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Abstract

Most of the existing materials around us can be considered composite materials,
since they are composed by several phases or components at certain spatial scale.
The physical and chemical properties of composites, as occurs with structures
composed by two or more materials, is defined by the response provided by their
constituents. Therefore, a good characterization of the composite requires con-
sidering the performance of its components. In the last decades, several methods
have been proposed with this approach to characterize composite materials, most
of them based on multiscale techniques.

Nowadays, multiscale homogenization analysis is a popular topic in the simu-
lation of composite materials. This is because the complexity of new composites
demands of advanced analysis techniques for their correct characterization, and
thanks to the continuous increase of computational capacity. However, the com-
putational cost when multiscale procedures are taken to the non-linear range and
are applied to real-size structures is still excessively high. In this context, this
monograph presents a comprehensive homogenization formulation for an efficient
non-linear multiscale modeling of composite structures.

The development of a composite multiscale constitutive model is addressed
from two different homogenization approaches. The first one corresponds to a
phenomenological homogenization procedure for the non-linear analysis of car-
bon nanotubes reinforced composites. The second one is a general two-scale
homogenization procedure to analyze three-dimensional composite structures.

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements for
high-performance composites. The formulation developed takes into account ex-
plicitly the performance of the interface between the matrix and the CNTs. The
load is transferred to the nanotubes through the considered interface. The com-
posite non-linear behavior results from the non-linearities of its constituents, and
in case of interface damage, it also becomes non-linear the law defined to couple
the interface with the CNTs. The formulation is validated studying the elastic
response and non-linear behavior of several composites.

In the context of multiscale homogenization, a first-order and an enhanced-
first-order formulation is developed. The results obtained for laminate composites
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using the first-order formulation are compared with other microscopic formula-
tions, showing that the homogenization method is an excellent alternative when
microstructural effects must be taken into account. Then, a strategy to conduct
non-linear multiscale analysis in an efficient way is proposed. The procedure
conserves the dissipated energy through the scales and is mesh independence.
The analysis of academic examples is used to show the capacity of the non-linear
strategy. Finally, the simulation of an industrial composite component proves the
performance and benefits of the non-linear homogenization procedure developed.
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Introduction

The continuum mechanics theory has made a great effort to obtain the behavior
of homogeneous materials using physical and mathematical concepts showing a
good agreement with reality. Furthermore, the constant improvements on com-
puter technology and computer architecture have allowed to improve the numer-
ical tools used to simulate mechanical structures. In the numerical simulation
field, one of the most extended methods used for several applications is the Finite
Element Method (FEM) [152]. In a FEM analysis the behavior of the homoge-
neous materials in the structure is simulated by a specific constitutive law or
constitutive model with some calibrated parameters.

Composites are non-homogeneous materials formed by two or more different
components which can be homogeneous materials or even micro-heterogeneous
materials. The homogenized behavior of the composites depends strongly on the
internal spatial distribution, the size and the properties of the material compo-
nents and their respective interfaces. Therefore, composites require more complex
and advanced constitutive models than the ones use in single materials.

For a linear analysis or a structural analysis to failure study it is enough
to simulate the composite with one orthotropic homogenized characterization
and a constitutive law with some complexity. However, more realistic composite
constitutive models are necessary to simulate the structures beyond their elastic
limit, to obtain the post critic behavior of these or to estimate their tenacity and
structural integrity.

The direct application of the FEM is not the most appropriate or effective
manner to face the described problem. In a classical FEM analysis each com-
ponent material has its own constitutive model. Therefore, the numerical model
of the structure must to be discretized with a Finite Element (FE) size of at
least the size of the components in the composite. In general, this restriction
gives as result FE meshes with large number of finite elements which demand
an extremely expensive computational cost, and in some cases this analysis is
unfeasible to perform. Consequently, to analyze composite structures and to
characterize their behavior or fracture modes more suitable strategies must be
developed.

1



2 Introduction

Background and motivation

The complexity of the composite materials has promoted that several formula-
tions appeared to predict their behavior, which are more o less suitable according
to the computational cost required, the accuracy in the results desired or even
the expected failure type. Further, the development of a new generation of com-
posites with improved properties, more reliable and cheap has extended its use
to many industrial applications.

The phenomenological homogenization methods are a possibility to analyze
composite materials with a heterogeneous internal structure. In this context, the
most usual method is the classical mixing theory proposed initially by Truesdell
and Toupin [138]. The formulation obtains the homogenized behavior of the com-
posite through the compatibility equation and from the mechanical performance
of the component materials, which are simulated with their own constitutive laws.
Later, several modifications and extensions of this classical theory of mixtures
have enabled the resolution of any composite with reinforced matrix, without the
limitation required by the compatibility equation [103].

One of the most significant modifications of the mixing theory is the Serial-
Parallel (SP) continuum approach. In the SP formulation the mechanic charac-
teristic of the composite is obtained using not only the properties and constitutive
model of the material components but also taking into account their topological
distribution [121]. The SP mixing theory assumes a serial-parallel self-adjusting
behavior to the topological distribution of fiber embedded in the matrix of the
composite material. This approach imposes the iso-strain condition in the fiber
alignment direction on the components of the composite (as parallel materials)
and the iso-stress condition in the orthogonal direction (as serial materials).

The reinforcements developed today, as the nanofibers or Carbon Nanotubes
(CNTs) and the renewed composites as the reinforced concrete with short fibers,
require sophisticated formulations for their simulation. The interface zone be-
tween matrix and reinforcement has a meaningful effect in the final properties
and response of the composite structures made with these current composites.
Many effort have been made to consider the debonding phenomenon in lami-
nated composites but it is not enough to totally characterize the behavior of
these micro-heterogeneous composites. Therefore, renovated formulations or re-
newed modifications of existing theories should be developed to face with the
challenge of predict the behavior of these new composites.

The homogenization techniques are another option to analyze composite ma-
terials. In these methods the characterization of the entire composite is obtained
through the analysis of its internal structure or microscopic structure. In this
context, an approach extensively used is the called multiscale homogenization
method. In general, the formulation is based on the use of the concept of unit
cell or Representative Volume Element (RVE) [47]. The definition of the RVE
corresponds with a microscopic subregion which is representative of the entire
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micro-structure (referred as micro-scale) level of the composite. This is employed
to determine the homogenized properties and behavior of the composite level
(also known as macro-scale). It is assumed that the RVE must contain a suf-
ficient number of inclusions to make the homogenized moduli independent of
homogeneous forces or displacements on the RVE boundary.

Within this context, one of the most extended and popular method is the
known first-order homogenization approach [132]. This multiscale method uses
the macro-scale deformation gradient tensor (or the strain tensor) to solve the
micro-scale problem. The composite behavior (the macro-scale stress-strain rela-
tionship) is obtained by a detailed modeling of the internal heterogeneous struc-
ture of the composite in the RVE. Therefore, the approach does not require
any composite constitutive assumption or compatibility equation to address the
composite response. Moreover, there are not restriction about the constitutive
law of the component materials, even non-linear materials and time-dependency
models can be taken into account. The benefits of the method becomes in a
challenge when a non-linear analysis of a three-dimensional structure is studied.
Considering a FE2 homogenization technique [131], it is required for each time
step to solve one RVE at each point of integration at the macro-scale because
the non-linear threshold and non-linear behavior of the homogenized composite
are unknown. Therefore, the computational cost in the non-linear analysis of
an industrial component by using multiscale FE2 homogenization is extremely
expensive, and in many cases, is unsuitable to perform.

In addition to the computational cost to address the non-linear problem with
multiscale homogenization methods, the softening issue must be considered too.
The non-linear constitutive law of the component materials are defined in the
RVE problem. Consequently, the non-linear behavior starts in the micro-scale
and then, it moves up to the macro-scale. Because of this, novel computationally
efficient multiscale strategies dealing with non-linear problem should be developed
taking into account also the conservation of the dissipated energy through the
scales. Besides, they must be macro and micro mesh independence for the case
of FE2 homogenization.

In the last decade, a second-order computational homogenization was pro-
posed as a natural extension of the first-order homogenization method [62]. It
was developed to be applied in critical regions of intense deformation, where the
characteristic wave length of the macro-scale deformation field is of the order of
the size of the micro-scale. Therefore, in this approach the macroscopic gradient
of the deformation gradient is also incorporated in the microscopic scale prob-
lem. The first-order equilibrium problem is conserved in the micro-scale though
a higher-order equilibrium problem appears in the macro-scale. The solution
of the proposed multiscale approach is made through a complex finite element
implementation, which restricted its popular application.

The main advantage of the described second-order homogenization is that it
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can consider intense localization phenomena, then it is a desirable approach for
non-linear analysis. On the other hand, the benefit of the first-order homogeniza-
tion is that it considers first-order equilibrium equations at both scales, which
represents an advantage from a point of view of computational implementation.
Therefore, an enhanced-first-order approach could be an interesting option to
account second-order effects of the macro-scale from the micro-scale by the in-
corporation of macroscopic second-order deformation measure in the microscopic
boundary value problem.

Objectives

The main objective of this study is to develop a comprehensive formulation for the
analysis of three-dimensional composite structures in linear and non-linear range.
In this context, the partial targets to address the global aim of this monograph
can be written in a synthesized form as:

- Development of a phenomenological homogenization formulation based on the
mixing theory for the analysis of CNTs reinforced composites. The formula-
tion should consider the effect of the CNTs-matrix interface in the composite
behavior.

- Extension to three dimensions of the first-order multiscale homogenization for
the numerical analysis of composite structures. Implementation of an elimination
of redundant unknowns method to solve the microscopic boundary value problem
considering the constraint conditions on the boundary domain.

- Improvement of the first-order multiscale approach implemented to consider
second-order effects in the microscopic scale from the macroscopic scale.

- Comparison of numerical simulations with other microscopic formulations to
show the advantages and drawbacks of the developed first-order multiscale pro-
cedure.

- Development of a non-linear strategy to optimize the computational cost of the
analysis of real-size composites structures using a multiscale homogenization
approach.

In order to achieve the objectives described previously, there are parallel tasks
that must be addressed. These are important milestones of this work that are
worth to be mentioned. Among them:

- Parallel numerical implementation of the developed approaches through an Open
Multi-Processing (OpenMP) philosophy in the finite element code PLCd [118].

- Development of a preprocessor manager to deal with the numerical models of
the microstructure (RVE) using a GID problem type [86, 19].
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- Numerical validation of the different formulations implemented in PLCd through
the simulation of several composites and by the analysis of real-structural com-
ponents.

Outline

In the present monograph is possible to observe that from a theoretical point of
view the main goal can be divided in two parts. For this reason, the document
is arranged in two major self-contained parts.

In Part I a phenomenological homogenization model for the analysis of com-
posites material using CNTs as reinforcement is presented. The formulation
developed is based on the mixing theory. In this context, Chapter 2 shows a
review of the state of the art of the classical mixing theory and its subsequent
modifications while Chapter 3 introduces general considerations about the CNTs
and a state of the art of the production methods and of the measured mechanical
properties. Then, Chapter 4 presents the formulation and numerical implemen-
tation of the “ad hoc” homogenization model developed in this study. Chapter
5 shows the validation and numerical examples analyzed using the formulation
proposed in the above chapter. Finally, in Chapter 6 the conclusions and future
work about the model developed in this part of the monograph is approached.

In Part II the developed multiscale homogenization approach for composite
structures is described. The state of the art is addressed in Chapter 2, which
shows the fundamental theories and the latest developments about this research
topic. Chapter 3 presents the formulations and implementations of the first-
order homogenization and the proposed enhanced-first-order extension to con-
sider second-order effects. In Chapter 4 the implemented two-scale homogeniza-
tion procedure is compared with other micro-structural formulations. Chapter
5 describes the non-linear strategy proposed for multiscale approaches, also its
validation and numerical applications are shown. The conclusions and future
work of this second part are addressed in Chapter 6.

In the final conclusions chapter the achievements of the present study are ex-
posed along with concluding remarks and future works derived from this mono-
graph.
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Chapter 1

Introduction

Composites are materials made of at least two different components. Generally,
are constituted by a matrix that surrounds the reinforcing elements, which may
be in the form of particles, nanotubes, short fibers, fibers, etc [5]. The main
function of matrix component is to give cohesion, support the reinforcement and
transfer the external actions to the reinforcements. While the main task of the
reinforcement component is to improve the matrix properties. The appropriate
design of structural elements made of this type of composite material requires
the use of composite constitutive models capable of estimating their stiffness,
strength and different failure modes.

In case of using fibers or nanotubes as reinforcement components, the perfor-
mance of the composite depends on the achievement of the following four main
characteristics:

Aspect ratio of the fibers. The fiber aspect ratio is a dimensionless geometric
measurement that results from dividing the length of the reinforcement by its
diameter. This parameter is important because the stress distribution in the
reinforcement depends on it [53]. In fibers with high aspect ratios the fiber end
effect is less important. The reinforcement is considered to behave as a long
fiber when its aspect ratio is larger than 1000.

Dispersion of fibers in the composite. A uniform distribution of reinforce-
ment in the composite is fundamental to ensure that it is completely surrounded
by matrix. This is necessary to obtain an effective stress transfer. A good dis-
persion of the reinforcement in the composite also helps to have a more uniform
stress distribution in it, reducing the regions susceptible having stress concen-
trations.

Fiber alignment. It has been shown that the difference between random
distribution and perfect alignment may represent a factor of five in the composite

11
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Young’s modulus [43]. Fiber alignment also affects the isotropy of the composite,
as perfect alignments increase its anisotropy.

Load transmission from the matrix to the fiber. The last and probably
most important factor is the interfacial tension between matrix and reinforce-
ment. In general, the loads in a composite structure are introduced through
the matrix and are transferred to the reinforcement through the interface [53].
Therefore, the interface can be defined as the region surrounding the reinforce-
ment where this stress transfer takes place. The properties of the composite
depend on the properties of this region, and on its ability to transfer the load
efficiently.

On the other hand, the external load applied to a composite is shared dispro-
portionately by the different components, as their elastic properties are different.
In case of considering an iso-strain hypothesis [138] the stresses on the reinforce-
ment will be larger than in the matrix, as the reinforcement is stiffer than the
matrix. This unequal stress distribution generates shear stresses between both
materials in a region that can is usually called the interface. The load transfer
from the matrix to the reinforcement is produced in this region. Shear stresses
in the interface increase proportionally to the external load until a critical value,
beyond which the interface breaks. This critical value is known as Interfacial
Shear Strength (IFSS) and it limits the stress transfer capacity.

In this context, the classical rule of mixtures was one of the first theories
used to address a composite constitutive model from a phenomenological point
of view [138]. The theory defines the manner in which all components interact
to provide the material performance. The iso-strain hypothesis defined in the
mixing theory implies a parallel distribution on the components in the composite.
It is possible to think in an inverse mixing theory which replaces the iso-strain
assumption by an iso-stress assumption, therefore it means a serial distribution on
the components in the composite. The characterization of the composite depends
of the hypothesis used in the formulation. Then, modifications of the mixing
theory capable to consider all possible behaviors of the composite: parallel, serial
and mixed were proposed [99]. Finally, the serial/parallel concept was introduced
in the theory, which replaced the iso-strain hypothesis by an iso-strain condition
in the fiber direction and iso-stress condition in the transversal directions [121].

The mixing theory began to be considered as a constitutive equation manager
when its hypothesis were coupled with a thermodynamical description of the
composite components [107]. Therefore, the formulation obtains the relation
between the components even when they have reached their elastic limit. With
this at hand, the different failure phenomenons present in the composites such as
debonding or delamination were modeled through of the constitutive law of the
material components.
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1.1 Part’s outline

In this part of the monograph a renewed modification of the mixing theory is
proposed to consider the effect of the reinforcement-matrix interface zone in the
final response of composite. The present formulation is developed for composites
that use CNTs as reinforcement.

Following this aim, Chapter 2 shows an state of the art of the classical mixing
theory and its modifications since the early inclusion of the SP concept until the
current sophisticated modifications. Chapter 3 presents a review of the state
of the art regarding the different production methods and measured mechanical
properties found in the literature regarding CNTs is presented. In this chapter
is also addressed the different issues that should be considered in a constitutive
formulation for reinforced composites with CNTs.

In Chapter 4 the phenomenological homogenization based in the on the mixing
theory is developed. The insertion of the concepts of serial and parallel behavior
in the CNTs-matrix bonding through of the definition of a parallel factor is shown.
The CNTs debonding phenomena is also considered by a material non-linearity
proposed. At the end of the chapter, the implementation in the FEM code PLCd
is presented.

Chapter 5 shows the results of validation of the implemented composite con-
stitutive model using information data from literature. The validation of the
model is made for linear and non-linear behavior using experimental data of
several composites. Then, numerical examples are developed showing the good
behavior of the phenomenological homogenization model developed.

Finally, Chapter 6 the conclusions about the composite constitutive formula-
tion developed in this part of the study are addressed in detail.





Chapter 2

State of the art

The first part of the present study proposes a phenomenological composite con-
stitutive model which is based on the classical rule of mixtures. Therefore, in the
following a literature review is dedicated to explain this mixing theory and the
modifications which have been developed over the years.

2.1 Classical mixing theory

The mixing theory was originally proposed by Truesdell and Toupin [138]. Later,
Truesdell [137] extended the theory to linear systems and Green and Adkins [38]
presented a general non-lineal constitutive equations. Finally, Ortiz and Popov
[108, 109] proposed a general constitutive equations for unreinforced concrete
idealized as a composite material.

The classical mixing theory is based on the mechanical of local continuous
solid and it is appropriated to explain the behavior of a point in a solid com-
pound. It is based on the principle of interaction of the component substances in
the composite material, assuming the following hypothesis: i) on each infinitesi-
mal volume of the composite are involved a set of component substances,ii) each
component contributes to the behavior of the compound material in the same
proportion as their volumetric fraction, iii) all component materials have the
same deformation (compatibility equation or closure equation) and iv) the oc-
cupied volume of each component is much smaller than the total volume of the
composite.

The second hypothesis implies a homogeneous distribution of all substances
in the compound material. The volume fraction, the internal distribution and
the interaction between the different substances components, which have its re-
spective constitutive law, determine the behavior of the composite material. This
allows combining materials with different behavior (elastic, elasto-plastic, elasto-
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damage, etc.), which have an evolutionary behavior governed by its own law and
internal variables [109, 107].

The third hypothesis demands that the following condition of compatibility
must be fulfilled

εij = (εij)1 = (εij)2 = · · · = (εij)n , (2.1)

where the assumption of infinitesimal deformations on each components are con-
sidered and where, εij and (εij)n are the strain tensors of the composite and of
the n− th component of the compound material, respectively.

The specific Helmholtz free energy of the composite is given by the sum of the
specific Helmholtz free energies of each components of the composite multiplied
by its volume fraction, that is

Ψ (εe, θ,α) =
n∑

c=1

kcΨc (εc, ε
p
c , θ,αc) , (2.2)

where Ψc is the specific Helmholtz free energy, kc is the volume fraction, εpc is
the plastic strain tensor and αc are the inner variables of each one of the n− th
components in the composite.

The volume fraction coefficient allows to consider the contribution of each
material to the composite and it is obtained with the following equation as

kc =
dVc

dV0
, (2.3)

where dVc is the volume of the c − th component and dV0 is the total volume
of the composite. The volume fractions of the components must to satisfied the
following condition:

n∑
c=1

kc = 1. (2.4)

Equation (2.4) guarantees the conservation of mass. Following with the pro-
cedure used for a simple material [102, 73, 72, 106], from the Clausius-Duhem
inequality and applying the Coleman method, the constitutive equation of the
composite is obtained as

σij =
∂Ψ(εij , θ, αi)

∂εij
=

n∑
c=1

kc
∂Ψc (εij , θ, αi)

∂εij
=

n∑
c=1

kc (σij)c , (2.5)

where, σij and (σij)c are the stress tensors of the composite and of the c − th
component of the compound material, respectively. The composite constitutive
tensor is obtained considering the variation of the composite stress tensor respect
to the strain tensor, therefore

Cijkl =
∂σij

∂εkl
=

∂2Ψ(εij , θ, αi)

∂εij∂εkl
=

n∑
c=1

kc (Cijkl)c . (2.6)
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However, the closure equation given by (2.1) imposes a strong limitation of
the classical theory of mixtures because it is strictly valid only for composites
with parallel behavior. Moreover, this limitation is extended to non-linear range
because each component can have different deformation for a given load step.
Because of this, several formulations have been proposed from the classical mixing
theory in order to consider different internal behavior (not only parallel behavior)
and the nonlinearity of each components too.

2.2 Modifications to the mixing theory

Over the years the classical mixing theory has had many modifications and im-
provements with the objective of expanding its scope. Some of the most relevant
developments are presented in this section.

2.2.1 Mixing theory using serial-parallel model

The classical theory of mixtures was modified by Oller et al. [105] and Neamtu
et al. [99] introducing the serial-parallel concept. The model allows to represent
composites for various possible combinations of serial and/or parallel behavior
of their components. The properties of the composite are obtained using the
properties of each component and taking into account its topological distribution.
The modification is based on the definition of the total strain field as a weighted
sum of the contributions of the deformation components in series and parallel.
Therefore

εij = (1− ℵ) εparij + ℵ εserij , (2.7)

where εij is the total strain tensor of the composite, εparij and εserij represent the
parallel and serial strain tensor, respectively. And ℵ is the coupling parameter
that relates in weighted form the serial-parallel behavior, it has a value range
from 0 to 1. The deformation components in parallel and serial behavior are
approximated by

εparij �
1

n

n∑
c=1

(εij)c , εserij =

n∑
c=1

kc (εij)c . (2.8)

This modification of the classical mixing theory has the disadvantage that the
coupling parameter, in general, must be calibrated with experimental tests of the
composite.

2.2.2 Generalized mixing theory

The proposed modification of the classical theory of mixtures by Oller [103] is a
generalization of this theory. The new proposed is enabled to solve any reinforced
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matrix composite, without the limitation of the compatibility equation (see (2.1))
required by the classical theory. The closure equation is satisfied automatically by
the proposed modification. The fundamental hypothesis of this theory’s general-
ization is a new definition of the third hypothesis of the classical theory. The new
third hypothesis is: iii) the components must satisfy a generalized compatibility
equation to fit the topology of the serial-parallel composite. The new hypothesis
allows establishing the relationship between the composite deformation and the
deformation of each component. The new compatibility equation provides the
link between the parallel behavior and the serial behavior and can be expressed
as

(εij)c = (1− χc) · Iijkl εkl︸ ︷︷ ︸
(εpar

ij )
c

+χc · [(φijkl)c · (εkl − εpkl) + (εpkl)c]︸ ︷︷ ︸
(εserij )

c

, (2.9)

where (εij)c is the strain tensor of the c− th component, which can be separated
in its parallel (εparij )c and serial (εserij )c component, respectively, and εij is the
total strain tensor in the composite. Equation (2.9) can be rewritten as

(εij)c = [(1− χc) · Iijkl + χc · (φijkl)c] : εkl − χc(ε̂
p
kl)c, (2.10)

where (ε̂pkl)c is a plastic strain tensor without physical meaning, which is defined
only for operating purpose and it is obtained from the plastic strain tensor of the
composite distributed among its components according to (φijkl)c ε

p
kl and the

plastic strain tensor of the current component (εpkl)c. The serial-parallel coupling
parameter is defined as 0 ≤ χc = sinαχ ≤ 1, where αχ corresponds to the
existing angle between the reinforcement orientation and the orientation of the
higher principal stress.

2.2.3 Mixing theory expressed in finite strains

The extension to finite strains of the classical theory of mixtures considers that the
third hypothesis (original closure equation given by (2.1)) must be verified on the
referential configuration and on the spatial configuration for each component[12]

Eij = (Eij)1 = (Eij)2 = · · · = (Eij)n

eij = (eij)1 = (eij)2 = · · · = (eij)n,
(2.11)

where Eij is the Green-Lagrange strain tensor and eij is the Almansi strain ten-
sor. Considering the definition of the right Gauchy-Green tensor and (2.11) the
compatibility equation can be written as a function of the deformation gradient
tensor as

Fij = (Fij)1 = (Fij)2 = · · · = (Fij)n. (2.12)

The others hypothesis of the classical theory must be also verified. The re-
lationship between the volume of a component in the spatial configuration and
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in the referential configuration is given by the determinant of the deformation
gradient tensor and it is

dVc =
1

J
dvc. (2.13)

With (2.13) it is possible to demonstrate that the volume fraction of the compo-
nents do not change in both configurations.

The solution process starts by estimating the strain increments at the refer-
ence configuration and then through tensor transport operations (“push-forward”)
the strain tensor in the updated configuration can be obtained. The constitu-
tive equation of each components of the composite is integrated in the updated
configuration. Each of these components may have different kinds of constitu-
tive behavior (plasticity, damage, etc.) and also, these constitutive models may
be isotropic or anisotropic. Then, with the integrated stress state of the com-
ponents it is possible to obtain the stress state and the constitutive tensor of
the composite. Finally, the obtained composite informations are transported
(“back-forward”) to the reference configuration and then, the internal forces are
computed. The balance between the internal forces and applied external forces
is verified in an iterative procedure until convergence.

2.2.4 Generalized mixing theory expressed in finite strains

The procedure to extend the generalized theory of mixtures to finite strains is
the same than the one used to extend the classical mixing theory in Section
2.2.3. This generalized theory starts with the non-compliance of the classical
compatibility equation. Therefore, the proposed new closure equation given by
(2.10) must be written now in the reference and the updated configuration, that
is

(Eij)c = [(1− χc) · Iijkl + χc · (Φijkl)c] : Ekl − χc(Ê
p
kl)c

(eij)c = [(1− χc) · Iijkl + χc · (φijkl)c] : ekl − χc(ê
p
kl)c.

(2.14)

Equations (2.14) give the strain tensors for each component in both configu-
rations. The constitutive equations are obtained following a similar formulation
used in the classical theory of mixtures in finite strains. Finally, the stress tensors
of the composite in the reference configuration S and in the current configuration,
the Kirchoff stress tensor τ are, respectively

S =
n∑

c=1

kc[(1−χc)·I4+χc·(Φ)c]
T :[(CS)c:[(1−χc)·I4+χc·(Φ)c]:(E

e)c] (2.15)

τ =

n∑
c=1

kc[(1−χc)·I4+χc·(Φ)c]
T :[(cτ )c:[(1−χc)·I4+χc·(Φ)c]:(e

e)c] = Jσ, (2.16)
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where I4 is the fourth order identify tensor, (CS)c and (cτ )c are the tangent
constitutive tensors for the c − th component in each configuration, (Ee)c and
(ee)c are the elastic strain tensors and σ is the Cauchy stress tensor.

2.2.5 Mixing Theory by short fiber reinforcements

The formulation of the mixing theory is oriented to a composite where the re-
inforcements are long fibers, and the condition of the compatibility equations is
verified. However, when the aspect ratio of the fiber decreases, the condition of
fiber-matrix compatibility is not satisfied. This is because the effect of slip and
the limit transmission of forces between fiber and matrix at the ends of the fiber
take increasingly significant. This situation creates conditions of stress concen-
tration and distortion in the fiber and the surrounding matrix because of the
discontinuity. The effectiveness of the fibers in the composite stiffness decreases
when the length of the fiber decreases.

Equation (2.17) shows the axial stress distribution along the fiber [53] as

σf (x) = Cσ
f Em

[
1− cosh

(
β
(
l
2 − x

))
cosh

(
β l

2

) ]
∀ 0 ≤ x ≤ l

2
, (2.17)

where Cσ
f is the Young’s modulus, l is the length of the reinforcement, Em is the

longitudinal strain of the matrix and the parameter β is defined as

β =

√
Gc

Cσ
f

2π

Af ln
r′

r

, (2.18)

where Af is the cross section of the fiber, Gc is the shear modulus of the composite

and r
′
is the mean distance between the reinforcing fibers.

One way to consider the contribution of the short fiber reinforcement in the
classical mixing theory is through the average stress along the fiber, then

σ̄f =
1

l

∫ l

0

σf (x) dx = Cσ
f

[
1− tanh

(
β l

2

)(
β l

2

) ]
Em = C̃σ

f Em. (2.19)

Here, C̃σ
f is the average or homogenized Young’s modulus of the reinforcement,

which is function of the length of the fiber and of the geometric parameters of
the composite.

The obtained short fiber homogenized Young’s modulus is smaller than the
real fiber Young’s modulus, this shows that its participation on the mechanical
properties of the composite depend not only of its mechanical properties but
also of the overall properties of the matrix-reinforcement assemblage. The same
concept used to homogenize the stress along the fiber can be extended to get the
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three dimension homogenized constitutive tensor of the short fiber reinforcement
as

C̃S
f = CS

f

[
1− tanh

(
β l

2

)(
β l

2

) ]
, (2.20)

where CS
f is the orthotropic constitutive tensor in the referential configuration of

the reinforcement. Using the previously described concept, the incorporation of
the short fiber in the theory of mixtures can be extend to finite strains too [103].

2.2.6 Serial-Parallel (SP) continuum approach

The SP continuum approach has been proposed by Rastellini et al. [121], and
it is a natural evolution of the parallel mixing theory developed by Car et al.
[12, 103]. The theory is based on the compatibility conditions defined by Trusdell
and Toupin [138], but introduces a modification in the iso-strain hypothesis. The
iso-strain condition is imposed in the reinforcement direction (normally fiber) and
a new iso-stress condition is imposed in the transversal directions. The theory is
based on the following hypotheses:

• The constituent materials of the composite are subjected to the same strain
in the parallel (fiber) direction.

• Constituent materials are subjected to the same stress in the serial direc-
tion.

• The response of the composite material is directly related to the volume
fractions of its constituent materials.

• The phases in the composite are considered to be homogeneously ditributed.

• The constituent materials are considered to be perfectly bonded.

In this formulation the definition of the constitutive model for the composite
needs the introduction of additional equations that specify somehow the inter-
action between the component phases. Then, the resulting composite material
model will depend crucially on the adopted specific additional equations that
characterizes the mechanical interaction at the micro-scale. These additional
sets of equations are referred to as “closure equations” and are obtained taking
the iso-strain hypothesis in the reinforcement direction and iso-stress hypothe-
sis in transversal directions. Considering only two composite components, the
equations that define the stress (σ) equilibrium and setting up the strain (ε)
compatibility between the individual components follow the hypothesis previ-
ously described are:
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• Parallel behavior
cεp = mεp = fεp
cσp = mkmσp +

fkfσp
(2.21)

• Serial behavior
cεs =

mkmεs +
fkfεs

cσs =
mσs =

fσs
(2.22)

where, the superscripts c, m and f stand for composite, matrix and fiber, respec-
tively, the subscripts s and p correspond to the serial and parallel behavior and
ik is the volume fraction of each constituent in the composite.

Composite materials that can be modeled with this formulation are those
formed of long fibers embedded in a matrix. The theory predicts the different
behavior of the composite, depending on the load direction. This formulation can
obtain the linear and non linear behavior of structural elements made of compos-
ite materials as has been proved in several papers [81, 78, 77, 115, 80, 116]. The
SP theory is able to simulate the delamination problem naturally, without having
to define specific elements or predefine the path of fracture. The approach has
been also extended to tri-dimensional framework by Martinez et al. [79] and ap-
plied for the numerical simulation of structures of reinforced concrete retrofitted
with carbon fiber reinforced polymers. In this study the tangent constitutive ten-
sor of each component of the composite is obtained by means of a perturbation
method.



Chapter 3

Carbon nanotubes
reinforced polymers

Since their discovery by Lijima in 1991 [51], CNTs are considered a new gener-
ation of reinforcements [18]. Their “nano” size structure makes them potentially
free of defects, which gives them excellent physical properties [123, 124]. A nan-
otube is a tubular cylinder formed by sp2 bonds between the carbon atoms along
its length. There are two main nanotube types: Single Wall Carbon Nanotubes
(SWCNTs), which are made of a single wall tube with an outer diameter in the
order of 1 nm; and Multiwall Carbon Nanotubes (MWCNTs), which consist in
several concentric walls, one inside the other, separated by a distance of 0.34 nm
[51]. The diameters range of MWCNT varies from 2 to 100 nm. MWCNT can
have lengths up to 100 μm.

Carbon nanotubes can be obtained by several procedures. The first method
used was the arc-discharge [11], which consists in generating an arc discharge
between two graphite electrodes in an inert gas atmosphere at low pressure. The
continuous electric discharge sublimates the carbon atoms of the electrodes and
forms a plasma around them. This method produces free defect nanotubes along
their length. The length of these nanotubes can reach 50 μm. Another proce-
dure is the laser ablation. This consists in vaporizing the graphite by radiation
with a laser pulse, in an inert gas atmosphere, inside a high temperature reac-
tor. The nanotubes are formed when the graphite vapor touches the cold walls
of the reactor. Finally, the most common procedure used for commercial pro-
duction of carbon nanotubes is the deposition of Catalytic Vapour Phase (also
named, Chemical Vapor Deposition (CVD)). This procedure allows producing
large amounts of nanotubes at a low cost. This method prepares a substrate
with a metal layer. The nanotube diameter depends on the size of the metal
particles. The process starts by mixing two gases; one of them is used as a source

23
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of carbon, and the other for the process itself. The nanotubes grow on the side
of the metal catalyst. The generated nanotubes have defects on its surface. This
method can provide oriented nanotubes if there is plasma during their growth.

Nanotubes obtained by arc-discharge have Young’s modulus values in the
order of 1TPa. Recent measurements carried out in arc-MWCNTs (multiwall
nanotubes made by arc-discharge) have provide Young’s modulus values with
values varying from 0.27 to 0.95 TPa, ultimate strain values higher than 12%, and
ultimate tensile stresses in the range of 11 to 63 GPa [148]. In these measurements
it was also obtained the stress-strain curve of the MWCNTs with help an electric
microscope.

The properties obtained for CVD-MWCNTs (multiwall carbon nanotubes
obtained by CVD) are low due to the defects in the nanotubes surface. The firsts
Young modulus measurement known was made with an atomic force microscope
[125] and the values obtained were in the range of 12 to 50 GPa. Later on,
new measurements have shown Young modulus values in order of 0.45 TPA,
and ultimate tensile stresses of 3.6 GPa [146]. The lower measured values were
associated with defects in the nanotube and with the slipping of the inner tubes in
MWCNTs. The difference in measured values between CVD-MWCNTs and arc-
MWCNTs shows the influence of defects on the properties of these new materials.

