
UNIVERSITY OF COLORADO BOULDER

BACHELOR THESIS

Big Data Analytics on
Container-Orchestrated Systems

Author:
Gerard Casas Saez

Supervisor:
Kenneth M. Anderson

A thesis submitted in fulfillment of the requirements
for Bachelor’s degree in Informatics Engineering

in

Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya

July 13, 2017

http://colorado.edu/
https://fib.upc.edu
https://upc.edu

iii

University of Colorado Boulder

Abstract

Big Data Analytics on Container-Orchestrated Systems

by Gerard Casas Saez

Container-orchestration systems offer new possibilites to software architects seeking
to make their software systems more scalable and reliable. In the past, these systems
have been used to implement transactional software systems but, more recently, they
have been applied to other areas including big data analytics. To understand the ad-
vantages and limitations such systems impose on software architects, I migrated an
existing big data analytics infrastructure from a software architecture that required
lots of work from its developers to deploy and maintain to the new software architec-
ture provided by container-orchestration systems. My results show that scalability
is increased, maintenance costs are reduced, and reliability is easier to achieve.

http://colorado.edu/

v

Acknowledgements
I would first like to thank my thesis advisor, Prof. Kenneth M. Anderson. Thanks to
his support I had the opportunity to come to Boulder and work on this thesis. This
thesis work would not have been completed without his support and patience. Also,
I would like to thank all the Project EPIC members I worked with—Mazin Hakeem,
Reem Albaghli, Jennings Anderson, Afnan Meshal and Rsha Mirza—for welcoming
me in the group and supporting me through my thesis. I would like to thank the
directors of Project EPIC, Prof. Leysia Palen and Prof. Kenneth M. Anderson, who
have provided me with this amazing opportunity to conduct my research in their
group.

I would like to thank my family for their support and encouragement on moving to
the United States to work on this thesis. My college friends back in Barcelona for
sharing with me probably the best four years of my life. And to my friends here
in Boulder, for helping me integrate into this new environment and supporting me
through this last six months.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background 3
2.1 Project EPIC . 3
2.2 Containerization . 4
2.3 Container Orchestration Technologies 4
2.4 Microservices Architecture . 5

2.4.1 Coreography . 6
2.4.2 Orchestration . 6

2.5 Messaging systems . 6
2.6 Big Data Storage Systems . 7

3 Problem Statement 9

4 Approach 11
4.1 Custom Components . 12

5 Implementation 15
5.1 Deploying the System . 16
5.2 Front-End Components . 16

6 Evaluation 19
6.1 Reliability . 19

6.1.1 Current infrastructure . 19
6.1.2 System Prototype . 20

6.2 Scalability . 21
6.2.1 Current infrastructure . 22
6.2.2 System Prototype . 22

6.3 Performance . 23
6.4 Software development and maintenance 25

6.4.1 Current infrastructure . 25
6.4.2 System Prototype . 25

7 Results 27

8 Related Work 29

9 Future Work 31

10 Conclusions 33

viii

A Microservices code 35
A.1 Twitter Tracker . 35

A.1.1 twitter_tracker.go . 35
A.2 Twitter Normalizer . 38

A.2.1 model.py . 38
A.2.2 tweetparser.py . 41

A.3 Infrastructure Controller . 43
A.3.1 start.py . 43
A.3.2 k8scontroller.py . 45

B Deploying microservices in Kubernetes 47
B.1 Docker image . 47
B.2 Kubernetes deployment YAML file . 48

ix

List of Figures

2.1 Project EPIC Software Infrastructure . 4

4.1 System architecture . 13

5.1 Event Manager UI . 17
5.2 Zeppelin visualization example . 18

6.1 Kubernets restarts in eleven days . 21
6.2 Wordcount time plot . 24

xi

Listings

2.1 Tweets CQL table script . 8
6.1 WordCount Spark script . 23
6.2 Debug string rdd . 24

xiii

To my family,
my parents, my brother, my uncles, my grandfather

who supported and encouraged me at all times on this
adventure.

1

1 Introduction

Big Data Analytics is a research area undergoing intense interest and rapid devel-
opment. Data is being generated by sensors and computing systems at an ever in-
creasing rate. Indeed, it is estimated that every month, seventy-two petabytes of
information are moved around the Internet [5]. This amount is expected to grow
to 232 petabytes/month by 2021 [5]. This rapid growth is a significant challenge to
the designers of software systems and to the field of computer science in general.
New software infrastructure will need to be designed to support this demand and
to extract useful information from it. In addition, a wide range of techniques and
technologies must be mastered to keep analysis time low at this scale.

One technique that can be useful in addressing these challenges is containerization;
indeed, tools and technologies that provide containerization services are seeing in-
creased interest and development. The ability to run software in separate environ-
ments has been a revolution for the tech industry. Containerization provides a layer
of abstraction for a set of services that allow software engineers to avoid long instal-
lation processes on each machine a software development team needs to run their
software. Containerization is similar to virtualization but optimized to use system
resources instead of simulated resources. Put another way, a virtual machine image
contains everything needed to simulate a separate operating system. If you have
multiple copies of that image, each image contains a complete copy of the operat-
ing system and all other components needed to run your software, wasting valuable
disk space and consuming extra memory at run-time. With containerization, each
container image contains just the software that you want to deploy and its required
packages and the containerization run-time system provides a unified operating sys-
tem for running all containers. Thanks to companies like Docker, containers are be-
coming a de facto standard for software development and deployment.1 The ease
of use and consistent behaviour between machines provided by containerization
makes it an attractive option for developers.

However, this approach brings with it a few complexities: network configuration,
interaction between containers, system updates, and more. To solve these complexi-
ties, container-orchestration systems were developed. These systems provide another
abstraction layer on top of containers, taking over the management of an underly-
ing containerization technology. In particular, the container-orchestration system is
in charge of coordinating containers, creating them, destroying them, etc. The entire
container life cycle is controlled by the orchestration system.

As these orchestration systems become more popular, software architects must cre-
ate new software architectures that embrace the possibilities that these systems pro-
vide. Some features that previously were difficult to achieve are now available to
any software architect. Applications no longer need to have a static infrastructure:
container-orchestrated systems can grow and decrease system resources on demand.

1https://docker.com

https://docker.com

2 Chapter 1. Introduction

Systems can be split into small microservices and deployed across a cluster of ma-
chines; there is no need to merge components into a big monolithic application.

Furthermore, cloud providers are adding support for container-orchestrated sys-
tems, making it straightforward to deploy complex infrastructures. Due to the sim-
ilarities between different cloud offerings, one can design this new style of software
system independent of a specific provider. One benefit to container-orchestrated
systems is that it provides a means for finding new ways to solve problems associ-
ated with making use of parallelism and scaling a software system to handle ever
increasing amounts of data. If properly designed, surges in demand can be met by
spinning up additional copies of core system services balanced across the cluster of
machines reserved from a cloud provider.

The goal of my thesis is to explore how this new style of software architecture can
be used to deploy software infrastructures that are used to perform big data analytics.
As part of my thesis work, I migrate an existing big data infrastructure to make
use of the techniques and technologies offered by container-orchestrated systems
and compare the new version of the system with its previous incarnation along a
number of dimensions.

3

2 Background

Before digging into my specific project, I provide background information that will
help to understand my problem domain. Here, I present information on three dif-
ferent topics: the first provides information on the big data software infrastructure
that I use in my work; this infrastructure was developed by Project EPIC [2, 16, 3] to
support research into an area known as crisis informatics [15, 17]. I also present more
information on container-orchestration technologies and then discuss microservice
architectures in more depth.

2.1 Project EPIC

Project EPIC (Empowering the Public with Information in Crisis) is a project at the
University of Colorado Boulder. It conducts research on crisis informatics, an area
of study that examines how members of the public make use of social media during
times of mass emergency to make sense of a crisis event as well as to coordinate/-
collaborate around the event.

Project EPIC has a long history of performing software engineering research. Since
2009, Project EPIC has been investigating the software architectures, tools, and tech-
niques needed to produce reliable and scalable data-intensive software systems, an area
known as big data software engineering [1]. When large amounts of data are being
collected, software engineers need to focus on structuring this data so it is easy to
perform analysis and they must work to ensure that this data is easily accessible to
analysts. Project EPIC’s big data software engineering research has explored these
issues in depth during the creation of the Project EPIC software infrastructure that
consists of two major components: EPIC Collect and EPIC Analyze.

EPIC Collect is a 24/7 data collection system that connects to the Twitter Streaming
API to collect tweets from various crisis events that need to be monitored in real
time. Since 2012, this software has been collecting tweets with an uptime of 99% and
has collected over two billion tweets across hundreds of crisis events. EPIC Collect’s
storage layer makes use of Cassandra. This NoSQL database is focused on writes
and provides high throughput. EPIC Analyze is a web-based system that makes
use of a variety of software frameworks (e.g., Hadoop, Solr, and Redis) to provide
various analysis and annotation services for analysts on the large data sets being
collected by EPIC Collect. In addition, Project EPIC maintains one machine—known
as EPIC Analytics—with a large amount of physical memory to allow analysts to run
memory-intensive processes over the collected data.

The software architecture of EPIC Collect and EPIC Analyze is shown in Figure 2.1.
Note, this is a logical architecture that does not show how these systems are de-
ployed. For instance, Cassandra is deployed on four machines that run separately
from the machines that host the EPIC Collect software, Postgres, Redis, and the

4 Chapter 2. Background

DataStax Enterprise

EPIC Event Editor EPIC Analyze Application
Layer

Service
Layer

Storage
Layer

Twitter Redis

PostgreSQL Cassandra

SolrPig Hadoop
EPIC

Collect

FIGURE 2.1: Project EPIC Software Infrastructure

Ruby-on-Rails code that makes up EPIC Analyze. In all, the existing Project EPIC in-
frastructure is distributed across seven machines in a single data center maintained
at the University of Colorado Boulder.

2.2 Containerization

Containerization is a technique that provides operating-system-level virtualization.
This technology allows programs to be run inside a system container; these containers
are isolated from each other as well as from the host machine that is being used to
execute them. Containerization works like traditional virtual machines from the
point of view of a program, but makes more efficient use of the system resources on
the host machine instead of simulating a full-powered operating system.

There are many containerization platforms available; however, the most widely adop-
ted project is Docker; I will make use of Docker as part of the prototype I built for
testing my thesis work. Docker originated as an internal tool for a PaaS (Platform as
a Service) company and was later made available as open source. Thanks to many
contributions from different companies, this project has grown to become the most
used containerization software. It is able to run on almost any machine and many
software packages have been made available as Docker containers, providing a wide
range of integration opportunities. Finally, almost all existing container orchestra-
tion systems support Docker containers.

2.3 Container Orchestration Technologies

As containerization technologies became more widely adopted—spurred by a re-
cent migration to designing systems via microservices—large companies needed a
way to manage their containers in a more friendly way. Interconnecting containers,
managing their deployment, and scaling them to meet demand, were all possible,
but were difficult to achieve. As a result, container orchestration systems were born.

2.4. Microservices Architecture 5

To manage containers, these systems add an abstraction layer over containerisation
technologies, making such tasks easier to perform.

