.5)

where both equations result equivalent if we divide at both sides of (D.5) by N0.
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It seems curious that two mathematics so distant turn into such similar equations. So far, it is just a

coincidence that we shall study in depth to evidence whether there really exists an ulterior motive that

would allow us to �nd a relationship between both policies.

The reader must be aware that this proof has only been obtained for the case of continuously di�eren-

tiable functions. It remains unknown if for the discontinuous case there is such a tight relationship can

also be found between the stationary point equations of both architectures.

However, no expression has been derived for the SIC receiver considering a broader space of functions.

Thus, no further studies can be undertaken in this section.



Appendix E

PER Curves of the Considered FEC Codes

As it can be seen in the present work, not only the PER[Γ] and PSR[Γ] curves are important for the

derived equations but also their derivatives with respect to the variable Γ. For the present reason, this

section is dedicated to show the exact shape of the mentioned curves. We depict in Figure E.1 the PER[Γ]

and PSR[Γ] curves for both described codes and in Figure E.2 their �rst and second derivatives.
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Figure E.1: PER[Γ] (left) and PSR[Γ] (right) curves of the LDPC (blue) and CC (red) codes.
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Figure E.2: PER′[Γ] (left) and PER′′[Γ] (right) curves of the LDPC (blue) and CC (red) codes.

Results evidence the clean de�nition of both curves even near the in�exion point of both codes.

It is important to remark that some numerical problems have been avoided as a matter of using those

very well de�ned PER and PSR curves.
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Appendix F

Correlator Bank

In this section, we derive the optimal SINR pro�le that maximizes the throughput of the network described

in Chapter 2 when the receiver implements a conventional CDMA correlator bank. The resulting equations

may be of interest in order to benchmark the bene�t of the proposed IC scheme. For simplicity, we will

only address the case of constant channel gains.

Optimization problem: The constant channel case

We take the stated VC problem in Section 3.2 and we particularize it for the case of no cancellation and

for constant channel gains. Moreover, advancing the solution, we simplify the considered space up to

continuously di�erentiable functions with a user admission index. Therefore, the following VC problem

needs to be solved,

max
τ, Γ(t)

[
psr =

∫ t1

0
PSR [Γ(t)] dt

]
(F.1)

s.t. γ =

∫ t1

0
Γ(t) (1 + αθγ) dt (F.2)

We build the Lagrangian that incorporates the psr functional along the stated constraint through the

Lagrange multiplier λ, as follows,

J [Γ(t)]
.
=

∫ t1

0
PSR [Γ(t)] dt − λ

(∫ t1

0
Γ(t) (1 + αθγ) dt − γ

)
(F.3)

We consider variations v(t) over the SINR pro�le and free variations δt1 over the end point t1. We follow

the development presented in Section 3.2.1 in order to derive the SPE of the former problem,

ρ = PSR′ [Γ(t)] 0 < t ≤ t1 (F.4)

again, as the SPE does only depend on Γ(t), the uniform solution Γ(t) = Γ for 0 < t ≤ t1 with Γ
.
=

γ/(1 +αθγ) is an extremal of the considered functional. Moreover, the TC at the end point t1 results in,

PSR [Γ(t1)] − ρ · Γ(t1) = 0 (F.5)

Combining (F.4 - F.5) at the end point t1, we have that,

PSR[Γ(t1)] = PSR′[Γ(t1)]Γ(t1) (F.6)
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which only depends on the used FEC code through the previous non-linear equation.

Second variation analysis

We perform a second order expansion of the considered functional, and we particularize it at the stationary

point, where the �rst variation vanishes and also may second order terms. Therefore, we obtain,

δJ
∣∣
2nd,SP

=
1

2
· PSR′′

[
Γ
] ∫ t1

0
v2(t) dt (F.7)

A su�cient condition for ensuring that the uniform solution is a local-maximizer of psr is to set

δJ
∣∣
2nd,SP

< 0, that must be veri�ed regardless of any admissible variation v(t) and δt1. Thus, we have

that Γ(t) ≥ Γip for 0 ≤ t ≤ t1 with Γip
.
= PSR′′−1[0].

Solution procedure

In the following lines, we describe the main procedure performed in order to �nd the optimal SNIR pro�le.

1. Solve the non-linear equation (F.6) and keep only those candidates Γ(t1) ≥ Γip.

2. Compute the end point t1 as t1
.
= min{1, Γ/Γ(t1)}.

3. Compute the optimum SINR pro�le as,

Γ(t) =


max{1, Γ/Γ(t1)} for 0 < t ≤ t1

0 for t1 < t ≤ 1

(F.8)
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