It is not entirely clear which nanotube type performs better as a reinforcement.
A recent study made by Cadeck et al. [10] comparing the properties of a polyviny-
lalcohol (PVA) matrix reinforced with different types of CNTs nanotubes (dou-
ble wall nanotubes (DWCNT), SWCNTs, arc-MWCNTs and CVD-MWCNTs)
showed that the effectiveness of reinforcement is inversely proportional to its di-
ameter, except when using SWCNTs. The study also proved that the composite
properties are proportional to the total interface area. The composite reinforced
with SWCNTs had the lowest properties; this result is associated with slipping
of SWCNTs inside the bundles. Finally, the study states that the best properties
are obtained with the CVD-MWCNTs with smaller diameter.

Currently, there are several methods that can be used to produce nanotube-
reinforced composites. The choice of the most appropriate method depends of
nature of the involved components [18]. All methods seek to produce a compos-
ite with a good dispersion of the CNT reinforcement and to create an interface
capable of transmitting the external load to the nanotubes. The manufactur-
ing process has to be selected taking into account that it must not affect the
properties of the composite components.

Several studies have shown that the composite formation generates an inter-
face zone around the carbon nanotubes. This interface has a different morphology
and properties than the original matrix [85, 84]. The size, shape and properties of
the interface have a strong dependence on the matrix type [147] and the formation
process. Pull out experimental tests indicate that IFSS values are much higher
than the theoretical ones [139], which are calculated using the shear strength of
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the matrix. This result suggests that the interface region around the nanotube
has better properties than the rest of the matrix [20]. Some studies estimate that
in this region matrix properties may improve by an order of magnitude [4]. Frac-
ture surface images obtained from composites with strong nanotube-matrix bond
show that the interface zone has a thickness several times larger than the nan-
otube diameter [27, 129]. In the case of semi-crystalline matrices, the interface
zone is associated with crystal nucleation around the nanotubes [128].

All manufacture processes seek to obtain a composite with a strong bond
between the nanotube and the matrix, in order to transfer effectively the loads.
The IFSS defines the capacity of the bond. Values of 500 MPa have been ob-
tained for the IFSS when observing the stresses induced to a broken nanotube,
these values where obtained using a Transmission Electron Microscope (TEM).
The study attributes this value to the presence of covalent bonds between the
matrix and the nanotube [141]. Molecular Dynamics (MD) simulations carried
out confirm that strong bonds are obtained when these are covalent. In fact, the
transfer load of the interface increases by an order of magnitude with just a 1%
of covalent bonds in its surface [30]. On the other hand, the generation of many
covalent bonds in the interface is detrimental to the intrinsic properties of the
nanotube [30, 31].

When there are not covalent bonds, the interaction between matrix and nan-
otube is made with Van der Waals forces. Several studies show that this union
is weaker. Molecular Dynamics simulations made by [30] predicted values of the
IFSS that do not exceed 2.8 MPa. Another study made by [69] predicted values
up to 160 MPa. According to [70], the differences in the results depend on the
polymer type and they can be in the range of 80 to 135 Mpa. The difference
in the results, and the good values of IFSS, were attributed to the morphology
and the capacity of the matrix to generate helical chains around the nanotube.
On the other hand, nanotubes have a smoother outer surface and therefore, the
contribution of the frictional forces to the IFSS are an order of magnitude lower
[3].

Experimental results of pull-out tests show values of IFSS between 20-90 MPa
[4, 3]. Other experiments using the drag-out technique have shown values between
35-376 MPa [20]. The disparity of the results suggests that is not always possible
to generate covalent bonds. The maximum values obtained experimentally are
associated to covalent bonds and consider that the interface zone has better
properties than the rest of the matrix.

Carbon nanotubes, mainly SWCNTs, tend to agglomerate. This makes very
difficult to obtain a good dispersion of those in the polymer. Besides, the smooth
surface of the nanotubes leads to a possible lack of bond between the nanotube
and the matrix. Currently these problems are solved with a chemical function-
alization of the CNTs. The covalent functionalization can be done by modifying
the carboxylic acid groups on the nanotube surface and or by direct addition
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of reagents. The drawback of functionalizing the nanotubes is that there is an
intrinsic degradation of their properties [31]. In general, two different methods
have been used for the functionalization: “grafting from” and “grafting to”.

The“grafting from”method is based on the initial immobilization of initiators
on the nanotube surface, followed by an in situ polymerization of the suitable
matrix for the formation of polymer molecules around the nanotube [50, 145].
The advantage of this method is that it allows the formation of composites with
a high density of nanotubes. The disadvantage is that this method requires strict
control of the quantities and the conditions in which the polymerization reaction
takes place.

The “grafting to” method makes the union of preformed polymer molecules
to functional groups on the surface of the nanotube through chemical reactions
[71, 8]. The advantage of this method is that it can be used with commercial
polymers. However, it has as a limitation that the initial union of the polymer
chains inhibits the diffusion of macromolecules to the surface. Therefore, the
density of functionalization is low.

The above description shows that the final properties of the composite de-
pend on many parameters. Together with these, there are others aspects that
may also condition the final properties of the composite, such as the undulation
and misalignment of the nanotubes inside the matrix. All this variability can be
considered the responsible of not having yet an accepted theory capable of de-
scribing correctly the performance of nanotube-reinforced composites. It is also
the reason because the existing theories fail in their predictions. Comparisons
between measured mechanical properties and theoretical results, show that the
theoretical predictions are generally three times higher than measured results
[129, 24].



Chapter 4

Phenomenological
homogenization of CNTs
reinforced polymers

Carbon nanotubes have been regarded as ideal reinforcements of high perfor-
mance composites. A key factor for the reinforcement efficiency is the interface
bonding between the CNTs and the matrix. In this chapter the formulation and
numerical implementation of a new constitutive model to predict the performance
of composites made of CNTs is presented [111]. The composite constitutive model
takes intro account explicitly the mechanical performance of the interface between
the matrix and the CNTs. The proposed model is based in the classical mixing
theory. As it is written, the mixing theory can be understood as a constitutive
model manager. Therefore, the mechanical performances of the composite are
obtained from the behavior of the composite components, each one simulated
with its own constitutive law [12, 87]. The present new composite constitutive
model is formulated with the same philosophy, which increases its versatility and
simulation capability.

4.1 Description of the composite constitutive
model

The proposed composite constitutive model assumes that the composite is a
combination of three different materials: matrix, CNTs and an interface [17].
The interface component corresponds to the matrix that surrounds the CNTs. It
is considered as an independent component, with its own constitutive law. The
interface is used to define the capacity of the matrix to transfer the loads to the
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reinforcement.

Although the phenomenological performance of the composite already justifies
the definition of an interface material; images obtained with Scanning Electron
Microscope (SEM) of CNTs reinforced composites, such the ones shown in Figure
4.1, prove its actual existence. These images reveal that the structures protruding
from the fractured surface have larger diameters than the original MWCNTs used
in the sample preparation [27]. The material surrounding the CNTs corresponds
to the interface. The presence of an interface, as a differentiable material, is also
proved by Differential Scanning Calorimetry (DSC) measurements carried out in
composites with a semi-crystalline polymer as matrix. These measurements show
a linear increase of crystalline matrix as the nanotube volume fraction increases,
suggesting that each nanotube has a crystalline coating [9].

Figure 4.1: SEM image of nanomanipulation and fracture surface of composites [27].

Once having conveyed the necessity of including the interface material in the
formulation to simulate the mechanical performance of CNTs reinforced compos-
ites, in the following is described the new procedure proposed, which is summa-
rized in Figure 4.2. This figure shows that the composite is divided in several
layers, each one containing carbon nanotubes with a different orientation. All
layers are coupled together using the parallel mixing theory. This is, assuming
that all layers have the same deformation. The new formulation developed pro-
vides the mechanical performance of each layer by combining the response of
the three coexisting materials: matrix, interface and CNTs. The layer response
depends on the materials and on their volumetric participation in the composite.

First, the layer is split into matrix and a new material that results of coupling
the CNTs with the interface. The relation between the matrix and the CNT-
interface material is established in terms of the parallel mixing theory (they are
assumed to have an iso-strain behavior). On the other hand, CNTs and the
interface are coupled together with a combination of parallel and serial mixing
theories. The serial mixing theory assumes that all components have the same
stresses.
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Figure 4.2: Representation of formation for reinforced composite.

Figure 4.3 shows scheme used to obtain the performance of the CNT-interface
material. This is based in the short-fiber model developed by Jayatilaka [53].
According to this model, the load is transferred from the interface to the nanotube
at the ends of the reinforcement, through shear stresses. In this region normal
stresses in the fiber increase from zero to their maximum value, which is reached
in the central part of the reinforcement. In this region there is not load transfer
and shear stresses are null. This whole stress transfer scheme can be simplified
assuming a CNT-interface performance defined by a serial mixing theory at the
ends of the reinforcement and a parallel mixing theory at the center of it.

Figure 4.3: Different regions in the new material CNT-interface.

A parallel factor named Npar is defined to differentiate these two regions.
This parameter, multiplied by the nanotube length, provides the length of the
nanotube-interface element with a parallel behavior. The length with a serial
performance is defined by the complementary factor.
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4.2 Formulation of the composite constitutive
model

The Helmholtz free energy [75] of a material point subjected to infinitesimal
deformations can be described with the following thermodynamic formulation
[107, 73]

Ψ = Ψ(ε, θ,α) , (4.1)

where ε is the strain tensor, θ a measure of temperature and α = {εp, d, s} a set
of inner variables, for example: εp is the plastic strain tensor, d damage inner
variable and s any other material internal variables.

The proposed model simulates the composite combining the different com-
ponents using the serial and parallel mixing theories. If this combination is
performed according to what has been described in previous Section 4.1, the
expression of the Helmholtz free energy may be written as

Ψ = kmΨm+

+(knt + kiz)[N
par(kntΨnt+kizΨiz)︸ ︷︷ ︸

Ψ̃par
ntiz

+ (1−Npar) (kntΨnt+kizΨiz)︸ ︷︷ ︸
Ψ̃ser

ntiz

], (4.2)

where Ψm, Ψnt and Ψiz are the specific Helmholtz free energy for the matrix,
the nanotube and the interface components, respectively; km, knt and kiz are the
volume fraction of each component, Npar is the parallel factor and,

knt =
knt

knt + kiz
kiz =

kiz
knt + kiz

(4.3)

are the volume fractions of the carbon nanotubes and the interface in the new
CNT-interface material. These volume fractions must verify

km + knt + kiz = 1 knt + kiz = 1. (4.4)

The relation among the strain tensors of the different components is

ε = εm = εparntiz = εserntiz, (4.5)

being ε and εm the composite and matrix strain tensor, respectively; εparntiz the
strain tensor of the new CNT-interface material with a parallel behavior; and
εserntiz the strain tensor of the CNT-interface material with a serial behavior.

The tangent constitutive tensor of the composite material may be derived
from (4.2) as

C =
∂2Ψ

∂ε⊗ ∂ε
= km

∂2Ψm

∂εm ⊗ ∂εm
+

∂2Ψ̃par
ntiz

∂εparntiz ⊗ ∂εparntiz

+
∂2Ψ̃ser

ntiz

∂εserntiz ⊗ ∂εserntiz

. (4.6)
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A parallel behavior means that all composite constituents have the same strain
value. Therefore:

εparntiz = εnt = εiz (4.7)

∂2Ψ̃par
ntiz

∂εparntiz ⊗ ∂εparntiz

= Npar
[
kntCnt + kizCiz

]
= NparCpar

ntiz. (4.8)

And, a serial behavior means that all composite constituents have the same
stress value. Thus:

σser
ntiz = σnt = σiz

εnt = C−1
nt : Cser

ntiz : εserntiz ; εiz = C−1
iz : Cser

ntiz : εserntiz

(4.9)

∂2Ψ̃ser
ntiz

∂εserntiz ⊗ ∂εserntiz

= (1−Npar)
[
kntC

−1
nt + kizC

−1
iz

]−1
= (1−Npar)Cser

ntiz.

(4.10)
Replacing (4.8) and (4.10) in (4.6) it is possible to obtain a simplified expres-

sion of the tangent constitutive tensor as

C = kmCm + (knt + kiz) [N
parCpar

ntiz + (1−Npar)Cser
ntiz] . (4.11)

The formulation developed require all composite components to fulfill the
expression given by (4.1). Therefore, it is possible to use any constitutive law to
describe the mechanical performance of the different components.

4.2.1 Definition of the parallel factor

The parallel factor is defined as

Npar =
lpar
lnt

, 0 ≤ Npar ≤ 1, (4.12)

where lnt is the length of the nanotube and lpar is function of geometry and
mechanical properties of the nanotube and the interface. The value of this length
can be obtained from the equation of tension distribution in a reinforcement
considering perfect bond with the matrix, which is [53]

σnt (x) = Ent

[
1− cosh (β (lnt − 2x))

cosh (βlnt)

]
εm (4.13)

β =

√√√√ 2Giz

Entd2nt ln
(
1 + b

rnt

) , (4.14)
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where x represents the longitudinal positions in the reinforcement, and the sub-
scripts “nt” and “iz” refers to the properties of nanotube and interface zone,
respectively. E and G are the Young’s modulus and the shear modulus, and b is
the thickness material around of the CNTs associated with the interface zone.

Defining lpar = lnt − 2x, its value can be obtained by finding the position
“x” for which the effective modulus obtained from the integration of the tension
distribution becomes

Eeff =
lpar
lnt

Epar
ntiz +

(
1− lpar

lnt

)
Eser

ntiz. (4.15)

This procedure provides a value of the parallel length of

lpar =
1

β
cosh−1

[
1

3
cosh (βlnt)

]
. (4.16)

4.2.2 Definition of the volume fraction of the interface re-
gion

Based on the results reported in [9], the interface zone can be considered the
region surrounding the carbon nanotube in which an amorphous matrix becomes
crystalline. The volume fraction of the interface zone can be obtained as

χc = χo + kiz, (4.17)

where χc, χo are the volume fractions of crystalline matrix with and without
CNTs, respectively. Assuming that the interface zone is a cylinder around the
CNTs, it is possible to relate the volume fraction of the interface zone with the
parameter b

rnt
as

kiz =
N(πr2lnt−πr2ntlnt)

V =
Nπr2ntlnt

V

[(
r

rnt

)2
− 1

]
= knt

[(
r

rnt

)2
− 1

]
, (4.18)

where V is the total composite volume, r is the radius of interface zone and N is
the total number of nanotubes in the composite.

The relation between the radius of the nanotube and the interface is obtained
replacing (4.18) in (4.17) as

r

rnt
= +

√
(χc − χo)

knt
+ 1 , χc ≥ χo, (4.19)

and therefore

r

rnt
= 1 +

b

rnt
⇒ b

rnt
= +

√
kiz
knt

+ 1− 1 , kiz ≥ 0. (4.20)
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4.2.3 Equivalent properties for MWCNTs

MWCNTs consist of concentric SWCNTs joined together with relatively weak
van der Waals forces. For this reason, the capacity to transfer the load from
the external wall to the internal walls is low. Some papers [136, 151] propose to
simulate the CNTs like a solid cylinder with same exterior diameter and length,
but with effective properties. The effective properties are obtained assuming
that the outer wall takes the total load. In this approach it is assumed that the
properties of the outer wall correspond to those of a graphite sheet. The effective
stiffness of the MWCNT is calculated by imposing that for a same applied force,
the deformation must be the same

ε̄nt = εnt ⇒ Ēnt =
Aow

Ānt
Eg, (4.21)

where Ēnt and Eg are the Young’s modulus of the effective solid nanotube and
graphite sheet, respectively, and Ānt and Aow are the areas of the effective solid
nanotube and outer wall, respectively. Equation (4.21) can be also read as

Ēnt =

[
1−

(
1− 2t

dnt

)2
]
Eg ,

t

dnt
≤ 0.5, (4.22)

being t the thickness of one wall in the MWCNT and dnt is the external diameter
of the MWCNT.

Using the same procedure it is possible to obtain the shear modulus of the
solid cylinder, by forcing the same twist when applying the same torque (T).

φ̄nt = φnt ⇒ T lnt
ḠntJ̄nt

=
T lnt
GgJow

⇒ Ḡnt =
Jow
J̄nt

Gg, (4.23)

where Ḡnt and Gg are the shear modulus of the effective solid CNTs and graphite
sheet, respectively, and J̄nt and Jow are the polar moment of inertia of the effec-
tive solid CNTs and outer wall, respectively. They are

J̄nt =
πd4nt
32

, Jow =
π
(
d4nt − (dnt − 2t)

4
)

32
. (4.24)

Replacing the expressions given by (4.24) in (4.23), the equivalent shear modulus
can be written as

Ḡnt =

[
1−

(
1− 2t

dnt

)4
]
Gg. (4.25)

Finally, it is necessary to obtain the new density of the effective solid CNTs,
as the total weight of the MWCNTs can not change in the composite when they
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are considered a solid cylinder, then

ρ̄nt =
Ant

Ānt
ρg ⇒ ρ̄nt =

[
1−

(
di
dnt

)2
]
ρg, (4.26)

being ρg the density of the graphite sheet (ρg = 2.25[g cm−3]) and di the internal
diameter of the MWCNTs.

The most common parameter used to define the amount of CNTs added to
a composite is their weight fraction. However, the composite constitutive model
developed requires knowing the volume fraction. The volume fraction of CNTs in
the composite is the volume that occupies a solid cylinder with the same external
diameter. This parameter can be calculated with the following expression [136]
as

knt =
wnt

wnt +
¯ρnt

ρm
− ¯ρnt

ρm
wnt

, (4.27)

where wnt is the weight fraction and ρm is the density of the matrix.

4.2.4 Material non-linearity of the proposed model

In the proposed model, the composite performance is obtained from the mechan-
ical response of its constituent materials, and each component is simulated with
its own constitutive law. Therefore, if a constituent (i.e. the interface) is sim-
ulated with a non-linear law, the whole composite will become non-linear. As
it has been already explained, with the present model it is possible to use any
non-linear formulation to simulate the component behavior, such as plasticity,
damage, viscosity, etc.

Besides the non-linear performance provided by each constituent, the load
transfer capacity of the interface region is also affected if the interface is damaged.
This effect must be included in the formulation.

According to Figure 4.3, the load is transferred from the interface to the
CNTs reinforcement at their ends. Interface damage is expected to occur at the
ends of the reinforcement, where there is larger stress concentrations. Assuming
that the damaged region is unable to transfer loads and that the length required
to transfer loads must remain constant, interface damage ends up affecting the
parallel length of the nanotube, which can be calculated as

lpar = lopar (1− d) . (4.28)

Here, lopar is the initial length of the nanotube working in parallel and d is the
interface damage inner variable.

The dependence of the parallel length on the interface material damage pro-
vides a non-linear response of the composite, even when matrix and the carbon
nanotube reinforcement are in their linear range.
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4.3 Numerical Implementation

The proposed composite constitutive model has been implemented in PLCd [118],
a finite element code that works with 3D solid geometries. The algorithm devel-
oped is described in Figure 4.4. PLCd has already implemented the constitutive
laws that will be used to predict the performance of the composite components
(elasto-plastic, elasto-damage and elastic). The formulation proposed has been
written so that the constitutive laws of the constituents are seen as “black boxes”,
following the recommendations of [79] and [121].

The FEM code enters into the new formulation with the prediction of the
strain tensor of the composite material in the actual time step. Layers are as-
sumed to have all the same strain; therefore the strain tensor of each layer is
obtained rotating the composite strain to the direction in which the CNTs are
oriented. In each layer, the strain of the matrix and the CNTs-interface are the
same, as they work in parallel, (see (4.5)). Knowing the strains for matrix ma-
terial it is possible to obtain its stresses straightforward. On the other hand, to
obtain the stresses for the CNT-interface material, it is necessary to separate it
in two regions. In the flow chart shown in Figure 4.4, these two regions are rep-
resented as “Parallel Block” and “Serial Block”. This division is performed based
on the value of Npar (defined in (4.12)). This value depends on the damage
evolution of the interface, as has been explained in section 4.2.4.

The Parallel Block corresponds to the central region, where the CNTs and the
interface work in parallel behavior and, therefore, they have the same strains. In
this region the stresses for each component are obtained from the strain tensor,
using their constitutive equation. Finally, the stress tensor of the CNT-interface
material in the “Parallel Block” at time t+Δt is

[σpar
ntiz]

t+Δt
= k̄nt [σ

par
nt ]

t+Δt
+ k̄iz [σ

par
iz ]

t+Δt
. (4.29)

On the other hand, at the ends of the CNTs, the interface-CNTs material has
a serial behavior and it is necessary an initial prediction of the CNT or of the
interface strains, in order to integrate the local stress in both components. If this
initial prediction is made on the interface, its strains can be computed as

Δεserntiz = [εserntiz]
t+Δt − [εserntiz]

t
(4.30)

[Δεseriz ]o = [Cser
iz ]

−1
: Cser

ntiz : Δεserntiz (4.31)

[εseriz ]
t+Δt
o = [εseriz ]

t
+ [Δεseriz ]o . (4.32)

And, the strain tensor of the interface in the iteration step n is used to calculate
the strain tensor of the CNT as

εserntiz = k̄ntε
ser
nt + k̄izε

ser
iz (4.33)
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[εsernt ]n =
1

k̄nt
[εserntiz]−

k̄iz
k̄nt

[εseriz ]n . (4.34)

Once knowing the strain tensor of both component materials, the constitutive
law of each one is used to calculate their stress tensor. Afterwards it is necessary
to verify that the iso-stress condition is indeed fulfilled. Therefore

[Δσser]n = [σser
iz ]n − [σser

nt ]n ≤ tolerance. (4.35)

If the residual stress is greater than the tolerance, the prediction of the inter-
face strain must be corrected. A Newton-Raphson scheme is adopted to do this
correction. The method uses the Jacobian to update the unknown variable, in
this case, the interface strain, then

Jn =
∂[Δσser]n

∂εseriz

∣∣∣
εseriz =[εseriz ]

n

=
∂[σser

iz ]
n

∂εseriz
− ∂[σser

nt ]
n

∂εsernt
:
∂εsernt

∂εseriz

= [Cser
iz ]n − [Cser

nt ]n

(
− k̄iz

k̄nt

)
,

(4.36)

and, finally

Jn = [Cser
iz ]n + [Cser

nt ]n

(
k̄iz
k̄nt

)
. (4.37)

Therefore, the strain tensor of the interface for the next step n+1 is estimated as

[εseriz ]n+1 = [εseriz ]n − J−1
n : [Δσser]n . (4.38)

This iterative process continues until the residual stress is smaller than the re-
quired tolerance.

The final stresses in the serial region “Serial Block” of the CNTs-interface are

[σser
ntiz]

t+Δt
= [σser

nt ]
t+Δt

= [σser
iz ]

t+Δt
. (4.39)

And at the end, the final stress tensor for a specific layer is obtained as

[σ]
t+Δt

= km [σm]
t+Δt

+

+(knt + kiz)
{
[Npar]t+Δt[σpar

ntiz]
t+Δt

+[1−Npar]t+Δt[σser
ntiz ]

t+Δt
}
.

(4.40)
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Figure 4.4: Flow chart of the proposed model in a FEM code.





Chapter 5

Validation and numerical
results

In this chapter, the validation of the proposed constitutive model using data from
the literature is presented. Then, a numerical example is shown using the model
calibrated. The basic formulation of the different constitutive models used for
the simple materials can be seen in the Appendix A.

5.1 Validation of the elastic response

In the following section are compared the composite stiffness predicted by the
composite constitutive model (see Section 4.2) with experimental data obtained
from the literature. For this elastic properties validation the experimental data
presented in the papers of Coleman et al. [17, 16] is used. In these works several
composites made of the same matrix with different MWCNTs are experimental
tested.

Materials description

In the following, it will present the mechanical properties of the material compo-
nents used and the composites data.

Matrix component: The matrix material is polyvinyl alcohol (PVA) and its
Young’s modulus is given by the authors as Em = 1.9± 0.3 [GPa] [17].

Interface component: The authors found that the Young’s modulus of the
crystalline polymer phase is of Eiz = 46 [GPa]. On the other hand, the parameter
b

rnt
is estimated following the procedure described in Section 4.2.2.

39
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MWNTs component: The nanotubes used in [17] are an arc grown MWCNT
(Arc-MWCNT), two types of catalytic MWCNT from Nanocyl S.A. (CVD-1,
CVD-2), a catalytic MWCNT produced in Orléans (France) (CVD-3), and a
double walled nanotube (Dwnt). While in [16] the nanotube used is MWCNT
from Nanocyl S.A. (MWCNT).

The maximum Young’s modulus of the CNTs is ∼ 1 [TPa][17], which corre-
sponds to the stiffness of a perfect graphite sheet. The equivalent stiffness (see
Section 4.2.3) of the nanotubes are calculated using this perfect stiffness value
and considering a thickness of the outer layer of t = 0.34 [nm][51, 136].

The most important collected data of the nanotubes used are presented in
table 5.1:

Type dnt (nm) lnt (μm) lnt/dnt b/rnt Ēnt (GPa) Npar

Arc-MWCNT 24 1 42 0.81 56 0.97
CVD-3 16 3.8 238 1.47 83 0.99
CVD-2 14 2.1 150 2.27 95 0.99
CVD-1 15 1.8 120 2.83 89 0.98
Dwnt 2.5 2.2 880 4.87 470 0.99
MWCNT 15 1.72 115 3.30 89 0.98

Table 5.1: Relevant data of the nanotubes used by Coleman el al. [17, 16].

Composites: A parameter missing in Table 5.1 is the direction distributions
of the CNT. In general, obtaining this information from the composite is very
complicated. To outstep this impediment it is possible to rewrite equation given
by (4.11) for one layer as

Clayer = kmCm + kntizC
eff
ntiz, (5.1)

where

kntiz = knt + kiz Ceff
ntiz = NparCpar

ntiz + (1−Npar)Cser
ntiz. (5.2)

Cox [21] and Krenchel [63] modified the rule of mixtures proposing the fol-
lowing equation to calculate the composite Young’s modulus

E = kmEm + kfηoEeff , (5.3)

where Em and Eeff , are the Young’s modulus of the matrix and effective re-
inforcement, respectively. The volume fraction for each component is k and ηo
is a fiber orientation efficiency factor. For the present validation (5.3) will be
modified, adapting it to the developed formulation. Therefore

Ccomposite = kmCm + kntizηoC
eff
ntiz. (5.4)
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The value of the efficiency factor related to fiber orientation was taken from
literature. In composites with a random distribution, ηo = 0.38.

Results

Figure 5.1: Comparison of numerical and experimental results [17, 16].

Figure 5.1 shows the values of dC/dknt, this is: the slope of the curves of
Young’s modulus (C) divided by volume fractions of nanotubes (knt), for the
different composites considered. In the figure the short lines represent the limits of
the range experimental results presented in [17, 16] and the red points correspond
to the numerical result for each CNT type, obtained with the proposed composite
model.

This figure shows that the formulation is capable of predicting the elastic
stiffness of the composite, as most of the values obtained are comprehended
between the limits defined by the experimental tests. There is only one case in
which the value obtained exceeds the limits of the experimental test. This is
because the effective Young’s modulus of the Dwnt is highest since its diameter
is really low.

5.2 Validation of the non-linear performance

The non-linear behavior of the composite constitutive model has been validated
comparing the results provided by the model with the experimental data obtained
from the paper of Meng et al. [89]. In that article the matrix used is Polyamide
6 (PA6) and all composites contained a 1 wt% of MWCNTs reinforcement.

The MWCNTs used in the experimental tests were purchased from Chengdu
Organic Chemistry Co. Ltd. Two different composites where manufactured
with these nanotubes. One of them contains the nanotubes “as is”, without
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any previous treatments. These nanotubes are called U-MWCNT. The other
composite uses nanotubes that where treated with a mixture of concentrated
sulfuric and nitric acids. These are called A-MWCNT.

Materials description

In the following, it will present the properties of the material components used
and the information of the composites.

Matrix component: The matrix material is characterized with an isotropic,
elasto-plastic model using a Von-Mises yield criterion. The mechanical parame-
ters of the model were calibrated using the experimental data described in [89],
obtaining a Young’s modulus of Em = 2.67 [GPa], a Poisson ratio of νm = 0.4
and an elastic threshold of 35 [MPa]. The parameters used to simulate matrix
material are validated comparing the stress-strain graph obtained with the nu-
merical model with the experimental one. This comparison is shown in Figure
5.2.

Figure 5.2: PA6 stress-strain relations for static tests [89].

Interface component: The interface zone is associated with the crystalline
matrix around of MWCNTs. The properties of this material are better than those
of the amorphous matrix. The volume fraction of the interface zone has been
estimated with the data presented in the paper of Meng [89] and the equations
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developed in Section 4.2.2. On the other hand, the mechanical properties of the
interface are used to calibrate the model. In current simulation, the interface
has been defined with a isotropic, elasto-damage model with linear softening
and Tresca yield surface. The mechanical parameters used are Eiz = 5 [GPa],
νiz = 0.4 and Giz = 1.8 [GPa]. Damage in the interface starts for a stress
threshold of 120 [MPa]. This value is in the range of theoretical and experimental
tests value obtained in [139].

MWCNTs component: Numerical simulations of molecular structural me-
chanics of CNTs show that the Young’s moduli are in the range of 1.05 ± 0.05
[TPa] and the shear moduli is about 0.4±0.05 [TPa] [68]. It has been also shown
that these values do not change significantly for CNTs with two, tree or four
walls.

Regarding the transverse modulus of CNTs, it has been assessed from nu-
merical and experimental results that there is an inverse relationship between
axial and transverse modulus for carbon fibers [83]. Higher axial stiffness is as-
sociated to a longer and more aligned crystalline structure of the nanotube in
this direction, which reduces properties in the transverse direction. Following
this approach, in current simulation the transverse moduli of the MWCNTs are
defined with the same values of the interface component.

Therefore, the equivalent properties of the MWCNTs were obtained using the
equations described in Section 4.2.3. The diameter of MWCNT is dnt = 50 [nm].
The measurement of several MWCNTs provided an estimation of the internal
diameter of di = 8.2 [nm] [136]. The effective density of MWCNTs has a value
of ρ̄nt = 2.2 [g cm−3]; and the volume fraction of MWCNTs in the composite is
0.51 %. The MWCNTs have been simulated using an elastic orthotropic material
with the following properties:

E1nt = Ēnt = 56 [GPa] , E2nt = E3nt = Eiz = 5 [GPa]

G12nt = G13nt = Ḡnt = 41 [GPa] , G23nt = Giz = 1.8 [GPa]

ν12nt = ν13nt = ν23nt = νnt = 0.2

νij =
Ei

Ej
νji ⇒ ν21nt = ν31nt = 0.018 ν32nt = 0.2

Composite: The composites tested had a random distribution of the MWC-
NTs. This is simulated in the numerical model by dividing the composite in
several layers, each one containing CNTs with a different orientation. Current
simulation divides the composite in 10 layers and CNTs angles varying from 0 ◦

to 90 ◦. Each layer has a volume fraction of 10 %. Table 5.2 shows the volume
fractions of the three composite components in each layer. This table also shows
some geometry information of the MWCNTs and the interface zone, as well as
the initial value of Npar.
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Composite knt[%] kiz[%] km[%] lnt/dnt b/rnt Npar

PA6/A-MWCNT 0.5 4.1 95.4 250 2.00 0.98
PA6/U-MWCNT 0.5 5.3 94.2 250 2.35 0.98

Table 5.2: Data of the composites.

Results

In Figure 5.3 are represented the numerical and experimental results obtained
for the composite made with A-MWCNTs. This figure shows an initial reduction
of the composite stiffness, result of matrix yielding. Afterwards damage begins
in the interface zone and, consequently, the composite continues reducing its
stiffness. Interface damage leads to a reduction of the parallel length (see (4.28)).
When the interface is completely damaged, the whole CNT-interface material has
a serial performance. At this stage stresses in the interface are zero, and so must
be the stresses in the carbon nanotubes. Therefore, the final stiffness of the
composite corresponds to a material with a volumetric participation of 95.4 % of
PA6 matrix, and the rest of the material correspond to voids.

Figure 5.3: PA6/A-MWCNT stress-strain relations for static tests [89].

Figure 5.4 shows the results for the composite made with U-MWCNTs. This
composite is the same than the previous one (made with A-MWCNTs), with the
only difference that in this case the bond between U-MWCNTs and interface
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zone is weaker. To take into account this difference, the numerical model used
for this composite is the same used for the previous one, varying the threshold at
which damage starts in the interface. In current simulation this value is reduced
to 70 [MPa].

This simulation provides a maximum stress in the composite lower than the
value obtained for previous one, consequence of having a weaker interface. The
simulation also shows some divergences between the numerical and the experi-
mental values. Both graphs start to differ for a strain of 2.5 % and the maximum
load reached by the numerical simulation is larger than in the experimental tests.
However, it has to be noted that the experimental tests provide a maximum stress
lower than having just plain matrix (see Figure 5.2). Therefore, the differences
observed in Figure 5.4 may be justified.

Figure 5.4: PA6/U-MWCNT stress-strain relations for static tests [89].

5.3 Simulation of a four points bending beam

5.3.1 Materials properties, geometry and FE model of the
analyzed structure

This section presents the numerical simulation of a four points bending beam,
which is shown in Figure 5.8. Although there is no experimental results available
to compare the results obtained with the numerical simulations, the analysis
performed is used to show the numerical performance of the proposed model and
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the effect of reinforcing the polymer with CNTs. The validity of the results is
assumed, based on the comparisons made in Section 5.1 and 5.2. The composite
used in the simulation is a reinforced matrix with MWCNTs and it has been
proposed in the framework of M RECT project. The matrix in the composite is
a Polyether Ether Ketone (PEEK) thermoplastic polymer provided by Victrex R©

company. While the MWCNTs are the NanocylTMNC7000 from Nanocyl S.A.
Two composite with different weight fractions percentage (0.5 and 2.0 wt%) of
MWCNTs reinforcement will be analyzed.

In the following, it will describe the properties and constitutive model of the
material components and the composites information.

Matrix component

An elasto-plastic constitutive model with hardening is applied to characterize the
behavior of the PEEK component. The matrix material has a Young’s modulus
of Em = 3.9 [GPA], a shear modulus of Gm = 1.9 [GPA], a Poisson ratio of vm =
0.4. These elastic mechanical properties are obtained from M-RECT project
and of the information provided by Victrex R©(http://www.victrex.com). The
constitutive model is calibrated with an elastic threshold of 32 [MPa] and an
ultimate tensile strength of 90 [MPa]. Figure 5.5 shows the comparison between
the experimental data from the project and numerical results obtained with the
constitutive model calibrated.

(a) In a tensile test. (b) In a shear test.

Figure 5.5: Comparison of the experimental data with the numerical results for PEEK.