There are a few container orchestration systems available at the moment. The most
popular ones are Kubernetes and Apache Mesos.1 In this project, I will make use of
Kubernetes. The main reason for this is that—thanks to the open source community—
it is easier to find tutorials and courses for Kubernetes. In addition, there are a lot
of big companies backing this project and contributing to it; this activity provides
evidence that this project will be supported well into the future.

Google Cloud seems like the best fit to host Kubernetes as it has a managed cluster
option that makes it straightforward to install and connect system components. In
addition, thanks to Google being part of the maintenance team for Kubernetes, there
is a great support for the Google Cloud infrastructure within Kubernetes.

2.4 Microservices Architecture

Microservices is an approach to distributed systems that promote the use of small
services with specific responsibilities that collaborate between them, rather than
making use of big components with a lot of responsibilities that make interaction
more difficult. They are thus more cohesive units of software with minimal depen-
dencies between them. A system designed with loosely-coupled, highly-cohesive
software components has always been a highly-desirable goal in software design [4]
and microservices help to achieve that goal with distributed software systems.

In addition, thanks to new technologies like containers and container-orchestrated
systems, microservices are quickly becoming a standard tool in the design of large
software systems. This type of software architecture has been adopted by many
companies as it makes maintenance of these systems more straightforward.

Another key advantage of the microservices approach is that it makes it easier to
adopt different technologies for each component of your software system. In ad-
dition to containerization, it decouples different parts of a system. This separation
allows for a better optimization of technology depending on the feature that each mi-
croservice needs to provide. For example, a microservice that needs to store highly-
related data can make use of a graph database. At the same time, a separate mi-
croservice that needs to store and index large documents can use a document store
underneath, allowing for a better fit with its needs while allowing both microser-
vices to be deployed as part of a single software system.

Having small microservices do specific tasks makes development cycles faster and
more independent. It also makes incremental deployment much easier and less dan-
gerous. Finally, microservices make it easier to scale software systems since one can
individually scale parts of the system depending on their usage [6].

Microservices avoid problems associated with previous approaches to service-oriented
architectures by focusing solely on the overall software architecture and letting the
architect decide how services are to be deployed or what messaging system is used
to communicate between them. In addition, a microservices architecture provides
improved reliability and resilience, as each microservice is independent. If one fails,
the rest are unaffected. This feature is a perfect match with container-orchestration

1https://kubernetes.io/ and http://mesos.apache.org/

https://kubernetes.io/
http://mesos.apache.org/

6 Chapter 2. Background

systems that can easily perform health checks on microservices and redeploy any
that have failed.

In terms of designing a microservice architecture, there are two approaches that are
equally used at the moment: choreography and orchestration [14].

2.4.1 Coreography

Choreography centers all interactions around a publish-subscribe communication
model. Events are propagated through the system in an asynchronous manner.
When something happens in a microservice, a message gets published on a pub-
lic queue. Other microservices can subscribe to this queue and respond when they
receive that message.

This approach makes a system more flexible, removing the responsibility of know-
ing how to send messages to other microservices. One can add more components
easily without having to modify existing ones. However, we need extra components
to make sure that all tasks are performed once an event is published. We can accom-
plish this by installing and maintaining a monitoring solution.

2.4.2 Orchestration

Orchestration imposes request/response interactions on microservices. Each mi-
croservice makes requests directly on other microservices. For this approach to
work, one needs a service discovery mechanism. In addition, if a service is down,
we need to make sure that microservices are architected to retry failed attempts and
to fail gently if a required microservice is unavailable. The benefit to this approach
is that, due to the synchronous nature of these interactions, we know that all steps
of an activity have been completed when the original call returns. The limitation is
that one non-responsive microservice can bring down an entire set of actions.

A more modern approach to orchestration has been developed with service meshes
[13]. A service mesh has the responsibility of providing service discovery while
also balancing requests across multiple instances of a microservice; they also guard
against having an activity fail by retrying requests. A service mesh works by adding
a sidecar to all microservices allowing it to act as a proxy between a microservice
and the outside network. Unfortunately, service meshes are still new technologies
that are rapidly evolving; they often lack features found in other approaches such as
the extensibility capabilities found in choreography-based systems. As a result, I do
not make use of them in my thesis work.

2.5 Messaging systems

Messaging systems organize queues of messages produced by microservices and
notify subscribed components when they arrive. Their main objective is to decouple
components and to serve as a cache if consumers cannot process all of the incoming
messages. This allows for more reliable systems as a system does not depend on the
mutual availability of a sender and a receiver to pass messages as they would if they
used other messaging systems, such as HTTP.

2.6. Big Data Storage Systems 7

There are many options available in this space, with the most popular being Apache
Kafka and RabbitMQ. Kafka is a decentralized, high-availability messaging system
that allows one to publish messages organized by topics. It allows for high par-
allelizability thanks to the partitions on topics, which lets one read and write at
a higher rate. Each partition can have one consumer associated with it providing
faster reads.

Another benefit of Kafka is its persistence system. Thanks to a strong integration
with the kernel of the host operating system, it persists data faster than other sys-
tems. This is due to the fact that it gives the responsibility of flushing messages
to disk to the kernel, taking advantage of optimizations like disk page caching and
memory caching implemented in modern operating systems.

In addition, Kafka is one of the most used messaging systems in the industry. Many
companies use it in production to decouple their systems. Kafka has a strong com-
munity behind it as well, and large organizations (e.g. LinkedIn) take an active role
in maintaining it.

Messaging systems are needed for choreography microservice architectures as they
serve as the communication layer between microservices.

2.6 Big Data Storage Systems

For my thesis work, I will be collecting data from Twitter via the Streaming API. This
API is limited to provide 1% of the total tweets generated in Twitter every minute.
Based on a report from 2013, I know that rate is approximately 5700 tweets per sec-
ond on average [11]. As a result, I can calculate the total number of tweets per
second that I estimate will flow through my system prototype per second and that
is approximately 57 tweets per second on average as a minimum bound. Since that
corresponds to 4̃.9M tweets/day, I need a data storage technology that scales to han-
dle large datasets. As previously studied in Project EPIC [16], I need to use a NoSQL
database instead of a relational database to support the high volume of tweets that
come from this API, making my system more scalable.

On the other hand I also need a system that allows analytical and operational queries
to happen at the same time. I would like to be able to analyze my data in real time
without having to stop my data collection process. Given that some analysis tasks
may take a few minutes due to the high number of tweets, I need to have a system
that supports high throughput for both parts (collection and analsyis). In this case,
Cassandra is an excellent option as the number of operations it can perform per sec-
ond scales better compared to other NoSQL alternatives, especially with operational
and analytical workloads.[7]

To store tweets, I base my table structure on the current EPIC Analyze column family
structure in Cassandra as described by the CQL code in Listing 2.1. I have added an
index on the event_name attribute so that I can access events faster. I need this index
as many queries are performed per event.

8 Chapter 2. Background

CREATE TABLE t w i t t e r _ a n a l y t i c s . tweet (
id uuid ,
t _ i d t ex t ,
event_kw t ex t ,
event_name te x t ,
hashtags l i s t < te x t > ,
media_url t e x t ,
t _ c o o r d i n a t e s te x t ,
t _ c r e a t e d _ a t timestamp ,
t _ f a v o r i t e _ c o u n t int ,
t _ f a v o r i t e d boolean ,
t_geo te x t ,
t _ i s _ a _ r e t w e e t boolean ,
t_ lang te x t ,
t_re tweet_count int ,
t_retweeted boolean ,
t _ t e x t te x t ,
u_created_at timestamp ,
u_descr ip t ion te x t ,
u_favour i tes_count int ,
u_fol lowers_count int ,
u_fr iends_count int ,
u_geo_enabled boolean ,
u_id te x t ,
u_lang t ex t ,
u_ l i s t ed_count int ,
u_ loca t ion te x t ,
u_name te x t ,
u_screen_name te x t ,
u_s ta tuses_count int ,
u_time_zone te x t ,
u_url t ex t ,
u _ u t c _ o f f s e t int ,
um_id te x t ,
um_name t ex t ,
um_screen_name t ex t ,
u r l s l i s t < t ex t > ,
PRIMARY KEY (id , t _ i d))

Listing 2.1 Tweets CQL table script

9

3 Problem Statement

The goal of my thesis is to explore the benefits and limitations in using container-
orchestration systems to build and deploy software systems that engage in big data
analytics. To perform this exploration, I will be redesigning the Project EPIC soft-
ware infrastructure as a set of microservices—each inside a separate Docker container—
that are deployed on a cluster of cloud-based machines via a container-orchestration
system. The current infrastructure was manually deployed on a set of physical ma-
chines in a local data center and was not developed using microservices or con-
tainerization. My hypothesis is that I’ll be able to achieve greater scalability and
reliability with the new architecture with significantly reduced maintenance costs. I
will also explore whether I am able to achieve greater query flexibility and overall
performance using this new style of software infrastructure. My specific research
questions are:

1. What advantages and/or limitations will the new Project EPIC infrastructure
have with respect to its predecessor?

(a) Is it more reliable? If so, why?

(b) Is it more scalable? If so, why?

2. Does the new infrastructure have lower maintenance costs than the existing
infrastructure?

(a) Is it easier to deploy?

(b) Is it easier to upgrade?

(c) Is it more resilient to failures? If so, how?

11

4 Approach

In this section, I present the design of my replacement for the Project EPIC infras-
tructure. The primary features of this infrastructure are:

• Event management (creation/deletion/modification of events with specific key-
words)

• Real-time collection of streaming Twitter data

• Real-time classification of incoming tweets (assigning tweets to active events)

• Data Analysis (performing queries on collected tweets using batch processing)

My goal is to recreate these features with less code and which is easier to deploy and
update and is more flexible, scalable, and reliable than the existing infrastructure.

As mentioned above, my design will rely on a choreography-based microservices
approach that is deployed on a cloud-based infrastructure making use of Docker and
Kubernetes. My microservices will rely on Kafka to pass messages to one another
via message queues (topics) that are created in response to requests to collect on
crisis events.

One goal I have in my design is to make as many of my system components to be
stateless. That is, these components will be designed to receive an incoming mes-
sage from a Kafka queue that contains all the state they need to perform their oper-
ation. They will, in turn, generate messages that contain all the state that is needed
for downstream components to process them. This design approach will pay divi-
dends as it will allow the underlying container orchestration system to easily replace
services that have crashed and to instantiate multiple copies of a particular service
when there is a surge in demand for its services.

Not all of my components will be microservices. I will rely on Cassandra to persist
the tweets that are collected; the reasons for using Cassandra have already been well
documented in Project EPIC’s prior work [2, 16, 3]. Furthermore, I will be making
use of Apache Spark to perform data analytics in my prototype and will provide
a web-based notebook user interface for the analysts to easily submit their queries
and view the results. Examples of tools that provide notebook user interfaces for
data analysis are Zeppelin and Project Jupyter.1 These platforms integrate directly
with Apache Spark and provide advanced features for viewing the results of Spark
queries as tables and charts. The use of Apache Spark in my infrastructure was
driven by the fact that it comes with a specialized Cassandra Connector that allows
it to perform queries on a cluster of Cassandra nodes efficiently. For instance, the
Cassandra connector is smart enough to “take the query to the data” and perform a
particular query distributed on the data stored in each Cassandra node rather than
requiring data to be transferred between nodes before the query is performed. This

1https://zeppelin.apache.org/ and http://jupyter.org/

https://zeppelin.apache.org/
http://jupyter.org/

12 Chapter 4. Approach

feature is known as preserving data locality and allows Apache Spark to perform
queries on Cassandra in near real-time.