Interface component

The constitutive model used to simulate the behavior of the crystalline PEEK
around of the MWCNTs is an elasto-damage model with exponential softening.
The mechanic properties of this interface zone are obtained following the same
procedure used by Coleman et al. [17] but using the information presented in
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the works of Diez-Pascual et al. [25, 26], which use the PEEK material as matrix
too. Then, the properties obtained are, a Young’s modulus of Eiz = 5.07 [GPa],
a shear modulus of Giz = 2.47 [GPa] and a Poisson ratio of viz = 0.4. The
value of the elastic threshold used in the model is of 28 [MPa]. This parameter
is obtained when the composite constitutive model is calibrated to reproduce the
experimental curve shown in Figure 5.6. This experimental data is for a PEEK
reinforced with 3 wt% of MWCNTs obtained in the framework of the previous
referred project.

Figure 5.6: Experimental data and numerical response with the calibrated interface
component model.

MWCNTs component

The geometric characteristics of the MWCNTs are obtained from the paper of
Jiang et al. [54], who obtains as average diameter and length of 10.4 [nm] and
0.7 [μm], respectively. For the simulation the MWCNTs are considered as an
orthotropic elastic material. The equivalent properties are obtained using the
equations described in Section 4.2.3, assuming Eg = 1.05± 0.05 [TPa] and Gg =
0.4 ± 0.05 [TPa][68] and a thickness of the outer layer of t = 0.34 [nm][51, 136].
And taking the same consideration than before, the transverse properties are
defined with the same values of the interface.

E1nt = Ēnt = 131 [GPa], E2nt = E3nt = Eiz = 5.07 [GPa],

G12nt = G13nt = Ḡnt = 104 [GPa], G23nt = Giz = 2.47 [GPa],

ν12nt = ν13nt = ν23nt = νnt = 0.2,
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νij =
Ei

Ej
νji ⇒ ν21nt = ν31nt = 0.008 ν32nt = 0.2.

Composites

Table 5.3 shows the volume fractions of each component in the composites sim-
ulated.

Composite km[%] knt[%] kiz[%]
PEEK-0.5CNT 84.95 0.35 14.7
PEEK-2.0CNT 91.89 1.41 6.70

Table 5.3: Volume fractions in the composites.

The orientation distribution of the MWCNTs has been defined assuming that
the composite is formed by several layers, each one with a specific angle and
volume fraction of MWCNTs. The volume fractions of the MWCNTs for the
different layer in the composite are shown in the Figure 5.7. The value of the
volume fractions in the figure are relative values respect to the total volume
fraction of the MWCNTs in the composite.

Figure 5.7: MWCNTs orientation distribution in the composite.

Geometry of the simulated structure

The selected structure for the numerical simulations is a simple supported beam
with two concentrated loads, which are applied at 1/3 of both beam ends. Figure
5.8 shows the geometry and its dimensions, the boundary conditions and the load
position on the analyzed structure.
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Figure 5.8: Geometry and extra information of the analyzed structure.

FE model used

The symmetry of the geometry, of the applied load and of the boundary conditions
of the structure allows to reduce the numerical model in the simulation. For this
case, the reduced FE model is a quarter of the real geometry of the structure.
Figure 5.9 shows the numerical model and the FE mesh used for the numerical
analysis. The more relevant data about the FE mesh is shown in the Table 5.4.

Item Nodes Elements Type Elem. Order
Quantity/Type 1953 1200 Hexahedron Quadratic

Table 5.4: Mesh information.

In order to obtain the real behavior of the structure with the reduced FE
model it is necessary impose the restrictions on the numerical model given by the
symmetry. There are two symmetry planes: The X-axis symmetry plane that
has as normal axis the longitudinal axis (X-axis). In this symmetry plane, X
direction displacements on the plane’s nodes are restricted to zero. The other
symmetry plane is the Y-axis symmetry plate, which has as normal axis the Y-
axis in the model. For this symmetry plane, the null displacements restriction
on the plane’s nodes is Y direction. The longitudinal direction in the numerical
model (X-axis) is taking as a reference direction for the definition of the layes’
angle in the composite.

5.3.2 Linear analysis

The numerical results obtained in the simulation are presented in comparative
form, taking as reference the result obtained for the non-reinforced matrix (plain
PEEK material).

In all cases, the applied load for elastic analysis is a fixed displacement of a
−0.001 [mm] in Z direction at P position (see the Figure 5.8). The result consid-
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Figure 5.9: FE mesh used in the reduce model.

ered for the comparison is the reaction force in Z direction on the support. As
the imposed displacement is the same for all analysis, the reaction force increases
when the material is the PEEK reinforced. Table 5.5 shows the results obtained
for the different composites normalized by the non-reinforced PEEK results.

PEEK PEEK-0.5%CNT PEEK-2.0%CNT
1 1.20 1.52

Table 5.5: Normalized values obtained in the elastic simulation.

In the central section of the beam, between concentrated loads, there is a pure
bending situation. While, at both ends of the beam there are a coupling bending
and shear conditions. In Table 5.6, it is possible to observe the longitudinal (X
direction) and shear (XZ direction) stresses obtained in the structure with the
different composites.

5.3.3 Non-linear analysis

In order to obtain the non-linear response of the structure the fixed displacement
at P position is gradually increased in the simulation. Therefore, the reaction
force in the support in Z direction increases too until the maximum value that the
structure is able to take. The total force is four times the value obtained from the
numerical model because the symmetry. The vertical (Z direction) displacement
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Table 5.6: Longitudinal and shear stresses distribution obtained in the beam for elastic
case.

at the middle of the beam is taking as the reference loading increase.

The fixed displacement is applied to the numerical model in 100 load steps of
0.1 [mm]. Figure 5.10 shows the results obtained in the simulation for the different
composites. When the vertical displacement is around 1.5 [mm] the curves show
the first loss of stiffness. This is because in the middle of the beam starts the
plasticity in the PEEK. Then, when the vertical deformation is between 3 [mm]
to 6 [mm] there is the second loss of stiffness. In this case, it is due to the damage
in the interface zone. Subsequently, it is possible to observe that the model with
non-reinforced PEEK has a higher stiffness than the ones with MWCNTs. This
strange phenomenon is because at this point of the simulation the interface zone
is completely damaged and, therefore, the contribution of the MWCNTs to the
global stiffness is null. The stiffness obtained with the composites with MWCNTs
are equivalent to the stiffness of a plain PEEK material but with some holes. This
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effect is clearly observed in Figure 5.11. This Figure shows the curves obtained
for the simulation until a vertical displacement of 50 [mm].

Figure 5.10: No-linear structural response for PEEK-CNT.

Figure 5.11 shows a new loss of stiffness that takes place from 30 [mm] to
40 [mm] of vertical displacement. This laster loss of stiffness is because the
plasticity model in the PEEK arrives to the ultimate tensile strength in the
middle zone of the beam.

Figure 5.12a shows the distribution of the longitudinal stress and Figure 5.12b
of the shear stress for the composite reinforced with 0.5% of MWCNTs for a
vertical displacement of 1 [mm]. The longitudinal plastic strain for the same
composite and displacement state is shown in Figure 5.12c and the equivalent
stress in Figure 5.12d.
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Figure 5.11: No-linear structural response for PEEK-CNT up to 50 [mm] of vertical
displacement.

(a) Longitudinal stress distribution. (b) Shear stress distribution.

(c) Longitudinal plastic strain distribution. (d) Equivalent stress distribution.

Figure 5.12: No-linear results obtained at 1 [mm] of vertical displacement for PEEK-
0.5%CNT.
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5.3.4 Visco-elastic analysis

One of the main improvements shown by CNTs reinforced composites is their
good damping response and energy dissipation, which makes them very useful
for impact or vibration absorption purposes [151, 59, 35]. For this reason, in
the following is analyzed the visco-elastic performance of the numerical model
developed under such conditions. In order to obtain a viscous response of the
composite it is necessary to use a visco-elastic model to characterize its compo-
nents. The visco-elastic model used for the matrix and the interface zone is the
generalized Maxwell model (see Figure 5.13) [103], which is already implemented
in the PLCd code (see Section A.4 in Appendix A). To conduct the visco-elastic
analysis, the MWCNTs are considered to have a linear elastic behavior.

Figure 5.13: Scheme of the generalized visco-elastic Maxwell model [103].

Mat./Prop. C∞ [MPa] C1 [MPa] ξ1 [MPa.seg]
PEEK 3900 390 39
Interface 5070 1521 152

Table 5.7: Materials properties used in the visco-elastic model.

The response obtained, after calibrating the model (see Table 5.7), is shown
in Figure 5.14. This figure shows the stress-strain curve of a point inside of the
structure in a complete sinusoidal load-unload cycle. The numerical simulation
has been conducted using the two composites previously described (0.5% and
2.0% wt) and the plain PEEK. Figure 5.14 shows that the areas enclosed by
the curve, in the load-unload cycle, in the composites reinforced with MWCNTs
are larger than the non-reinforced matrix (plain PEEK). In other words, the
dissipation capacity of a composite with MWCNTs is better than the matrix
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alone. The composite reinforced with 0.5% wt of MWCNTs has higher dissipative
capacity than the other composite (2.0% wt). This is because, in this composite,
the volume fraction of the interface zone is higher than in the other, as it is shown
in Table 5.3. This phenomenon occurs because when the volume fraction of the
MWCNTs in the composite is low, their distribution in the composite improves,
and then, increasing the interface volume.

Figure 5.14: Structural response for a sinusoidal load-unload of 1 Hz.

5.4 Effect of the CNTs angle on the elastic prop-
erties

The present study about the influence of the CNTs angle in the resulting elastic
properties using the developed composite constitutive model has been performed
to asses the importance of having a good orientation of the CNTs in the com-
posite.

The composite used for the analysis is a CNTs reinforced PEEK matrix and
it has been also proposed in the framework of M RECT project. The PEEK ma-
terial used as matrix in the composite is the same than the one used in the above
section (see Section 5.3.1). Therefore, the elastic properties previously obtained
for the matrix and interface components have been used in this study. However,
the MWCNTs used as reinforcements in the composite are the Baytubes R© C70P
from Bayer, which have different geometric characteristics than the ones used in
the above section. The current CNTs have an average diameter and length of
13 [nm] and 1 [μm], respectively. The CNTs are considered as an orthotropic
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elastic material and the equivalent properties are obtained using the equations
described in Section 4.2.3, assuming Eg = 1.05± 0.05 [TPa] and Gg = 0.4± 0.05
[TPa][68] and a thickness of the outer layer of t = 0.34 [nm][51, 136]. Considering
that the transverse properties are defined with the same values of the interface,
the CNTs properties are

E1nt = Ēnt = 105 [GPa], E2nt = E3nt = Eiz = 5.07 [GPa],

G12nt = G13nt = Ḡnt = 85 [GPa], G23nt = Giz = 2.47 [GPa],

ν12nt = ν13nt = ν23nt = νnt = 0.2,

νij =
Ei

Ej
νji ⇒ ν21nt = ν31nt = 0.008 ν32nt = 0.2.

The composite simulated in the analysis has a 3% weight of CNTs, which
represent a 1.94% of volume fraction. However, measurements made with X-rays
show an apparent 5% weight. This difference is obtained because the MWCNTs
have a higher apparent diameter than the original one. Therefore, the param-
eter b

rnt
is estimated assuming that this extra 2% weight in the measurement

is the coating polymer around the nanotubes and then, it is the interface com-
ponent considered. Taking this into account, the interface component has an
approximate volume fraction of 1.31% and b

rnt
= 0.3.

Figure 5.15: Change of elastic properties of CNTs reinforced PEEK with the CNTs
angle.

Figure 5.15 shows the variation in the longitudinal elastic modulus, the
transversal elastic modulus and the shear elastic modulus in the composite ob-
tained when the CNTs angle is changed. The curves obtained, which are shown
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in the figure are symmetric with respect to the 45o vertical line. This behavior
is different to the typical ones expected for reinforced matrices. In general, the
maximum value of the longitudinal Young’s modulus in the composite is obtained
when the angle of the reinforcement is equal to 0o. For this reinforced PEEK
with CNTs, the longitudinal Young’s modulus increases from 0o until 40o and
then, it decreases until its minimum value, which is obtained for an angle of 90o.
A similar behavior presents the transversal Young’s modulus but symmetrically
respect to the 45o vertical line. The maximum value for the shear modulus is
presented for an angle of 0o and the minimum for 45o.





Chapter 6

Phenomenological
homogenization. Concluding
remarks

A new phenomenological composite constitutive model, based on the mixing the-
ory, capable of predicting the mechanical performance of composites reinforced
with carbon nanotubes has been presented. The formulation presented relates
the reinforcement and the matrix in which they are embedded, using an interface
material. This approach makes possible to consider non-linear phenomenons,
such as debonding, by using non-linear constitutive laws to characterize the in-
terface material. The formulation is written in a way in which all materials can
be defined with their own constitutive law, improving the versatility of the model.

It has been shown that the elastic properties estimated with the model are
in good agreement with experimental values obtained from literature. Only the
numerical model of the composite made with the Dwnt reinforcement has given
results in which the composite stiffness is overestimated. This is because the
Dwnt has a very small diameter, which leads to a very high value of its equivalent
Young’s modulus.

The validation of the non-linear response provided by the proposed composite
model has been performed using the experimental data of two different composites
made with MWCNTs randomly distributed. The numerical curve obtained for
the A-MWCNT is in good agreement with the experimental results. On the
other hand, the numerical prediction obtained for the U-MWCNTs differs from
the experimental results for strains larger than 2.5%. However, it has to be said
that the experimental results are lower than expected, as this composite is weaker
than plain matrix.

Then, the formulation has used to predict and compare the mechanical prop-
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erties of a straight beam subjected to four-point bending, with different material
configurations. A non-linear analysis has also been made using the same struc-
ture and composites. The non-linear response of the beam obtained from the
numerical simulation shows different points where there is a loss of structural
stiffness. This structural behavior is obtained because the component materials
in the composite reach their elastic thresholds and ultimate strength.

A visco-elastic material constitutive model is used for the polymeric matrix
and the interface zone. The viscous response within the elastic range of the
materials has been studied. The good capacity of energy dissipation in composites
reinforced with MWCNTs has been proved with the simulations performed.

Finally, the composite constitutive model has been used to analyze the effect
of nanotube orientation in the elastic properties of the composite, showing that
the CNTs distribution within the reinforced matrix has a meaningful influence
on the composite properties achieved.

All these tests have proved the validity of using a phenomenological model
for the characterization of these materials. The developed composite constitutive
model allows an accurate characterization of this kind of composites with an
affordable computational cost, moreover taking into account the scale size of
these reinforcements.



Part II

Multiscale homogenization
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Chapter 1

Introduction

In the last decades, several formulations have been developed to mathematically
characterize and model composites as heterogeneous materials. Large number of
composite models have been proposed to assess the global behavior of these mate-
rials by fulfilling the thermodynamic laws in linear and non-linear range. Consti-
tutive equations have been developed for composites with different arrangements
such as materials with long and short fibers, nanofibers, fibers laminated with one
or more directions, and even random reinforcement distributions, etc. However,
these formulations are limited because the constitutive relationships were made
on a particular composite material and in general, can not be extrapolated to
other composites.

The homogenization methods analyze the composite materials from an in-
ternal structure point of view. Over the years, many techniques have been de-
veloped, among them: the effective medium approach [28]; the self-consistent
method [48]; the variational boundary method, which provides upper and
lower limits of the total stiffness [45, 119]; and the asymptotic homogenization
method [7, 126]. Due to the complex task that is required to represent the mi-
croscopic mechanical behavior of composites, homogenization approaches that
use the RVE concept, together with stable computational methods, are very con-
venient in most cases. The behavior of the whole composite is obtained by a
micromechanical study of the material components and their interaction within
of the composite’s microstructure through an RVE model.

Within the context of the homogenization methods, the known multiscale
techniques use the RVE concept to address the characterization of composites and
structures. As a result, these multiscale procedures do not obtain a closed form for
the general constitutive equations. The stress-strain relationship of the composite
is obtained by performing a detailed modeling of the its microstructure at the
micro-scale in the RVE model. Among the main advantages of these techniques
it is found that: they do not require any composite constitute assumption at the
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macro-scale; they can use any constitutive law in the simple materials, even non-
linear response and time-dependency; and they can employ many computational
techniques to find the response at the micro-scale, such as, the FEM, the Voronoi
cell method, or numerical methods based on the fast Fourier transforms, etc.

The first-order homogenization [132] is one of the most extended and pop-
ular multiscale methods used nowadays. The approach uses the macro-scale
deformation gradient tensor (or the strain tensor) to solve the micro-scale prob-
lem and then, by means of the microscopic results obtain the macro-scale stress
tensor. The microscopic problem is solved through a Boundary Value Problem
(BVP) on the RVE with particular boundary conditions, which are obtained
using the macroscopic input. The resolution of the micro-scale BVP can be ob-
tained through any mathematical or numerical approaches. After the solution
of microstructural BVP, the microscopic displacement, deformation and stress
fields are found and then, the macroscopic stress tensor is calculated as the vol-
ume average of the microscopic stress field. The BVP on the macro structure
can be also approached through mathematical or numerical methods. When the
solution of the coupled macro-micro BVPs is faced by FEM at both scales the
formulation/implementation is called FE2 homogenization [131].

The advantages above described of the multiscale techniques become a chal-
lenge when a non-linear analysis is made on a realistic three-dimensional structure
using a FE2 homogenization approach. In general, the required computational
cost is extremely expensive for non-linear simulations because they require to
solve, for each integration point at the macro-scale, one RVE at each time step of
the analysis. Furthermore, from an energetic point of view the method must be
consistent and therefore, the conservation of the dissipated energy through the
scales should be guaranteed.

In the last decade, a second-order computational approach was proposed to
be applied in critical regions of intense deformation, where the characteristic
wave length of the macro-scale deformation field is of the order of the size of
the micro-scale [62]. The homogenization technique has been developed as a
natural extension of the first-order homogenization method. In the approach,
the macroscopic gradient of the deformation gradient is also incorporated in the
microscopic BVP and them, the stress tensor and a second-order stress tensor are
retrieved. In the micro-scale level a first-order equilibrium problem is conserved
but extra boundary conditions in the BVP must be verified. However, a full
second gradient continuum theory appears in the macro-scale level, which requires
solving a higher-order equilibrium problem. The solution of the reformulated
macroscopic BVP is made through a complex finite element implementation,
which has restricted its massive application.

The use of a second-order approach for the non-linear analysis of structures
has the advantage of including higher-order effects on the micro-scale. Neverthe-
less, the complex computational implementation required to solve the macro-scale
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BVP restricts its application to realistic composite structures. From a mathe-
matical and computational point of view the first-order approach is simpler than
the second-order scheme. Then, it would be interesting to develop an enhanced-
first-order approach which retains the easy computational implementation but
with an enriched solution in the micro-scale.

1.1 Part’s outline

In this second part of the present monograph a multiscale homogenization model
for composite structures is addressed. The proposed formulation can simulate
the behavior of three-dimensional structures in non-linear range.

Following this objective, in Chapter 2 a review of the state of the art of the
more relevant homogenization theories is shown. The asymptotic homogenization
theory introduces the concept of two or more scale lengths, therefore it lays the
foundations of what is today known as multiscale homogenization using RVE
concept. At the end of the chapter a review of the most important multiscale
approaches found in the literature is made.

Chapter 3 presents the formulation of the two-scale homogenization devel-
oped in this study. In the beginning, the first-order homogenization approach
is described and then, using concepts of the second-order approach, a enhanced-
first-order homogenization is proposed. The BVPs in both scales and their com-
putational implementation through of an efficient three-dimensional FEM is also
shown.

In Chapter 4 the results obtained with the first-order homogenization pro-
posed are validated with other microscopic formulations. From the comparison
made, it can be observed that the multiscale formulation obtains a good char-
acterization of the composite without any special consideration because the mi-
crostructure is modeled using an RVE. The computational run times and memory
used are also compared showing the advantages and drawbacks of the proposed
method.

Chapter 5 presents a novel strategy for the non-linear simulation of composite
structures using multiscale homogenization approaches. This strategy is capable
of reducing a 98% the computational time required in a non-linear analysis. The
formulation is implemented in the FE code PLCd showing mesh independent at
both scales as the develop approach conserves the energy through the scales.

Finally, in Chapter 6 the conclusions of the formulations presented in this
part of the monograph are addressed in detail.





Chapter 2

State of the art

The modeling of heterogeneous composite materials have a high degree of com-
plexity because their constitutive behavior is strongly dependent on microstruc-
tural effects. The development of formulations based on multiple scales, capable
of predicting the response of a heterogeneous material phenomenologically ac-
cording to the information derived from a study at the micro-mechanical, is a
natural choice to address the problem.

Numerous efforts have been made to mathematically model composite mate-
rials and structures with homogenization methods by using suitable multiscale
techniques with relatively good approximation to the real global response of the
composite. The most significant multiscale techniques, based in different theo-
retical principles, are:

2.1 The effective medium approximation

The method proposed originally by Eshelby [28] consists to find the current
stresses in an elastic solid when a region of it, normally called inclusion (see
Figure 2.1), suffers a change of shape and size which, if the surrounding ma-
terial was absent, is represented by a uniform homogeneous deformation. By
means of the Eshelby solution a number of very important boundary value prob-
lems can be solved, like: i) the solution for an ellipsoidal inclusion embedded
within an elastically mismatched matrix, ii) the solution for an ellipsoidal cav-
ity in an elastic solid and iii) the solutions for circular and elliptical cracks in
an elastic solid. Moreover, several theories which estimate the elastic proper-
ties of composite materials use the Eshelby solution. Further developments by
Hashin [44], obtain expressions for the elastic moduli and their values bounds of
many-phase heterogeneous materials using an approximate method based on the
variational theorems of the elasticity theory and on a concentric-spheres model.
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Besides, Mori and Tanaka [98] developed a method of calculating the average
internal stress in the matrix of a material containing inclusions with transforma-
tion strain. The obtained actual stress in the matrix is the average stress plus
the locally fluctuating stress, the average of which vanishes in the matrix. The
developed method also shows that the average stress in the matrix is uniform
throughout the material and independent of the position of the domain where
the average treatment is carried out.

Figure 2.1: Ellipsoidal region of the Eshelby inclusion [2].

2.2 The self-consistent method

It may be considered as an extension of the effective medium approximation.
The method is proposed by Hill [48] and it uses similar concepts to the Hershey-
Kröner theory of crystalline aggregates. The macroscopic elastic moduli of two-
phase composites taking into account the inhomogeneity of stress and strain
fields are estimated. It is required phases with the character of matrix and of
effectively ellipsoidal inclusions, but they can have any concentrations in the
composite. The model of three phases or generalized self-consistent model given
by Christensen and Lo [13] is a more elaborate version. The method embeds the
spherical (or cylindrical fibers) in a cap (spherical or cylindrical) which represents
the elastic properties of the matrix. Then, this set is embedded in an infinite
medium with the effective properties of the composite material to be determined.
Finally, the effective elastic shear modulus of the material is obtained integrating
the differential equations governing the behavior of the three-phase boundary
conditions and of the applied loads.

A more recent work by Mercier and Molinari [91], which is based on the in-
teraction law (postulated by Molinari [96] and validated by Mercier et al. [90]
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on the Eshelby problem) proposed two self-consistent schemes for perfectly disor-
dered materials. The first one is valid for any non-linear behavior, and the second
scheme is used to aggregates with phases having the same strain rate sensitivity.
Both schemes predict accurately the overall response of the composite material
and they are able to capture the strain and stress histories of the components
too.

2.3 Bounding methods

The bounding methods provide the lower and upper limits to the total stiffness
of the system or of the composites. In general, these methods obtain a simpler
expressions for the effective elastic properties through the minimum potential
and complementary energies. The most relevant of those are:

2.3.1 The classical bounds of Voigt and Reuss

The Voigt approach determines the elastic moduli by averaging stresses, expressed
in terms of strains. The method assumes strain uniformity throughout the com-
posite material. Therefore, the average strain of each phase is equal to the applied
strain in the composite, which is similar to the rule of mixture assumption. Hence,
considering that each component is linear-elastic, the following relationship can
be obtained

C =
n∑

i=1

Ci · φi, (2.1)

where C is the effective elastic tensor of the composite, Ci and φi are the elastic
constitutive tensor and the volume fraction of the i− th phase, respectively.

On the other hand, Reuss proposed to determine the elastic moduli by aver-
aging strains, expressed in terms of stresses but assuming stress uniformity and
then all components have the same stress. Therefore, the following estimation
for the effective elastic tensor of the composite is obtained as

C =

[
n∑

i=1

φi

Ci

]−1

. (2.2)

The Voigt and Reuss methods give an upper and lower bounds for the elastic
moduli of a composite with an arbitrary random micro geometry. The Voigt
approach gives the upper bound of the elastic moduli for the compound mate-
rial, while the Reuss approach gives the lower bound. These bounding methods
depend only of the phase volume fractions, and of course of the elastic consti-
tutive tensors of the components, but do not require any further information or
assumption in respect of the microstructure. The expressions obtained for the
bounding effective moduli are valid even for anisotropic component materials
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2.3.2 The variational bounding method

The authors Hashin and Shtrikman [45] use the variational formulation to ob-
tained the upper and lower bounds for the effective elastic moduli of quasi-
isotropic and quasi-homogeneous multiphase materials of arbitrary phase geom-
etry. The obtained bounds are close enough to provide a good estimate to the
effective moduli when the ratios between the different phase moduli are not too
large. The method obtains analytical expressions for the elastic constants of
a heterogeneous material with random isotropic distribution of phases. Later,
Walpole [142, 143] generalized the bounding method of Hashin and Shtrikman
for materials with several phases, which may be arbitrarily anisotropic.

A variational method for bounding the effective properties of nonlinear com-
posite materials with isotropic components with full variational principle status
was proposed by Ponte Castañeda [119]. The author proposed two dual versions
of the new variational principle and it is demonstrated their equivalence to each
other and to the classical variational principles. The approaches are used to de-
termine the bounds and to estimate the effective energy functions of nonlinear
composites in the context of the deformation theory of plasticity. For completely
anisotropic composites simpler forms of the classical bounds of Voigt and Reuss
are recovered from the new variational principles. Also, for isotropic, particle-
reinforced composites, as well as for transversely isotropic, fiber-reinforced com-
posites simpler forms for nonlinear Hashin-Shtrikman bounds are obtained.

Lahellec and Suquet [66] proposed a new method for determining the overall
behavior of composite materials which can be composed by nonlinear inelastic
components. The evolution equations describing the constitutive behavior of
the components can be reduced to the minimization of an incremental energy
function by using an implicit time-discretization scheme. The alternative mini-
mization problem is rigorously equivalent to a nonlinear thermoelastic problem
with a transformation strain which is a nonuniform field. Comparisons with full-
field simulations show that the present model is good as long as the variational
procedure is accurate in the purely dissipative setting, when elastic deformations
are neglected. If this is the case, the model accounts in a very satisfactory man-
ner for the coupling between reversible and irreversible effects and is therefore an
accurate model for treating nonlinear viscoelastic and elasto-viscoplastic materi-
als. Lahellec and Suquet [67] in a second part, of the described work, proposed a
proper modification of the second-order procedure of Ponte Castañeda and leads
to replacing, at each time-step, the actual nonlinear viscoelastic composite by
a linear viscoelastic one. The linearized problem is even further simplified by
using an effective internal variable in each individual component. The resulting
predictions are in good agreement with exact results and improve the predictions
of the previous work. The analytical models presented in the previous sections
are reasonably able to predict equivalent material properties for relatively simple
geometries and low volume fraction of the second component inclusions. But
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they are, in general, incapable to obtain the evolution of stresses and strains
in the microstructure. Moreover, the actual heterogeneous materials cannot be
treated with these models because normally these composites have an arbitrary
microstructural morphology.

2.4 The asymptotic homogenization theory

This theory has proven to be a powerful technique for the analysis of structural
arrangements of two or more scale lengths. Through the use of asymptotic expan-
sions of the displacement and stress fields, and appropriate variational principles,
the homogenization methods can provide not only the effective (homogenized)
material parameters, but also distributions of stresses and strains at the two lev-
els. Bensoussan et al. [7] proposed an asymptotic expansion of the solution in
terms of a parameter ε, which is the ratio of the period of the structure to a
typical length in the domain. The link from the microscopic to the macroscopic
description of the behavior of the system is given by solving the problem in two
scales defined by the spatial variables x and y, where x is a macroscopic quan-
tity and y = x/ε is a microscopic quantity; y is associated with the small length
scale of the inclusions or heterogeneities. The asymptotic problem is formulated
in mathematical terms as a family of partial differential operators, depending
on the small parameter ε. The operators may be time independent or time de-
pendent, steady or of evolution type, linear or nonlinear, etc. The coefficients
of the operators are periodic functions in all or in some variables with periods
proportional to ε. Since ε is assumed to be small, it is has a family of operators
with rapidly oscillation coefficients. The standard classical formulation of this
theory is found in the work of Sanchez-Palencia [126, 127]. The two-scale process
introduced in the partial differential equations of the problem produces equations
in x, in y and in both variables. Normally, the equations in y are solvable if the
microscopic structure is periodic, and this leads to deduction of the macroscopic
equations for the global behavior in x. It is emphasized that the homogenized co-
efficients depend on the local structure of the medium. Fish et al. [29] presented
a generalization of the mathematical homogenization method based on double-
scale asymptotic expansion to account for damage effects in heterogeneous media.
A closed-form expression relating local fields to the overall strain and damage is
derived. Non-local damage theory is developed by introducing the concept of
non-local phase fields (stress, strain, free energy density, damage release rate,
etc.) in a manner analogous to that currently practiced in concrete. Numerical
results of the model were found to be in good agreement with experimental data.
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2.5 Homogenization using the RVE concept

The multiscale homogenization based on the use of a unit cell or RVE has emerged
as one of the most promising methods to compute the response of composite struc-
tures. The unit cell is defined as a microscopic subregion that is representative
of the entire microstructure in an average sense. The RVE is employed to obtain
the effective properties for the homogenized material because it is assumed that
it must contain a sufficient number of heterogeneities.

A thorough examination of the several representative volume element defi-
nitions found in the literature can be consulted in the review made by Gitman
[36]. Moreover, Ostoja-Starzewki [110] points out that the RVE is very clearly
defined in two situations only: i) unit cell in a periodic microstructure, as shown
Figure 2.2a and ii) volume containing a very large (mathematically infinite) set of
sub-scale elements, possessing statistically homogeneous and ergodic properties
as shown Figure 2.2b.

Figure 2.2: Representative volume element models: (a) unit cell approach; (b) statistical
and ergodic approach [2].

On the other hand, Suquet [132] gives the basic principles of homogenization
to obtain the constitutive equations for homogenized properties of a heteroge-
neous material. The process is resumed in the following three-step scheme and
in Figure 2.3.

• Definition of a representative volume element. The size of this should be
large enough to contain a sufficient number of micro heterogeneities of which
the constitutive behavior on these individual constituents is assumed to be
known.

• Microscopic boundary conditions are obtained based on the macroscopic
input variables (e.g. strain tensor), taking into account the geometry, con-
stitutive laws, etc.
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• Macroscopic output variables are obtained based on the solution of the
microscopic behavior of the RVE. Macroscopic properties of the equivalent
homogeneous medium are evaluated.

Figure 2.3: Representative homogenization scheme [2].

Terada et al. [135] conducted a study for multiscale homogenization of the
convergence of the overall material properties when the unit cell size is increased.
For general heterogeneous media that reveal irregular material distribution in a
micro scale, the study showed that the periodic boundary condition provides the
most reasonable estimates among the class of possible boundary conditions for
statistical homogeneous media. The work demonstrated that it is not strictly
required the periodicity of RVE geometry in evaluating the effective properties.
Moreover, at non-linear range the mechanical behaviors are more sensitive to the
size of RVE than those of linear case. The authors concluded that with more
accurate geometric models of the RVE, and with larger RVE regions analyzed,
the analysis provides a better understanding of the actual phenomena in the
microscopic region, as well as a better characterization of the overall mechanical
material performance.

2.5.1 Multiscale computational homogenization

Renard and Marmonier [122] were the first to use a finite element discretization to
model heterogeneous materials with a multiscale approach. The method consists
in solving two finite element problems, one for each scale. In the micro scale the
geometry of the RVE is meshed and homogenization rules are used to link this
with the macro scale problem.
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Guedes and Kikuchi [39] studied the mechanical behavior of linear elastic 2D
and 3D composite materials through the homogenization method. This study
was one of the first that used homogenization in three dimensions. The method
was implemented via a finite element technique to analyze a composite with a
periodic microstructure. The implementation enabled the calculation of homoge-
nized material mechanical properties, these characterized the overall behavior of
the composite, as well as the analysis of the local performance of the material, as
it enables the computation of local stress and strain distribution within the mi-
crostructure of the composite. An adaptive finite element method was introduced
in order to improve the accuracy of the numerical results. An error measure is
suggested for the homogenized material constants, based on the a priori error
estimations and the numerical implementation.

Non-linearity and FE2 homogenization

Swan [133] presented a computational stress and strain controlled homogenization
methods for inelastic periodic composites within the framework of displacement
finite element. The implementation of the stress controlled method employs a
penalty formulation to insure that the displacement solution satisfies the linear-
periodic decomposition. The methods were assessed on a complete set of ho-
mogenization computations for an elasto-plastic composite, the strain-controlled
method was easier to implement and was demonstrated that it has more compu-
tationally efficient than the others.

Later, Smit et al. [131] presented a homogenization method for large de-
formations and viscoelastic material behavior on microscopic and macroscopic
level. The homogenization method was implemented in a multi-level two dimen-
sional finite element program with meshes on macroscopic level (mesh of entire
structure) and microscopic level (meshes of RVEs). The local macroscopic stress
is obtained by applying the local macroscopic deformation on a unique RVE
through imposing appropriate boundary conditions and averaging the resulting
stress field. To each macroscopic integration point a unique discretized RVE
is assigned that provides the local macroscopic stress tensor and the tangential
stiffness matrix. A separate iterative finite element procedures on the RVE is
used in each iteration cycle of each macroscopic increment. The following Figure
2.4 shows the proposed scheme by the authors. The computational cost was the
main disadvantage of this implementation. The increase in computational time
with respect to a single-scale analysis on the same macroscopic mesh was of 160
times for the structure analyzed.

Michel et al. [93] presented a review of several problems which are specific
of composites with periodic microstructure composed of linear or non-linear con-
stituents. The study obtains the estimation of phenomenological macroscopic
constitutive models through the analysis of a microscopic representative volume
element proposing the concept of “macroscopic degrees of freedom”. A general
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Figure 2.4: Schematic representation of a multiscale finite element program [131].

framework permitting either a strain or stress control was proposed, and the
implementation of different types of boundary conditions was presented.