4.1 Custom Components

The specific components that I will be developing for my infrastructure are:

• Event Manager: A web-based system that presents a user interface for man-
aging data collection events. Each event has a name and a set of associated
keywords. For instance, if a hurricane were to threaten the Eastern Seaboard
of the United States, an event would be created using the hurricane’s name
and the year it occurred. For example, “2012 Hurricane Sandy.” The list of
keywords then specify items of interest related to that event; these words are
typically place names (new york city), behavior-related terms (evacuate,
charging devices, etc.) or event-specific terms (flooding, smoke, etc.).
Submitting these terms to the Streaming API represents a request to collect
every new tweet that contains one or more of these terms.

Each time there is a change made to the current set of events, the Event Man-
ager submits a message with all of the current events and keywords to a Kafka
queue to report the change. The Event Manager makes use of its own local
database (SQLite) to ensure that its state is saved in the event of a crash.

• Infrastructure Controller: The infrastructure controller is responsible for issu-
ing commands to Kubernetes to ensure that all instances of the microservices
needed to collect the current set of events are up and running. It receives the
messages generated by the Event Manager and updates the Twitter Tracker
and Twitter Normalizers (both discussed next) to match the new state.

• Twitter Tracker: The Twitter tracker is a microservice that connects to the
Twitter Streaming API, submits a set of keywords provided by the Infrastruc-
ture Controller, and then places each tweet that it receives in a Kafka message
queue. If a change occurs, no tweet is missed as a new instance of the Twitter
tracker is created and is receiving tweets before the old instance is taken down.
All configuration for the Twitter tracker is handled via environment variables
set by the container-orchestration system, making this microservice stateless.

• Twitter Normalizer: A Twitter normalizer is a microservice that gets assigned
the keywords associated with a single event and is plugged into the Kafka
queue that receives tweets from the Twitter Tracker. (This particular queue is
configured such that all subscribers see all messages; in this case, each message
contains a single tweet that was received from the Twitter Streaming API.)
When a Twitter normalizer finds a tweet that contains one of its keyword, it
normalizes that tweet to match the schema shown in Listing 2.1 and stores the
tweet in Cassandra.

Note: since more than one event can specify the same keyword (for instance
two hurricanes active at the same time may both contain hurricane as one of
their keywords), a tweet may be stored multiple times by my prototype. Since
most queries are focused on a particular event, this duplication is not an issue.
However, if a query is specified across multiple events, then the onus is on the
analyst to remove duplicate copies of a tweet before metrics are calculated.

4.1. Custom Components 13

FIGURE 4.1: Proposed system architecture

One Twitter normalizer is created for each event specified by the Event Man-
ager. Of course, the Infrastructure Controller has the option of instantiating
multiple instances of a Twitter normalizer if, for instance, it has determined
that an event has been assigned a lot of high-frequency keywords but that par-
ticular functionality has not yet been implemented in my prototype.

Given these descriptions, the software architecture of my prototype is shown in Fig-
ure 4.1. In the next section, I will present more information about how my prototype
is actually implemented.

15

5 Implementation

In this section, I provide implementation-related details of my software prototype.
The prototype is fully implemented and running on a set of nodes hosted by Google
Cloud. I created four nodes in total, each with one virtual CPU and four gigabytes of
RAM. On those nodes that host Cassandra, we reserve one gigabyte of RAM for Cas-
sandra’s exclusive use and allow the remaining memory to be used by other com-
ponents deployed on those nodes (such as Apache Spark). The nodes that host Cas-
sandra are deployed using a native Kubernetes resource called stateful sets. This data
structure associates persistent volumes with particular system components such that
data is preserved across restarts and crashes. They are designed to be used with dis-
tributed databases, like Cassandra, making it easy to add and remove nodes that
host Cassandra at run-time. Thus, if we add a new node to our Cassandra clus-
ter, Kubernetes ensures that a new persistent volume is created and attached to that
node and then ensures that each time that component is activated the same persis-
tent volume is made available to the database running on that node.

As mentioned above, we also designed our Kubernetes configuration to deploy an
instance of an Apache Spark worker on each Cassandra node and then also specified
one additional node to serve as the Apache Spark master node. A container with
Zeppelin was also deployed configured to send queries to the Spark master node
via Zeppelin’s cassandra-spark library.

I now present details on how each of the custom components discussed in Chapter 4
were implemented. In general, microservices were implemented first in python for
ease of prototyping and then switched to a different implementation language if
performance problems were detected. Furthermore, all microservices were placed
in individual Docker containers which were then deployed via Kubernetes as dic-
tated by the Infrastructure Manager. Further details on each component are now
presented:

• Event Manager: The event manager is implemented as a stateful django web
application. It supports CRUD operations on events. Any change of state is
pushed out as a message on a Kafka queue (and acted upon by the Infras-
tructure Controller). It stores its data in SQLite as a file on a Google Cloud
persistent disk. This set-up ensures that it can find its state across restarts.

• Infrastructure Controller: This controller is written in python and makes use
of python libraries that allow it to interact with Kafka and Kubernetes. When
it receives a message from the Event Manager, it issues commands to Kuber-
netes to declare the new state of the world. If an event is no longer active, its
associated Tweet Normalizer is shut down. If a new event is specified, a new
instance of the Tweet Normalizer is configured and deployed.

16 Chapter 5. Implementation

• Twitter Tracker: The Twitter Tracker was first implemented in Python but I
discovered that python’s run-time engine was not fast enough to handle con-
sistently high streaming volumes over long periods of time. As a result, I reim-
plemented this microservice in Go for better reliability and performance. As
discussed above, this service submits keywords to Twitter’s Streaming API
and then stores each tweet that it receives in a Kafka topic. The infrastructure
controller is the one in charge of deploying and updating this service. A set
of all the tracked keywords is passed as an environment variable on start by
Kubernetes. To update the keywords, Kubernetes performs a rolling update
by creating a new instance and destroying the old one, once the new one has
correctly started the stream.

• Twitter Normalizer: The Twitter Normalizer is the one component in my in-
frastructure that can be instantiated multiple times and needs to monitor a
different set of keywords in each instance. To facilitate this, I had the Infras-
tructure Controller direct Kubernetes to pass the keywords needed by each in-
stance of the Twitter Normalizer via environment variables. Kubernetes could
then deploy an instance of the Twitter Normalizer Docker container onto a
node, configure its environment variables to match the keywords of the given
event, and launch the microservice. The Twitter Normalizer was implemented
in Python but specific C-based libraries were used to implement tasks that it
executes over and over, e.g. loading and parsing JSON objects. This technique
enabled the Twitter Normalizer to process the incoming stream of tweets with
acceptable performance.

5.1 Deploying the System

Deploying my prototype is straightforward given the use of Google Cloud and Ku-
bernetes. As mentioned above, I created a four-node cluster with each node allo-
cated one virtual CPU and four gigabytes of RAM. Kafka and Cassandra/Spark are
deployed first. In my prototype, I created two Kafka brokers that work together to
manage the two primary topics needed by my design (the queue between the event
manager and the infrastructure controller and the queue between the Twitter tracker
and all instances of the Twitter normalizer) and instances of Cassandra/Spark on
three of our four nodes. I then deployed the containers for my two front-end com-
ponents: Zeppelin and the event manager. Finally, I deployed an instance of the
infrastructure controller. All other components will be deployed by the infrastruc-
ture controller (including the Twitter tracker) when it receives a message from the
event manager. This approach makes sense since there is no need to have the Twitter
tracker and the Twitter normalizers running if there are no events to collect.

5.2 Front-End Components

Figure 5.1 shows the user interface of the event manager. Each event is shown in a
separate box with information about the event’s keywords. There are controls for
creating new events and a separate control for sending a message to the infrastruc-
ture controller with the most recent state of the world. Events can be edited/deleted
by controls that appear when its box is selected. Figure 5.2 shows the user interface

5.2. Front-End Components 17

FIGURE 5.1: Event manager UI

provided by Zeppelin. Queries can be submitted via a textbox and results can be
displayed in tables or via bar graphs (as shown).

18 Chapter 5. Implementation

FIGURE 5.2: Zeppelin server with some visualization from the dataset

19

6 Evaluation

In order to evaluate my work, I compare the architecture and implementation of
my prototype with the existing Project EPIC infrastructure along the dimensions of
reliability, scalability, performance, and real time delivery.

6.1 Reliability

In order to evaluate my work, I compare the architecture and implementation of
my prototype with the existing Project EPIC infrastructure along the dimensions of
reliability, scalability, performance, and real-time delivery.

6.1.1 Current infrastructure

Reliability of the existing EPIC infrastructure needs to be studied separately across
EPIC Collect and EPIC Analyze.

EPIC Collect is designed to be highly available. It is implemented as a multi-threaded
Java application; some threads are used to read the incoming tweet stream, some are
used to classify tweets, and some are used to monitor the other threads. If the mon-
itoring threads detect that one of the readers is no longer producing tweets for the
classifiers, it can issue a command that causes the current connection to the Twit-
ter Streaming API to be dropped and all of these threads to be deactivated. This
action, in turn, causes another thread to detect that the Twitter connection is down
and it then restarts the connection which causes readers, classifiers, and monitors
to once again be instantiated. This approach can ensure reliable performance for
many days; however, sometimes errors occur that cause all threads to lock up. To
handle this situation, EPIC Collect makes use of a cron job that wakes up once per
minute to examine the current length of the EPIC Collect log file. Each reader and
classifier will send information to the log file and when data collection is proceeding
smoothly, the log file is always increasing in size. As a result, if the cron job wakes
up and discovers that the log file has not increased in size over the past minute, it
assumes that the collection software has locked up. It will invoke a command to kill
the previously running process and it then invokes the collection system, notes the
size of the log file, and goes back to sleep.

With these techniques, EPIC Collect has achieved 99% uptime since the summer of
2012. The only problem that these techniques cannot account for is if the data center
loses its network connection. When that happens, the cron job will be stuck in a cycle
of terminating and restarting the software until the network connection is restored.
Fortunately, complete loss of the data center’s connection to the Internet is a very
rare event, happening only once in a four year period.

20 Chapter 6. Evaluation

EPIC Analyze does not have the same level of reliability.In order for the web appli-
cation to function, it requires that Redis and Solr be up and running. If these systems
are not available, then the web application is non-functional. Compounding this sit-
uation is the fact that EPIC Analyze is deployed manually by its developers; there
is no automated way to deploy it and there is no monitoring system detecting for
system failure. As a result, there is also no automated recovery procedure. All as-
pects of the system deployment for EPIC Analyze require manual intervention by
developers.

6.1.2 System Prototype

In the case of my system prototype, overall reliability is high, due to the use of a
container-orchestration system. Kubernetes provides two components to increase
the reliability of our system. The first Kubernetes-provided component is the con-
troller manager that runs on the master node of our cluster. This component is re-
sponsible for keeping track of all containers running on our cluster. It also follows
the requests made by the infrastructure controller to ensure that the right number
of replicas are created for the components that need them. For instance, in my pro-
totype, I specify that there should be two replicas of a Kafka broker available at all
times. If any of those replicas go down, Kubernetes will detect that and launch a
new one. This functionality extends to all of our containers; if any container stops
running, the controller manager detects it and schedules a new instance of that con-
tainer to run on an available node. This check is performed when the infrastructure
controller makes new requests or when an existing node informs the controller man-
ager that one of its containers went down.

The second Kubernetes-provided component is the scheduler. This component makes
sure that new containers are scheduled on the best node possible. Kubernetes allows
an engineer to configure the amount of memory and cpu permitted by a container;
this information allows the scheduler to find the best fit for each deployment request.

With these two components, Kubernetes automates the deployment of containers on
a cluster of machines and handles any failures automatically. Its services are signif-
icantly more advanced than the existing reliability measures put into place by the
Project EPIC developers, who were more interested (at the time) in system function-
ality and not in automated failure recovery mechanisms beyond what was done to
ensure reliable data collection.

Kubernetes provides one additional reliability-related feature and that is related to
upgrading containers to provide new versions of the microservice within—this fea-
ture is called a rolling update. When performing an upgrade, the controller manager
first deploys the new version of the component and ensures that it is up and run-
ning. It then removes the container containing the previous version of the compo-
nent. I make use of this functionality with the Twitter Tracker component. When a
new change to data collection is announced by the Event Manager, the infrastruc-
ture controller arranges to have a new instance of the Twitter Tracker component
deployed with the new state. It starts to collect tweets using the newly updated
keyword list while the previous instance is still collecting data on the prior set of
keywords. This approach ensures that no tweets are missed when the transition oc-
curs. Twitter applications can only have one standing connection. When the new

6.2. Scalability 21

FIGURE 6.1: Number of automated restarts by Kubernetes of the sys-
tem prototype over a period of eleven days.

instance establishes a connection, Twitter will close the old connection ensuring that
there will not be any duplicated tweets stored in the transition.

Figure 6.1 displays a typical report for the number of times the containers in our sys-
tem prototype were restarted automatically by Kubernetes over a period of eleven
days with no interaction from the user. The first thing to note is that all components
remained active for the entire time period; that is data collection proceeded unin-
terrupted during those eleven days. However, due to system demands, Kubernetes
may have found itself needing to, for instance, delete a container on an overloaded
node and move it to a node that had more resources available. Given that my code
is now fairly stable, if we increased the amount of memory on each node and added
a few more nodes to our cluster, the total number of restarts would go down. But,
given the limited resources I had during development, the more important issue is
that despite limited resources, the system continued to run 24/7 with no interven-
tions required by the developer. Note: that in Figure 6.1, some instances are listed
as only existing for two days; this discrepancy is due to the fact that Kubernetes will
restart a container’s count if it needs to do a hard restart of the container. This occurs
when Kubernetes issues a request for the container to shut down and it stays active,
ignoring the request. This might occur due to the contained microservice crashing
inside and thus unable to exit gracefully. As a result, Kubernetes is forced to kill the
container without a graceful shutdown.

6.2 Scalability

The second dimension I am using for my evaluation is scalability. I am interested in
how well both infrastructures deal with the ability to scale to large amounts of data.
I want to avoid wasting system resources unnecessarily while having the capacity
to scale and I want to understand how scaling impacts overall system performance.

22 Chapter 6. Evaluation

6.2.1 Current infrastructure

Scalability with the existing infrastructure is not a straightforward process. With
respect to throughput capacity, EPIC Collect would need a developer to manually
launch a new instance with new Twitter credentials and set-up a second cron job to
monitor the second instance’s log files. That work is feasible but not straightforward
and would have to be performed anew if more capacity was needed and a third
instance was required. This situation is one reason why EPIC Collect does not per-
form data normalization; it simply classifies tweets with respect to the current set of
events and then it stores them in Cassandra. If data normalization was added to the
existing EPIC Collect then it would struggle to handle spikes in incoming traffic as
it would not be able to automatically scale its capacity to handle demand.

With respect to storage capacity, EPIC Collect is in a better situation since it stores
tweets to a four-node Cassandra cluster with terabytes of disk space available. If
additional capacity is needed, a developer just needs to configure a new node and
add it to the existing cluster. As with the discussion above concerning throughput
capacity, while this works, it is hardly an automated approach to scaling the infras-
tructure on demand. With respect to EPIC Analyze, the only component that is a
target for scaling, apart from storage, is the frontend module that is currently writ-
ten in Ruby on Rails. To do that, multiple instances of the application would need to
be launched and a load balancer put in front of those instances. To make this work,
the existing web application would need to be refactored such that session state can
be made consistent across all of the instances. That is a straightforward engineering
task but not simple by any means. Furthermore, maintaining a load balancer is a
complex process when done manually and, as discussed above, all maintenance on
EPIC Analyze has to be performed manually.

I conclude that the existing Project EPIC infrastructure is not easy to scale.

6.2.2 System Prototype

Scaling my system prototype is much easier given the functionality gained from
Kubernetes. When deploying a microservice via a container, I can specify how many
replicas of that service I would like to deploy alongside it. The controller manager
will try to schedule the requested number of replicas as long as there are enough
system resources available across the cluster. Our ability to deploy multiple replicas
is helped by the fact that most of our services were designed to be stateless. All of
the state that a service needs to perform its task is contained in the messages that it
receives. As a result, it does not matter which replica handles a given input message.
Replicas can also be automatically triggered based on CPU usage. If a container
hits 90% CPU utilization because it has experienced a spike in the number of input
messages, Kubernetes can automatically spin up new replicas until the utilization
goes down, due to the fact that the new replicas can help the existing component
handle the spike in messages.

While these services are largely automatic, a developer can always interact with Ku-
bernetes directly to manually deploy additional components to help with scalability.
The developer can issue these commands using the kubectl command line tool or
via Kubernetes’s web interface.

6.3. Performance 23

val t a b l e = sc . cassandraTable (" t w i t t e r _ a n a l y t i c s " , " tweet ")
val words = t a b l e . s e l e c t (" t _ t e x t ") . flatMap (l => l . g e t S t r i n g (" t _ t e x t ") .

s p l i t (" "))
. map(word => (word . toLowerCase , 1)) . reduceByKey (_ + _) . map(_ . swap)

. sortByKey (fa lse , 1)

Listing 6.1 WordCount Spark script

Due to the features of container orchestration systems, my system prototype is much
easier to scale than the existing Project EPIC infrastructure.

6.3 Performance

I am unable to provide a comparison between the two infrastructures with respect
to performance. Both systems have similar performance with respect to data col-
lection but detailed tests and comparisons are not possible since EPIC Collect is a
production system that other members of the Project EPIC team depend on for their
research. As such, in this section, I provide insight into the performance my system
prototype achieves on my small four-node cluster. As a reminder, each node in the
cluster has access to one virtual CPU and four gigabytes of RAM. My test involves
executing a Spark-based job on the cluster to count the number of words contained
in all collected tweets. Each time I ran the query for the evaluation, the total num-
ber of tweets collected was different, increasing each time. I selected this particular
test since word count is a highly parallelizable operation. It also demonstrates the
integration of Spark into my system prototype.

The code entered into Zeppelin is shown in Listing 6.1. The first line establishes a
connection to Cassandra and creates a Spark Context object by which queries can
be invoked. The second line expresses a series of transformations that Spark will
apply to count all of the words of all tweets contained in Cassandra. It starts by
selecting the text of the tweet, splitting the text into words, mapping each word
into a pair (word, 1) and then reducing all such pairs by adding up the integers for
each matching key. Thus all pairs like (cat, 1) would eventually turn into a single
pair (cat, 1000) where 1000 represents the number of times that cat appears in the
collected tweets. Finally, the pairs are inverted, e.g. (1000, cat), and then sorted in
descending order.

The power of Spark is that all of these transformations are applied to every tweet
in parallel and, furthermore, as much of the transformations are applied locally on
every node before any data is sent to the master node for the final combination of
pairs across nodes. Spark provides a mechanism to reveal how it will execute a
query known as the debug string.

Each indentation in the debug string is a map stage, and each ‘+’ is a shuffle phase.
As we can see in Listing 6.2, Spark delays shuffling data until it is time to execute
the reduceByKey step. This makes sense since it can generate word pairs on each
node without having to transfer data across nodes. However, once it needs to count
the total number of words, it has to send data across nodes to a master node to create

24 Chapter 6. Evaluation

(1) ShuffledRDD [1 1 2] a t sortByKey at <console >: 31 []
+−(176) MapPartitionsRDD [1 1 1] a t map at <console >: 31 []

| ShuffledRDD [1 1 0] a t reduceByKey at <console >: 31 []
+−(176) MapPartitionsRDD [1 0 9] a t map at <console >: 31 []

| MapPartitionsRDD [1 0 8] a t flatMap at <console >: 31 []
| CassandraTableScanRDD [1 0 7] a t RDD at CassandraRDD . s c a l a : 1 5

[]

Listing 6.2 Debug string rdd

FIGURE 6.2: Plot on wordcount time for dataset size

the final counts. It then performs one more shuffle when it sorts the final key-value
pairs after swapping them from this format (cat, 1000) to this format (1000, cat).

As we can see in Figure 6.2, the word count performance is linear but with a flat
slope at the beginning indicating that performance improved with larger numbers
of tweets to analyze (see the increase in tweets processed per second in Table 6.1)
and then increasing as the total size of the data set went past 2M tweets. The likely
reason for this performance curve is that there is a certain amount of overhead that is
incurred each time to stage the job and perform the shuffle steps at the end, counting
up the pairs and sorting them. However, as the number of tweets increases, each
individual node can do more work uninterrupted and can execute as quickly as
possible without the need for coordination messages. As a result, the performance
per tweet increases as the datasets get larger and this keeps performance acceptable.

6.4. Software development and maintenance 25

Number of tweets Time (s) Tweets/sec

490199 238 2060
1400884 469 2987

21680851 1107 19585
27199614 1500 18133
54395957 4228 12866

TABLE 6.1: Number of tweets in dataset and performance metrics

6.4 Software development and maintenance

One of my goals was to develop a system that was easier to maintain. I accom-
plished this primarily through the use of microservices. The code associated with a
microservice is small, making it easier for new developers to understand and main-
tain it. Furthermore, as was the case with several of our components, we wanted
to make it straightforward for a developer to reimplement one of our components if
there was a compelling reason to do so, such as poor performance.

6.4.1 Current infrastructure

Currently the code for this infrastructure is split at a high-level into two separate,
large and complex projects. This presents challenges to new developers on the
Project EPIC team in terms of getting to know the code to a point where they feel
confident they can contribute to it.

The Ruby-on-Rails portion of EPIC Analyze has 5086 lines of code and is maintained
in a git repository on GitHub. It is thus easy for multiple developers to work on it but
it takes a lot of work to understand it. It relies heavily on Ruby-on-Rails conventions
and that adds an extra layer of difficulty for developers unfamiliar with that frame-
work. In addition, EPIC Analyze relies on the use of solr and redis, two middleware
services that both have significant learning curves. EPIC Collect is likewise a large
system, consisting of thousands of lines of Java code that rely heavily on the Spring
Framework.1 Learning that codebase is difficult, even for experienced developers,
and requires a sophisticated understanding of a wide range of Java infrastructure:
maven, jenkins, Tomcat, and more. Finally, it is difficult to debug changes to both
systems: EPIC Analyze requires deploying multiple servers on multiple machines
as does EPIC Collect and the latter has additional monitoring software that must
be configured and maintained as well. The result is that the current Project EPIC
infrastructure is difficult to maintain.