Haj-Ali and Muliana [41] proposed a three dimensional micromechanical mod-
eling approach for the non-linear viscoelastic behavior of pultruded composites.
A sub-laminate model is used to provide for a nonlinear equivalent continuum of
a layered medium. The system is idealized using a weighted-average response of
two simplified micromodels with fiber and matrix. The proposed micromechani-
cal framework was able to generate the effective anisotropic non-linear viscoelas-
tic response as a direct outcome of the micromechanical homogenization subcell.
The same authors [42] extended the method to an integrated micromechanical
and structural framework for the non-linear viscoelastic analysis of laminated
composite materials and structures. The micromechanical model is numerically
implemented within a shell-based non-linear finite element by imposing a plane
stress constraint on its 3D formulation. The micromechanical model provides the
effective non-linear constitutive behavior for each Gauss point. The formulation
was validated with several experimental creep tests available in the literature. Fi-
nally, the work presents examples for non-linear viscoelastic structures, like a lam-
inated panel and a composite ring. In a latter work, Haj-Ali et al. [40] extend the
above described method for the analysis of thick-section fiber reinforced plastic
(FRP) composite materials and structures. The proposed modeling framework is
applied to a pultruded composite system. Non-linear 3D micromechanical models
representing the different composite layers are used to generate through-thickness
composite’s effective responses. The nested non-linear micromechanical models
are implemented at each integration point in the finite element structural analy-
sis. The results obtained demonstrated good prediction capabilities for effective
properties and for multi-axial non-linear behavior of pultruded composites.

Matsui et al. [82] made a feasibility study and introduced a parallel algorithm
to achieve the computational efficiency. The focus was to the inhomogeneous
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deformation of the overall structure, which may imply the loss of periodicity
assumed in the initial state. The study presented an efficient algorithm for the
deconcentration of computational loads by using a PC-cluster system. A simple
numerical example for three dimensional heterogeneous structure was made. The
authors concluded that the two-scale analysis is still expensive, even if a PC-
cluster system for parallel computations is available at non-linear range.

Ladevèze et al. [65, 64] proposed a mixed, multilevel domain decomposition
method or more accurately, as a “structure decomposition” method. The multi-
scale computational strategy consists of describing the structure as an assembly
of simple components: substructures and interfaces. Each of these entities has
its own variables and equations. The distinction between the micro and macro
levels is made only at the interfaces, where forces and displacements are split into
macro contributions and micro complements. A substructure is subjected to the
action of its environment (the neighboring interfaces) defined by the force and
a velocity distribution on its boundary. An interface between two substructures
transfers both the velocity and the force distributions.

Oller et al. [104] extended the work presented by Zalamea [150], with a
two-scale numerical homogenization method that assumes the periodicity of the
internal structure of the material to address the problem of the steep gradient
in the macroscopic field. To prevent the steep gradient in the macroscopic field
variables, which is produced by local boundary effects, the authors proposed a
local refinement of the finite element mesh. The objective was to maintain the
periodic condition on the boundaries of the cells near to the perturbation.

De Souza Neto and Feijòo [22] discussed some equivalence relationships for
large strain multiscale solid constitutive models based on the volume averaging
of the microscopic stress and deformation gradient fields over a representative
volume element. The work established that the volume averaging of the first
Piola-Kirchhoff stress over the reference configuration of an RVE is mechanically
equivalent to the spatial averaging of Cauchy stress over the deformed RVE con-
figuration. Whenever such conditions are met, multiscale constitutive models
resulting from either the reference or spatial stress averaging are identical.

High-order multiscale homogenization

The multiscale methods mentioned in the above sections are commonly denom-
inated as first-order homogenization approaches because in the mathematical
formulation considers only the first gradient of the macroscopic displacement
field.

Kouznetsova and Geers proposed what is called second-order homogeniza-
tion [60, 62], which is an extension of the first-order theory. In this case, the
macroscopic deformation gradient tensor and its Lagrangian gradient is used to
solve the boundary value problem at the microstructural scale. The second-order
approach allows solve problems in the presence of localization phenomena with-
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out loss of precision in the solution because the Lagrangian tensor is taken into
account. The main drawbacks of this method are its computational cost and
complex implementation.

Geers, Coenen and Kouznetsova [32, 15] proposed a computational homog-
enization technique for thin-structured sheets based on the homogenization for
first and second-order continua. The three dimensional heterogeneous sheet is
represented by a homogenized shell continuum for which the constitutive re-
sponse is obtained from the nested analysis of a microstructural representative
volume element, incorporating the full thickness of the sheet and an in-plane
representative cell of the macroscopic structure. At an in-plane integration point
of the macroscopic shell, the generalized strains (the membrane deformation and
the curvature) are used to formulate the boundary conditions for the micro RVE
problem. All microstructural constituents are modeled at the RVE as an ordinary
3D continuum. Upon proper averaging of the RVE response, the macroscopic
generalized stress and the moment resultants are obtained.





Chapter 3

Multiscale homogenization
formulations

3.1 Introduction

In the context of solid mechanics and multiscale computational homogenization,
one of the most extended and popular method is called first-order computational
homogenization [93, 135, 94]. In this approach, the macro-scale strain tensor (or
deformation gradient tensor) is used as input to solve the micro-scale Boundary
Value Problem (BVP). The material stress-strain relationship is obtained from
the solution of problem at the micro-scale i.e. the RVE which contains the de-
tailed modeling of the internal heterogeneous structure of the composite. There-
fore, it does not require any composite constitutive assumption or compatibility
equation to address the composite response [114]. And, there are not restric-
tion on the constitutive model used in the component materials, even non-linear
materials and time-dependency models can be taken into account [131, 104, 112].

In the last decade, a second-order computational homogenization was pro-
posed as a natural extension of the first-order approach [60, 62, 55]. It was
developed to be applied in critical regions of large gradient deformation, where
the characteristic wave length of the macro-scale deformation field is of the or-
der of the size of the micro-scale. In this method the macroscopic gradient of
the deformation gradient is also incorporated as input in the micro-scale BVP.
The first-order equilibrium problem is conserved at the micro-scale level, while a
higher-order equilibrium problem appears at the structural scale. The finite ele-
ment framework necessary for the numerical solution of the macro-scale problem
leads to many complications [61], which has restricted its extensive applicability.

The second-order homogenization approach is able to capture the second-
order effects in the microscopic scale due to macroscopic high-order phenomena

79
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such as bending or strain localization, this is its major improvement over the
first-order approach. However, the first-order homogenization conserves first-
order equilibrium equations at both scales, which represents an advantage from
a computational point of view. With the purpose to take the best of these two
methods, the presented work proposes an enhanced-first-order homogenization
approach [113]. The developed procedure takes into account macroscopic second-
order effects by using the macro-scale second-order deformation measure in the
micro-scale BVP. Besides, the proposed formulation conserves the classical first-
order equilibrium problem in the structural scale.

3.2 General considerations

The no lineal transformation between the reference configuration of the body Ω
and the current configuration of the same body Ωc is defined as: φ : Ω → Ωc | x =
φ (X), where x ∈ Ωc and X ∈ Ω are respectively the current and the reference
positions of the material point. Therefore, the linear mapping for an infinitesimal
material line element is

dx = F · dX, (3.1)

where the deformation gradient tensor is defined by

F =
∂φ

∂X
= ∇x. (3.2)

Here, the gradient operator ∇ is taken respect to the reference configuration X.
Nevertheless, if now a finite material line within a finite volume is considered,

the expression given by (3.1) does not apply any more. However, a Taylor series
expansion (centered at Xo) can be used to obtain an expression for the finite
material line �x in the current configuration as

�x = F (Xo) · �X+
1

2
G (Xo) : �X � �X+O (�X3

o

)
, (3.3)

where the gradient of the deformation gradient tensor is defined as

G =
∂

∂X

(
∂φ

∂X

)
= ∇F. (3.4)

It can be shown that the third-order tensor G has the symmetry property
Gijk = Gikj .

3.3 First-order homogenization approach

Let us consider a solid domain (or body Ω) with a periodic or quasi-periodic
microstructure that can be represented by a Represent Volume Element. In this



3.3. First-order homogenization approach 81

Figure 3.1: Macrostructure and microstructure around of the point Xo.

body, it is possible to establish two scale levels, a macro scale (or structural
scale) for the macrostructure, and the other one micro scale (or sub scale) for the
microstructure. The microstructural scale is defined using a RVE which charac-
terizes the microstructure of the material. Let us also consider an infinitesimal
material point Xo in the reference configuration of the structure, and the RVE
around this considered point as Figure 3.1 is showing.

The called principle of separation of scales [33] establishes that: the mi-
crostructural length scale lμ is assumed to be much smaller than the macrostruc-
tural characteristic length l, which is the length over the macroscopic space. In
other words, the principle says that the existing periodical microscopic dimension
around of the macrostructural point (Xo) must be smaller than the characteristic
macrostructural dimension. If this principle is satisfied, the current configuration
or deformed position of a material point in the RVE xμ ∈ Ωc

μ can be approximated
as

xμ (Xo,Xμ) ∼= xo
μ + F (Xo) · �Xμ +w (Xμ) , (3.5)

where �Xμ = Xμ − Xo
μ, and Xμ ∈ Ωμ is the reference configuration or non-

deformed position of the material point in the RVE and Xo
μ and xo

μ are the origin
of the reference and the current coordinate system on the RVE, respectively (see
Figure 3.2). The extra term w is a microstructural displacement fluctuation field.

To simplify the symbolic manipulation of the formulation is convenient to set
the coordinate system’s origin as

Xo
μ = 0 and xo

μ = 0. (3.6)
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Figure 3.2: Reference and current configuration of the RVE.

Later, it will be proved that with these values, the rigid body motion of the RVE
is avoided. Considering these restrictions, the expression given by (3.5) can be
rewritten as

xμ (Xo,Xμ) ∼= F (Xo) ·Xμ +w (Xμ) . (3.7)

3.3.1 Displacement field on the RVE

The displacement field uμ at the RVE is defined by

uμ = xμ −Xμ, (3.8)

and taking into account (3.7) in the previous equation,

uμ (Xo,Xμ) ∼= [F (Xo)− I] ·Xμ +w (Xμ) , (3.9)

where I is the second-order unit tensor.

3.3.2 Kinematically admissible displacement fields and
boundary conditions in the RVE

The displacement fields in the RVE that are kinematically admissible are obtained
as a result of the coupling between the macrostructure and the microstructure.
This linkage is based on the average theorems and they have been initially pro-
posed for infinitesimal deformations by Hill [47]. Later, Hill [49] and Nemat-
Nasser [100] extended these to finite deformations.

The first of the averaging relations postulated that the volume average of the
microstructural deformation gradient tensor Fμ over the RVE must be equal to
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the macroscopic deformation gradient tensor F. In the considered point Xo this
is

F (Xo) =
1

Vμ

∫
Ωμ

Fμ (Xo,Xμ) dV, (3.10)

where Vμ is the volume of the RVE in the reference configuration.
Considering (3.7) it is possible to obtain the deformation gradient tensor in

the microstructural scale as

Fμ (Xo,Xμ) = ∇xμ (Xo,Xμ) ∼= F (Xo) +∇w (Xμ) , (3.11)

and using this relation, the right hand size of (3.10) is

1

Vμ

∫
Ωμ

Fμ (Xo,Xμ) dV =
1

Vμ

∫
Ωμ

∇xμ (Xo,Xμ) dV,

= F (Xo) +
1

Vμ

∫
Ωμ

∇w (Xμ) dV.

(3.12)

Equation (3.12) can be rewritten as

F (Xo) =
1

Vμ

∫
Ωμ

Fμ (Xo,Xμ) dV − 1

Vμ

∫
Ωμ

∇w (Xμ) dV, (3.13)

or

F (Xo) =
1

Vμ

∫
Ωμ

∇xμ (Xo,Xμ) dV − 1

Vμ

∫
Ωμ

∇w (Xμ) dV. (3.14)

Finally, applying the divergence theorem, in the right hand size of (3.14), this
can be also rewritten in term of surface integral as

F (Xo) =
1

Vμ

∫
∂Ωμ

xμ (Xo,Xμ) � N dA− 1

Vμ

∫
∂Ωμ

w (Xμ) � N dA, (3.15)

where ∂Ωμ is the RVE boundary domain in the reference configuration, and N
denotes the outward unit normal on ∂Ωμ.

Clearly, to satisfy the first average theorem, the integrals that depend of the
displacement fluctuation in both (3.14) and (3.15) must vanish. Therefore,∫

Ωμ

∇w (Xμ) dV = 0 (3.16)

and ∫
∂Ωμ

w (Xμ) � N dA = 0. (3.17)

Noting Figure 3.2 and considering that the reference geometry configuration
of the RVE is originally a cube, as the figure is showing, the integral restriction
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Figure 3.3: Normal vectors to the surfaces in the reference configuration of a Cubic
RVE.

on the RVE boundary can be splitted in the different surfaces of the ∂Ωμ domain.
Besides, taking the reference coordinate system that is shown in Figure 3.3, the
outward unit normal of the cubic faces satisfy: N−

X = −N+
X , N−

Y = −N+
Y and

N−
Z = −N+

Z . Here, the subscript makes reference to the axis which is perpen-
dicular to the considered face and the superscript defines the position of the face
on the axis. Therefore, considering this geometry, the expression given by (3.17)
may be rewritten as(∫

N+
X

w dAyz −
∫
N−

X

w dAyz

)
� N+

X

+

(∫
N+

Y

w dAxz −
∫
N−

Y

w dAxz

)
� N+

Y

+

(∫
N+

Z

w dAxy −
∫
N−

Z

w dAxy

)
� N+

Z = 0.

(3.18)

Equation (3.18) shows that the boundary restriction on the displacement fluctu-
ation field can be splitted on the different surface pairs (X, Y and Z) of the RVE
boundary.

Previous equations from (3.16) to (3.18) can be used to obtain the different
displacement fluctuation fields kinematically admissible in the microstructural
level. Several models have been defined that assume different fluctuation fields,
they are mentioned in the following.

(i) Taylor model (or zero fluctuations): The expression given by (3.16) is
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verified when

w, sufficiently regular | w (Xμ) = 0, ∀ Xμ ∈ Ωμ. (3.19)

This model gives homogeneous deformation in the microstructural scale level
(see (3.24)).

(ii) Linear boundary displacements (or zero boundary fluctuations): The ex-
pression given by (3.17) is verified when

w, sufficiently regular | w (Xμ) = 0, ∀ Xμ ∈ ∂Ωμ. (3.20)

The deformation of the RVE boundary domain for this class are fully pre-
scribed.

(iii) Periodic boundary fluctuations:
The key kinematical constraint for this class is that the displacement fluctu-

ation must be periodic on the different faces of the RVE. That is, for each pair{
X+

μ ,X
−
μ

}
of boundary points the expression given by (3.18) is verified when

w, sufficiently regular | w (X+
μ

)
= w

(
X−

μ

)
, ∀ pairs

{
X+

μ ,X
−
μ

} ∈ ∂Ωμ. (3.21)

(iv) Minimal constraint (or uniform boundary traction):
In this constraint the nontrivial solution of (3.17) is obtained.

3.3.3 Microscopic and macroscopic strain tensor

Considering a infinitesimal deformation framework the strain tensor in the mi-
crostructural level can be obtained as

Eμ (Xo,Xμ) = 1
2

(
Fμ (Xo,Xμ) + FT

μ (Xo,Xμ)
)− I

= 1
2

(
F (Xo) + FT (Xo)

)− I

+ 1
2

(
∇w (Xμ) + (∇w (Xμ))

T
)
,

(3.22)

and, if (3.10) is satisfied it can be proved that taking the volume average of
the microscopic strain tensor over the RVE domain the following relationship is
obtained,

1

Vμ

∫
Ωμ

Eμ (Xo,Xμ) dV =
1

2

(
F (Xo) + FT (Xo)

)− I = E (Xo) . (3.23)

Here, E (Xo) is the macroscopic strain tensor. Therefore, it is possible to rewrite
(3.22) as

Eμ (Xo,Xμ) = E (Xo) +Ew
μ (Xμ) , (3.24)

where Ew
μ = 1

2

(
∇w + (∇w)

T
)
= ∇sw is the contribution of the displacement

fluctuation field to the microscopic strain tensor and∇s is the symmetric gradient
operator. Because (3.10) is verified the volume average of Ew

μ over the RVE
domain is equal zero.
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3.3.4 Hill-Mandel principle and RVE equilibrium

The Hill-Mandel energy condition [48, 76], also referred to as the macro-
homogeneity condition, states that the virtual work of the point Xo considered
must be equal to the volume average of the virtual work in the RVE to any
kinematically admissible displacement field, this principle can be formulated as

S : δE (Xo) =
1

Vμ

∫
Ωμ

Sμ : δEμ dV, (3.25)

where S and Sμ are the macroscopic and microscopic stress tensor, respectively.
Using (3.24), the principle is rewritten as

S : δE (Xo) =
1

Vμ

∫
Ωμ

Sμ dV : δE (Xo) +
1

Vμ

∫
Ωμ

Sμ : δEw
μ (Xμ) dV. (3.26)

Taking the macroscopic stress tensor S as the volume average of the microstruc-
tural stress tensor Sμ in the RVE domain, which is similar to the first average
relation (see (3.10))

S (Xo,Xμ) ≡ 1

Vμ

∫
Ωμ

Sμ (Xo,Xμ) dV, (3.27)

equation (3.26) will be satisfied if∫
Ωμ

Sμ : δEw
μ (Xμ) dV =

∫
Ωμ

Sμ : ∇sδw dV = 0, (3.28)

Therefore, the RVE’s variational equilibrium equation is∫
Ωμ

Sμ : ∇sδw dV = 0, (3.29)

which must be satisfied for any kinematically admissible displacement fluctuation
field w (see Section 3.3.2).

It is possible to observe that because of the symmetry of the stress tensor Sμ

it can be proved that Sμ : (∇a) = Sμ : (∇a)
T
, where a is a first order tensor,

the (3.28) also can be rewritten as∫
Ωμ

Sμ : δEw
μ (Xμ) dV =

∫
Ωμ

Sμ : ∇δw (Xμ) dV = 0. (3.30)

3.3.5 Microscopic and macroscopic stress tensor

The homogenized stress tensor in the macroscopic level is given by (3.27). The
microscopic stress tensor can be obtained as

Sμ (Xo,Xμ) = Cμ (Xμ) : Eμ (Xo,Xμ) ,

= Cμ (Xμ) : E (Xo) +Cμ (Xμ) : E
w
μ (Xμ) ,

(3.31)



3.4. Enhanced-first-order homogenization approach 87

where Cμ is the material constitutive tensor in the RVE. Then, the macro stress
tensor is

S (Xo,Xμ) = C̄ : E (Xo) +
1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) dV, (3.32)

where,

C̄ ≡ 1

Vμ

∫
Ωμ

Cμ dV (3.33)

is a constitutive tensor which can be considered a microstructural material prop-
erty.

Equation (3.32) shows that the stress tensor S depends of the macroscopic
strain tensor E and also, of the microscopic strain tensor Ew

μ , which is obtained
with the displacement fluctuation field of the RVE. Moreover, the microscopic
position vector Xμ does not appear explicitly in the microstructural strain tensor
expression (see (3.24)). Consequently, this variable does not appear in the mi-
crostructural stress tensor either. Therefore, the periodic microstructure around
the macro pointXo does not have to be modeled with its exact dimensions. A non
dimensional RVE with the internal distribution and volume fractions of the sim-
ple materials is enough to obtain the microscopic strain and stress fields. This
is one of the principal advantages of this first-order homogenization approach
compared to other multiscale high-order approaches.

On the other hand, it can be observed that the kinematically admissible
displacement fluctuation option used to satisfy the boundary condition in the
RVE problem affects the final macroscopic stress tensor obtained, as occurs in
the Taylor model case. This means that if there is a null displacement fluctuation
field in the total RVE domain, the stress tensor S obtained only depend of the
strain tensor E and the constitutive tensor C̄. In other words, the Taylor model
condition returns the classical mixing theory results.

3.4 Enhanced-first-order homogenization ap-
proach

A new enhanced first order homogenization is proposed in the following, in order
to enrich the displacement field of the micro model with second order information
available in the macro model. The deformed position of a material point in the
RVE given by (3.5), used in the first-order approach, can be improved if the
second-order term of (3.3) is included. Then, it is possible to propose a new
approximation of the current configuration of the RVE as

xμ (Xo,Xμ) ∼= xc
μ +F (Xo) · �Xμ +

1

2
G (Xo) : �Xμ ��Xμ +w (Xμ) , (3.34)
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and setting the coordinate system’s origin as defined in (3.6), the proposed de-
formed position of the RVE is

xμ (Xo,Xμ) ∼= F (Xo) ·Xμ +
1

2
G (Xo) : Xμ � Xμ +w (Xμ) . (3.35)

Therefore, the proposed displacement field uμ on the RVE (see (3.8)) can be
obtained now as

uμ (Xo,Xμ) ∼= [F (Xo)− I] ·Xμ +
1

2
G (Xo) : Xμ � Xμ +w (Xμ) . (3.36)

Noting that an extra term appears in the proposed microscopic displacement
field by including the gradient of the deformation gradient tensor G in (3.34).
This extra second-order term is a new linking term between the macroscopic
and microscopic scales. The proposed displacement field in the RVE is enhanced
because it reaches more information from the macro scale.

3.4.1 Kinematically admissible displacement fields and
boundary conditions in the RVE

The first of the average postulates (see (3.10)) is used again to obtain the admis-
sible displacement fields. The microscopic deformation gradient considering the
expression given by (3.35) is

Fμ (Xo,Xμ) = ∇xμ (Xo,Xμ) ∼= F (Xo) +G (Xo) ·Xμ +∇w (Xμ) . (3.37)

And, the volume average of this deformation gradient Fμ over the RVE is

1

Vμ

∫
Ωμ

Fμ (Xo,Xμ) dV =
1

Vμ

∫
Ωμ

∇xμ (Xo,Xμ) dV,

= F (Xo) +G (Xo) · 1

Vμ

∫
Ωμ

Xμ dV

+
1

Vμ

∫
Ωμ

∇w (Xμ) dV.

(3.38)

It can be proved that if the RVE geometry in the reference configuration is
originally a cube, as shown in Figure 3.2, and the position of the origin of the
coordinate system is defined at the center of the RVE, then the first moment of
volume of the RVE is ∫

Ωμ

Xμ dV = 0. (3.39)

Therefore, (3.38) can be rewritten as

F (Xo) =
1

Vμ

∫
Ωμ

Fμ (Xo,Xμ) dV − 1

Vμ

∫
Ωμ

∇w (Xμ) dV, (3.40)
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or

F (Xo) =
1

Vμ

∫
Ωμ

∇xμ (Xo,Xμ) dV − 1

Vμ

∫
Ωμ

∇w (Xμ) dV. (3.41)

Equation (3.41) can be rewritten in terms of surface integrals applying the diver-
gence theorem as

F (Xo) =
1

Vμ

∫
∂Ωμ

xμ (Xo,Xμ) � N dA− 1

Vμ

∫
∂Ωμ

w (Xμ) � N dA. (3.42)

Equation (3.42) is exactly the same than the one obtained for the first-order
approach (see (3.15)) then, the restrictions on the displacement fluctuation field
are the same as those shown in (3.16)-(3.18), and the different displacement
fluctuation fields kinematically admissible presented in Section 3.3.2 are still valid
for this enhanced-first-order approach.

Extra kinematic restrictions and boundary conditions because of G

The next step consists in obtaining the kinematic restrictions result of including
the new term G in the microscopic displacement field uμ. In other words, some
extension of the first average theorem needs to be proposed in term of the gradient
of the deformation gradient. In the following, a natural extension for the first
average theorem is presented. The main drawback of this proposal is that arrives
to restrictions on the derivative displacement fluctuation field and therefore, a
high-order problem on the RVE must be considered. To avoid this situation, and
continue using the classical first-order boundary value problem on the RVE, the
alternative extension proposed by Kouznetsova [60] is also presented.

Natural extension of the first average theorem The first natural possi-
bility for this extension could be

G (Xo) =
1

Vμ

∫
Ωμ

Gμ (Xo,Xμ) dV. (3.43)

Note that (3.43) is similar to (3.10) but in this case, the volume average of the
microstructural gradient of the deformation gradient tensor Gμ over the RVE
must be equal to the macroscopic gradient of the deformation gradient G in the
considered point Xo.

Considering (3.37) and (3.4) the gradient of the deformation gradient in the
microstructural scale is

Gμ (Xo,Xμ) = ∇ (∇xμ (Xo,Xμ)) ∼= G (Xo) +∇ (∇w (Xμ)) . (3.44)

Using (3.44) and taking the volume average over the RVE it is possible to obtain

G (Xo) =
1

Vμ

∫
Ωμ

Gμ (Xo,Xμ) dV − 1

Vμ

∫
Ωμ

∇ (∇w (Xμ)) dV, (3.45)
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or

G (Xo) =
1

Vμ

∫
Ωμ

∇ (∇xμ (Xo,Xμ)) dV − 1

Vμ

∫
Ωμ

∇ (∇w (Xμ)) dV. (3.46)

And, applying the divergence theorem in the last expression

G (Xo) =
1

Vμ

∫
∂Ωμ

∇xμ (Xo,Xμ) � N dA− 1

Vμ

∫
∂Ωμ

∇w (Xμ) � N dA. (3.47)

Similarly as in the first-order approach, to satisfy the proposed extension of the
first average theorem, the integrals that depend of the displacement fluctuation
in (3.45) and (3.47) must vanish, then∫

Ωμ

∇ (∇w (Xμ)) dV = 0, (3.48)

and ∫
∂Ωμ

∇w (Xμ) � N dA = 0. (3.49)

The last expression represents a new extra integral restriction on the derivative
displacement fluctuation field. Taking the same consideration than before re-
garding the geometry of the RVE (see Figure 3.3), the boundary integration in
(3.49) can be splitted in(∫

N+
X

∇w dAyz −
∫
N−

X

∇w dAyz

)
� N+

X

+

(∫
N+

Y

∇w dAxz −
∫
N−

Y

∇w dAxz

)
� N+

Y

+

(∫
N+

Z

∇w dAxy −
∫
N−

Z

∇w dAxy

)
� N+

Z = 0.

(3.50)

Some components of the integrals can also be rewritten in terms of line-
boundary integrals applying the divergence theorem. For example, if the first
left integral in the first term in (3.50) is taken, the line-boundary of this surface
integral can be separated in four different lines, two perpendiculars to Y axis, and
the other two perpendiculars to Z axis, as it is shown in Figure 3.4. Because of
the RVE geometry considered, these lines boundary have the property of N−

X|Y =

−N+
X|Y andN−

X|Z = −N+
X|Z . Then, with this information the considered integral
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Figure 3.4: Normal vectors to the lines in the YZ surface of the Cubic RVE.

can be rewritten as∫
N+

X

∇w dAyz=

∫
N+

X

∇Xw dAyz

+

(∫
N+

X|Y

w dLz −
∫
N−

X|Y

w dLz

)
� N+

X|Y

+

(∫
N+

X|Z

w dLy −
∫
N−

X|Z

w dLy

)
� N+

X|Z ,

(3.51)

where ∇X represents the derivative with respect to the X axis, this term cannot
be reduced to a line-integral using the divergence theorem. It can be seen that
when the Periodic boundary fluctuations condition is the kinematically admissible
option used for the displacement fluctuation field on the RVE, the two right
terms on (3.51) are satisfied directly. The points on the opposing lines are a
pair boundary points that have the same displacement fluctuation because of the
kinematic condition imposed. Applying this same procedure to the rest of the
terms of expression (3.50), this equation can be rewritten as(∫

N+
X

∇Xw dAyz −
∫
N−

X

∇Xw dAyz

)
� N+

X

+

(∫
N+

Y

∇Y w dAxz −
∫
N−

Y

∇Y w dAxz

)
� N+

Y

+

(∫
N+

Z

∇Zw dAxy −
∫
N−

Z

∇Zw dAxy

)
� N+

Z = 0.

(3.52)
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The previous expression represents an extra restriction on the displacement fluc-
tuation field that makes it kinematically admissible in the RVE. A possible set
of boundary conditions that satisfies this restriction is∫

N+
X

∇Xw dAyz =

∫
N−

X

∇Xw dAyz,∫
N+

Y

∇Y w dAxz =

∫
N−

Y

∇Y w dAxz,∫
N+

Z

∇Zw dAxy =

∫
N−

Z

∇Zw dAxy.

(3.53)

Equation (3.52) is analogous to (3.18) but it is written in terms of derived dis-
placement fluctuation field, in this case, on the normal direction of the pair
surfaces (see Figure 3.3). Therefore, to satisfy any kinematic restriction, as for
example (3.53), obtained from (3.52) a high-order problem on the microscopic
scale must be considered because the restriction of the displacement fluctuation
field is written on its derivate.

Alternative extension of the first average theorem An alternative to the
proposed extension of the averaging theorem given by (3.43) should be found to
keep a classical boundary value problem on the microstructural RVE problem.
With this aim Kouznetsova [60] proposed another alternative extension of the
first average theorem. The proposed condition imposes that the second moment
of area of the deformed RVE, given in terms of the microscopic displacements,
must be equal to the second moment of area of the RVE expressed in terms of
macroscopic deformation variables [55]. Considering the above, the expression
given by (3.37) is multiplied by Xμ and integrated over the RVE volume to obtain∫

Ωμ

∇0xμ (Xo,Xμ) � Xμ dV = F (Xo) �

∫
Ωμ

Xμ dV

+ G (Xo) ·
∫
Ωμ

Xμ � Xμ dV

+

∫
Ωμ

∇w (Xμ) � Xμ dV .

(3.54)

Knowing that the first moment of volume of the undeformed RVE is zero (see
(3.39)), and defining the second moment of volume of the undeformed RVE as
J =

∫
Ωμ

Xμ � Xμ dV . Equation (3.54) can be rewritten as

G (Xo) · J =

∫
Ωμ

∇xμ (Xo,Xμ) � Xμ dV −
∫
Ωμ

∇w (Xμ) � Xμ dV, (3.55)
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replacing the following relationships

∇xμ (Xo,Xμ) � Xμ = ∇ (xμ (Xo,Xμ) � Xμ)− xμ (Xo,Xμ) � I, (3.56)

and
∇w (Xμ) � Xμ = ∇ (w (Xμ) � Xμ)−w (Xμ) � I, (3.57)

it is obtained

G (Xo) · J =

∫
Ωμ

∇ (xμ (Xo,Xμ) � Xμ) dV

−
∫
Ωμ

∇ (w (Xμ) � Xμ) dV

−
∫
Ωμ

xμ (Xo,Xμ) dV � I+

∫
Ωμ

w (Xμ) dV � I.

(3.58)

Using (3.35) it can be shown that∫
Ωμ

xμ (Xo,Xμ) dV � I =
1

2
G (Xo) : J � I+

∫
Ωμ

w (Xμ) dV � I, (3.59)

which is used to obtain the final version of the sought expression

G (Xo) · J+ 1
2G (Xo) : J � I =

∫
Ωμ

∇ (xμ (Xo,Xμ) � Xμ) dV

−
∫
Ωμ

∇ (w (Xμ) � Xμ) dV ,

(3.60)

Applying the divergence theorem on the right hand size of the equation, it can
be rewritten in term of surface integral as

G (Xo) · J+ 1
2G (Xo) : J � I =

∫
∂Ωμ

xμ (Xo,Xμ) � Xμ � N dA

−
∫
∂Ωμ

w (Xμ) � Xμ � N dA.

(3.61)

It is possible to make a parallelism between (3.15) and (3.61). The additional
condition regarding the second moment of area of the deformed RVE given by
(3.54) requires that the influence of the displacement fluctuation field should
vanish, then ∫

∂Ωμ

w (Xμ) � Xμ � N dA = 0 (3.62)

Equation (3.62) is a boundary restriction for the displacement fluctuation field,
then it is not necessary a high-order boundary value problem, at microscopic
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scale, to satisfy the new boundary conditions deduced from it. Considering again
the cubic geometry in the reference configuration defined previously for the RVE
(see Figure 3.3), the restriction given by (3.62) can be splitted in the different
surfaces of the domain as(∫

N+
X

w � Xμ dAyz −
∫
N−

X

w � Xμ dAyz

)
� N+

X

+

(∫
N+

Y

w � Xμ dAxz −
∫
N−

Y

w � Xμ dAxz

)
� N+

Y

+

(∫
N+

Z

w � Xμ dAxy −
∫
N−

Z

w � Xμ dAxy

)
� N+

Z = 0.

(3.63)

The last expression is used in Section 3.5.2 to obtain the boundary value
problem on the RVE for the enhanced-first-order approach. In the case of Periodic
boundary fluctuations condition, it can be proved that the expression (3.63) is
automatically satisfied if∫

N−
X

w dAyz = 0 ,

∫
N−

Y

w dAxz = 0 and

∫
N−

Z

w dAxy = 0. (3.64)

Therefore, the extra boundary condition required in this case is that the integral
of the periodic displacement fluctuations on the RVE surfaces must be zero.

3.4.2 Microscopic and macroscopic strain tensor

In this enhanced-first-order homogenization approach, the strain tensor of the
microstructure for an infinitesimal deformation approach can be written as

Eμ (Xo,Xμ) = 1
2

(
Fμ (Xo,Xμ) + FT

μ (Xo,Xμ)
)− I

= 1
2

(
F (Xo) + FT (Xo)

)− I

+ 1
2

(
G (Xo) ·Xμ + (G (Xo) ·Xμ)

T
)

+ 1
2

(
∇w (Xμ) + (∇w (Xμ))

T
)
.

(3.65)

Knowing that (3.10) is satisfied and using equation (3.39), the resulting expres-
sion of the volume average of the microscopic strain tensor over the RVE domain
is the same than (3.23), which was obtained previously in Section 3.3.3. There-
fore, the microscopic strain tensor can be rewritten as

Eμ (Xo,Xμ) = E (Xo) +EG
μ (Xo,Xμ) +Ew

μ (Xμ) , (3.66)
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Figure 3.5: Macro volume ΩM around point Xo and its micro structure.

where EG
μ = 1

2

(
G ·Xμ + (G ·Xμ)

T
)

is a new term in the microscopic strain

tensor, resulting from including the second-order term G in the formulation.
Using the expression given by (3.39), it can be proved that the volume average
of this new term EG

μ over the RVE domain is equal to zero.