6.4.2 System Prototype

My system prototype is divided into two main parts. The first part consists of the
code for the various components, written in both Python and Go. The second part

1https://spring.io

https://spring.io

26 Chapter 6. Evaluation

consists of declarative configuration documents written in YAML that specify how
to deploy the infrastructure into Kubernetes.2

• Twitter tracker (Go): 108 lines

• Kubernetes controller (Python): 145 lines

• Event manager (Python/Django): 2090 lines

• Tweet normalizer (Python): 209 lines

The largest component is the Event manager but that is not surprising as it requires
all the code that is normally associated with a fully functioning web application.
Otherwise, the code is fairly equally distributed among the various microservices.
Each service is small and easy to understand. Different developers can work on
each microservice and then those services can be linked via Kubernetes and Kafka.
Furthermore, due to the use of Kafka, each microservice can be written in a differ-
ent technology stack allowing us to choose the tools and languages best suited to
each task. As long as the technologies that we select can be containerized, then the
resulting microsevice can easily be deployed by Kubernetes.

The YAML files consist of 3345 lines of declarations that knit all of the components
together. Kubernetes currently requires developers to manually write and review
each YAML file but developers are working on new tools that will reduce the need
to generate them by hand.

As a result, my system prototype has significantly reduced maintenance costs. It is
straightforward to develop simple microservices and then the use of Docker, Google
Cloud, and Kubernetes makes it much easier to deploy those services into a produc-
tion environment that can be scaled on demand.

2Yet Another Markup Language

27

7 Results

After comparing both the existing Project EPIC infrastructure and my system pro-
totype, I am now going to reflect on possible answers to the questions proposed in
chapter 3.

My work suggests that Project EPIC should invest the effort to migrate its existing
infrastructure to the new software architecture enabled by container-orchestration
systems. While my prototype does not recreate all of the functionality of EPIC Col-
lect and EPIC Analyze, I have been able to reconstruct the core aspects of these sys-
tems in approximately one semester of effort, using less code, and exceeding the
existing infrastructure in terms of scalabilty, reliability, ease of configuration and
deployment, and maintainability—all because of the benefits provided by contain-
erization, container-orchestration systems, and microservices.

Kubernetes provides many features that makes my prototype more scalable and re-
liable. Rather than having to rely on ad hoc monitoring approaches, system moni-
toring is built into Kubernetes and provides for a wide range of features: replicas,
rolling updates, auto-scaling, etc. None of those features are available in the current
Project EPIC infrastructure and would require significant refactoring to add. Fur-
thermore, my approach to using stateless microservices provides me with flexiblity
and scalability that Project EPIC’s current infrastructure cannot match. Lastly, by
making use of Google Cloud, I am able to create clusters with a flexiblity that just is
not possible with Project EPIC’s fixed set of machines in a traditional data center.

Regarding mantainability, my prototype has several advantages. First, my use of
microservices separates responsabilities into different components that are smaller
in size than the stateful components found in the existing infrastructure. This size
difference makes it easier for developers to engage in the maintenance of individ-
ual microservices without having to understand the whole system at once. This
design, in turn, means that we do not need experts for the whole system; each mi-
croservice can be mantained independently. In addition, Kubernetes offers a plat-
form to deploy microservices that provides a better separation between deployment
infrastructure and application development. Developers do not need a system ad-
ministrator to deploy their code; they just need to understand how containerization
works. Once they have wrapped their microservice into a container, it can easily
be deployed and plugged into all of the reliablity and scalability features that Ku-
bernetes provides. Furthermore, Kubernetes is a platform that allows developers to
build their own tools on top of it. Thanks to its open source community, some tools
are already built and can be added into existing Kubernetes clusters with ease. For
example, with respect to reliability, we can add monitoring tools into Kubernetes
clusters in a straightforward way. The API exposes resource usage information al-
lowing one to configure alerts if needed and the community has built packages of
configuration files that help to deploy monitoring solutions with ease.

28 Chapter 7. Results

With respect to deployment, Kubernetes’s configuration files make it straightfor-
ward to specify the configuration of extensible, microservice-based software sys-
tems. With these configuration files, it makes it possible to migrate systems from
one cloud provider to another, providing a means for saving on infrastructure costs.
The Kubernetes scheduler then attempts to deploy the specified software system in
the most optimal way, making best efforts to instantiate the described system within
the constraints of the resources available on the cluster. Adding nodes to an exist-
ing cluster, then provides Kubernetes with the capacity it needs to allow a system to
scale and become more reliable.

Finally, Kubernetes makes it possible to upgrade a software system easily. Each mi-
croservice can be independently upgraded using the rolling update withough hav-
ing to upgrade the whole system at once and new components can be easily added
due to the use of a message broker. You can first add a new service that generates
a new type of message. You can then add services that will process those messages
and then wire those services together by connecting up the message queues.

Given all of these benefits, my thesis work has shown that it is time for a major
migration of the Project EPIC infastructure to the new approach represented by
container-orchestration systems. Such a migration can build off the work I have
invested in creating my system prototype, identifying new microservices that need
to be added to further extend the overall functionality of the system and bring it
closer to the full extent of services offered by the existing infrastructure.

29

8 Related Work

There has been a lot of research on big data analytics. Open source tools like Hadoop
and Spark have made available scalable, distributed computation to the general pub-
lic. In addition, thanks to the progress in big data storage, with systems like Cassan-
dra, hosting internal storage has never been easier. However there is not a lot of
work regarding using container-orchestration for big data analysis systems. There
has been a lot work in both fields, but there is not a lot of work about combining
them.

The work presented by [8] is probably the closest approach to the system I present
here. The main differences are in the actor system and the orchestration platform.
Instead of using Mesos for orchestration and Akka for actors, I preferred to use Ku-
bernetes with container microservices instead of actors. The stack described also
uses Spark Streaming to deploy a Lambda architecture which could be done in the
current infrastructure extending the capabilities of the system. The main reason for
avoiding Spark Streaming has been that its micro batching focus could involve los-
ing tweets during the normalization process. Furthermore, the reason to avoid Akka
for actors was that it had similar features to Kafka and microservices in Kubernetes.
In that way, I considered that adding Akka would make the system more complex
and therefore more difficult to maintain.

There has also been previous work trying to approach big data analytics to a higher
scalability like this paper from 2014 [10]. This system proposal is agnostic on how
to deploy such systems, leaving the developer to deal with it. As container and con-
tainer orchestrated systems were not popular at that time, they are not considered.
Its main approach to getting these systems to scale is via the use of different Hadoop
components. Currently, Spark is preferred over Hadoop, given the increased perfor-
mance made possible via its memory-based approch to MapReduce.

In [9], we see a similar approach using Hadoop and Pig in the batch layer instead of
Cassandra and Spark. They also incorporate a streaming layer for real-time analysis
making use of the lambda infrastructure. In [12], we can see Zeppelin used as a
dashboard interface similar to our work. However none of this systems made use of
the container-orchestrated approach and so lack the scalability and reliablity benefits
that they provide.

31

9 Future Work

This project was focused on demonstrating the advantages achieved by migrating a
big data analytics system to a container-orchestration system. My system prototype
has an impressive set of features but it is, however, just a proof of concept. As such,
there are many areas for improvement including resource usage, security, database
optimization, and extensibility.

With respect to resource usage, there is room for improvement on understanding
the usage constraints of each of my system components. If I could identify upper
and lower bounds for each component, I could provide the Kubernetes scheduler
with even more information in which to make optimization decisions and container
allocations.

Another feature that is needed is a centralized system for authentication and au-
thorization. My research prototype deliberatly avoided imposing any security mea-
sures as our focus was on what was feasible with respect to reliablity and scalability.
However, if this system were to be transitioned into a production environment, then
a wide variety of security-related techniques would need to be adopted: encryption
of data, securing of individual components, the addition of user and system roles
and authorization of those roles to access particular types of data and engage in
particular types of operations.

There is plenty of room for improvement with respect to the structure of my Cassan-
dra tables. For my thesis work, I used a naive approach to tweet storage. It works
well for what I needed to do but there are plenty of ways in which it could be im-
proved. A way to make this better is by upgrading event_name to be a partition
key. This would allow Cassandra to cluster tweets that belong to the same event
improving all queries that are event-based. In addition, I would need to add logic
in the partition assignment for the tweet normalizer, as Cassandra limits the amount
of rows a partition can contain and we need a way to make it easier for data to be
distributed across all nodes. We could do this by assigning a random partition num-
ber when the tweet normalizer starts and choose a new value every one hundred
thousand stored tweets. This would need to be studied more carefully in the future.

With respect to system extensibility, there are a few ways that the prototype could
be improved. For example, I could add a real-time query resolver for a very specific
query by plugging it into the raw_tweets queue and make it analyze the data. Or
I could add other systems for specific queries like Elastic search for full-text search
or analysis. In addition we could extend the system to include better collaboration
tools like a notification system plugged into the event_updates queue.

As one can see, there are many possibilities for improvement and due to the bene-
fits of container-orchestration system, many of these improvements can be done in
isolation without the need to upgrade all of the components at once.

33

10 Conclusions

Container-orchestrated technologies make it easier to develop big data analytics sys-
tems. Their abstraction layer allows for a separation of responsibilities between de-
velopers and system operators, allowing them to work together without too much
overlap in their work. This provides potential for innovation within big data analyt-
ics, as improvements can be developed separately for infrastructure and software.
It also opens a gate to new approaches to the state of these systems, extracting the
state out of the individual system components and into the surrounding container-
orchestrated system and the messages that get passed between the componets.

In my work, using container-orchestration systems to recreate as much of the core
functionality of the existing Project EPIC infrastructure has allowed me to develop
a system that has proven to be easier to scale. It also has produced a system with
greater reliablity by moving that responsibilty out of the big data system itself and
into the orchestration system. My prototype has also proved to be easier to mantain,
as components are smaller and it is easier to adopt a more continous development
and deployment cycle for each system component. In addition, container systems
like Docker allow developers to focus more on an application’s logic instead of wor-
rying about deployment infrastructure.

In conclusion, I have demonstrated that container-orchestration systems are a great
option for developing big data analytics infrastructures that require flexible scaling
and high reliability.

35

A Microservices code

Attached here is a version of the code developed for some of the custom microser-
vices discussed in chapter 4. The event manager UI is not included due to the exten-
sivity of the codebase.

A.1 Twitter Tracker

A.1.1 twitter_tracker.go

package main

/ / OAuth1
import (

" github . com/dghubble/oauth1 "
" os "
" buf io "
" s t r i n g s "
" net/u r l "
" gopkg . in/Shopify/sarama . v1 "
" log "

)

/ / L ine s e p a r a t o r f u n c t i o n , d e t e c t s new l i n e s
func scanLines (data [] byte , atEOF bool) (advance int , token [] byte , e r r

e r r o r) {
i f atEOF && len (data) == 0 {

return 0 , nil , n i l
}
i f i := s t r i n g s . Index (s t r i n g (data) , "\r\n") ; i >= 0 {

/ / We have a f u l l ’\ r\n ’ t e r m i n a t e d l i n e .
return i + 2 , data [0 : i] , n i l

}
/ / I f we ’ r e a t EOF, we have a f i n a l , non−t e r m i n a t e d l i n e . Return i t .
i f atEOF {

return len (data) , dropCR (data) , n i l
}
/ / R e q u e s t more d a t a .
return 0 , nil , n i l

}

func dropCR (data [] byte) [] byte {
i f len (data) > 0 && data [len (data) −1] == ’\n ’ {

return data [0 : len (data) −1]
}
return data

}

36 Appendix A. Microservices code

func main () {
/ / Get env i ronment v a r i a b l e s
var access_token = os . Getenv ("ACCESS_TOKEN")
var t o k e n _ s e c r e t = os . Getenv ("ACCESS_TOKEN_SECRET")
var consumer_key = os . Getenv ("CONSUMER_KEY")
var consumer_secret = os . Getenv ("CONSUMER_SECRET")
var tokens = os . Getenv ("TOKENS")
var kafka_servers = s t r i n g s . S p l i t (os . Getenv ("KAFKA_SERVERS") , " , ")

/ / P r e p a r e OAuth1 c l i e n t
conf := oauth1 . NewConfig (consumer_key , consumer_secret)
token := oauth1 . NewToken(access_token , t o k e n _ s e c r e t)
c l i e n t := conf . C l i e n t (oauth1 . NoContext , token)
v := u r l . Values { }
v . Set (" t r a c k " , tokens)

/ / Get u r l f o r s t r e am
stream_url := " h t tps :// stream . t w i t t e r . com/1.1/ s t a t u s e s / f i l t e r . j son ? "

+ v . Encode ()

/ / Connect t o URL with POST
resp , e r r := c l i e n t . Post (stream_url , " a p p l i c a t i o n / json " , n i l)

i f e r r != n i l {
log . F a t a l f (" Error while connect ing to t w i t t e r : %s " , e r r)
panic (e r r)
return

}

i f resp . StatusCode != 200 {
log . F a t a l f (" Error while connect ing to t w i t t e r , s t a t u s code returned

: %d" , resp . StatusCode)
panic (e r r)
return

}

/ / C r e a t e b u f f e r s c a n n e r f o r r e q u e s t and s p l i t by custom f u n c t i o n
scanner := buf io . NewScanner (resp . Body)
scanner . S p l i t (scanLines)

/ / S t a r t a s y n c r o n o u s k a f k a p r o d u c e r
producer , e r r := sarama . NewAsyncProducer (kafka_servers , n i l)

/ / C l o s e p r o d u c e r b e f o r e e x i t i n g program
defer func () {

i f e r r := producer . Close () ; e r r != n i l {
log . F a t a l l n (e r r)

}
} ()

i f e r r != n i l {
log . F a t a l f (" Error while boots t raping Kafka producer : %s " , e r r)
panic (e r r)
return

}

/ / S t a r t s e p a r a t e t h r e a d t o t r a c k Ka fka produced e r r o r s
go func () {

for e r r := range producer . Errors () {
log . F a t a l f (" Kafka e r r o r : %s " , e r r)
/ / E x i t a p p l i c a t i o n i f any e r r o r from Kafka
/ / F o r c e K u b e r n e t e s t o r e c o v e r

A.1. Twitter Tracker 37

os . E x i t (2)
}

} ()

/ / Main l o o p t o scan r e q u e s t . Only b r e a k s i f e r r o r from Kafka .
for scanner . Scan () {

tweet := scanner . Bytes ()
i f len (token) == 0 {

/ / empty keep−a l i v e
continue

}

/ / Send t w e e t t o p r o d u c e r
producer . Input () <− &sarama . ProducerMessage { Topic : " raw_tweets " ,

Key : nil , Value : sarama . Str ingEncoder (tweet) }
log . P r i n t f (" Tweet rece ived ")

}
log . P r i n t f (" Closing ")

}

38 Appendix A. Microservices code

A.2 Twitter Normalizer

A.2.1 model.py

−∗− c o d i n g : u t f −8 −∗−
from __future__ import u n i c o d e _ l i t e r a l s
import logging
import os
import socket
import uuid
from datetime import datetime
import ujson
from cassandra . c l u s t e r import Cluster
from cassandra . cqlengine import columns , connect ion
from cassandra . cqlengine . management import sync_tab le
from cassandra . cqlengine . models import Model

CASSANDRA_IPS = l i s t (
map(socket . gethostbyname , os . environ . get (’CASSANDRA_NODES ’ , ’

1 2 7 . 0 . 0 . 1 ’) . r e p l a c e (’ ’ , ’ ’) . s p l i t (’ , ’)))
KEYSPACE = ’ t w i t t e r _ a n a l y t i c s ’

Tweet model d e f i n i t i o n as Python C l a s s
c l a s s Tweet (Model) :

id = columns .UUID(primary_key=True , d e f a u l t =uuid . uuid4)
event_name = columns . Text (index=True)
t _ i d = columns . Text (primary_key=True , c l u s t e r i n g _ o r d e r ="DESC")
event_kw = columns . Text ()
t _ c r e a t e d _ a t = columns . DateTime ()
t _ t e x t = columns . Text ()
t_re tweet_count = columns . I n t e g e r ()
t _ f a v o r i t e _ c o u n t = columns . I n t e g e r ()
t_geo = columns . Text ()
t _ c o o r d i n a t e s = columns . Text ()
t _ f a v o r i t e d = columns . Boolean ()
t_retweeted = columns . Boolean ()
t _ i s _ a _ r e t w e e t = columns . Boolean ()
t_ lang = columns . Text ()
u_id = columns . Text ()
u_name = columns . Text ()
u_screen_name = columns . Text ()
u_ loca t ion = columns . Text ()
u_url = columns . Text ()
u_lang = columns . Text ()
u_descr ip t ion = columns . Text ()
u_time_zone = columns . Text ()
u_geo_enabled = columns . Boolean ()
media_url = columns . Text ()
um_screen_name = columns . Text ()
um_name = columns . Text ()
um_id = columns . Text ()
u_fol lowers_count = columns . I n t e g e r ()
u_fr iends_count = columns . I n t e g e r ()
u_ l i s t ed_count = columns . I n t e g e r ()
u_favour i tes_count = columns . I n t e g e r ()
u _ u t c _ o f f s e t = columns . I n t e g e r ()
u_sta tuses_count = columns . I n t e g e r ()
u_created_at = columns . DateTime ()
hashtags = columns . L i s t (value_type=columns . Text)

A.2. Twitter Normalizer 39

u r l s = columns . L i s t (value_type=columns . Text)

logging . i n f o (’ Connecting to cassandra . . . ’)

c l u s t e r = Clus ter (CASSANDRA_IPS)
with c l u s t e r . connect () as s e s s i o n :

logging . i n f o (’ Creat ing keyspace . . . ’)
Keyspac e c r e a t i o n
s e s s i o n . execute ("""

CREATE KEYSPACE IF NOT EXISTS %s
WITH r e p l i c a t i o n = { ’ c l a s s ’ : ’ S i m p l e S t r a t e g y ’ , ’

r e p l i c a t i o n _ f a c t o r ’ : ’ 1 ’ }
""" % KEYSPACE)

E s t a b l i s h c o n n e c t i o n with Cassandra c l u s t e r
connect ion . setup (CASSANDRA_IPS, KEYSPACE, pro toco l_vers ion =3)

T a b l e c r e a t i o n
logging . i n f o (’ Creat ing t a b l e . . . ’)
sync_tab le (Tweet)

def c r e a t e _ d i c t (event_key , event_kw , tweet) :
return {

’ id ’ : s t r (uuid . uuid1 ()) ,
’ t _ i d ’ : tweet [’ i d _ s t r ’] ,
’ event_kw ’ : ’ , ’ . j o i n (event_kw) ,
’ event_name ’ : event_key ,
’ t _ c r e a t e d _ a t ’ : datetime . s t rpt ime (tweet [’ c r e a t e d _ a t ’] , ’%a %b %

d %H:%M:%S +0000 %Y ’) . i soformat () ,
’ t _ t e x t ’ : tweet [’ t e x t ’] ,
’ t_re tweet_count ’ : tweet [’ retweet_count ’] ,
’ t _ f a v o r i t e _ c o u n t ’ : tweet [’ f a v o r i t e _ c o u n t ’] ,
’ t_geo ’ : s t r (tweet [’ geo ’]) ,
’ t _ c o o r d i n a t e s ’ : s t r (tweet [’ coordinates ’]) ,
’ t _ f a v o r i t e d ’ : tweet [’ f a v o r i t e d ’] ,
’ t_retweeted ’ : tweet [’ retweeted ’] ,
’ t _ i s _ a _ r e t w e e t ’ : ’ re tweeted_s ta tus ’ in tweet ,
’ t_ lang ’ : tweet [’ lang ’] ,
’ u_id ’ : tweet [’ user ’] [’ i d _ s t r ’] ,
’u_name ’ : tweet [’ user ’] [’name ’] ,
’ u_screen_name ’ : tweet [’ user ’] [’ screen_name ’] ,
’ u_ loca t ion ’ : tweet [’ user ’] [’ l o c a t i o n ’] ,
’ u_url ’ : tweet [’ user ’] [’ u r l ’] ,
’ u_lang ’ : tweet [’ user ’] [’ lang ’] ,
’ u_descr ip t ion ’ : tweet [’ user ’] [’ d e s c r i p t i o n ’] ,
’ u_time_zone ’ : tweet [’ user ’] [’ time_zone ’] ,
’ u_geo_enabled ’ : bool (tweet [’ user ’] [’ geo_enabled ’]) ,
’ u_fol lowers_count ’ : tweet [’ user ’] [’ fo l lowers_count ’] ,
’ u_fr iends_count ’ : tweet [’ user ’] [’ f r i ends_count ’] ,
’ u_favour i tes_count ’ : tweet [’ user ’] [’ f a vo u r i t e s_ c ou n t ’] ,
’ u_s ta tuses_count ’ : tweet [’ user ’] [’ s t a t u s e s _ c o u n t ’] ,
’ u_created_at ’ : datetime . s t rpt ime (tweet [’ user ’] [’ c r e a t e d _ a t ’] ,

’%a %b %d %H:%M:%S +0000 %Y ’) . i soformat () ,
’ hashtags ’ : l i s t (map(lambda h : h [’ t e x t ’] , tweet [’ e n t i t i e s ’] [’

hashtags ’])) ,
’ u r l s ’ : l i s t (map(lambda u r l : u r l [’ u r l ’] , tweet [’ e n t i t i e s ’] [’

u r l s ’])) ,
Concat names with a s p a c e s e p a r a t i o n
’ um_screen_name ’ : ’ ’ . j o i n (map(lambda um: s t r (um[’ screen_name ’

]) , tweet [’ e n t i t i e s ’] [’ user_mentions ’])) ,

40 Appendix A. Microservices code

’um_name ’ : ’ ’ . j o i n (map(lambda um: s t r (um[’name ’]) , tweet [’
e n t i t i e s ’] [’ user_mentions ’])) ,