3.4.3 Hill-Mandel principle and RVE equilibrium

When the second-order of the Taylor series expansion given by (3.3) is used
to improve the approximation of the deformed position of a material point in
the RVE (see (3.34)), it is assumed that exists a macroscopic finite volume ΩM

around the considered point Xo, as it is shown in Figure 3.5. This finite volume
must be smaller than the characteristic macroscopic dimension. Therefore, the
Hill-Mandel principle should be applied now not only taking into account the
virtual work of the point Xo, but considering the volume average of the virtual
work in the macro volume ΩM . This can be stated as

1

VM

∫
ΩM

S : δE dV =
1

Vμ

∫
Ωμ

Sμ : δEμ dV (3.67)

The macroscopic deformed position of a material point in ΩM around the
point Xo can be approximated with a second-order approach using (3.3) as

�x ∼= F (Xo) · �X+
1

2
G (Xo) : �X � �X, (3.68)

and the approximated macroscopic deformation gradient is

F ∼= F (Xo) +G (Xo) · �X. (3.69)
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The macroscopic strain tensor in the ΩM domain for infinitesimal deformation
approach can be then approximated as

E ∼= 1

2

(
F (Xo) + FT (Xo)

)− I+
1

2

(
G (Xo) · �X+ (G (Xo) · �X)

T
)

(3.70)

or
E ∼= E (Xo) +EG (Xo,X) , (3.71)

where EG = 1
2

(
G · �X+ (G · �X)

T
)
.

Taking into account (3.66) and (3.71), the expression given by (3.67) can be
rewritten as

1

VM

∫
ΩM

S dV : δE+
1

VM

∫
ΩM

S : δEG dV =
1

Vμ

∫
Ωμ

Sμ dV : δE

+
1

Vμ

∫
Ωμ

Sμ : δEG
μ dV +

1

Vμ

∫
Ωμ

Sμ : δEw
μ dV

(3.72)

and because of the symmetry of the stress tensor, it can be proved that S :
(∇a) = S : (∇a)

T
and S : (G.a) = S : (G.a)

T
, where a is a first order tensor.

Then, (3.72) is finally

1

VM

∫
ΩM

S dV : δE+
1

VM

∫
ΩM

S � �X dV
... δG =

1

Vμ

∫
Ωμ

Sμ dV : δE

+
1

Vμ

∫
Ωμ

Sμ � Xμ dV
... δG+

1

Vμ

∫
Ωμ

Sμ : ∇sδw dV .

(3.73)
Following the same procedure used in Section 3.3.4 to satisfy the Hill-Mandel
principle, it is necessary to define the following tensors:

Ŝ ≡ 1

VM

∫
ΩM

S dV ≡ 1

Vμ

∫
Ωμ

Sμ dV, (3.74)

where Ŝ is the homogenized stress tenor, which is obtained as the volume average
of the stress tensor around the point Xo, and

Q̂ ≡ 1

VM

∫
ΩM

S � �X dV ≡ 1

Vμ

∫
Ωμ

Sμ � Xμ dV. (3.75)

where Q̂ is the homogenized second-order stress tensor in the point Xo, which is
a the three-order tensor. Finally, the RVE’s variational equilibrium equation is∫

Ωμ

Sμ : ∇sδw dV = 0, (3.76)

that must be satisfied for any kinematically admissible displacement fluctuation
field w shown in Section 3.4.1.
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3.4.4 Homogenized stress and second-order stress tensor

The microscopic stress tensor can be obtained as

Sμ = Cμ : E (Xo) +Cμ : EG
μ (Xo,Xμ) +Cμ : Ew

μ (Xμ) , (3.77)

then, the homogenized stress tensor at the macroscopic scale given by (3.74) is

Ŝ =
1

Vμ

∫
Ωμ

Cμ dV : E (Xo) +
1

Vμ

∫
Ωμ

Cμ : EG
μ (Xo,Xμ) dV

+
1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) dV

(3.78)

or

Ŝ = C̄ : E (Xo) + B̄
... G (Xo) +

1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) dV, (3.79)

where

B̄ ≡ 1

Vμ

∫
Ωμ

Cμ � Xμ dV. (3.80)

The tensor B̄ can be also considered a microscopic material property. This con-
stitutive tensor relates gradient of the deformation gradient tensor G, to the
homogenized stress tensor Ŝ, and generates a coupling effect. This tensor B̄ is
analogous to the called bending-extension coupling matrix used in plates or shells
theories [5].

Equation (3.79) shows that the homogenized stress tensor Ŝ in the point Xo

depends of the macroscopic tensor E and G, of the microscopic displacement
fluctuation field w and also, of the vector position Xμ of the RVE. Considering
now a particular case where the simple materials within the RVE are symmetri-
cally located respect to the coordinate system’s origin, which has been placed on
the RVE geometric center (see Section 3.4.1). It can be proved that taking this
symmetric distribution of the simple materials the value obtains for the constitu-
tive tensor B̄ is zero. Therefore, the homogenized stress tensor for this case can
be rewritten as

Ŝ = C̄ : E (Xo) +
1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) dV. (3.81)

The macroscopic second-order term G and of the vector position Xμ do not affect
the homogenized stress tensor. The expression given by (3.81) is the same than
the one obtained for first-order homogenization given by (3.32).
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On the other hand, the homogenized second-order stress tensor can be ob-
tained using (3.75) and the microscopic stress tensor given by (3.77) as

Q̂ =
1

Vμ

∫
Ωμ

Cμ � Xμ dV : E (Xo)

+
1

Vμ

∫
Ωμ

(Cμ � Xμ) : E
G
μ (Xo,Xμ) dV

+
1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) � Xμ dV ,

(3.82)

or

Q̂ = B̄ : E (Xo) + D̄
... G (Xo) +

1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) � Xμ dV, (3.83)

where

D̄ =
1

Vμ

∫
Ωμ

(Cμ � Xμ) � Xμ dV. (3.84)

The tensor D̄ is also considered a microscopic material property, which is ob-
tained with the RVE model, as it is done with tensors C̄ and B̄. Taking into
account the symmetric distribution materials inside the RVE, the expression for
the homogenized second-order stress can be written as

Q̂ = D̄
... G (Xo) +

1

Vμ

∫
Ωμ

Cμ : Ew
μ (Xμ) � Xμ dV. (3.85)

Equation (3.85) shows that the second-order stress tensor Q̂ depends on the
macroscopic tensor G and on the microscopic displacement fluctuation field w.
But it also depends on the vector position Xμ of the material point in the RVE.
In addition, the tensor D̄ does not vanish because of the symmetric materials
distribution.

3.4.5 Final remarks on the enhanced-first-order homoge-
nization approach

In the enhanced-first-order approach is lost the benefit shown by the first-order
approach regarding the possibility of using a non dimensional RVE. The micro-
scopic strain (3.66) and stress (3.77) tensor now have an explicit dependence with
the material vector position Xμ in the RVE. This dependence has been observed
also in the homogenized second-order stress tensor (3.85). While the homogenized
stress tensor (3.81) is not dependent of Xμ when a symmetric internal distribu-
tion of the materials is taken. Besides, to satisfy (3.72), which is obtained from
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the Hill-Mandel condition extended to the enhanced-first-order approach, it is
necessary to impose that Ωμ ≡ ΩM . Thus the RVE’s dimension used to char-
acterize the microstructure should be equal than the size of the finite volume
around the considered point Xo. Then, the enhanced-first-order homogenization
procedure can be understand as a domain decomposition where the sub-domains
have a periodic microstructure.

However, the enhanced-first-order homogenization is better than the first-
order homogenization from a microscopic point of view. Although the homoge-
nized stress tensor for both theories is the same, the microscopic displacement
field, the microscopic strain and, the stress tensors are not equal. The enhanced-
first-order approach gets a better approximation of the microscopic behavior be-
cause it accounts for the information provided by the macroscopic second-order
term G. Therefore, in a non-linear analysis, the initiation and the evolution of
the non-linear performance of the microstructure will be better characterized if
the enhanced-first-order formulation is used.

On the other hand, a detailed analysis of the formulation shows that the
first-order homogenization theory is contained in the enhanced-first-order one.
Therefore, when the principle of separation of scales is verified, the results ob-
tained using the enhanced formulation will be the same than the ones obtained
using the first-order homogenization. In other words, if the periodic microstruc-
tural length scale lμ is much smaller than the structure characteristic length l (see
Figure 3.1), the contribution of the extra term considered in (3.35) to improve
the first-order approach is negligible.

The variational equilibrium equation obtained in the microstructure for both
homogenization formulations is the same (3.29) and (3.76). However, in the
enhanced-first-order homogenization formulation extra boundary conditions must
be satisfied. High-order boundary conditions (3.53) are obtained if the natural
extension of the first average theorem is proposed (3.43). In consequence, this
kind of extra boundary conditions require a high-order microscopic equilibrium
equation. To avoid this situation an alternative extension of the average the-
orem given by (3.60) is used to conserve a first-order microscopic variational
problem. New extra boundary conditions using (3.60) for the case of Periodic
boundary fluctuations are obtained and shown in the expression (3.64). Finally,
for the enhanced-first-order approach, a macroscopic second-order stress tensor
is obtained from the RVE solution. This high-order stress tensor should be con-
sidered in the macroscopic scale theory.

3.5 Macroscopic and microscopic formulation

In the following, the boundary value problem (BVP) in the macroscopic and in
the microscopic scales are presented.
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3.5.1 Macroscopic BVP

A BVP is considered for the macrostructural scale of a domain Ω with a pe-
riodic internal microstructure. The kinematics of the problem is related to a
displacement field on the macroscopic scale, which provides the displacement of
each material point of the domain Ω. From a continuum mechanics approach the
macroscopic BVP is

∂Sij
∂Xj

+ fi = 0 in Ω,

ui = ūi in ∂Ωu,

SijNj = t̄i in ∂Ωt,

(3.86)

where Sij is the macroscopic stress tensor, and fi is the internal body force as-
sociated to the mass forces of the material. The boundary of Ω (∂Ω) is defined
disjointedly by the surfaces ∂Ωu where the macroscopic displacement is known ūi
(Dirichlet’s condition) and ∂Ωt where the macroscopic surface load t̄i are known
(Neumann’s condition) with ∂Ωu ∪ ∂Ωt = ∂Ω and ∂Ωu ∩ ∂Ωt = ∅. Finally, Nj

are the components of an outward vector normal to the surface ∂Ωt.

The resolution of the BVP given by (3.86) consists on the determination of
the macroscopic displacement field corresponding to the solution u ∈ VΩ, where
VΩ is the set of continuous and sufficiently regular functions with zero-valued in
∂Ωu. The partial differential equation in the macroscopic BVP above presented
can be rewritten in a weak form (or variational form) as

∫
Ω

∂Sij
∂Xj

vi dV +

∫
Ω

fivi dV = 0 ∀ v ∈ VΩ, (3.87)

where vi are the called test functions. Equation (3.87) can be rewritten, applying
the divergence theorem, as∫

Ω

Sij
∂vi
∂Xj

dV =

∫
Ω

fivi dV +

∫
∂Ω

t̄ivi dA ∀ v ∈ VΩ. (3.88)

Considering infinitesimal deformations, the macroscopic strain and stress ten-
sor are

Eij =
1

2

(
Fij + FT

ij

)− Iij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
in Ω,

Sij =
1

Vμ

∫
Ωμ

Sμ dV in Ω.

(3.89)
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3.5.2 Microscopic BVP

The obtained variational equilibrium statement (or the virtual work equation) in
the microstructure (see (3.29) and (3.76)) can be written as∫

Ωμ

Sμ : ∇sw dV = 0 ∀ w ∈ VΩμ
. (3.90)

Considering again an infinitesimal deformation, the microscopic strain tensor is

Eμ =
1

2

(
Fμ + FT

μ

)− I = ∇suμ in Ωμ, (3.91)

where∇suμ is the symmetric gradient of the microscopic displacement field in the
RVE and VΩμ is the set of continuous and sufficiently regular kinematically ad-
missible RVE displacement fields. Further, it is assumed that in the microstruc-
ture the constitutive behavior is described by conventional internal dissipative
constitutive theories. Therefore, the microscopic stress tensor is obtained by in-
tegrating the constitutive equations, knowing a set of internal variables α, for
the given strain tensor history. Then, it is

Sμ = Sμ(Eμ,α) = Sμ(∇suμ,α). (3.92)

With the above at hand, the resolution of the microstructure problem consists
on the determination of the microscopic displacement field uμ ∈ VΩμ of the
variational problem for a given macroscopic deformation gradient tensor F, and
its gradient G in enhanced-first-order approach case. Therefore, to complete the
BVP in the microscopic scale it is necessary to define the boundary condition
used to obtain kinematically admissible displacement fields from the solution of
(3.90).

First-order approach

In Section 3.3.2, the different displacement fluctuation fields, kinematically
admissible in an homogenization analysis, were obtained. Using (3.9) is possible
to obtain the boundary condition for each case in terms of the displacement field
as

(i) Taylor model (or zero fluctuations):

uμ = (F− I) ·Xμ, in ∀ Xμ ∈ Ωμ.

In this model is not necessary to solve the BVP defined by (3.90).

(ii) Linear boundary displacements (or zero boundary fluctuations):

uμ = (F− I) ·Xμ, in ∀ Xμ ∈ ∂Ωμ.
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In this case a classical BVP with only Dirichlet conditions is obtained.

(iii) Periodic boundary fluctuations:

uμ(X
+
μ )− uμ(X

−
μ ) = D1(F− I) ·N+

X , in ∀ pairs
{
X+

μ ,X
−
μ

} ∈ ∂Ωμ|NX
.

uμ(X
+
μ )− uμ(X

−
μ ) = D2(F− I) ·N+

Y , in ∀ pairs
{
X+

μ ,X
−
μ

} ∈ ∂Ωμ|NY
.

uμ(X
+
μ )− uμ(X

−
μ ) = D3(F− I) ·N+

Z , in ∀ pairs
{
X+

μ ,X
−
μ

} ∈ ∂Ωμ|NZ
.

In this case, the boundary condition is a constraint boundary condition.

(iv) Minimal constraint (or uniform boundary traction):∫
N+

X

uμdAyz −
∫
N−

X

uμdAyz = D1(F− I) ·N+
X , in ∀ Xμ ∈ ∂Ωμ|NX

.∫
N+

Y

uμdAxz −
∫
N−

Y

uμdAxz = D2(F− I) ·N+
Y , in ∀ Xμ ∈ ∂Ωμ|NY

.∫
N+

Z

uμdAxy −
∫
N−

Z

uμdAxy = D3(F− I) ·N+
Z , in ∀ Xμ ∈ ∂Ωμ|NZ

.

For this case, the boundary condition is an integral constraint boundary con-
dition.

Enhanced-first-order approach

In Section 3.4.1, the different displacement fluctuation fields kinematically
admissible were obtained for the enhanced-first-order approach. Besides, with
this approach exists an extra restriction on the displacement fluctuation field
because the term G is introduced in the microscopic displacement field. Using
(3.36) it is possible to obtain the boundary condition for each case in terms of
the displacement field as

(i) Taylor model (or zero fluctuations):

uμ = (F− I) ·Xμ +
1

2
G : Xμ � Xμ, in ∀ Xμ ∈ Ωμ.

In this model is not necessary to solve the BVP defined by (3.90).

(ii) Linear boundary displacements (or zero boundary fluctuations):

uμ = (F− I) ·Xμ +
1

2
G : Xμ � Xμ, in ∀ Xμ ∈ ∂Ωμ.
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A classical BVP with only Dirichlet conditions is obtained because the extra
boundary restriction (3.62) is automatically verified.

(iii) Periodic boundary fluctuations:

uμ(X
+
μ )− uμ(X

−
μ ) = D1(F− I) ·N+

X +
(D1)

2

2
N+

X ·G ·N+
X

+ D1G : N+
X � X−

μ , in ∀ pairs
{
X+

μ ,X
−
μ

} ∈ ∂Ωμ|NX
.

uμ(X
+
μ )− uμ(X

−
μ ) = D2(F− I) ·N+

Y +
(D2)

2

2
N+

Y ·G ·N+
Y

+ D2G : N+
Y � X−

μ , in ∀ pairs
{
X+

μ ,X
−
μ

} ∈ ∂Ωμ|NY
.

uμ(X
+
μ )− uμ(X

−
μ ) = D3(F− I) ·N+

Z +
(D3)

2

2
N+

Z ·G ·N+
Z

+ D3G : N+
Z � X−

μ , in ∀ pairs
{
X+

μ ,X
−
μ

} ∈ ∂Ωμ|NZ
.

To satisfy the extra boundary restriction given by (3.64) extra boundary con-
ditions are required. These are:

∫
N−

X

uμdAyz = −1

2
D1D2D3(F− I) ·N+

X +
1

8
(D1)

2D2D3G : N+
X � N+

X

+
1

24
(D2)

3D3G : N+
Y � N+

Y

+
1

24
D2(D3)

3G : N+
Z � N+

Z , in ∀ Xμ ∈ ∂Ωμ|N−
X
.∫

N−
Y

uμdAxz = −1

2
D1D2D3(F− I) ·N+

Y +
1

8
D1(D2)

2D3G : N+
Y � N+

Y

+
1

24
(D1)

3D3G : N+
X � N+

X

+
1

24
D1(D3)

3G : N+
Z � N+

Z , in ∀ Xμ ∈ ∂Ωμ|N−
Y
.∫

N−
Z

uμdAxy = −1

2
D1D2D3(F− I) ·N+

Z +
1

8
D1D2(D3)

2G : N+
Z � N+

Z

+
1

24
(D1)

3D2G : N+
X � N+

X

+
1

24
D1(D2)

3G : N+
Y � N+

Y , in ∀ Xμ ∈ ∂Ωμ|N−
Z
.

In this case, one boundary condition is a constraint boundary condition and
the extra boundary condition is an integral constraint boundary condition.
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3.5.3 Consequence of the boundary condition considered

The RVE has a finite dimension, which is opposed to the theoretically infinite
microstructure considered, which create the intrinsic problem of the non-physical
RVE edges. As a result, the election of the boundary condition in the RVE
problem is essential to characterize the real behavior of the microstructure. The
boundary conditions shown in the above sections are obtained from the restriction
on the microscopic displacement fields by the first average postulate (3.10) and
they are used to impose the driving macroscopic deformation gradient tensor
F (or strain tensor) on the RVE. Besides, these boundary restrictions should
incorporate the presence of the surrounding material of the RVE without (or
minimizing) the introduction of spurious effects.

Effects on the characterization of the material properties

It has been shown in Section 3.3.5 that the boundary condition used in the RVE
problem affects the macroscopic stress tensor obtained and therefore it also affects
the homogenized constitutive tensor. In example, the expression (3.32) shows
that using the Taylor model condition, which in fact is not a strictly boundary
condition, the result provides an upper bound of the estimated homogenized
microscopic stiffness, which is exactly the same that is predicted by the classical
mixing theory.

On the other hand, the Minimal constraint provides a lower bound of the
estimated effective microstructural stiffness. This boundary condition imposes
the macroscopic strain tensor on the RVE in the weakest sense. It has been
shown that the resulting boundary distribution of the microscopic stress tensor
in the RVE is uniform and equal to the macroscopic stress tensor in this boundary
restriction [94, 23].

The Linear boundary displacements condition is a too restrictive constraint
and it overestimates the homogenized microscopic stiffness [14]. A conventional
BVP with full Dirichlet’s condition is obtained for the microstructure when this
condition is addressed.

It has been shown in the literature that in general the Periodic boundary
fluctuations provide a better apparent stiffness estimate for both periodic as well
as random microstructures [135, 140, 94, 56, 57, 95, 117]. This condition makes
that the RVE self adjoint by point to point (pairs of points) coupling of bound-
ary displacements, thereby it naturally incorporates the mechanical response of
the surrounding material. Moreover, an anti-periodic condition of the boundary
forces is automatically fulfilled in the microscopic problem because the boundary
points of the RVE are really considered as internal points of the structure.
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Effects on the non-linear response

Besides obtaining effective properties of the material at the macrocopic scale,
RVE models have been also used to study damage and strain localization effects
[34, 74, 58, 88, 1]. There is a significant interaction between both phenomena,
when the damage occur within the RVE, small zones with high strains coalesce to
form a strain localization band. If the macroscopic loading increases continuously,
the microscopic strain localizes on this band, accelerating the damage develop-
ment and reducing the load capacity and finally resulting in strain softening in
the macroscopic scale.

The boundary conditions imposed in the microscopic BVP need to address
the beginning and the development of the localization band up to the point of
macroscopic localization. Too restrictive boundary constraints, such as the Lin-
ear boundary displacements case will suppress the development of the microscopic
localization band, and searching an alternative localization pattern, it will over-
estimate the predicted macroscopic strain softening load.

The Periodic boundary fluctuations condition allows the onset of a localization
path compatible with the periodicity constraints, such as horizontal, vertical,
multiple parallel inclined bands and etc [88].

In order to do not restrict the development of the localization band within the
RVE the Minimal constraint conditions have been used as an alternative to the
others showing that the localization paths can cross the RVE in arbitrary manner
[92, 52]. However, besides the underestimation of the effective microstructural
stiffness, this boundary condition is also sensitive to spurious localization in weak
zones near the RVE boundary, resulting in an unrealistically early onset of macro-
scopic failure [14].

Base on the different performance described, in this work the Periodic bound-
ary fluctuations condition will be used in the computational implementation of
the microscopic BVP for both homogenization approaches considered, first-order
and enhanced-first-order.

3.6 Finite element implementation

The numerical implementation of the developed homogenization approaches is
made through the FEM. This method splits the total domain of the problem
in finite N-subdomains, known as Finite Element (FE) where the unknown dis-
placement field is approximated using known displacements of some points (called
nodal points) and shape functions.

When the FEM is used to solve the weak formulation of a BVP the total
integration domain of the problem is separated in N-subdomains which are the
FE domains. The value of the definite integral in the FE domain is obtained
using some numerical integration procedure. In general, the numerical integration
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methods approximate the integral value as the weighted sum of the evaluated
integrand in a finite set of points called integration points. These integration
points, and their weights, depend on the accuracy required and on the integration
method. In the following, the selected method will be the Gaussian quadrature
rule which uses n-points (xi) called Gauss points and n-weights (wi) to obtain
the numerical approximate value of the integral.

To solve the BVP at the macroscopic scale for linear and non-linear range a
FEM implementation is used together with a Newton-Raphson iterative scheme.
Therefore, it will be necessary to know the macroscopic stress tensor on the in-
tegration points of the FEs in the macro domain. To achieve the stress tensor
in the FE domain it is required a constitutive model to describe the compos-
ite behavior. The multiscale homogenization approaches above described can be
chosen as the constitutive models. Consequently, the macroscopic stress tensor is
obtained through the analysis of the microscopic scale. The macroscopic defor-
mation gradient tensor (F), for the first-order homogenization, and its gradient
tensor (G), for the enhanced-first-order homogenization, are used to solve the
microscopic BVP. The microscopic solution is used to obtain the homogenized
stress tensor required to solve the macroscopic BVP through the FEM.

The macrostructural point Xo considered in the formulation represents phys-
ically the Gauss points on the FE. Therefore, the macroscopic values of the
deformation gradient tensor F (Xo) and the gradient of the deformation gradient
tensor G (Xo), required by the microscopic BVP, are obtained in these Gauss
points when the macroscopic BVP is solved.

3.6.1 Microscopic numerical implementation

As has been done at the macroscopic scale, the BVP at the microscopic scale is
solved using the FEM. Therefore, the unknown displacement field in the BVP
is reduced to a finite degrees of freedom, which are the nodal displacements at
the nodal points of the FEs. At this scale the microscopic displacement field
obtained from the solution of the RVE must satisfy the boundary conditions
defined previously, in Section 3.5.2.

If the Taylor model condition is considered, there is no BVP to solve because
the displacement field on the total microscopic domain is constrained by the con-
dition. For the case of Linear boundary displacements condition, a conventional
BVP is obtained with a Dirichlet’s condition on the whole boundary domain.
Finally, the cases of Periodic boundary fluctuations and Minimal constraint con-
ditions defined a BVP with constraint boundary conditions.

The restrictions of degrees of freedom on the boundary domain can be ac-
counted through several methods such as elimination of redundant unknowns,
penalty methods and Lagrange multipliers [93]. The last two methods have the
disadvantage that they lead to ill-conditioned stiffness matrix or to an increase
of the number of degrees of freedom of the problem.
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To avoid these two disadvantages, here it is proposed solving the RVE by an
elimination of redundant unknowns [37]. The constraint condition for the Peri-
odic boundary fluctuations is shown in Section 3.5.2, where it is possible to observe
the redundant boundary unknowns of the BVP. In these boundary constraint ex-
pressions it is possible identify master unknowns (the unknowns to solve) and
slave unknowns. In Appendix B.1 the master-slave kinematic relationships are
derived for the Periodic boundary fluctuations condition.

Linear implementation

Following a conventional notation, the FE approximation of the variational prob-
lem (3.90), for a given discretization h, consists in the determination of the un-
known vector ūμ ∈ Vh

Ωμ
of the microscopic global nodal displacement such as∫

Ωh
μ

BT : Sμ(B · ūμ,α) dV · w̄ = 0 ∀ w̄ ∈ Vh
Ωμ

, (3.93)

where Ωh
μ denotes the discretized domain of the RVE, B is the global strain-

displacement matrix (see Appendices B.3 and B.4), w̄ is the global vector of
nodal displacement fluctuation, α is a set of internal variables and Vh

Ωμ
is the

set of finite-dimensional nodal displacement vectors associated with the FE dis-
cretization h of the RVE domain Ωμ. If a linear case is considered, the microscopic
stress tensor is

Sμ = Cμ : Eμ = Cμ : B · ūμ, (3.94)

therefore, (3.93) can be written as[∫
Ωh

μ

BT : Cμ : B dV · ūμ

]
· w̄ = 0 ∀ w̄ ∈ Vh

Ωμ
, (3.95)

or

[K · ūμ] · w̄ = 0 ∀ w̄ ∈ Vh
Ωμ

, (3.96)

where,

K ≡
∫
Ωh

μ

BT : Cμ : B dV. (3.97)

Here, K is the global stiffness matrix.
Equation (3.96) does not include the boundary constraint on the unknown

nodal displacement field because of the Periodic boundary fluctuations condition
as it was explained in the preceding section. If this conditions are applied using
an elimination of redundant unknowns method, the following system of equations
is obtained

Kr · ūr = RHS, (3.98)
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where, Kr is the reduced global stiffness matrix, ūr the reduced global nodal
displacements vector and RHS is the Right-Hand Side global vector which is ob-
tained as a result of the applied boundary restriction. Section B.2.1 of Appendix
B.2 shows how the elimination of redundant unknowns is addressed to obtain the
expression given by (3.98).

Non-linear implementation

The solution of the FE approximation of the microscopic variational problem
given by (3.90) in the non-linear case is addressed by a Newton-Raphson iterative
scheme. Therefore, the microscopic displacement field for a typical iteration (k)
in the micro-scale is obtained according to the following update expression

u(k)
μ = u(k−1)

μ + d(k)
μ , (3.99)

where d(k) ∈ VΩμ is the unknown iterative displacement field. Considering that
the microscopic stress tensor can be obtained as

S(k)
μ = S(k−1)

μ (E(k−1)
μ ,α(k−1)) + δS(k), (3.100)

and taking the following approximation

δS(k) ∼= T(k−1)
μ : ∇sd(k)

μ , (3.101)

with

T(k−1)
μ ≡ dSμ

dEμ

∣∣∣∣
u(k−1), α(k−1)

(3.102)

denoting the microscopic tangent constitutive tensor. With the above at hand,
and for the given discretization h, the FE approximation of the microscopic prob-
lem consists in solving the unknown iterative (k) of the global nodal displacement
vector d̄(k) ∈ Vh

Ωμ
of the following equation[∫

Ωh
μ

BT : S(k−1)
μ (B · ū(k−1)

μ ,α(k−1)) dV

+

∫
Ωh

μ

BT : T(k−1)
μ : B dV · d̄(k)

μ

]
· w̄ = 0 ∀ w̄ ∈ Vh

Ωμ
,

(3.103)

or
[F(k−1) +K(k−1) · d̄k

μ] · w̄ = 0 ∀ w̄ ∈ Vh
Ωμ

, (3.104)

where,

F(k−1) ≡
∫
Ωh

μ

BT : S(k−1)
μ (B · ū(k−1)

μ ,α(k−1)) dV, (3.105)
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and

K(k−1) ≡
∫
Ωh

μ

BT : T(k−1)
μ : B dV (3.106)

is the global tangent stiffness matrix of the RVE.

Like in the linear case, (3.104) does not include the boundary constraint over
the RVE boundary because of the Periodic boundary fluctuations condition. If
this condition is applied using an elimination of redundant unknowns method, the
expression given by (3.104) can be rewritten as (see Section B.2.2 of Appendix
B.2)

K(k−1)
r · d̄(k)

r = RHS(k−1), (3.107)

where, K
(k−1)
r is the reduced global tangent stiffness matrix, d̄

(k)
r the reduced

iteration (k) of the global nodal displacements vector and RHS(k−1) is the global
RHS vector of the previous iteration.

3.7 Final remarks

Based on the characteristics of the formulations developed, as well as on the
implementation of these formulations when using the finite element method, in
the following are included some final remarks regarding the implications of using
the first-order or the enhanced-first-order models.

Let us assume, for the sake of simplicity, that the FE mesh of the macroscopic
model has a single integration point. In this case, the macroscopic finite volume
ΩM around the point Xo considered in the formulation is related with the FE
domain as Ωe = ΩM , where Ωe is the FE domain. Taking into account the con-
siderations made in Section 3.4.5 it can be concluded that Ωe = Ωμ, which means
that for the integration point of the FE, the RVE domain must be geometrically
equal to the FE domain. Consequently, for an enhanced-first-order approach the
RVE dimension is related with the discretization mesh used in the macroscopic
BVP.

The macroscopic BVP presented in Section 3.5.1 does not take into account
the homogenized second-order stress tensor Q̂ obtained in the enhanced-first-
order homogenization. Besides, if the RVE materials are symmetrically dis-
tributed in it, the estimated homogenized stress tensor obtained is the same
with both homogenization approaches. Therefore, the homogenization method
considered does not improve the macroscopic results obtained for the BVP. To
improve the macroscopic results, a high-order FE or enhanced FE mesh must
be considered. To account for the homogenized second-order stress tensor Q̂
in the macroscopic scale a second-order macroscopic formulation must be used
[60, 62, 32].
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3.7.1 Linear FE in the macroscopic mesh

In linear finite element the interpolation functions are first-order polynomials
and consequently, the displacement field in the domain of the FE is a first-order
function. The strain tensor is obtained by differentiating the displacement field,
and then the strain tensor in the FE will be a constant function. Therefore, a
fine FE mesh on the macroscopic BVP should be used to obtain an accurate
approximation of the strains and stresses.

When linear finite elements and a first-order homogenization are used to solve
the macroscopic problem, the RVE is just a representative sub-domain of the pe-
riodic microstructure that does not have any significance on real microscopic
dimension as has been shown in Section 3.3.5. The constant value of the macro-
scopic gradient tensor F in the integration point of the macroscopic FE is used
to define the BVP in the RVE. From the solution of the microscopic problem the
macroscopic stress tensor is obtained for the considered integration point.

In this case, the solution of the microscopic BVP with the enhanced-first-
order homogenization is an inefficient procedure because the value of G in the
integration point of the macroscopic linear element has partial or even zero in-
formation.

3.7.2 High-order FE in the macroscopic mesh

To improve the FEM approach high-order elements can be used. Quadratic finite
elements use second-order polynomials as interpolation functions to approximate
the displacement field within the FE’s domain. The deformation gradient tensor
F of this element is a first-order function, while gradient of the deformation gra-
dient tensor G, which is obtained deriving twice the displacement, is a constant
function on the FE domain.

The enhanced-first-order homogenization approach needs at least quadratic
elements in the macroscopic mesh in order for the functions F and G not to have
zero value in the FE domain. Quadratic elements need more than one Gauss
point to obtain the best integration approximation. As mentioned before, the
RVE dimension must be related with the FE dimension in this enriched first-
order homogenization. For quadratic elements, the RVE must represent the sub-
domain within the FE associated to the Gauss point. Because the deformation
gradient F is not a constant function on the Gauss point domain, the RVE should
not be modeled with a different periodic sub-domain of the microstructure.

In this case, the microscopic results depend of the dimension of the RVE.
Therefore, to obtain the best possible approximation of the strain and stress
fields using the enhanced-first-order approach, and high-order finite elements in
the macroscopic mesh, the RVE geometry should represent the real volume of
the surrounding domain in the Gauss point. If not, the analysis will have an
associated error due to the size mismatch.
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3.8 Numerical example

The objective of this section is to show the advantages and drawbacks of the
enhanced-first-order computational homogenization with respect to the first-
order approach through numerical examples.

Two numerical example have been analyzed with the same macroscopic ge-
ometry, the first one uses a homogeneous material and the numerical solution
obtained for both procedures are compared with the existing analytical solution.
The second numerical simulation uses a matrix with a long fiber reinforcement.

3.8.1 Geometry, support scheme and mesh information

Macroscopic Beam model

The chosen macroscopic structure is a three-dimensional fixed support beam that
is subjected to a fixed displacement (dZ) at the free end. Figure 3.6 shows the
dimensions and the support scheme on the geometry of the beam.

Figure 3.6: Dimensions of the geometry and support scheme of the structure simulated.

To study the numerical stability and convergence of the problem four mesh
sizes are simulated. Linear element and quadratic element are used in the different
meshes of the numerical model for the first-order homogenization case while only
quadratic FEs are used for the enhanced-first-order approach. The linear FE
is an hexahedron of 8 nodes and 8 Gauss points and the quadratic FE is an
hexahedron with 20 nodes and 27 Gauss points.
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Mesh
Linear elements Quadratic elements

Elements Nodes Gauss Elements Nodes Gauss
Macro1 8x1x2 54 128 8x1x2 165 432
Macro2 16x2x4 255 1024 16x2x4 869 3456
Macro3 32x4x8 1485 8192 32x4x8 5433 27648
Macro4 64x8x16 9945 65536 64x8x16 37937 221184

Table 3.1: Number of elements (in X, Y and Z directions), nodes and Gauss points of
the meshes used in the beam structure.

Table 3.1 shows the more relevant information about the macroscopic meshes
used for the numerical simulation. These meshes are graphically show in Figure
3.7.

Mesh Macro1 Mesh Macro2

Mesh Macro3 Mesh Macro4

Figure 3.7: Different mesh sizes used in the macroscopic numerical model.