’ um_id ’ : ’ ’ . j o i n (map(lambda um: s t r (um[’ i d _ s t r ’]) , tweet [’
e n t i t i e s ’] [’ user_mentions ’])) ,

’ media_url ’ : ’ ’ . j o i n (map(lambda m: s t r (m[’ media_url_https ’]) ,
tweet [’ e n t i t i e s ’] [’ media ’]))

i f ’ media ’ in tweet [’ e n t i t i e s ’] e lse None ,

}

s e s s i o n = connect ion . s e s s i o n
prep_query = s e s s i o n . prepare (" INSERT INTO %s . tweet JSON ? " % KEYSPACE)

def save_tweet (tweet , event_key , event_kw) :
s e s s i o n . execute_async (prep_query , [ujson . dumps(c r e a t e _ d i c t (

event_key , event_kw , tweet)) ,])

A.2. Twitter Normalizer 41

A.2.2 tweetparser.py

import logging
import os
import sys
import ujson
from conf luent_kafka import Consumer , KafkaError , KafkaException

EVENT_KEY = os . environ . get (’EVENT_KEY ’ , ’ ’)
a s s e r t EVENT_KEY, ’ Event key must be s p e c i f i e d as environment v a r i a b l e ’

TOKENS = l i s t (f i l t e r (None , os . environ . get (’TOKENS ’ , ’ ’) . s p l i t (’ , ’)))
a s s e r t TOKENS, ’ Tokens can \ ’ t be empty ’

KAFKA_SERVER = os . environ . get (’KAFKA_SERVERS ’ , ’ l o c a l h o s t : 9092 ’)

def main (save) :
conf = { ’ boots t rap . s e r v e r s ’ : KAFKA_SERVER,

’ group . id ’ : EVENT_KEY,
’ s e s s i o n . timeout . ms ’ : 6000 ,
’ d e f a u l t . t o p i c . conf ig ’ : { ’ auto . o f f s e t . r e s e t ’ : ’ s m a l l e s t ’ }
}

C r e a t e Ka fka consumer with s p e c i f i e d c o n f i g u r a t i o n
c = Consumer (∗∗ conf)

Custom f u n c t i o n f o r a s s i g n m e n t p r i n t i n g
def print_ass ignment (consumer , p a r t i t i o n s) :

logging . i n f o (’ Assignment : %s ’ % p a r t i t i o n s)

S u b s c r i b e t o t o p i c s
c . subscr ibe ([’ raw_tweets ’ ,] , on_assign=print_assignment)

msg_count = 0
while True :

msg = c . p o l l ()
i f msg i s None :

continue
i f msg . e r r o r () :

E r r o r o r e v e n t
i f msg . e r r o r () . code () == KafkaError . _PARTITION_EOF :

End o f p a r t i t i o n e v e n t
logging . i n f o (’%% %s [%d] reached end at o f f s e t %d ’ % (

msg . t o p i c () , msg . p a r t i t i o n () , msg . o f f s e t ()))
e l i f msg . e r r o r () :

E r r o r
r a i s e KafkaException (msg . e r r o r ())

e lse :
tweet = None
t r y :

tweet = ujson . loads (msg . value ())
except TypeError :

logging . e r r o r (" Message not j son : %s " % msg . value ())
continue

except ValueError :
logging . e r r o r (" Message not j son : %s " % msg . value ())
continue

T w i t t e r i n t e r n a l m e s s ag e s a r e d i s c a r d e d h e r e
i f ’ t e x t ’ not in tweet :

logging . i n f o (’ I n t e r n a l message : %s ’ % tweet)

42 Appendix A. Microservices code

continue
msg_count += 1

Check i f t w e e t s h o u l d be s t o r e d
i f any (token in tweet [’ t e x t ’] for token in TOKENS) :

logging . i n f o (’ Tweet accepted : %s :%d:%d : key=%s tweet_id
=%s ’ %

(msg . t o p i c () , msg . p a r t i t i o n () , msg . o f f s e t
() ,

s t r (msg . key ()) , tweet [’ id ’]))
save (tweet , EVENT_KEY, TOKENS)

R e a d i n e s s w r i t e on f i r s t message (used by K u b e r n e t e s)
i f msg_count == 1 :

open (’/tmp/heal thy ’ , ’ a ’) . c l o s e ()

i f __name__ == " __main__ " :
logging . bas icConf ig (

format= ’%(asct ime) s .%(msecs) s%(levelname) s :%(message) s ’ ,
l e v e l =logging . INFO

)
import model

logging . i n f o (’ Event : %s ’ % EVENT_KEY)
logging . i n f o (’ Tracking keywords : %s ’ % ’ , ’ . j o i n (TOKENS))
logging . i n f o (’ Kafka s e r v e r s : %s ’ % KAFKA_SERVER)
logging . i n f o (’ Connecting to Cassandra . . . ’)
logging . i n f o (’ S t a r t stream t r a c k ’)
i f not TOKENS:

logging . e r r o r (’ Tokens can \ ’ t be empty ’)
main (model . save_tweet)

A.3. Infrastructure Controller 43

A.3 Infrastructure Controller

There’s also YAML templates to generate the deployments that are sent to Kuber-
netes. I don’t include them here. To check some sample YAML file see Appendix B

A.3.1 start.py

import j son
import logging
import os

from kafka import KafkaConsumer

import k 8 s c o n t r o l l e r

b o o t s t r a p _ s e r v e r s = os . environ . get (’KAFKA_SERVERS ’ , ’ l o c a l h o s t : 9092 ’) .
s p l i t (’ , ’)

t o p i c = os . environ . get (’KAFKA_TOPIC ’ , ’ events ’)

TEST_TYPE = ’ t e s t ’
EVENT_TYPE = ’ event ’
QUERIES_TYPE = ’ quer ies ’

UPDATE_ACTION = ’ update ’
REFRESH_ACTION = ’ r e f r e s h ’
IGNORE_ACTION = ’ ignore ’

def main () :
consumer = KafkaConsumer (topic , group_id= ’ k 8 s c o n t r o l l e r−eventparser

’ , b o o t s t r a p _ s e r v e r s =boots t rap_servers ,
v a l u e _ d e s e r i a l i z e r =lambda m: json . loads (m.

decode (’ utf−8 ’)))

for message in consumer :
value = message . value
type_ = value [’ type ’]
a c t i o n = value [’ a c t i o n ’]
i f (a c t i o n == UPDATE_ACTION or a c t i o n == REFRESH_ACTION) and

type_ == EVENT_TYPE :
data = value [’ data ’]
t r y :

i f data [’ t r a c k i n g ’] and data [’ tokens ’] . r e p l a c e (’ ’ , ’ ’)
. r e p l a c e (’ , ’ , ’ ’) :
k 8 s c o n t r o l l e r . apply_eventparser (data [’ code ’] , data [

’ tokens ’])
logging . i n f o (’ Created event p a r t s e r f o r event : %s ’

% data [’ code ’])
except KeyError :

logging . i n f o (’ Message rece ived was not formatted
c o r r e c t l y . Message :\n %s ’ % data)

e l i f (a c t i o n == UPDATE_ACTION or a c t i o n == REFRESH_ACTION) and
type_ == QUERIES_TYPE :
tokens = value [’ data ’]
t r y :

k 8 s c o n t r o l l e r . update_queries (tokens)
logging . i n f o (’ Updated t w i t t e r streaming with quer ies : %

s ’ % tokens)

44 Appendix A. Microservices code

except KeyError :
logging . i n f o (’ Message rece ived was not formatted

c o r r e c t l y . Message :\n %s ’ % value)

i f __name__ == " __main__ " :
logging . bas icConf ig (

format= ’%(asct ime) s .%(msecs) s :%(name) s :%(thread) d:%(levelname) s
:%(process) d:%(message) s ’ ,

l e v e l =logging . INFO
)
logging . i n f o (’ Checking Kubernetes connect ion . . . ’)
logging . i n f o (’ Kubernetes current pods ips : %s ’ % k 8 s c o n t r o l l e r .

get_pod_ips ())

logging . i n f o (’ Kafka s e r v e r s : %s ’ % ’ , ’ . j o i n (b o o t s t r a p _ s e r v e r s))
logging . i n f o (’ S t a r t t r a c k i n g changes ’)
main ()

A.3. Infrastructure Controller 45

A.3.2 k8scontroller.py

import os

import logging
import yaml
from kubernetes import c l i e n t , conf ig
from kubernetes . c l i e n t . r e s t import ApiException

KAFKA_SERVERS = os . environ . get (’KAFKA_SERVERS ’ , ’ l o c a l h o s t : 9092 ’)
CASSANDRA_SERVERS = os . environ . get (’CASSANDRA_SERVERS ’ , ’ l o c a l h o s t ’)

ACCESS_TOKEN = os . environ . get ("ACCESS_TOKEN" , "ENTER YOUR ACCESS TOKEN"
)

ACCESS_TOKEN_SECRET = os . environ . get ("ACCESS_TOKEN_SECRET" , "ENTER YOUR
ACCESS TOKEN SECRET")

CONSUMER_KEY = os . environ . get ("CONSUMER_KEY" , "ENTER YOUR API KEY")
CONSUMER_SECRET = os . environ . get ("CONSUMER_SECRET" , "ENTER YOUR API

SECRET")
TWEET_CASSANDRA_VERSION = os . environ . get ("TWEET_CASSANDRA_VERSION" , "

1 . 2 . 1 ")
TWITTER_STREAMING_VERSION = os . environ . get ("TWITTER_STREAMING_VERSION" ,

" 1 . 1 . 0 ")

def load_conf ig () :
t r y :

conf ig . load_kube_config ()
except :

conf ig . l o a d _ i n c l u s t e r _ c o n f i g ()

def get_pod_ips () :
C o n f i g s can be s e t in C o n f i g u r a t i o n c l a s s d i r e c t l y or us ing

h e l p e r u t i l i t y

load_conf ig ()

v1 = c l i e n t . CoreV1Api ()
logging . i n f o (" L i s t i n g pods with t h e i r IPs : ")
r e t = v1 . l i s t_pod_for_a l l_namespaces (watch=Fa lse)
return l i s t (map(lambda x : x . s t a t u s . pod_ip , r e t . i tems))

def apply_eventparser (event_code , keywords) :
load_conf ig ()

with open (" k8sdeployments/tweet_cassandra . yaml ") as f :
name = ’%s−event−parser ’ % event_code
dep = yaml . load (

f . read ()
. r e p l a c e (’ { { code } } ’ , event_code)
. r e p l a c e (’ { { keywords } } ’ , keywords)
. r e p l a c e (’ { { name } } ’ , name)
. r e p l a c e (’ { { vers ion } } ’ , TWEET_CASSANDRA_VERSION)
. r e p l a c e (’ { { kafka−s e r v e r s } } ’ , KAFKA_SERVERS)
. r e p l a c e (’ { { cassandra−s e r v e r s } } ’ , CASSANDRA_SERVERS)

46 Appendix A. Microservices code

)

k8s_beta = c l i e n t . ExtensionsV1beta1Api ()
t r y :

resp = k8s_beta . create_namespaced_deployment (
body=dep , namespace=" d e f a u l t ")

except ApiException as e :
resp = k8s_beta . patch_namespaced_deployment (name ,

body=dep ,
namespace="
d e f a u l t ")

return resp

def update_queries (quer ies) :
load_conf ig ()
with open (" k8sdeployments/ t w i t t e r _ t r a c k e r . yaml ") as f :

name = ’ t w i t t e r−t r a c k e r ’
dep = yaml . load (

f . read ()
. r e p l a c e (’ { { a_token } } ’ , ACCESS_TOKEN)
. r e p l a c e (’ { { a_ token_secre t } } ’ , ACCESS_TOKEN_SECRET)
. r e p l a c e (’ { { c_key } } ’ , CONSUMER_KEY)
. r e p l a c e (’ { { c _ s e c r e t } } ’ , CONSUMER_SECRET)
. r e p l a c e (’ { { quer ies } } ’ , ’ , ’ . j o i n (quer ies))
. r e p l a c e (’ { { vers ion } } ’ , TWITTER_STREAMING_VERSION)
. r e p l a c e (’ { { kafka−s e r v e r s } } ’ , KAFKA_SERVERS)

)

k8s_beta = c l i e n t . ExtensionsV1beta1Api ()
t r y :

resp = k8s_beta . create_namespaced_deployment (
body=dep , namespace=" d e f a u l t ")

except ApiException as e :
resp = k8s_beta . patch_namespaced_deployment (name ,

body=dep ,
namespace="
d e f a u l t ")

return resp

47

B Deploying microservices in
Kubernetes

As we stated in chapter 6, all the system has been built to be deployed using Kuber-
nets YAML configuration files. However the process of deploying a microservice is
not stated. Here we describe how to deploy Event Manager UI from scratch as an
example.