Microscopic RVE model

The geometry design of the RVE depends of the numerical simulation case. For
the case of a homogeneous material, the RVE is a simple cube with length L,
this is shown in Figure 3.8a. In the second simulation case, the material defined
is a composite with a 40% of cylindrical long fiber volume. The geometry of the
RVE that represents this periodical microstructure is shown in the Figure 3.8b.
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(a) RVE for homogeneous material. (b) RVE for composite material.

Figure 3.8: RVE models for the two different numerical simulation cases.

It has been shown in previous section that the dimension of the RVE is an im-
portant parameter for the enhanced-first-order homogenization approach. More-
over, this dimension L is directly related with the volume around the Gauss point
of the FE in the macroscopic mesh. Therefore, the value of the length L depends
of the dimension of the FE used in the numerical macro-model and of the num-
ber of Gauss points of the FE. In Table 3.2 the number of elements in the beam
height, Z direction, and the value that takes the length L in the RVE for the
different macroscopic meshes used are shown. The value of the length L has been
calculated considering quadratic element on the macroscopic mesh.

Data Macro1 Macro2 Macro3 Macro4
Num. elem. 2 4 8 16
Length L [mm] 1.3525 0.6762 0.3381 0.1691

Table 3.2: Number of elements in Z direction of the beam and length L of the RVE for
the different macroscopic mesh sizes.

The RVE has been analyzed with just one FE model. Figure 3.9a shows the
mesh used in the RVE for the homogeneous material case, which has 1000 FE,
and Figure 3.9b shows the mesh of the RVE for the composite material that has
1936 FE.
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(a) Mesh for homogeneous material. (b) Mesh for composite material.

Figure 3.9: Mesh used on the RVE models for the different numerical simulations.

3.8.2 Results and analysis

Checkpoints and variables compared in the simulation

The reaction force in Z direction on the fixed support is a variable used for the
comparison. To compare not only this macroscopic variable another checkpoint
has been designed. The macroscopic stress value is compared in the macroscopic
Gauss point closest to point A and the microscopic stress obtained in the RVE is
also compared for this same Gauss point. The microscopic stress value used for
the comparison is the one obtained in the Gauss point closest to point A within
the RVE. The geometric point A is shown in Figure 3.6 of the beam simulated.
The longitudinal stress values (SXX) and the shear stress values (SXZ) will be
compared on this point.

Homogeneous material simulation

When the material used in the beam is a homogeneous material it is possible to
obtain the analytical solution for the support scheme shown in the Figure 3.6.
The reaction force in Z direction is given by

RZ =

[
l3

3EIyy
+

6l

5GA

]−1

dZ , (3.108)

where E and G is the Young’s modulus and shear modulus of the material,
respectively, while Iyy, A and l is the second moment of area, the cross section
area and the longitudinal length of the beam, respectively. Therefore, considering
an isotropic material with null Poisson’s ratio and taking a fixed displacement
of dZ = 1mm, it is possible to address the values shown in Table 3.3 from the
analytical solution. The SXX and SXZ values shown in table correspond to the
analytical values obtained in point A.
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Data E [MPa] G [MPa] RZ [N] SXX [MPa] SXZ [MPa]
Values 26560 13280 600 100 0

Table 3.3: Material properties, reaction force and longitudinal and shear stresses in
point A of the analytical solution

The numerical results obtained for the different approaches and meshes are
presented in a simplified form using tables and graphs. On the tables, the relative
error or absolute error obtained when comparing the result with the analytical
solution is also shown.

Table 3.4 shows the reaction force in Z direction obtained with the numerical
simulations. In this table, the results obtained with Linear Elements (LE) in
the macro-model and the First-Order (FO) homogenization approach are shown
in the first two columns. The following two columns show the results obtained
with Quadratic Elements (QE) and the FO approach. And, in the last two
columns, are included the results obtained with QE for the macro model, and
the Enhanced-First-Order (EFO) approach.

RZ [N] LE&FO % erel QE&FO % erel QE&EFO % erel
Macro1 679.09 13.18 600.43 0.07 600.43 0.07
Macro2 620.03 3.34 600.12 0.02 600.12 0.02
Macro3 605.09 0.85 600.09 0.01 600.09 0.01
Macro4 601.34 0.22 600.08 0.01 600.08 0.01

Table 3.4: Reaction force and relative error for the different approaches and meshes.

It is possible to observe that the results do not change when a Enhanced-first-
order approach is used. This is because the EFO do not improve the macroscopic
solution, the macroscopic stress field obtained is the same than the one obtained
with a FO approach, and therefore the reaction forces are also the same (see Table
3.5). Another interesting conclusion obtained from the results is that an increase
in the order of the macro FE model represents a meaningful improvement. The
mesh Macro1 with QE obtains best results than the mesh Macro4 with LE, which
is surprising because Macho4 has 16 FE in the beam height. Figure 3.10 shows
the curves of reaction force vs number of finite elements in the beam height. This
curve shows clearly the result previously addressed.

Table 3.5 shows the macroscopic longitudinal stress obtained from the nu-
merical simulations and the relative error of these numerical results using the
analytical result SXX = 100 [MPa] as reference. The stress values shown in the
table correspond to the ones obtained for the Gauss point closest to point A on
the beam meshes. It has to be noted that for large meshes, the relative error
is slightly increased by the distance between the Gauss point and the point A
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Figure 3.10: Reaction force vs number of elements in Z direction for the different ap-
proaches.

considered.

SXX [MPa] LE&FO % erel QE&FO % erel QE&EFO % erel
Macro1 69.43 30.57 86.08 13.92 86.08 13.92
Macro2 84.02 15.98 93.00 7.00 93.00 7.00
Macro3 91.82 8.18 96.50 3.50 96.50 3.50
Macro4 95.86 4.14 98.25 1.75 98.25 1.75

Table 3.5: Macroscopic longitudinal stress and relative error for the values obtained in
the Gauss point closest to point A.

The improvements of the EFO approach can be seen when comparing the
microstructure results provided by the RVEs used in the macroscopic Gauss point
closest to point A. The longitudinal stress and shear stress present in the following
tables and figures are the microstructure stress values of the Gauss point in the
RVE closest to point A. Table 3.6 shows the value of the longitudinal stress
obtained within the RVE for the Gauss point closest to point A. This table shows
that the results provided by the EFO model are always closer to the analytical
ones, as the model is capable of capturing the bending effects on the material.

Figure 3.11a shows the stress obtained as a function of the number of elements
in the beam height. The general behavior of the stress when the number of
elements increase is similar. When a EFO approach is used the estimation of the
stress is good even for large elements. The relative error for 2 elements case is
around 1% which represents a very good estimation.

Figure 3.11b shows the longitudinal stress as a function of the approach used
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SXX [MPa] LE&FO % erel QE&FO % erel QE&EFO % erel
Macro1 69.43 30.57 86.08 13.92 98.66 1.34
Macro2 84.02 15.98 93.00 7.00 99.59 0.41
Macro3 91.82 8.18 96.50 3.50 99.87 0.14
Macro4 95.86 4.14 98.25 1.75 99.96 0.04

Table 3.6: Longitudinal stress in the RVE (Gauss point closest to point A) and relative
error for the different approaches and meshes.

in the numerical simulation. The improvement of the stress obtained when the
approach changes can be approximated as a linear function. If the number of
elements in the height increase the slope of the function decreases. Therefore,
the benefit of change the approach is more significant for meshes with low number
of elements.
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(a) SXX vs number of elements on the beam height.

(b) SXX vs approach used in the simulation.

Figure 3.11: Longitudinal stress obtained close to point A for the different meshes and
approaches used.
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Figure 3.12: Macroscopic and Microscopic (RVE closest to point A) SXX field for the
mesh Macro3.

As an example of the macroscopic and microscopic longitudinal stress field
obtained for the different approaches the Figure 3.12 shows SXX for the mesh case
Macro3. For the FO approach this figure shows an uniform stress distribution in
the RVE, this is because the formulation only uses the macroscopic deformation
gradient to solve the RVE. This occurs independently of the macro elements
uses, LE or QE. The macroscopic improvement observed in the QE model is
because the solution of the macroscopic problem is better when this kind of
element is used. For the same macroscopic solution, if an EFO approach is
used, the approximation of the microscopic stress field improves. The RVE stress
field shows a not uniform distribution (see QE&EFO case) because the EFO
formulation can considered second-order effects in the microstructure.

The results obtained for the shear stress in the RVE for the Gauss point
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closest to point A are shown in Table 3.7. This table also shows the absolute
error, here it is not used the relative error because for this variable the analytical
value obtained in the geometric point A is SXZ = 0 [MPa]. Figure 3.13a shows
the shear stress obtained for the different approaches as a function of the number
of elements in the height of the beam. From the table and the figure it is possible
to observe that the main improvement in the shear stress results it is presented
when the FE is changed. This phenomenon can be observed more clearly in
Figure 3.13b which shows the shear stress as a function of the approach used.
However, the use of the EFO approach improves the shear stress obtained for all
meshes considered. The reason for this improvements is, as has been pointed out
with the SXX value, the capacity that the EFO formulation gives to the RVE
model to account for the second-order effects existing in the macro model.

SXZ [MPa] LE&FO eabs QE&FO eabs QE&EFO eabs
Macro1 -22.14 22.14 -3.90 3.90 -1.88 1.88
Macro2 -12.26 12.26 -1.68 1.68 -0.48 0.48
Macro3 -6.43 6.43 -0.77 0.77 -0.13 0.13
Macro4 -3.29 3.29 -0.37 0.37 -0.04 0.04

Table 3.7: Microscopic shear stress (Gauss Point closest to point A) and absolute error
for the different approaches and meshes.
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(a) SXZ vs number of elements on the beam height.

(b) SXZ vs approach used in the simulation.

Figure 3.13: Shear stress obtained close to point A for the different meshes and ap-
proaches used.
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Composite material

In the following numerical simulations, the material used is a composite with
long fibers. The RVE used to simulate the internal structure of this composite
is shown in Figure 3.8b, while the FE mesh used is shown in Figure 3.9b. The
material used for the matrix is an elastic isotropic material (resin epoxy HSC
Epikote 4652) with a Young’s modulus of Em = 4.52 [GPa] and a Poisson’s ratio
of vm = 0.36. The long fiber material considered is a carbon fiber (Grafil TR30S
3K carbon fiber) with a Ef = 235 [GPa] and vf = 0.21. The materials properties
have been taken from the work of Perez et al. [116].

Table 3.8 shows the Z direction reaction force obtained for the different ap-
proaches and meshes used in the numerical simulation. Figure 3.14 shows these
same reaction forces plotted against the number of elements on the beam height.
This figure shows that the global performance provided in the different models
for the homogeneous material is also provided for the composite material. This
is: changing the homogenization approach, FO or EFO, does not change the re-
action force obtained and the use of QE represents a meaningful improvement of
the results obtained.

RZ [N] LE&FO QE&FO QE&EFO
Macro1 1629.76 1537.74 1537.96
Macro2 1559.39 1530.45 1530.46
Macro3 1537.43 1529.36 1529.34
Macro4 1531.30 1529.10 1529.14

Table 3.8: Reaction force for the different approaches and meshes.

For the case of composite materials it is necessary make a difference between
the results obtained for the homogenized composite ( macroscopic result), and
the results obtained for the composite components in the RVE solution.

In Table 3.9 are shown the longitudinal and shear stresses for the compos-
ite obtained for the different approaches and meshes used on the beam. The
macroscopic stresses values shown in the table correspond to the ones obtained
in the Gauss point closest to point A. The composite stresses obtained for the
QE&FO and QE&EFO cases are the same, as has been seen in Table 3.5. Figure
3.15 shows the longitudinal stress and Figure 3.16 the shear stress obtained for
the composite. The curves show the stress obtained for the different approaches
vs the number of element on the beam height. The composite stresses values
obtained for QE&FO and QE&EFO are the same for all mesh analyzed because
the EFO approach enriches the microscopic stress field but does not improve the
macroscopic homogenized stress.
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Figure 3.14: Reaction force vs number of elements in Z direction for the different ap-
proaches.

Data
Composite SXX [MPa] Composite SXZ [MPa]

LE&FO QE&FO QE&EFO LE&FO QE&FO QE&EFO
Macro1 185.54 221.36 221.39 -25.19 -9.21 -9.21
Macro2 218.02 238.29 238.29 -15.02 -4.17 -4.17
Macro3 235.96 247.13 247.13 -8.17 -1.98 -1.98
Macro4 245.71 251.59 251.59 -4.27 -0.96 -0.96

Table 3.9: Macroscopic longitudinal stress and shear stress for the different approaches
and meshes.



124 Chapter 3. Multiscale homogenization formulations

Figure 3.15: Composite SXX obtained close to point A for the different meshes and
approaches used.

Figure 3.16: Composite SXZ obtained close to point A for the different meshes and
approaches used.
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The improvements on the microscopic results when an EFO approach is used
can be seen in Figure 3.17. The microscopic stress fields shown in the figures
correspond to the RVE of the macroscopic Gauss point closest to point A for
the bean mesh Macro3. Figures on the left side present the longitudinal stress
distribution obtained in the RVE for the fiber component while the right side
shows the results obtained for the matrix component. The longitudinal fiber
stress distribution for the FO approach is almost uniform for both kind of FE
considered. While in the case of EFO approach the fiber stress distribution
in the RVE is more realistic considering the bending macroscopic state. The
classical linear distribution in the longitudinal stress expected for a bending load
is achieved around the average value obtained for the FO approach. The stress
distribution for the matrix present a similar behavior to the fiber component. It
can be observed that the maximum stress for the fiber and matrix within the
RVE are obtained in the Gauss points closest to point A, which is an expected
result.

To quantify the improvement on the microscopic solution due to the EFO ap-
proach, Table 3.10 shows the maximum values of the longitudinal stress for the
fiber and matrix components within the RVE. These stress values are graphically
represented in Figure 3.18a for the fiber material and in Figure 3.18b for the ma-
trix component. From the figures is clearly seen that the response of components
change when the approach is changed.

Data
Fiber SXX [MPa] Matrix SXX [MPa]

LE&FO QE&FO QE&EFO LE&FO QE&FO QE&EFO
Macro1 454.56 543.31 616.13 11.11 11.18 14.10
Macro2 534.71 584.90 622.41 11.69 12.01 13.67
Macro3 578.97 606.60 625.56 12.23 12.46 13.25
Macro4 603.02 617.54 627.07 12.53 12.68 12.98

Table 3.10: Longitudinal stress of the components in the RVE for the different ap-
proaches and meshes.
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Figure 3.17: Fiber and matrix longitudinal stress field in the RVE of the Gauss point
closest to point A for the mesh Macro3.
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(a) Fiber SXX obtained in the RVE vs number of elements on the beam height.

(b) Matrix SXX obtained in the RVE vs number of elements on the beam height.

Figure 3.18: Longitudinal stress of the fiber and matrix components in the RVE close
to point A for the different meshes and approaches used.





Chapter 4

Numerical comparison with
other formulations

In the following chapter a comparison of the results provided by the homoge-
nization approach presented in the previous chapter with other formulations is
shown. The other two formulations used in the comparison are: a Micro model
and the Serial-Parallel theory.

4.1 Introduction

The objective of these simulations is look into the strengths and weaknesses of the
multiscale homogenization framework developed in this study. And, to known
the computational cost required by the proposed formulation in comparison with
other approaches used to analyze composite materials. The other formulations
used for the comparison have been selected because they obtain the global be-
havior of the composite from the analysis of its microstructure. In the following,
a brief description of each one of these numerical approaches is presented.

Micro models

In these models, the constituent materials forming the composite are modeled
explicitly. Therefore, the response of the composite arises naturally. Each single
material is modeled with its own constitutive law. These models are very powerful
because they do not need to take any hypothesis on the microstructural behavior.
However, as it will be shown, their biggest limitation is their computational cost
and in most cases their use is not practical.

129
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Serial-parallel mixing theory

The Serial-Parallel (SP) mixing theory could be defined as a phenomenological
homogenization because it is based on the classical mixing theory. This formu-
lation has been proposed by Rastellini et al. [121] and it assumes as principal
hypothesis that the components of the composite behave as parallel materials in
the fibers alignment direction and as serial materials in the orthogonal direction.
The theory makes the composite behavior dependent on the constitutive laws of
the component materials and of their morphological distribution inside the com-
posite. The proposed composite constitutive model is based on the appropriate
management of the constitutive models of component phases within a contin-
uum framework by making use of suitable “closure equations” that characterize
the composite micro-mechanics. For more details regarding the formulation, see
Section 2.2.6 in Part I.

The potential of the SP approach is that predicts accurately the response of
composites in the linear and non linear range (i.e. delamination failure) as has
been proved in several papers [77, 78, 79, 80, 81, 115, 116]. For this reason, this
theory has been selected for the comparison.

Homogenization approach selected

The first-order homogenization approach is used in the simulation because the
aim of the comparison is to know the advantages and drawbacks of the general
homogenization framework developed. Furthermore, the simulation is not looking
for precision results on the microstructure, and it is conducted in the linear range.

4.2 Geometry and numerical models

A clamped beam with a vertical load at mid-span is the structure used to compare
the theories described previously: micro model, serial-parallel mixing theory and
first-order homogenization approach. Figure 4.1 shows the beam’s geometry,
supports and loads. A macro numerical model will be used to simulate the
behavior of the structure with the different theories. In the case of the first-order
homogenization approach another micro numerical model is necessary. The micro
numerical model will have the internal structure of the composite.

4.2.1 Macro and micro numerical models

The macro FE model used is the half of the beam because the symmetry of the
structure (see Figure 4.1). Figure 4.2 shows the macro numerical model with one
of the meshes used. The finite element used is a first order hexahedron element.
In order to obtain the real behavior of the structure with the FE model it is
necessary to impose symmetric boundary conditions. The symmetry plane, the
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Figure 4.1: Geometric of the beam studied.

right face of Figure 4.2, normal to X-axis, and the X displacement is set to zero
in this face. To simulate the fixed support, the nodes’ movements in the left cross
section are also restricted. The applied load is a Z direction fixed displacement
of -0.1 mm in the rigth cross section nodes (symmetry plane).

As said before, to simulate the microstructure in the first-order homogeniza-
tion a micro numerical model is required. The RVE’s geometry chosen is a cube
with unit length sides. The finite element used is the same than the macro nu-
merical model. The different RVE models that will be used are shown in the
Figures. 4.3 and 4.6.

Figure 4.2: Beam numerical model

4.2.2 Simple materials and composite description

The simple materials in all studied cases are isotropic elastic materials. The
composite material is a laminate. And, the laminate consists of several layers of
material 1, called lamina 1 henceforth, and a combination of layers of material 2
(lamina 2) or material 3 (lamina 3). The volumetric participation of lamina 1 is
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always a 50%.

Table 4.1 contains the mechanical properties of all the materials considered in
the composite. In this table, E is the Young’s modulus, G is the Shear modulus
and ν is the Poisson’s ratio. The “Color ref.” is the color used to represent the
material in the RVEs, as it is shown in Figs. 4.3 and 4.6. The lamina 3 has the
same properties as lamina 2, with the only difference of the shear modulus, which
is reduced by 10. This is done to emulate the effect of a degraded lamina 2.

Simple mat. Color ref. E (GPa) G (GPa) ν
Lamina 1 Black 210 80.76 0.3
Lamina 2 Grey 3.5 1.46 0.2
Lamina 3 White 3.5 0.146 0.2

Table 4.1: Mechanical properties of the simple materials

4.3 Comparison for several material configura-
tions

In this section, several examples are presented to compare the behavior of the
different theories. The result used to compare them is the reaction force, in Z
direction, at the fixed support obtained for a fixed Z displacement applied at the
symmetry plane (See Figure 4.1) .

4.3.1 Undamaged case

The undamaged case is the first one used to compare all theories. In this case
the laminate contains 50% of lamina 1 and 50% of lamina 2, which properties are
defined in Table 4.1.

The model using the SP mixing theory defines the composite material assum-
ing that the parallel behavior is obtained in X and Y direction, while the rest of
directions have a serial behavior. The homogenization formulation uses a RVE
made with 8 elements that also contains 50% of lamina 1 and 50% of lamina 2.
The RVE is shown in Figure 4.3. Finally, the micro-model is defined discretizing
the different layers in which the laminate is divided.

A convergence analysis of SP and Homogenization theories has been made.
The quantity of finite elements in the macro-model FE mesh has increased until
the difference, between two consecutive results, is negligible. Figure 4.4 presents
the results obtained for the different meshes analyzed. The micro-model used
to compare the results obtained with the different theories has been made with
196608 hexahedron elements, which results in 648999 degrees of freedom.
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Figure 4.3: RVE used for the undamaged case.

The reaction force obtained with the SP theory is 905.9 N, with the first-
order homogenization is 908.3 N and with the micro-model is 919.0 N. It can be
concluded that the three theories provide almost the same result, as the difference
between the reaction force value is lower than a 1% which is a really good result.
Besides, all theories allow knowing not only the global performance of the beam
analyzed, but also the specific response of each lamina to the loads applied.

Figure 4.4: Convergence analysis results.

4.3.2 Global damage case

The objective for this example is to compare the responses obtained when one of
the laminate materials suffers some sort of degradation. To analyze this problem,
five different simulations have been performed in which the mechanical properties
of one of the laminates is reduced. More specifically, the degradation is applied
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on the shear strength of lamina 2, which is reduced progressively until reaching
the value of lamina 3 (see Table 4.1). Therefore, the new laminate consists 50% of
lamina 1 and 50% of a new lamina that can be completely undamaged (properties
of lamina 2) or with properties corresponding to 12.5%, 25%, 50% and 100% of
damage (this last case, corresponds to lamina 3). The specific mechanical values
considered are shown in Table 4.2.

Property 12.5% 25% 50% 100%
G (GPa) 1.295 1.131 0.803 0.146
E (GPa) 3.5 3.5 3.5 3.5

Table 4.2: Mechanical properties of the degradated Lamina 2

The composite is simulated with the SP mixing theory and with the first-
order homogenization, using the same material characterization and RVE that
were used in the undamaged case. Figure 4.5 shows the results obtained for
the conducted simulations. This figure shows that, as it is expected, the results
obtained for both theories are again exactly the same. The results obtained also
show that as the shear stiffness of one of the layers is reduced, the global stiffness
of the beam decreases. This effect can be understood as a delamination failure,
as has been previously shown by Martinez et al. [78, 80]. Results also show that
the reduction of global stiffness of the beam is not linear with the reduction of
the shear strength of one of the laminas, being larger as the layer stiffness gets
smaller.

Figure 4.5: Reaction force obtained in the global damage case.
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4.3.3 Local damage case

In this example, the objective is to compare the responses obtained when material
damage takes place, not in all layers, but just in some of them. The composite
considered has always 50% of lamina 1, and a 50% of lamina 2 (undamaged and
damaged). It is assumed, like in the previous case, that a totally damaged lamina
2 is numerally represented by the lamina 3. The comparison is made for the
cases in which there are 0%, 12.5%, 25%, 50% and 100% of layers damaged. The
simulation corresponding to 0% and 100% damaged have been already conducted
in two previous simulations. The simulations corresponding to intermediate cases
have been studied with the three methods being compared in this chapter: first-
order homogenization, SP and a micro-model.

For SP theory, the composite is obtained combining two different laminates
with the SP formulation. One laminate has 50% of lamina 1 and 50% of lamina
2 and the other laminate has 50% of lamina 1 and 50% of lamina 3. The volume
fraction of these laminates in the composite depend in the amount of layers
assumed to be damaged. For the homogenization approach, the amount of layers
damaged is represented with the RVE. Figure 4.6 shows the RVEs considered to
account for 50%, 25% and 12.5% of damaged layers, respectively. In this figure,
the darker elements correspond to lamina 1, the light-grey elements correspond to
lamina 2 (undamaged) and the white elements correspond to lamina 3 (damaged).
Finally, the micro-model has been simulated discretizing each one of the lamina
of the beam.

a) b) c)

Figure 4.6: RVEs containing 50%, 25% and 12.5% of damaged layers.

Figure 4.7 presents the results obtained with different simulations performed.
This figure shows that for the extreme cases, this is for 0% or 100% of lamina
3, the results obtained with different theories are almost equal. However, the
results obtained when there are some layers damaged do not have the same
agreement, especially when comparing the results obtained with the SP theory
with the ones obtained with the homogenization method or the micro-model.
While the decrease in the resultant reaction force with the SP theory is equal to
the one obtained in the case of considering global damage (see Figure 4.5), this
decrease is substantially larger when considering the homogenization method or
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a micro-model. These two theories provide nearly the same results.

Figure 4.7: Reaction force obtained in the local damage case.

The explanation for the difference in the response obtained for the different
models is obtained from the models themselves. The serial-parallel theory obtains
the response of the composite assuming certain iso-stress and iso-strain boundary
conditions that regularizes the response of the material if it is defined with several
laminates. Therefore, the response of the structure and the result obtained is
similar to the one obtained when this damage was present in the whole structure.
On the other hand, with the homogenization and the micro-model theories, the
damaged layer is discretized specifically and it is possible for the simulation to
capture the dislocation that takes place, as it is shown in Figure 4.8 for the three
cases considered. This dislocation is the responsible for the drop of the stiffness
and the fast decrement on the value of the reaction obtained.

a) b) c)

Figure 4.8: RVEs with 50%, 25% and 12.5% of damaged layers under load.
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4.3.4 Local damage case in a localized region of the beam

At the light of previous results one may think that the SP theory is not capable of
representing delamination processes. In this example it is shown that under some
circumstances this simulation is possible. Here, the beam has been simulated with
two different laminates. The central band contains 50% of lamina 1 and 50% of
lamina 3 (damaged); while the rest of the beam is simulated with 50% of lamina
1 and 50% of lamina 2. Figure 4.9 shows the FE mesh of the beam macro-model.
This example is simulated with the SP and the homogenization theory. The
homogenization theory uses the RVE shown in Figure 4.3.

Figure 4.9: FE mesh of the macro-model of the beam with two laminates.

In this case, the reaction force obtained is exactly the same for both, the
SP and the homogenization models: 663.9 N and 666.4 N, respectively. This
example shows that the SP theory is capable of providing the same results as the
homogenization theory when the response of the RVE fulfills the parameters in
which is based the SP theory: iso-strain and iso-stress behavior. On the other
hand, if the RVE does not fulfill this behavior (i.e. there is a dislocation in it),
the SP theory is not capable of predicting accurately the material response, as it
was shown in previous example.

4.4 Run times and memory used

One of the main drawbacks that has a homogenization approach nowadays is its
computational cost. Therefore, in order to know the performance of this formu-
lation it is necessary not only to compare the results obtained with it, but also
to compare the computational cost in terms of time and memory requirements.

To do these comparisons, in the case of the computational homogenization,
two different strategies have been considered. In the first one, the mechanical
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properties of the composite (stiffness matrix) are calculated at the beginning of
the analysis, and these properties are used afterwards during the complete of
the simulation. This case is named H-OneRVE. The other case corresponds to
analyze the RVE each time that it is necessary to know the stress provided by
the RVE for a given strain value. This case is named H-AllRVE. If the problem is
linear, the results obtained in both cases are the same. However, in a non linear
case, it is necessary to simulate the problem with an H-AllRVE strategy in order
to capture properly the non linear response of the material.

Item Micro Model H-OneRVE H-AllRVE SP Theory
Real Time [Min:Seg] 6:46 0:01 2:27 0:02
CPU Time [Min:Seg] 8:44 0:03 9:31 0:17
Memory [Mbytes] 2690,00 7,45 7,45 15,82
Reaction Force [N] 236,09 224,69 224,69 576,68

Table 4.3: Times and memory used to 50% located damage case.

Table 4.3 shows the computational times and memory required to conduct the
simulations with a localized damage of a 50%. The real time and cpu time are
discriminated because part of the FE code used is in parallel. The results show
that the CPU time in the Micro model and H-AllRVE are comparable. But, the
CPU time of the H-OneRVE and SP theory are significantly better. Therefore,
in terms of computational time, it is feasible to conduct a simulation with a
homogenization approach, as well as with the SP theory. However, this simulation
must be kept in the linear range. If the simulation is non linear, the H-AllRVE
strategy must be used, which makes the SP theory the only feasible option in
terms of computational time unless some non-linear strategy is developed to
minimize the number of times in which the RVE has to be solved.

The main difference between the micro-model and the homogenized model
is found in the memory requirements. While the computational time of the H-
AllRVE and the micro-model are equivalent, the amount of memory required by
this last one is substantially larger (360 times larger). This difference is found be-
cause the memory used is proportional to the FE mesh size of the numerical model
and, while the micro-model has to solve a problem with a very small discretiza-
tion, the homogenization framework only requires memory for the macro-problem
and the RVE that is being solved. This difference makes unbearable solving large
problems with micro-models and makes feasible using homogenization methods,
even if the problem is in non linear range.



Chapter 5

Non-linear extension
proposed for multiscale
methods

Most of the work on FE2 multiscale procedures are done on analyzing the nu-
merical performance of RVE [144, 120] or on connecting different scales [33]. In
general, in this kind of homogenization methods the elastic properties of the mi-
crostructure are obtained solving the microstructural problem at the beginning of
the structure problem. The main drawback of homogenization methods is their
computational cost for a non-linear analysis because it is required solving the
RVE in every integration point at the macrostructural problem, and for every
time step, in order to know the non-linear limit and then the behavior of the
microstructure in non-linear range. Non-linear performance has also the problem
that the dissipated energy of both scales is not always related [6].

In order to improve the computational cost of the multiscale homogenization
some strategies use model-order reduction techniques [149, 97, 46]. These meth-
ods use the Proper Orthogonal Decomposition (POD) to obtain the reduced set
of empirical shape functions. Besides, [46] proved that the common approach
of replacing the non-affine term by an interpolant constructed taking only POD
modes arrives to ill-posed formulations. An enriched approximation space with
the span of the gradient of the empirical shape functions is proposed to avoid
this ill-posedness. However, these kind of procedures do not solve the complete
structure.

Because of this, in the following to overcome this major drawback, this chapter
presents a new procedure to reduce computational cost of multiscale simulations
[112]. The chapter looks also into the problem of localization and energy dissi-
pation across the scales, as the proposed method must be consistent [2]. In the

139



140 Chapter 5. Non-linear extension

following the formulation and algorithm schemes of the proposed procedure are
described.

5.1 Introduction

The main advantage of the FE2 method compared to a micro model is the re-
duced computer memory requirements. To solve the same problem, the amount
of memory required by the classical FE micro model method is substantially
larger than FE2 procedure [114]. This difference is found because the memory
used is proportional to the FE mesh size and, while the FE micro model has to
solve a problem with a very small discretization, the FE2 procedure only requires
memory for the macrostructural problem and the RVE that is being solved. How-
ever, if the material reaches non-linear behavior, the computational cost of FE2

method becomes as large as the one required by the micro model case, as the
RVE has to be solved for each integration point when a real structure is solved.
Because of this, a new Non-Linear Strategy (NLS) is proposed in this work.

Continuum mechanics establishes the limit between linear and non-linear per-
formance of materials using a comparison criterion that compares a given combi-
nation of stresses with a threshold value (Von-Mises, Mohr-Coulomb, etc.). This
approach cannot be used in an homogenization double scale solution directly as
different strain-stress states may lead to different failure modes of the composite.

A possible solution is to analyze the RVE at every time step. However, as has
been already stated, this is extremely expensive and very ineffective, because the
structural non-linear behavior often occurs in a small part of its domain.

The non-linear strategy developed consists in the definition of a comparison
criterion, based on the macrostructural deformation of the Gauss point, but takes
into account that the RVE failure takes place in a small part of the domain. In
the following section it is explained in detail. It has to be noted that the pro-
cedure proposed has been developed for a first-order homogenization approach.
Further study will be required if it wants to be extended to the enhanced-first-
order homogenization approach, as in this case it should account not only for the
macrostructural Gauss point deformation, but also for its gradient.

5.2 General concepts of the proposed approach

Here is proposed to develop a comparison function that looks a maximum level of
an elastic energy density that can be applied to the RVE before its failure. This is
done with the definition of an activation function for each single integration point
at the structural scale. It is important to remark that the proposed approach
does not use a model reduction strategy, instead it is solving the actual structure,
but only when it is strictly necessary.
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The NLS is composed of two different procedures, a non-linear activation
function and a smart first step calculation. In the following are defined both of
them.

5.2.1 Non-linear activation function

The definition of a Non-Linear Activation Function (NLAF) is based on the fact
that any given material begins its non-linear performance when a single particle
of the material reaches its stress threshold. The objective of the NLAF is to
know whether any material point of the RVE has reached its non-linear limit
using homogenized variables.

To do so, it defines a function f that relates the elastic energy density (Ψe)
of an integration point of the RVE with the maximum elastic energy (Ψe

Limit)
that can be applied to this material point, before reaching the non-linear range.
Therefore, f is defined as

f =
Ψe

Ψe
Limit

, 0 < f < 1. (5.1)

In other words, f provides a value of how far is a material point in the microstruc-
ture to reach the non-linear state.

In order to know how far is the whole RVE to reach the non-linear perfor-
mance, it is necessary to use the information obtained for all the integration
points of the RVE and transform it into a single representative number. This is
done with the assumption stated before that the failure of the macrostructure will
start when the first integration point of the microstructure fails. Therefore, the
f̄ parameter of the RVE corresponds to the maximum f value of all integration
points of the RVE. Then

max{f1, ..., fn} = f̄ , (5.2)

where the overline at the variables refers to the structure scale or homogenized
variables. Finally, the limit elastic energy density at the macrostructure scale is
obtained with the following expression

Ψ̄e
Limit =

Ψ̄e
1

f̄
, (5.3)

where Ψ̄e
1 is the elastic energy density for the strain state used to calculate f̄ .

The process described can be schematized as it is shown in Figure 5.1.
The NLAF is defined as

Ψ̄e − Ψ̄e
Limit ≤ 0, (5.4)

where Ψ̄e is the elastic energy density of the macro structural integration point,
which is calculated in each load step of the simulation.
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Ψ̄e
Limit =

Ψ̄e
1

f̄

f =
Ψe

Ψe
Limit

RVE

ε̄1

Figure 5.1: Non-linear activation function scheme.

The NLAF previously defined is only valid for the strain state used to calculate
Ψ̄e

Limit (see (5.3)). If the strain state varies, it may also change the non-linear
failure mode and, therefore, the limit elastic energy density calculated may be no
longer valid. Therefore, (5.4) is valid while the strain state in the material remains
proportional to the one used to obtain Ψ̄e

Limit. To quantify this proportionality
the next expression is proposed

ε̄1 : ε̄i
‖ ε̄1 ‖‖ ε̄i ‖ = 1 ⇐⇒ Comparable States, (5.5)

where the subscript i refers to the current i-nth deformation state and ‖ . ‖ is
the norm’s mathematical symbol. In case this proportionality is lost, it will be
required to calculate again the new limit elastic energy density of the RVE. This
is summarized in the following flow diagram (see Figure 5.2).