B.1 Docker image

The first thing that needs to be done in to create a docker image. This can be done
by defining a Dockerfile for the project. Once that is done, we can create the im-
age by running docker build -t projectepic/eventmanager-ui . in the
Dockerfile folder.

FROM python :3.6 − a lp ine

RUN mkdir /code
WORKDIR /code

I n s t a l l dependencies from requirement . t x t
ADD requirements . t x t /code/
RUN pip i n s t a l l −r requirements . t x t

#Add apps code to image
ADD manage . py /code/
RUN mkdir /code/events
ADD events /code/events
RUN mkdir /code/eventmanager
ADD eventmanager /code/eventmanager
RUN mkdir /code/db

C o l l e c t s t a t i c resources in image
RUN python manage . py c o l l e c t s t a t i c −−noinput

Expose port 80 from i n s i d e the co nt a i ne r
EXPOSE 80

Add s t a r t s c r i p t
ADD s t a r t . sh /code/

Add e x t e r n a l mountable volume on the DB f o l d e r
VOLUME ["/ code/db " ,]

Define s t a r t i n g point
ENTRYPOINT /code/ s t a r t . sh

48 Appendix B. Deploying microservices in Kubernetes

The base image is Python Alpine, which is a low resource image for Python. Thanks
to this our new image is not as big as if we used the regular Python image. In
addition we include a volume to save state betweet restarts and a port exposed to
access the inner defined server. After being created we need to add a tag to the image
so that we can decide what version to use on deployment.

Once the image is created and tagged, we need to push it to an Image Registry
service. The choice for this project has been DockerHub, but any other can be used
as long as it’s accessible by the Kubernetes cluster.

B.2 Kubernetes deployment YAML file

This is a YAML configuration file for the Event Manager UI. The important part is
the specification section (spec). There you set the number of replicas you want to be
deployed and specify the template for each pod that will be deployed as part of the
deployment. For the pod template you need to specify the image, the resources it
will use and the environment variables. We also include a readiness probe, which
will be executed on start to check wether or not the application in the container has
been start and it’s running smoothly. Finally we declare a volume to be mounted on
the pod in the db path as defined in the Dockerfile previously. We also declare how
to claim the volume by specifying a volume claim. This will ensure that the same
volume is mounted between restarts making sure our data is kept.

To deploy we can use either the Kubectl command line properly configured or the
web interface by uploading the configuration file. Both ways have the same effect.

B.2. Kubernetes deployment YAML file 49

apiVersion : ex tens ions/v1beta1
kind : Deployment
metadata :

name : eventmanager−ui
namespace : frontend

spec :
r e p l i c a s : 1
template :

metadata :
l a b e l s :

app : eventmanager−ui
spec :

terminationGracePeriodSeconds : 10
c o n t a i n e r s :
− name : eventmanager

image : p r o j e c t e p i c /eventmanager−ui : 1 . 1 . 8
ports :
− c o n t a i n e r P o r t : 80
resources :

l i m i t s :
cpu : 100m
memory : 50Mi

reques ts :
cpu : 100m
memory : 50Mi

env :
− name : KAFKA_SERVERS

value : kafka −0. broker . kafka . svc . c l u s t e r . l o c a l : 9 0 9 2 , kafka
−1. broker . kafka . svc . c l u s t e r . l o c a l : 9092

readinessProbe :
httpGet :

path : /
port : 80

volumeMounts :
− name : datadir

mountPath : /code/db
volumes :
− name : datadir

persistentVolumeClaim :
claimName : eventmanager−db

51

Bibliography

[1] Kenneth M. Anderson. “Embrace the Challenges: Software Engineering in a
Big Data World”. In: 1st International Workshop on Big Data Software Engineering,
part of the 2015 International Conference on Software Engineering. 2015, pp. 19–25.

[2] Kenneth M. Anderson and Aaron Schram. “Design and Implementation of a
Data Analytics Infrastructure in Support of Crisis Informatics Research (NIER
Track)”. In: Proceedings of the 33rd International Conference on Software Engineer-
ing. ICSE ’11. Waikiki, HI, USA: ACM, 2011, pp. 844–847. ISBN: 978-1-4503-
0445-0. DOI: 10.1145/1985793.1985920. URL: http://doi.acm.org/
10.1145/1985793.1985920.

[3] Kenneth M. Anderson et al. “Design Challenges/Solutions for Environments
Supporting the Analysis of Social Media Data in Crisis Informatics Research”.
In: Proceedings of the 2015 48th Hawaii International Conference on System Sciences.
HICSS ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 163–172.
ISBN: 978-1-4799-7367-5. DOI: 10.1109/HICSS.2015.29. URL: http://
dx.doi.org/10.1109/HICSS.2015.29.

[4] Grady Booch. Object-Oriented Analysis and Design with Applications (3rd Edi-
tion). Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
2004. ISBN: 020189551X.

[5] Cisco. Cisco Visual Networking Index: Forecast and Cisco Visual Networking Cisco
Visual Networking Index: Forecast and Methodology, 2016–2021. Tech. rep. Cisco,
2017. URL: http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/complete-
white-paper-c11-481360.pdf.

[6] N. Dragoni et al. “Microservices: How To Make Your Application Scale”. In:
ArXiv e-prints (Feb. 2017). arXiv: 1702.07149 [cs.SE].

[7] EndPoint. Benchmarking Top NoSQL Databases: Apache Cassandra, Couchbase, HBase,
and MongoDB. Tech. rep. EndPoint, 2015.

[8] Raul Estrada and Isaac Ruiz. Big Data SMACK: A Guide to Apache Spark, Mesos,
Akka, Cassandra, and Kafka. Apress, 2016.

[9] Zirije Hasani, Margita Kon-Popovska, and Goran Velinov. “Lambda architec-
ture for real time big data analytic”. In: ICT Innovations (2014).

[10] Han Hu et al. “Toward scalable systems for big data analytics: A technology
tutorial”. In: IEEE access 2 (2014), pp. 652–687.

[11] Raffi Krikorian. New Tweets per Second Record, and How! URL: https://blog.
twitter.com/engineering/en_us/a/2013/new- tweets- per-
second-record-and-how.html.

[12] A MadhaviLatha and G Vijaya Kumar. “Streaming Data Analysis using Apache
Cassandra and Zeppelin”. In: ().

[13] William Morgan. What’s a service mesh? And why do I need one? | Buoyant | The
Service Mesh Company. 2017. URL: https://buoyant.io/2017/04/25/
whats-a-service-mesh-and-why-do-i-need-one/.

https://doi.org/10.1145/1985793.1985920
http://doi.acm.org/10.1145/1985793.1985920
http://doi.acm.org/10.1145/1985793.1985920
https://doi.org/10.1109/HICSS.2015.29
http://dx.doi.org/10.1109/HICSS.2015.29
http://dx.doi.org/10.1109/HICSS.2015.29
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://arxiv.org/abs/1702.07149
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/

52 BIBLIOGRAPHY

[14] Sam Newman. Building Microservices. 1st. O’Reilly Media, Inc., 2015. ISBN: 1491950358,
9781491950357.

[15] Leysia Palen et al. “Crisis in a Networked World”. In: Soc. Sci. Comput. Rev. 27.4
(Nov. 2009), pp. 467–480. ISSN: 0894-4393. DOI: 10.1177/0894439309332302.
URL: http://dx.doi.org/10.1177/0894439309332302.

[16] Aaron Schram and Kenneth M. Anderson. “MySQL to NoSQL: Data Modeling
Challenges in Supporting Scalability”. In: Proceedings of the 3rd Annual Confer-
ence on Systems, Programming, and Applications: Software for Humanity. SPLASH
’12. Tucson, Arizona, USA: ACM, 2012, pp. 191–202. ISBN: 978-1-4503-1563-0.
DOI: 10.1145/2384716.2384773. URL: http://doi.acm.org/10.
1145/2384716.2384773.

[17] Sarah Vieweg et al. “Microblogging During Two Natural Hazards Events: What
Twitter May Contribute to Situational Awareness”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’10. Atlanta, Georgia,
USA: ACM, 2010, pp. 1079–1088. ISBN: 978-1-60558-929-9. DOI: 10.1145/
1753326.1753486. URL: http://doi.acm.org/10.1145/1753326.
1753486.

https://doi.org/10.1177/0894439309332302
http://dx.doi.org/10.1177/0894439309332302
https://doi.org/10.1145/2384716.2384773
http://doi.acm.org/10.1145/2384716.2384773
http://doi.acm.org/10.1145/2384716.2384773
https://doi.org/10.1145/1753326.1753486
https://doi.org/10.1145/1753326.1753486
http://doi.acm.org/10.1145/1753326.1753486
http://doi.acm.org/10.1145/1753326.1753486

	Abstract
	Acknowledgements
	Introduction
	Background
	Project EPIC
	Containerization
	Container Orchestration Technologies
	Microservices Architecture
	Coreography
	Orchestration

	Messaging systems
	Big Data Storage Systems

	Problem Statement
	Approach
	Custom Components

	Implementation
	Deploying the System
	Front-End Components

	Evaluation
	Reliability
	Current infrastructure
	System Prototype

	Scalability
	Current infrastructure
	System Prototype

	Performance
	Software development and maintenance
	Current infrastructure
	System Prototype

	Results
	Related Work
	Future Work
	Conclusions
	Microservices code
	Twitter Tracker
	twitter_tracker.go

	Twitter Normalizer
	model.py
	tweetparser.py

	Infrastructure Controller
	start.py
	k8scontroller.py

	Deploying microservices in Kubernetes
	Docker image
	Kubernetes deployment YAML file