It can be easily seen that with the proposed procedure the RVE must be solved
for each macro integration point on the first time step, in order to calculate the
elastic energy density limit using (5.3). Afterwards, it only will be necessary
to solve the RVE again if the strain state of the integration point becomes non
proportional to the calculated originally or if the NLAF is not satisfied, which
means that the RVE becomes non-linear. Therefore, if only few elements of the
structure reach the non-linear state, only these elements will have to be solved
in the non-linear analysis.

5.2.2 Smart first step

As said before, at the beginning of the analysis it is required to solve the RVE for
every single integration point of the macrostructure to obtain its Ψ̄e

Limit. This
calculation process can be extremely expensive in terms of computational cost.

In order to reduce this computational cost, it is proposed a Smart First Step
(SFS) strategy. This strategy consist in solving the RVE only if the deformation
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Ψ̄e
i − Ψ̄e

Limit ≤ 0

σ̄ep = C̄ : ε̄i
Ψ̄e
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1
2 σ̄ep : ε̄i

Solve Micro

no

Ψ̄e
Limit = Ψ̄e

i

σ̄i ; C̄
T

ivi

ε̄i
mp
ivi−1

Exit

ε̄ref.:ε̄i

‖ε̄ref.‖‖ε̄i‖ ≈ 1
yes

Solve Micro

no

Ψ̄e
Limit =

Ψ̄e
i

f̄

f̄

σ̄i = σ̄e.p.

ivi = ivi−1

mp = mat. properties
iv = internal variables
ep = elastic predictor
i = umpteenth step

yes

Figure 5.2: Non-linear strategy algorithm scheme.

applied to it is different to all other deformation states considered previously.
Therefore before calculating the Ψ̄e

Limit of the RVE, the SFS procedure compares
the deformation between the current and the all previous integration points al-
ready calculated (see (5.5)). If the SFS finds one comparable strain state, the
current RVE takes the values of the RVE already solved. If none of the previous
microstructures solved have a comparable state, the actual RVE is calculated.
Figure 5.3 shows the scheme of the described algorithm.

It will be shown, in the validation examples, that this procedure reduces
significantly the computational cost of the first step load in the simulation.

5.2.3 Numerical homogenized tangent constitutive tensor

The proposed NLS has been implemented in PLCd [118], a parallel finite element
code that works with 3D solid geometries (see Appendix B.5). In the code, a
Newton-Raphson scheme is adopted to solve the non-linear problem. To facilitate
the convergence of the whole problem, the tangent constitutive tensor at the
integration point is necessary to obtain the global tangent stiffness matrix.
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Figure 5.3: Smart first step algorithm scheme.

A perturbation method is used to obtain a numerical approximation of the
homogenized tangent constitutive tensor of the RVE in the integration point. The
method implemented is analogous to the one proposed by Martinez et al. in [79]
(see Section B.5.2 in Appendix B.5). Being the only difference that in current
procedure the perturbations must be applied on the RVE instead of applying
them to a constitutive equation. The n small perturbations (δε̄j) are applied
to the homogenized or structural strain vector. The RVE is solved n times and
as result gives the n stress vector δjσ̄. Therefore, the j columns of the tangent
constitutive tensor for the RVE can be obtained as

C̄t
j ≡

δjσ̄

δε̄j
. (5.6)

The calculation of the tangent stiffness tensor is necessary to obtain a good
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convergence of the problem but it is computationally expensive. This shows
again the necessity to reduce the number of times in which this calculation is
performed, and proves the necessity of having a non-linear strategy to conduct
the simulation.

5.3 Energy dissipation in a multiscale analysis

The solution of material non-linear problems with a numerical double scale ho-
mogenization procedure not only should be affordable computationally, but the
results obtained in the non-linear process must be also correct. Therefore, the
procedure must dissipate the same energy in both scales. In order to conserve
the dissipated energy through the scales, the following methodology is proposed.

5.3.1 Fracture energy

Fracture mechanics presents the fracture energy per unit of area, Gf , as a prop-
erty of the material. This energy can be calculated as

Gf =
Wf

Af
, (5.7)

where, Wf is the energy dissipated by the fracture at the end of a quasi-static
process, and Af is the total fractured area. This fracture energy is the link
between the fracture mechanics and the constitutive model based on classical
solid mechanics. The constitutive model must satisfy:

The good representation of behavior of a set of points inside of a finite domain.

The same energy dissipated by the total volume as the one dissipated by the
solid in the real fracture process.

Considering a simple tensile test, the constitutive model must verify the fol-
lowing condition of dissipation

Wf = GfAf︸ ︷︷ ︸
Fracture Mechanics

≡ Πd =

∫
v

gfdV︸ ︷︷ ︸
Solid Mechanics

(5.8)

where gf is the maximum specific energy dissipated by the constitutive model.
Equation (5.8) states that the energy delivered to the tensile test must be equal
to the energy dissipated by the constitutive model. In solid mechanics, the dissi-
pation phenomena is located in a volume that can be represented as Vd = AfLf ,
where Lf is a fracture length. For FE method the localization phenomena in
one strip of finite elements is sought, therefore Lf is commonly approximated by
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some reference length of the finite element. This length is a parameter that ac-
counts for the amount of energy dissipated by the fractured material. Replacing
the volume Vd in (5.8) the following expression is obtained

Wf = GfAf = gfAfLf . (5.9)

From (5.9) the relation between the material parameter Gf and the specific en-
ergy dissipated gf is found

gf =
Gf

Lf
. (5.10)

5.3.2 Localization at the microstructural scale

In multiscale procedure, the specific energy at the macro structural scale is ob-
tained as

gf =
1

Vm

∫
Ωm

gmf dVm, (5.11)

where the index m is used to reference the microstructural scale variables.

Figure 5.4: Representative volume of the subscale.

Taking the same consideration than macroscale solid behavior, now the dis-
sipation phenomena is located at microstructural level (see Figure 5.4). In such
case, we have the following dissipated equation

gf =
1

Am
f l

gmf Am
f lf , (5.12)

where, Am
f is the RVE cross section area, l is the length in normal direction of

Am
f and lf is the fracture length at the microstructure (RVE). With (5.12) is

possible to obtain the specific energy gmf dissipated at the microstructural scale
level as

gmf =
gf l

lf
=

Gf l

Lf lf
. (5.13)
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Equation (5.13) shows the relationship between the gmf and Gf which ensures
to dissipate the same energy by the solid mechanics, using a multiscale method,
than the one obtains with a tensile test. The validity of this relation is proved in
the following example.

5.3.3 Validation example

A simple tensile numerical test over a material sample is simulated. The objective
of this example is to analyze the objectivity of the response obtained using the
proposed FE2 method. The same test using a classical one scale FE method
is also solved for comparison purposes. The geometry, the supports and the
displacements scheme of the simulated structure is presented in Figure 5.5. The
applied fixed displacement is represented by the arrows in the figure.

Figure 5.5: Structure simulated in the tensile test.

Material

The simple material used in the tensile test takes the properties shown in Table
5.1. The constitutive model chosen is an explicit scalar damage model with
exponential softening [130, 101]. For this particular case, where the stress state is
uniform and there is only one simple material, and in order to help the localization
of the softening problem, the elastic limit is increased in some elements (drawn
with gray color in Figure 5.6) up to a value of σLimit = 102MPa.

Properties E [GPa] ν [−] σLimit [MPa] Gf

[
kJ/m2

]
Values 100 0 100 20

Table 5.1: Simple material properties used in the tensile test.

FE meshes

The finite element used to solve the problem is a first order hexahedron element.
The example is solved for different combinations of finite element meshes. Figure
5.6 shows the different mesh sizes used in the simulation. The left side of Figure
5.6 shows the three different meshes used for the structural scale. The mesh
Macro1 has 10 finite elements, the mesh Macro2 has 84 elements and finally the
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mesh Macro3 has 656 elements. On the other hand, the right side of Figure 5.6
shows the two different meshes used for the microstructural scale. The mesh
Micro1 has 125 finite elements and the mesh Micro2 has 729 elements.

Figure 5.6: Different meshes used in the tensile test.

Results

The results obtained with the different mesh combinations are shown graphically
in the Figure 5.7. As can be observed from the figure, the results are equal for
all combinations, and for both methods.

For the case considered, it is possible to validate the numerical results with
analytical calculations, knowing the area of the specimen, the Young’s modulus
and the maximum tensile stress that can be applied, the maximum load and
displacement in the beam is

Fmax = σLimit.A = 10kPa,
dFmax = L.σLimit

E = 0.1mm.

It is also possible to calculate analytically the dissipated energy at the end of the
test as

Wf = Gf .A = 2J.
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Figure 5.7: Traction force vs displacement curves obtained in the tensile test.

If this energy is calculated from the numerical models, the following table is
obtained:

Energy [J] Macro1 Macro2 Macro3
One scale 1.728 1.737 1.748
Micro1 1.752 1.741 1.777
Micro2 1.713 1.761 1.812

Table 5.2: Dissipated energies obtained in the tensile test.

The difference between the estimated value and the ones show in Table 5.2 is
because at the numerical analysis the simulation has been stopped at 0.5mm. It
has to be noted also that the dissipation obtained with all mesh configurations is
practically the same. Which proves the consistency of the formulation proposed.

The localization of non-linear phenomena in one strip of finite elements at the
structural scale is shown in the Figure 5.8, for the analysis made with Macro2
mesh. This figure shows that damage is concentrated in the central zone of the
material sample, and therefore, the displacement too. In the proposed multiscale
method the localization phenomena must be observed also at the microstructural
scale. As an example, Figure 5.9 shows the microstructural displacement and
damage obtained at the end of one tensile numerical test. In the figure can be
observed that both results are localized in one strip of finite elements in the RVE
meshes.
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Displacement Damage

Figure 5.8: Macrostructural results obtained at the end of the tensile test.
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Figure 5.9: Microstructural results obtained at the end of the tensile test.
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5.4 Numerical examples of non-linear analyses

5.4.1 Tensile test of a plate with a hole.

The objective of this example is to show the performance of the NLS developed,
as well as to analyze the failure of the structure localizes in a strip of elements.
The test is a tensile test made on a plate with a hole in its center. Due to
the symmetry of the geometry and of the load applied, only a quart of the real
structure is simulated. Figure 5.10 shows the modeled geometry, the supports and
the displacements scheme in the numerical model. The applied fixed displacement
is represented by the arrows in Figure 5.10.

Figure 5.10: Simulated structure of the plate with a hole.

Material

Table 5.3 shows the properties of the simple material used. The constitutive
model of the material is the same (explicit scalar damage) that has been used in
the previous validation example 5.3.3.

Properties E [GPa] ν [−] σLimit [MPa] Gf

[
kJ/m2

]
Values 100 0.15 100 10

Table 5.3: Simple material properties used in the plate with a hole.

FE meshes

To analyze the response’s objectivity in the test, two finite element meshes have
been used for the macroscopic model. Figure 5.11 shows the mesh sizes employed.
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Mesh1 has 360 finite elements while Mesh2 is more dense and has 2880 elements.
The microstructural model and finite element meshes are the same than the ones
used in previous validation example 5.3.3.

Mesh1 Mesh2

Figure 5.11: Different meshes used in the plate with a hole.

Results

Figure 5.12 shows the traction force vs displacement curves obtained for the
different mesh combinations. This figure shows that the results are almost equal.
Therefore, the result obtained with the proposal method is mesh independent.
The curves show than the maximum force does not pass of 80 KPa and it is
obtained for an applied displacement of 0.08mm.

Figure 5.12: Forve vs Displacement for the plate with a hole.

The dissipated energy for the different mesh configurations used in this ex-
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ample is shown in Table 5.4. From the Table 5.4 can be observed than the worst
difference between two results is less than 2%.

Energy [J] Mesh1 Mesh2
Micro1 3.152 3.135
Micro2 3.192 3.169

Table 5.4: Dissipated energy in the plate with a hole.

To fully understand the behavior of the structure under the applied load
several figures for different load state are presented. Figure 5.13 and Figure
5.14 show the results obtained for Mesh1 and Mesh2, respectively. In the figures,
strain and stress in Y direction and scalar damage are presented for four different
fixed displacement steps.

The figures show how at the beginning of the test (label a) d=0.05mm), the
maximum strain and stress are located at the inner border of the hole. Then,
the non-linear process starts there and, as a consequence, the damage increases
in that zone. Due to constitutive model used, when the damage increases in the
material the stress decreases. As the applied displacement continues increasing,
the structure transfers the load to non damaged zones. Therefore, the zone with
maximum stress moves from the inner border to the central part and the strain
and damage move on as a constitutive response. At the end of the test (label d)
d=0.11mm in the figures), the maximum stress is located in the right external
border of the plate. It is important to mention that during the test, the stress
in the structure never takes values over the limit imposed (see Table 5.3) as can
be observed in Figures 5.13 and 5.14. Finally, the figures show how the model is
capable of localizing all damage in a single strip of finite elements.
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Figure 5.13: Results obtained in the plate with a hole to Mesh1.
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Figure 5.14: Results obtained in the plate with a hole to Mesh2.
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Computational times

To show the advantage of using the NLS proposed, in comparison with a full
classical FE2, the calculation times are presented herein. A full FE2 solves the
microstructural problem for every integration point of the structure, and for
every time step. This procedure does not distinguish between linear range and
non-linear range.

Tables 5.5 and 5.6 present the calculation times required to solve the shown ex-
ample in the same desktop computer, an Intel R© CoreTM i7-2600 CPU @ 3.40GHz
with 8GB of RAM. The tables show the times used by the FE2 and by the
FE2 with the NLS incorporated. The speed ratio column has the relation times
between both methodologies.

Table 5.5 has the total real times necessary to complete the numerical test,
up to d = 0.115mm, for all mesh configurations. The speed ratio variable shows
that the advantage of using the developed strategies increases specially when the
size of the macrostructure’s mesh increases. This is an expected result because,
in larger meshes, the proportion between linear and non-linear elements becomes
also larger.

Model FE2 FE2+NLS Speed ratio
Mesh1-Micro1 1:21:53 0:28:19 2.89
Mesh1-Micro2 8:41:19 3:10:44 2.73
Mesh2-Micro1 11:19:49 2:29:28 4.55
Mesh2-Micro2 76:40:33 18:39:33 4.11

Table 5.5: Computation times requested to solve the plate with a hole [hs:min:seg].

On the other hand, it is important to mention that when a RVE becomes
non-linear, its computational cost is more expensive than when it is linear. This
is because, besides the possible iteration required by the RVE to obtain the
correct non-linear solution, the estimation of the tangent constitutive tensor by
perturbation method requires to solve the RVE six more times (see Subsection
5.2.3).

Consequently, when the number of non-linear elements in a problem increase,
the efficiency of the proposed method decreases. For the analyzed example,
if the simulation is stopped at the maximum admissible force in the structure
(around d=0.08mm in Figure 5.12) which probably the most interesting value
for an engineer, the speed ratio would be better. To prove this, let’s consider
the Mesh2-Micro2 simulation. In this case, when the maximum load is applied
(d=0.08mm) there are only 392 elements in non-linear range, instead of 576
elements for d=0.115mm, and therefore at this load step the speed ratio is of 7
instead of 4.11.

This simulation is also used to validate the effect of the Smart First Step
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procedure. To do so, Table 5.6 shows the computational times consumed for the
first step in each one of the simulations conducted. The times shown prove that
using SFS strategy improves highly the computational efficiency also for small
mesh sizes, as speed ratio variable shows. The table also shows that the number
of RVE solved by the SFS is independent of the mesh used in the microstructural
problem.

Model
without SFS with SFS Speed

ratioTime RVE solved Time RVE solved
Mesh1-Micro1 0:17.9 2880 0:01.0 151 17.9
Mesh1-Micro2 1:48.3 2880 0:06.5 151 16.7
Mesh2-Micro1 2:12.0 23040 0:02.6 303 50.8
Mesh2-Micro2 14:05.9 23040 0:12.5 303 67.7

Table 5.6: First step computation times in the plate with a hole [min:seg].

5.4.2 Industrial Component

In order to validate the efficiency obtained with the NLS when it is applied to the
solution of a real structure, in the following is included the non-linear simulation
of an structural component. In this case, the structure selected for analysis is the
industrial component shown in Figure 5.15. The geometry of this engine stiffener
has been proposed in the framework of M-RECT Project. The stiffener is linked
on one side to the gearbox, and on the other side to the engine. This component
has the objective of improving the connection between engine and gearbox, as
well as changing the dynamic properties of the overall structure.

Figure 5.15: Engine stiffener part.
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Materials

The material that will be used for the stiffener, different from the one used
in M-RECT, is a laminated thermoplastic composite. Therefore, the material
properties vary through the laminate thickness and respect to the laminate’s
reference direction. The composite is made with three orthotropic sheets (see
Figure 5.15). The two external sheets (drawn in blue) have a thickness of 1.5mm
each one and, the core sheet (drawn in gray) has a thickness of 5.5mm.

The external laminae is composed by carbon fibers in an epoxy matrix. The
periodic microstructure of the external sheets can be represented by the RVE
shown in the Figure 5.16. The laminate has a 40% of cylindrical long fiber
volume.

a) Geometry of the microstructure (RVE)

b) Mesh used in the RVE

Figure 5.16: Geometry and mesh of the RVE used in the external sheets.

The matrix is an isotropic material, simulated with an explicit scalar damage
constitutive model with exponential softening (resin epoxy HSC Epikote 4652).
The long fiber is modeled with an elastic constitutive model (Grafil TR30S 3K
carbon fiber). The properties of these simple materials are shown in Table 5.7
[116].

Finally, the FE mesh employed to analyze the RVE is shown in Figure 5.16.
The mesh uses 1464 first order hexahedra finite elements.

On the other hand, the core sheet of the engine stiffener is a TenCate com-
mercial product, Cetex TC1200 PEEK 5HS LAMINATE. The properties of this
material have been obtained from TenCate website [134] and are shown in Table
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Material E [GPa] ν [−] σLimit [MPa] Gf

[
J/m2

]
Epoxy matrix 4.52 0.36 68 780
Carbon fiber 235 0.21 4410 -

Table 5.7: Simple material properties from Perez et al. (2013).

5.8. For the simulation, the core material is modeled using an elastic constitutive
model.

Propertie [GPa] E(0o) E(90o) G(In plane)
TenCate lamina 56.1 55.6 4.5

Table 5.8: TenCate Lamina properties.

Mesh and boundary conditions

Figure 5.17 label a) shows the mesh used to simulate the engine stiffener. The
mesh has 355.302 first order tetrahedra finite elements. The external laminae
requires 108.041 elements while the core lamina has 247.261 elements.

The nodes that will be restricted and the laminate’s reference direction are
shown in Figure 5.17 label b). The nodes with green color are over the face in
contact with the gearbox. These nodes have a zero movement restriction in all
directions. On the other hand, the nodes drawn in yellow are on the face in
contact with the engine. In this case, the restriction on these nodes is a fixed
displacement in X direction. The laminate’s reference direction is the long fiber
longitudinal direction in the external laminae.

Results

The analysis conducted on the first step to evaluate the elastic energy density
available in each integration point allows defining a“possible damage”map of the
structure, as it is shown in Figure 5.18 label a), where f̄ is presented. The blue
zones in the external sheets have an f̄ near to zero, which means that in these
zones the relation between the elastic energy density required by the load, Ψ̄e,
and the available elastic energy density in the material under that load, Ψ̄e

Limit,
is very small. On the other hand, regions with f̄ values near to one can be defined
as critical zones, as in these Ψ̄e is very close to Ψ̄e

Limit. Therefore, these zones
are the regions where non-linear process has more possibilities to start. In this
example, the SFS has required analyzing 6.514 RVEs to determine the threshold
functions of the whole structure. This quantity represents only the 6% of the
elements on the external laminae.
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a) Mesh used in the engine stiffener

b) Nodes restricted and laminate’s reference direction

Figure 5.17: Mesh and boundary conditions used in the engine stiffener.

The numerical simulation has been stopped for a fixed X displacement of
1.36mm. The homogenized stress at the end of the analysis in the laminate’s
reference direction is shown in Figure 5.18 label b). From the figure it is observed
that the maximum absolute stress is a compressive stress and it is located near
to the face in contact with the gearbox. The maximum tensile stress is located
in the same region but in the opposite external sheet.

Figure 5.18 label c) shows the scalar homogenized damage at the end of the
test. The damaged area shown in figure has a relation with the previous results
presented. It is on the maximum compressive stress zone (see label b)) and it is
a critical zone in Figure 5.18 label a).

To understand the internal structure behavior in the damaged zone it is nec-
essary to observe the mechanical performance of the most damaged RVE. In
current simulation the RVE selected is the one with the maximum homogenized
damage, in the engine stiffener mesh (see Figure 5.18 label c)). Figure 5.19 shows
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a) Parameter f̄ at the first step

b) Homogenized stress on the reference direction

c) Scalar homogenized damage at external sheet

Figure 5.18: Results obtained in the engine stiffener.

the results obtained for this RVE. This shows the stress in the RVE’s local X axis
at the beginning (label a) at first step) and at the end (label b) at last step) of
the test. The shear stress in XY and YZ direction is also shown in the figure for
the first step of the analysis. Finally, the matrix scalar damage variable in the
RVE is shown for the last step.

From Figure 5.19 can be observed that X compression stress is the dominant
state in the RVE but, its failure is produced by shear in the matrix material. In
order to account for the high strength threshold of the carbon fiber (see Table
5.7), and to reduce computational cost, this material has been simulated with
an elastic constitutive model. Figure 5.19 shows that this assumption is correct,
as the maximum fiber stress reached in the analysis (label b) at last step) is far
away of its strength threshold as it was expected.
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The Figure 5.19 shows that the external sheet has interlaminar delamination
in the damaged zone (see Figure 5.18 label c)). It is important to stand out that
although the damage in the matrix is located in a small zone its global effect is
meaningful. Figure 5.18 label c) shows that some elements have lost about 75%
of its original load capacity.
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Figure 5.19: Results obtained in the RVE with maximum homogenized damage.

This example has shown that it is possible to solve real problems with a non-
linear homogenization scheme. However, to see the advantages of the proposed
NLS procedure, it is necessary to analyze the computational times required by
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Methods FE2 FE2+NLS Speed ratio
Time [hs:min] 782:46 11:36 67.4

Table 5.9: Computation times requested by the simulation.

the simulation, these are shown in Table 5.9. The FE2 computational time has
been evaluated based on the time required to solve one RVE and the number of
steps and iterations required by the simulation. Table 5.9 shows that a FE2 has
a computational cost that makes unfeasible these sort of simulations. In current
case, the simulation requires more than 32 days and 14 hours to be completed.
The proposed method has a really good computational time, less than 12 hours,
and it is capable of speeding up the process at a speed ratio of 67.4. This implies
a reduction of more than a 98% of the computational time required to conduct
the calculation. In other words, it makes feasible a numerical analysis that was
previously unfeasible.





Chapter 6

Numerical Homogenization.
Concluding remarks

The multiscale homogenization framework proposed in Part II of the disserta-
tion, which is described in detail in Chapter 3, has been proved a competitive
alternative to model three-dimensional composite structures. An extension of
the first-order homogenization approach developed has been proposed to con-
sider high-order effects in the microstructure. The called Enhanced-first-order
homogenization presented in Section 3.4 preserves a classical first-order BVP at
the microstructure scale but also at the macrostructure scale. Therefore, with
this new approach bending effects can be seen in the microscopic scale without
increase the complexity of the macroscopic formulation and its computational
implementation. However, there is no improvements in the macrostructure solu-
tion considering the one obtained with the first-order homogenization approach,
as has been proven in the numerical example present in Section 3.8. The elim-
ination of redundant unknowns implemented, for both cases of homogenization
approaches developed, to solve the microscopic BVP through a cubic RVE has
proven to be an efficient option to satisfy the boundary conditions.

For linear analysis, the comparison presented in the Chapter 4 proves that
the multiscale homogenization has many advantages over other theories, such as
micro models or the SP theory, as it is capable of capturing complex responses of
the material (such as dislocations) with an affordable computational cost. The
homogenization approach can represent accurately effects such as a local damaged
lamina because the internal structure of the composite is physically modeled in
the RVE. The SP theory cannot account automatically for such effects, unless
they are present in the whole finite element, as has been shown in the examples
presented in Sections 4.3.2 and 4.3.4. However, the main advantage of the SP
theory is that it is capable of conducting non-linear analysis without increasing

165
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substantially the computational cost of the simulation.
The comparison of the computational cost presented in Section 4.4 by the

different formulations has shown that, in terms of computational time, the cost
of the first-order homogenization for elastic simulations that solve the RVE only
at the beginning to characterize the material, and the SP theory is comparable.
Besides, this computational cost is substantially lower than the one required
by a micro model or for non-linear simulations conducted with a classical FE2

homogenization framework. However, the main difference between the full FE2

homogenization approach and the micro models is found in the memory required
by the simulation, being the cost of this last one 360 times larger.

A proposed extension to non-linear range of the FE2 computational homog-
enization is proposed and presented in Chapter 5. The developed formulation
uses a non-linear activation function defined in the structural scale that is ob-
tained by solving the microstructure scale. The activation function predicts if
a material point (or integration point) in the structure is in linear or non-linear
range. Therefore, the approach proposed only analyzes the non-linear integra-
tion points by solving the microscopic BVP using the RVE. Section 5.2 shows the
formulation developed to obtain the non-linear strategy proposed in this study.
Besides, a smart first step had to be also developed to obtain in an efficient way
the activation function.

The purpose of the non-linear procedure developed is to solve non-linear prob-
lems, and the first requirement to meet is conserve the dissipated energy through
the scales. Section 5.3 describes in detail how the fracture length concept applied
to one scale continuum mechanics is extended to multiscale homogenization ap-
proach. It is shown that the non-linear formulation presented is energy consistent
and mesh independence at the macroscopic and microscopic scale.

The main objective of the proposed non-linear strategy is to reduce signifi-
cantly the computational times requested by a multi-scale approach. The plate
with a hole example presented in Section 5.4.1 shows how the computational
times are reduced around four times. Besides, the mesh independence and en-
ergy consistency of the proposed methodology is proved again. The example also
shows how the localization phenomena in the structural scale, in this case the
plate with a hole, appears naturally from the microstructure scale. Finally, an
engine stiffener has been solved in Section 5.4.2 to prove the large computational
advantage of the proposed procedure when a real industrial component is simu-
lated. The computational time is less than 12 hours comparing to 32 days and
almost 15 hours required by a full FE2 approach. In addition, the method pre-
dicted the failure zone naturally and the mode failure of the composite’s internal
structure.



Conclusions

In this final chapter the main contributions of this monograph are presented in
terms of achievements and in terms of concluding remarks. Future improvements
and future lines of work based on the expertise gained and on the main difficulties
found while developing this research are suggested at the end.

Achievements

The main aim of the present monograph was to develop a comprehensive consti-
tutive formulation for the analysis of three-dimensional composite structures in
linear and non-linear range. In this context, a phenomenological homogenization
method for composites using carbon nanotubes as reinforcement was developed in
the first stage of this study [111]. Then, with the objective to reach a broader in-
ternal structures composite a multiscale homogenization procedure was proposed.
A first-order homogenization approach and an extension of this, to account high-
order effects in the microstructure, called enhanced-first-order homogenization
were developed [114, 113]. An efficient and consistent methodology was devel-
oped to address non-linear FE2 homogenization analysis for realistic composite
structures [112].

In Part I, the composite constitutive model proposed, based on the mixing
theory, for reinforced composites with carbon nanotubes has been presented.
The developed formulation relates the reinforcement and the matrix components
through an interface material. Therefore, it is possible to consider non-linear
phenomenons by using non-linear constitutive laws to characterize the interface
material.

It has been shown that the elastic properties estimated with the proposed
formulation are in good agreement with experimental data obtained from the
literature. The validation of the composite non-linear response, provided by the
presented constitutive model, has been performed using the experimental data of
two different composites made with MWCNTs randomly distributed.

The developed formulation has been used to predict and compare the mechan-
ical properties of a straight beam subjected to four-point bending with different
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material configurations. In addition, a non-linear analysis has also been made
using the same structure and composites showing the capacity of the proposed
methodology to obtain the complete response of the composite structures behav-
ior.

A visco-elastic analysis of the beam structure used previously has been con-
ducted for a sinusoidal load. For this simulation, a visco-elastic constitutive model
was defined in the matrix and interface components. The results of the analysis
proved the improvement in the capacity of energy dissipation for the composite
with MWCNTs. Finally, the effect of the nanotubes angle in the mechanical
properties of the composite obtained was studied. It has been proven that the
nanotubes distribution has an significant influence in the composite achieved.

In Part II, the proposed FE2 homogenization framework and its extension to
non-linear range have been presented. A first-order homogenization approach and
an enhanced-first-order homogenization, which is able to consider second-order
effects of the macrostructure in the microstructure, have been considered. The
enhanced-first-order homogenization approach has proven to be able to obtain a
more realistic microstructural solution as compared with the first-order approach
when a bending macrostructural state is considered.

The developed formulation has shown to be a competitive alternative to
model three-dimensional composite structures. For linear analysis, the presented
methodology has proved to have many advantages over other theories, as it is
capable of capturing complex responses of the material with an affordable com-
putational cost. However, for non-linear analysis of structures the computational
time of the computational homogenization approach is extremely expensive, al-
though the procedure shows a significant reduction on the memory requirements,
when compared with a micro model.

To outcome these problems, a novel extension for FE2 homogenization ap-
proach to non-linear range is developed. The proposed formulation uses a non-
linear activation function in the macrostructural scale and its task is predict
if a material point on the structure is in linear or non-linear range. Because
of this, the developed strategy only solves the microstructural scale, through a
BVP in the RVE, for the macroscopic non-linear integration points found. In
addition, a smart first step had to be also developed to obtain in an efficient
way this activation function. The fracture length concept has been extended to
multiscale homogenization framework so it has allowed that the developed ap-
proach is energy consistent and mesh independence at the macrostructural and
microstructural scale.

The example of the plate with a hole shows how the localization phenomenon
on the structural appears naturally from the microstructural scale. The pre-
sented examples also show the significantly reduction of the computational times
of the developed non-linear strategy. For the engine stiffener example, the com-
putational time is less than 12 hours comparing to 32 days and almost 15 hours
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required by a classical FE2 approach. In addition, in the examples the method
predicted the failure zone naturally and the mode failure of the internal structure.

Concluding remarks

As result of this monograph a multiscale composite constitutive model to analyze
complex materials has been achieved. With the models developed is possible to
conduct linear and non-linear simulations of structural components. Multiscale
analysis can be phenomenological or computational and depending of the needs
it may be decided for one option or another, or even a mix of them.

In the case of the phenomenological model, the constitutive formulation de-
veloped has been focused in reinforced composite using CNTs, and is based on
the classical mixing theory. The presented model has proven that is possible to
consider CNTs reinforcements in composites through numerical simulations with
a low computational cost. In addition, this phenomenological homogenization
approach can be considered as a constitutive equation manager as the theory
of mixtures is. Therefore, the developed methodology could be easily extended
to other composites which using reinforcements with similar behavior such as
nanofibers or short fibers.

With the developed model the non-linear performance of the composite is
provided by each constitutive model and the load transfer capacity of the interface
region is also affected if the interface is damaged. The formulation has included
this effect affecting the parallel length with the damage level of the interface.
Therefore, if the interface is fully damaged the contribution of the CNTs to the
composite is null.

However, as every phenomenological method, the developed constitutive
model requires some parameters to be calibrated such as the geometric param-
eters and mechanical properties of the interface component. These, together
with the intrinsic problems of the mixing theory, are the main drawbacks of the
proposed procedure.

In the case of the computational homogenization, the presented FE2 frame-
work has proven to be able to simulate structural components in non-linear range
with an affordable computational cost. It has been also shown that when the
macroscopic second-order term is considered in the formulation more realistic
microstructural solutions are achieved.

The decision of following a first-order homogenization approach and then im-
prove it to obtain a enhanced-first-order formulation over using a full second-order
computational approximation was based on the fact that the computational im-
plementation of the high-order formulation reached at the macrostructural level
generally involve elements that use larger number of nodes, degrees of freedom
and boundary conditions.
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The solution of the microstructural problem has been addressed using a Peri-
odic boundary fluctuations condition. It has been shown that the other boundary
conditions overestimate or underestimate the characterization of the microstruc-
ture. However, the periodic boundary conditions have proven to obtain a good
estimate of the homogenized microstructural stiffness. In non-linear range, this
condition also allows an strain localization band within the RVE without spurious
effects.

The softening problem and the strain localization band in the FE2 approach
were addressed in both scales through the fracture length concept. The conven-
tional method used in FEM to approximate the fracture length by some reference
length of the finite element was extended to FE2 homogenization. Therefore,
the specific energy at the microstructural scale is related to the fracture energy
through both reference lengths now. The developed procedure has shown to be a
good and simple computationally way to conserve the energy through the scales
and ensures the objectivity of the FE2 response.

The homogenization approaches developed have been complemented with a
Non Linear Strategy, developed to decide whether the RVE has to be solved
or not in a non-linear problem. The strategy has been applied to the solution
of a real engineering structure proving that with it is possible to reduce the
computational cost of a non-linear simulation by a 98%, when compared with a
FE2 homogenization procedure.

Finally, as concluding remark, it can be said that the different formulations
and numerical procedures presented in this work, together with the simulations
conducted to prove their validity, have shown that it is possible to accomplish
multiscale analyses of engineering composites taking into account their non-linear
behavior. This is an important achievement that contributes to make of this
models, in a near future, the new simulation standard for composite materials.

Future work

In the following is described some of the further work that can be derived from
current research:

- In general, the carbon nanotubes tend to agglomerate, also they have the un-
dulation and misalignment problems during the manufacture of the composite.
The effect of these issues on the final properties and response of the composite
some time is meaningful. Therefore, the introduction of some corrector param-
eters to control these phenomenons would be a significant improvement for the
phenomenological homogenization proposed.

- General extension of the phenomenological homogenization developed in Part I
to consider any kind of short reinforcement and thereby extend its application to
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short fiber reinforced composites and to the new generation of concrete materials
reinforced with steel short fiber.

- Use the developed homogenization framework, specially the non-linear strategy
together to the enhanced-first-order homogenization approach, to solve engi-
neering problems in which the non-linear behavior of complex composites play
an important role.

- Implementation of new constitutive laws for the simulation of simple materials
such as plasticity in the microstructural scale. Therefore, other failure phenom-
ena may be studied in the macrostructural scale.

- Extension of the multiscale homogenization implemented to different element
theories for the simulation of the structure or macroscopic scale, such as shell
and plates formulations.

- In many composites can be observed two or more reinforcement levels. For
example, a composite of long fiber reinforced matrix where the matrix also
is reinforced with nanotubes. It is possible to think in a multiscale/multi-
method approach to analyze this kind of materials. The FE2 homogenization
will simulate an RVE of long fibers embedded in a matrix and, this last material,
will be simulated with the phenomenological homogenization proposed.

- Improve the efficiency of the parallelization process in order to get a fully opti-
mized approach. In the current parallel implementation the calculation process
on the macrostructural scale is subdivided in an efficient dynamic way using
the OpenMP philosophy. The calculation process on the microstructural scale
is addressed in a serial process. A new parallel implementation using a Message
Passing Interface (MPI) method in the macrostructure and then a OpenMP
method in the microstructure will reduce the computational times of the simu-
lations.
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Appendix A

Constitutive models

The formulation developed is Section 4.2 require that all composite components
must fulfill the expression given by (4.1). Therefore, it is possible to use any
constitutive law to describe the mechanical performance of the different compo-
nents. In this appendix are defined the models that are used in this monograph
to characterize the different composite component defined.

A.1 Elastic constitutive model

The specific Helmholtz free energy for this material can be written as

Ψ (ε, θ) = Ψe (ε) + Ψt (θ) =
1

2
ε : C : ε+Ψt (θ) . (A.1)

And the local form of the Clausius-Duhem inequality given by (A.7) can be
expressed in this case as

σ : ε̇− ηθ̇ −
[
∂Ψe

∂ε
: ε̇+

∂Ψt

∂θ
θ̇

]
− 1

θ
q.
∂θ

∂x
≥ 0 (A.2)

or (
σ − ∂Ψe

∂ε

)
: ε̇−

(
η +

∂Ψt

∂θ

)
θ̇ − 1

θ
q.
∂θ

∂x
≥ 0. (A.3)

Therefore, to ensure compliance with the second thermodynamic law

σ
.
=

∂Ψe

∂ε
η

.
= −∂Ψt

∂θ
. (A.4)
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A.2 Elasto-plastic constitutive model

For this material case, the specific Helmholtz free energy, considering uncoupled
elasticity is

Ψ (εe, p, θ) = Ψe (εe) + Ψp (p) + Ψt (θ) =
1

2
εe : C : εe +Ψp (p) + Ψt (θ) , (A.5)

where Ψe is the specific elastic free energy, Ψp is the specific plastic free energy, Ψt

is the specific temperature free energy, p is a internal variable tensor associated
with plastic behavior. The total deformation of the material tensor is split into
its elastic, εe and plastic, εp parts. This is

ε = εe + εp (A.6)

The local form of the Clausius-Duhem inequality for this material can be
expressed as

Ξ = σ : ε̇− ηθ̇ − Ψ̇− 1

θ
q.
∂θ

∂x
≥ 0, (A.7)

and using the above expression it can rewritten as

σ : (ε̇e + ε̇p)− ηθ̇ −
[
∂Ψe

∂εe
: ε̇e +

∂Ψp

∂p
.ṗ+

∂Ψt

∂θ
θ̇

]
− 1

θ
q.
∂θ

∂x
≥ 0 (A.8)

or (
σ − ∂Ψe

∂εe

)
: ε̇e −

(
η +

∂Ψt

∂θ

)
θ̇ + σ : ε̇p − ∂Ψp

∂p
.ṗ− 1

θ
q.
∂θ

∂x
≥ 0. (A.9)

being σ the stress tensor, η the entropy, and q the vector field of heat flow. To
ensure compliance with the second thermodynamic law it must be defined

σ
.
=

∂Ψe

∂εe
η

.
= −∂Ψt

∂θ
P

.
= −∂Ψp

∂p
(A.10)

where P is the thermodynamic tensor associated with the internal variable tensor
p. Finally, the mechanical dissipation for a material point is

Ξm = Ξp = σ : ε̇p + P.ṗ ≥ 0. (A.11)

A.3 Elasto-damage constitutive model

In this case, the expression of the Helmholtz free energy is

Ψ (ε, d, θ) = Ψe (ε, d) + Ψt (θ) = (1− d)Ψe
o (ε) + Ψt (θ)

= (1− d)
1

2
ε : C : ε+Ψt (θ),

(A.12)
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where d is a internal variable associated with the damage. The local form of the
Clausius-Duhem inequality given by (A.7) for this material can be expressed as

σ : ε̇− ηθ̇ −
[
∂Ψe

∂ε
: ε̇+

∂Ψe

∂d
ḋ+

∂Ψt

∂θ
θ̇

]
− 1

θ
q.
∂θ

∂x
≥ 0 (A.13)

or (
σ − ∂Ψe

∂ε

)
: ε̇−

(
η +

∂Ψt

∂θ

)
θ̇ − ∂Ψe

∂d
ḋ− 1

θ
q.
∂θ

∂x
≥ 0. (A.14)

To ensure compliance with the second thermodynamic law it must be defined

σ
.
=

∂Ψe

∂ε
η

.
= −∂Ψt

∂θ
D

.
= −∂Ψe

∂d
, (A.15)

being D the thermodynamic scalar associated with the internal scalar variable d.
And, the mechanical dissipation for a material point is

Ξm = Ξd = D.ḋ ≥ 0. (A.16)

A.4 Visco-elastic constitutive model

The present visco-elastic constitutive model is a generalized Maxwell model [103],
which is an alternative general form to summarize the Kelvin and the Maxwell
simplified model in a single formulation. Therefore, this model tends to the basic
Kelvin model when C1 → ∞ or it transforms into the basic Maxwell model when
C∞ → 0 (see Figure A.1). Then, this formulation is useful and suitable for the
representation of different types of viscous behavior in solids.

Figure A.1: Scheme of the generalized visco-elastic Maxwell model [103].
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The stress state at any time can be expressed as{
σ

∞
(t) = C∞ε(t)

σi(t) = C1(ε(t)− εi(t)) = ξ1ε̇
i(t).

(A.17)

Considering the equilibrium condition the following relation can be written

σ(t) = σi(t) + σ
∞
(t) = C1(ε(t)− εi(t)) + C∞ε(t) = ξ1ε̇

i(t) + C∞ε(t), (A.18)

starting that C0 = C∞ + C1 and operation algebraically in (A.18), the stress
equation is obtained as

σ(t) = C0ε(t) + C1ε
i(t). (A.19)

Taking into account the second expression in (A.17), the differential equation for
the inelastic strain is obtained as

C1ε(t) = C1ε
i(t) + ξ1ε̇

i(t) ⇒ ε(t)

r1
=

εi(t)

r1
+ ε̇i(t) (A.20)

where, the time delay is defined by r1 = ξ1/C1. Applying a strain ε(t) since a
time t ≥ τ0, the solution for εi(t) obtained from previous differential equation is⎧⎪⎨⎪⎩

εi(t) = 0 ∀ t < τ0

εi(t) =

∫ t

−∞

1

r1
e−(t−s)/r1ε(s) ds ∀ t ≥ τ0,

(A.21)

and using this solution into (A.19), the following expression for the stress is
obtained⎧⎪⎨⎪⎩

σ(t) = 0 ∀ t < τ0

σ(t) = C0ε(t)− C1

r1

∫ t

−∞
e−(t−s)/r1ε(s) ds ∀ t ≥ τ0.

(A.22)

Defining now the uniaxial relaxation function G(t), as the inverse of the uniaxial
creep function

G(t) = [J(t)]
−1

= C∞ + C1e
−t/r1 , (A.23)

and, taking into account the inversion of the relaxation function for this particular
model, the uniaxial creep function is

J(t) =
1

C∞

[
1− C1

C0
e
−
(

C∞
r1C0

)
t
]
. (A.24)

The integration of the (A.22) can be made by parts, and therefore the stress can
be written as the following compact form⎧⎪⎨⎪⎩

σ(t) = 0 ∀ t < τ0

σ(t) =

∫ t

−∞
G(t− s)

dε(s)

ds
ds ∀ t ≥ τ0.

(A.25)
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Numerical solution of the integral

To obtain the solution of the visco-elastic problem the convolution integral in
(A.25) must be solved. Considering that the function J(t) or G(t) comply with
the semi-group property, and therefore the functions inside the integral meet the
condition

f(a+ b) = f(a)f(b), (A.26)

the convolution integral can be avoided by carrying out the following time inte-
gral,

I(t) =

∫ t

−∞
f(t− s)g(s) ds = I(t−Δt) +

∫ t

t−Δt

f(t− s)g(s) ds. (A.27)

The integral of the previous time I(t − Δt) is used in each time step and the
integration is carried out only at the current time integral Δt. The exponen-
tial function found in the model, based on spring-damping analogies, lead to
exponential relaxation function that comply with the semi-group property.

Multiaxial extension of the visco-elastic model

The multiaxial extension for the expression of the stress given by (A.22) is written
at t+Δt through the following approximation

σij(t+Δt) = C0
ijkl

[
εkl(t+Δt)− C1

C0r1

∫ t+Δt

−∞
e−(t+Δt−s)/r1εkl(s) ds

]
, (A.28)

where C0
ijkl is the multiaxial extension of C0 and it can be also written as

C0
ijkl = C

∞
ijkl + C1

ijkl, the C
∞
ijkl is the classic elastic constitutive tensor for the

material without viscous effect. The integral solution can be carried out without
a convolution, it is then rewritten as

σij(t+Δt) = C0
ijklεkl(t+Δt)− C0

ijkl

C1

C0r1

∫ t

−∞
e−(t−s)/r1εkl(s) ds

−C0
ijkl

C1

C0r1

∫ t+Δt

t

e−(t+Δt−s)/r1εkl(s) ds,

(A.29)

integrating the third term of the right hand side using the trapezoidal rule and
reordering the expressions obtained, the stress can be written as

σij(t+Δt) = C0
ijklεkl(t+Δt)

[
1− C1

C0r1

Δt

2

]
+ σij(t)e

−(Δt)/r1

−C0
ijklεkl(t)e

−(Δt)/r1

[
1 +

C1

C0r1

Δt

2

]
.

(A.30)
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Computational
implementation

B.1 Microscopic Kinematic relationships

Taking a structured FE mesh on the boundary of the RVE shown in Figure B.1, it
is possible identify easily master and slave nodes. The right part of figure shows
the chosen master nodes (named with a letter) and the slave nodes (named with
a letter and number). The quantity of periodic nodes depends on the FE mesh.
Table B.1 shows master nodes and the slave nodes located on the edges and
surfaces of the RVE shown in Figure B.1. Moreover, Table B.2 shows the eight
periodic vertices nodes in the RVE (see left part of Figure B.1). In these vertices
nodes, also it is possible to identify a master node and seven slave nodes. In
the following, the vertex node “1” will be the master vertex node and the others
seven vertices nodes (“2” ,“3” , ... and “8”) are the slaves nodes.

Master nodes a b c d e f
Slave nodes a1, a2, a3 b1, b2, b3 c1, c2, c3 d1 e1 f1

Table B.1: Master and slave periodic nodes denomination.

Nodes 1 2 3 4 5 6 7 8

Table B.2: Periodic vertices nodes in the RVE.

Considering a generic master node “a” on the axis X and its slave nodes
“a1”, “a2” and “a3” the position vector difference between their in the reference
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Figure B.1: Master and slaves nodes in a general hexagonal RVE.

configuration is

Xa1 −Xa =

⎧⎪⎪⎨
⎪⎪⎩

Xμ

D2/2
−D3/2
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⎪⎪⎩

0
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0

⎫⎪⎪⎬
⎪⎪⎭
= D2N

+
Y

Xa2
−Xa =
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⎪⎪⎩

Xμ

D2/2
D3/2
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⎪⎪⎭

−

⎧⎪⎪⎨
⎪⎪⎩

Xμ

−D2/2
−D3/2

⎫⎪⎪⎬
⎪⎪⎭

=
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⎪⎪⎩

0
D2

D3

⎫⎪⎪⎬
⎪⎪⎭
= D2N

+
Y +D3N

+
Z

Xa3
−Xa =
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⎪⎪⎩

Xμ

−D2/2
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⎫⎪⎪⎬
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−
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0
0
D3

⎫⎪⎪⎬
⎪⎪⎭
= D3N

+
Z

(B.1)

Following the same procedure is possible to obtain the position vector differ-
ence for the other master and slave nodes as

Xb1 −Xb = D1N
+
X , Xb2 −Xb = D1N

+
X +D3N

+
Z , Xb3 −Xb = D3N

+
Z ,

Xc1 −Xc = D1N
+
X , Xc2 −Xc = D1N

+
X +D2N

+
Y , Xc3 −Xc = D2N

+
Y ,

Xd1 −Xd = D3N
+
Z , Xe1 −Xe = D1N

+
X , Xf1 −Xf = D2N

+
Y .

And, for the vertices nodes are

X2 −X1 = D1N
+
X , X3 −X1 = D1N

+
X +D2N

+
Y ,

X4 −X1 = D2N
+
Y , X5 −X1 = D3N

+
Z ,

X6 −X1 = D1N
+
X +D3N

+
Z , X7 −X1 = D1N

+
X +D2N

+
Y +D3N

+
Z ,

X8 −X1 = D2N
+
Y +D3N

+
Z .
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where D1, D2 and D3 are the X, Y and Z direction size of the RVE.

B.1.1 Master-slave kinematic relationships

In the following sections the kinematic master-slave relationships will be obtained
for the first-order and enhanced-first-order homogenization approaches.

First-order approach

Taking into account that Periodic boundary fluctuations condition are considered
in the microscopic BVP and the proposed displacement field given by (3.9) is
possible to write the displacement of the slave node “a1” as a function of the
displacement of the master node “a” as

ūa1
= ūa + (F− I) · (Xa1

−Xa) , (B.2)

and using the above expression

ūa1
= ūa +D2 (F− I) ·N+

Y . (B.3)

To simplify the final expressions is defined: sm1 = D1 (F− I) · N+
X , sm2 =

D2 (F− I) ·N+
Y and sm3 = D3 (F− I) ·N+

Z . Therefore, it can be shown that

ūa1
= ūa + sm2, ūa2

= ūa + sm2 + sm3, ūa3
= ūa + sm3,

ūb1 = ūb + sm1, ūb2 = ūb + sm1 + sm3, ūb3 = ūb + sm3,

ūc1 = ūc + sm1, ūc2 = ūc + sm1 + sm2, ūc3 = ūc + sm2,

ūd1
= ūd + sm3, ūe1 = ūe + sm1, ūf1 = ūf + sm2.

(B.4)

And, for the vertices nodes

ū2 = ū1 + sm1, ū3 = ū1 + sm1 + sm2,

ū4 = ū1 + sm2, ū5 = ū1 + sm3,

ū6 = ū1 + sm1 + sm3, ū7 = ū1 + sm1 + sm2 + sm3,

ū8 = ū1 + sm2 + sm3

(B.5)

Enhanced first-order approach

Considering again that Periodic boundary fluctuations condition are considered
in the microscopic BVP and the proposed displacement field given by (3.36), it
is possible to rewrite the displacement of the slave node “a1” as a function of the
displacement of the master node “a” for the enriched approach as

ūa1 = ūa + (F− I) · (Xa1 −Xa) +
1

2
(Xa1

·G ·Xa1
−Xa ·G ·Xa) (B.6)
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using (B.1), last expression can be rewritten as

ūa1
= ūa +D2 (F− I) ·N+

Y +
(D2)

2

2
N+

Y ·G ·N+
Y +D2Xa ·G ·N+

Y . (B.7)

To simplify the final expressions is defined

smG
1 = (D1)2

2 N+
X ·G·N+

X , smG
2 = (D2)2

2 N+
Y ·G·N+

Y , smG
3 = (D3)2

2 N+
Z ·G·N+

Z ,

smG
12 = D1D2N

+
X ·G·N+

Y , smG
13 = D1D3N

+
X ·G·N+

Z , smG
23 = D2D3N

+
Y ·G·N+

Z ,

SMG
1 = D1N

+
X ·G, SMG

2 = D2N
+
Y ·G, SMG

3 = D3N
+
Z ·G.

Therefore, it can be shown that the slaves nodes are

ūa1
= ūa + sm2 + smG

2 + SMG
2 ·Xa,

ūa2 = ūa + sm2 + sm3 + smG
2 + smG

3 + smG
23 + (SMG

2 + SMG
3 ) ·Xa,

ūa3
= ūa + sm3 + smG

3 + SMG
3 ·Xa,

ūb1 = ūb + sm1 + smG
1 + SMG

1 ·Xb,

ūb2 = ūb + sm1 + sm3 + smG
1 + smG

3 + smG
13 + (SMG

1 + SMG
3 ) ·Xb,

ūb3 = ūb + sm3 + smG
3 + SMG

3 ·Xb,

ūc1 = ūc + sm1 + smG
1 + SMG

1 ·Xc,

ūc2 = ūc + sm1 + sm2 + smG
1 + smG

2 + smG
12 + (SMG

1 + SMG
2 ) ·Xc,

ūc3 = ūc + sm2 + smG
2 + SMG

2 ·Xc,

ūd1 = ūd + sm3 + smG
3 + SMG

3 ·Xd,

ūe1 = ūe + sm1 + smG
1 + SMG

1 ·Xe,

ūf1 = ūf + sm2 + smG
2 + SMG

2 ·Xf .

(B.8)
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And, taking into account that the position vector of the master vertex node “1”
is: X1 = −D1

2 N+
X − D2

2 N+
Y − D3

2 N+
Z , the slaves vertices nodes are

ū2 = ū1 + sm1 − smG
12

2 − smG
13

2 ,

ū3 = ū1 + sm1 + sm2 − smG
13

2 − smG
23

2 ,

ū4 = ū1 + sm2 − smG
12

2 − smG
23

2 ,

ū5 = ū1 + sm3 − smG
13

2 − smG
23

2 ,

ū6 = ū1 + sm1 + sm3 − smG
12

2 − smG
23

2 ,

ū7 = ū1 + sm1 + sm2 + sm3,

ū8 = ū1 + sm2 + smG
3 − smG

12

2 − smG
13

2 .

(B.9)

Figure B.2: Master and slaves nodes on the negative faces of the RVE.

For the enhanced-first-order approach an extra boundary restrictions must be
satisfied. In the Periodic boundary fluctuations considered these extra boundary
conditions are integral boundary constraints on each negative face of the RVE.
The extra boundary constraints described in Section 3.5.2 can be rewritten as

Ayz · ūyz = Hyz, in ∂Ωh
μ|N−

X

,

Axz · ūxz = Hxz, in ∂Ωh
μ|N−

Y

,

Axy · ūxy = Hyz, in ∂Ωh
μ|N−

Z

.

(B.10)
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where,

Hyz = −1

2
D1D2D3(F− I) ·N+

X +
1

8
(D1)

2D2D3G : N+
X � N+

X

+
1

24
(D2)

3D3G : N+
Y � N+

Y +
1

24
D2(D3)

3G : N+
Z � N+

Z ,

Hxz = −1

2
D1D2D3(F− I) ·N+

Y +
1

8
D1(D2)

2D3G : N+
Y � N+

Y

+
1

24
(D1)

3D3G : N+
X � N+

X +
1

24
D1(D3)

3G : N+
Z � N+

Z ,

Hxy = −1

2
D1D2D3(F− I) ·N+

Z +
1

8
D1D2(D3)

2G : N+
Z � N+

Z

+
1

24
(D1)

3D2G : N+
X � N+

X +
1

24
D1(D2)

3G : N+
Y � N+

Y

and,

Ayz =

∫
N−

X

Nyz dAyz, Axz =

∫
N−

Y

Nxz dAxz, Axy =

∫
N−

Z

Nxy dAxy.

Here, Nyz, Nxz and Nxy are the shape functions on the negative face Y Z, XZ
and XY of the RVE, respectively. And, from Figure B.2 it is possible to write
the displacement vectors of the nodes on the different negative faces as

ūyz = {ū1|ū4|ū5|ū8|ūb|ūb3 |ūc|ūc3 |ūe},
ūxz = {ū1|ū2|ū5|ū6|ūa|ūa3

|ūc|ūc1 |ūf},
ūxy = {ū1|ū2|ū3|ū4|ūa|ūa1 |ūb|ūb1 |ūd}.

In the previous displacement vectors of the nodes on the negative faces of the
RVE it is possible identify masters and slaves nodes. Therefore, using (B.8) and
(B.9) the boundary constraints (B.10) above obtained can be written in terms of
master nodes only as

Am
yz · ūm

yz = Hm
yz, in ∂Ωh

μ|N−
X

,

Am
xz · ūm

xz = Hm
xz, in ∂Ωh

μ|N−
Y

,

Am
xy · ūm

xy = Hm
yz, in ∂Ωh

μ|N−
Z

.

(B.11)

where,
ūm
yz = {ū1|ūb|ūc|ūe},

ūm
xz = {ū1|ūa|ūc|ūf},

ūm
xy = {ū1|ūa|ūb|ūd}.
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and, as an example, the term of the matrix Am
yz for the ūb of the master nodes

on the negative face Y Z is

Am
yz|b = Ayz|b +Am

yz|b3 ,

and the contribution to Hm
yz for the ūb3 of the slave nodes on the negative face

Y Z is
Hm

yz|b = Am
yz|b3 · (sm3 + smG

3 + SMG
3 ·Xb).

The master nodes on the different negative faces of the RVE must verify
(B.11). Therefore, with the aim to find redundant unknowns, it is possible to
identify another slave extra node by each negative face which can be obtained as
a function of the other master nodes. Then,

ūs1
yz = −[As1

yz]
−1 ·A(m−1)

yz · ū(m−1)
yz +Hm

yz, in ∂Ωh
μ|N−

X

,

ūs2
xz = −[As2

xz]
−1 ·A(m−1)

xz · ū(m−1)
xz +Hm

xz, in ∂Ωh
μ|N−

Y

,

ūs3
xy = −[As3

xy]
−1 ·A(m−1)

xy · ū(m−1)
xy +Hm

yz, in ∂Ωh
μ|N−

Z

.

(B.12)
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B.2 Elimination of the slave degrees of freedom

In the present section the reduction of the degrees of freedom on the equation
system is shown for the different cases.

B.2.1 Linear implementation

Introducing the concept of master nodes and slave nodes into the equation system,
it can be rewritten as⎧⎨⎩

⎡⎣ Kii Kim Kis

Kmi Kmm Kms

Ksi Ksm Kss

⎤⎦⎧⎨⎩
ūi

ūm

ūs

⎫⎬⎭
⎫⎬⎭ ·

⎧⎨⎩
w̄i

w̄m

w̄s

⎫⎬⎭ = 0 ∀ w̄, (B.13)

where the subscripts i, m, and s refer to the degrees of freedom of the internal
nodes, master nodes and slave nodes, respectively. If the contribution of each
type of degree of freedom is separated⎧⎨⎩

⎡⎣ Kii

Kmi

Ksi

⎤⎦ {ūi}+
⎡⎣ Kim

Kmm

Ksm

⎤⎦ {ūm}

+

⎡⎣ Kis

Kms

Kss

⎤⎦ {ūs}
⎫⎬⎭ ·

⎧⎨⎩
w̄i

w̄m

w̄s

⎫⎬⎭ = 0 ∀ w̄.

(B.14)

Considering that Periodic boundary fluctuations condition are taken in the
microscopic problem, it is possible to write in matrix form the master-slave kine-
matic relationship presented in the Section B.1.1 of the Appendix B.1 as

{ūs} = [Ssm] {ūm}+ {�d} . (B.15)

Introducing (B.15) in (B.14), the following expression is obtained⎧⎨⎩
⎡⎣ Kii

Kmi

Ksi

⎤⎦ {ūi}+
⎡⎣ Kim

Kmm

Ksm

⎤⎦ {ūm}+
⎡⎣ Kis

Kms

Kss

⎤⎦ [Ssm] {ūm}

+

⎡⎣ Kis

Kms

Kss

⎤⎦ {�d}
⎫⎬⎭ ·

⎧⎨⎩
w̄i

w̄m

w̄s

⎫⎬⎭ = 0 ∀ w̄.

(B.16)
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and, it is possible to arrange the above equation as⎧⎨⎩
⎡⎣ Kii

Kmi

Ksi

⎤⎦ {ūi}+
⎡⎣ Kim +KisSsm

Kmm +KmsSsm

Ksm +KssSsm

⎤⎦ {ūm}

+

⎡⎣ Kis

Kms

Kss

⎤⎦ {�d}
⎫⎬⎭ ·

⎧⎨⎩
w̄i

w̄m

w̄s

⎫⎬⎭ = 0 ∀ w̄.

(B.17)

Thanks to the boundary conditions considered for the problem, it can be
shown that the relationships of the displacement fluctuation field between the
boundary master and slave nodes, written in a matrix form are

{w̄s} = [Ssm] {w̄m} , (B.18)

therefore, it is possible to reduce the system of equations shown in (B.17) as{[
Kii

Kmi + ST
smKsi

]
{ūi} +

+

[
Kim +KisSsm

Kmm +KmsSsm + ST
smKsm + ST

smKssSsm

]
{ūm}+

+

[
Kis

Kms + ST
smKss

]
{�d}

}
·
{

w̄i

w̄m

}
= 0 ∀ w̄.

(B.19)

Defining the reduced stiffness matrix, the reduced displacements vector, and
the Right-Hand Side (RHS) vector as

[Kr] =

[
Kii Kim+KisSsm

Kmi+ST
smKsi Kmm+KmsSsm+ST

smKsm+ST
smKssSsm

]
, (B.20)

{ūr} =

{
ūi

ūm

}
and (B.21)

{RHS} = −
{[

Kis

Kms + ST
smKss

]
{�d}

}
, (B.22)

therefore, the starting problem has been reduced to

{[Kr] {ūr} − {RHS}} · {w̄r} = 0 ∀ w̄. (B.23)

And finally, the reduced equation system to be solved is

Kr · ūr = RHS. (B.24)
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Equation (B.24) shows that the degrees of freedom of the slave nodes are not
included in the reduced displacements vector. The reduced equation system has
less degrees of freedom than the original one and it also satisfies automatically
the boundary conditions considered.

B.2.2 Non-linear implementation

Introducing the concept of master nodes and slave nodes into the equation system,
it can be rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
Fi

Fm

Fs

⎫⎪⎪⎬⎪⎪⎭
(k−1)

+

⎡⎢⎢⎣
Kii Kim Kis

Kmi Kmm Kms

Ksi Ksm Kss

⎤⎥⎥⎦
(k−1)⎧⎪⎪⎨⎪⎪⎩

d̄i

d̄m

d̄s

⎫⎪⎪⎬⎪⎪⎭
(k)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

·

⎧⎪⎪⎨⎪⎪⎩
w̄i

w̄m

w̄s

⎫⎪⎪⎬⎪⎪⎭ = 0 ∀ w̄,

(B.25)

where the subscripts i, m, and s refer to the degrees of freedom of the inter-
nal nodes, master nodes and slave nodes, respectively. Considering the update
formula of the Newton-Raphson method for the master degrees of freedom as

{ūm}(k) = {ūm}(k−1) + {d̄m}(k). (B.26)

It is possible to write (B.15) in the current k − th micro problem iteration as

{ūs}(k) = [Ssm]{ūm}(k) + {�d}(t), (B.27)

where the superscript t is associated to the current iteration of the macro problem.
Then, using (B.26) the above expression can be written as

{ūs}(k) = [Ssm]{ūm}(k−1) + {�d}(t) + [Ssm]{d̄m}(k),
= {ūs}(k−1) + {d̄s}(k),

(B.28)

and the following relationships is found

{d̄s}(k) = [Ssm]{d̄m}(k). (B.29)
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Introducing (B.29) in (B.25)⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩

Fi

Fm

Fs

⎫⎪⎪⎬⎪⎪⎭
(k−1)

+

⎡⎢⎢⎣
Kii

Kmi

Ksi

⎤⎥⎥⎦
(k−1) {

d̄i
}(k)

+

⎡⎢⎢⎣
Kim +KisSsm

Kmm +KmsSsm

Ksm +KssSsm

⎤⎥⎥⎦
(k−1) {

d̄m
}(k)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ·

⎧⎪⎪⎨⎪⎪⎩
w̄i

w̄m

w̄s

⎫⎪⎪⎬⎪⎪⎭ = 0 ∀ w̄.

(B.30)

Considering (B.18) in the above expression, it is possible to reduce the system of
equations shown in (B.25) as⎧⎨⎩

{
Fi

Fm + ST
smFs

}(k−1)

+

[
Kii Kim+KisSsm

Kmi+ST
smKsi Kmm+KmsSsm+ST

smKsm+ST
smKssSsm

](k−1){
d̄i

d̄m

}(k)
⎫⎬⎭

·
{

w̄i

w̄m

}
= 0 ∀ w̄,

(B.31)
or in its reduced form using the definitions of the previous section{

−{RHS}(k−1) + [Kr]
(k−1){d̄r}(k)

}
· {w̄r} = 0 ∀ w̄. (B.32)

Therefore, the reduced equation system to be solved is

K(k−1)
r · d̄(k)

r = RHS(k−1). (B.33)

Equation (B.33) shows that the degrees of freedom of the slave nodes are not
included in the displacements vector, even for the non-linear case, and the reduced
equation system also satisfies automatically the boundary conditions.
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B.3 Derivatives of the shape functions

The finite element method uses the shape functions to approximate the contin-
uous displacement field within the finite element domain. In general, the shape
functions are defined in an iso-parametric domain, then

N = N (ξ) . (B.34)

The derivatives of the shape functions are computed in the iso-parametric domain
as

Bξ =
∂N

∂ξ
; Hξ =

∂

∂ξ

(
∂N

∂ξ

)
=

∂Bξ

∂ξ
. (B.35)

Considering that the finite element domain is approximated as

X = N (ξ) · X̄, (B.36)

where X̄ are the coordinate values of the finite element nodes in the element
domain. Then, the Jacobian matrix which transforms the iso-parametric domain
to the finite element domain, is defined as

J =
∂X

∂ξ
=

∂N

∂ξ
· X̄ = Bξ · X̄ (B.37)

and

J−1 =
∂ξ

∂X
=
[
Bξ · X̄

]−1
(B.38)

The shape functions and their derivatives have to be calculated in the finite
element domain

N (X) ;
∂N

∂X
;

∂

∂X

(
∂N

∂X

)
. (B.39)

Therefore, the values on the finite element domain are obtained as following:

Value of the shape functions

N (X) = N (ξ) (B.40)

First derivative of the shape functions

B =
∂N

∂X
=

∂N

∂ξ
· ∂ξ

∂X
= Bξ · J−1 (B.41)
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Second derivative of the shape functions

H =
∂

∂X

(
∂N

∂X

)
=

∂

∂X

(
Bξ · J−1

)
=

∂

∂ξ

(
Bξ · J−1

) · J−1, (B.42)

and considering the above expression

H = Hξ · J−1 · J−1 +Bξ · ∂J
−1

∂ξ
· J−1. (B.43)

Taking intro account that
J · J−1 = I (B.44)

and

∂J

∂ξ
· J−1 + J · ∂J

−1

∂ξ
= 0 ⇐⇒ ∂J−1

∂ξ
= −J−1 · ∂J

∂ξ
· J−1. (B.45)

It is possible to obtain the unknown term as

∂J−1

∂ξ
= −J−1 · X̄ · ∂Bξ

∂ξ
· J−1 = −J−1 · X̄ ·Hξ · J−1. (B.46)

Therefore,
H =

(
Hξ −Bξ · J−1 · X̄ ·Hξ

) · J−1 · J−1. (B.47)
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B.4 Derivation of displacement field, deforma-
tion gradient and gradient of the deforma-
tion gradient tensor

Displacement field

Taking into account the consideration made in Section B.3, the displacement field
in the finite element domain can be approximated as

u = N(ξ) · ū, (B.48)

where ū are the nodal displacement values of the finite element.

Deformation gradient tensor

If the current configuration position of the structure is approximated as

x = u+X, (B.49)

where the deformation gradient tensor is obtained

F = ∇0x =
∂u

∂X
+ I (B.50)

then,
F = B · ū+ I. (B.51)

Gradient of the deformation gradient tensor

G = ∇0F =
∂

∂X
(B · ū) (B.52)

finally,
G = H · ū. (B.53)
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B.5 FEM implementation in PLCd code

The numerical implementation of the homogenization method is carried out
through of a coupled solution scheme in two scales by means of PLCd program.
The PLCd code is an implicit FEM code developed in FORTRAN by Prof. Oller’s
group at CIMNE [118]. The program solves solid mechanics problems which can
either be linear or non-linear and take into account small or large deformation
hypothesis. It has been developed to treat a large variety of composite materials
through the use of different composite theories and can support materials with
general anisotropy.

The basic problem in a general non-linear analysis is to find the state equilib-
rium of a body in function of the applied loads, by using an incremental solution
approach. In the case of a static or quasi-static analysis, in which the time effect
does not affect the equilibrium equations, the time factor is only a convenient
variable which denote different intensities of applied load. In a classical FEM
implementation the non-linear response is effectively carried out using a step-by-
step incremental solution, in which the total applied load is divided into several
number of load steps. Then, in each load step an iterative process must be per-
formed until the solution for the equilibrium equation is achieved. The iterative
process is conducted with a Newton-Raphson procedure. Figure B.3 shows a
flow diagram of the incremental solution and the iterative method implemented
in PLCd code at macroscopic scale.
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Initial material and geometric
properties + boundary conditions

Calculate elastic stiffness:
K = BT : C : B

F
ext
(n) = F

ext
(n−1) + �F

ext
(n)

ū(n) = ū(n−1) + K−1 · �F
ext
(n)

ū(k=1) = ū(n) , F
ext = F

ext
(n)

F(k) = B · ū(k) + I , G(k) = H · ū(k)

Obtain S(k), C
tan

(k) through

CONSTITUTIVE MODEL

Calculate internal force:
F

int
(k) = BT : S(k)

Calculate tangent stiffness:
T(k) = BT : C

tan

(k) : B

�F =
∣∣∣Fext − F

int
(k)

∣∣∣ ≤ tol

END

ū (
k

)
=

ū (
k

−
1)

+
T

−
1

(k
−

1)
·�

F

ū (
n

−
1)

=
ū (

k
)

,
K

=
T

(k
)

Load loop

N-R loop

n = 1, nload

k = 1, kmax

k = k + 1
n = n + 1

n = nload

No

Yes

Figure B.3: PLCd Flow diagram of the FEM implementation at the macro-scale.
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B.5.1 PLCd FE2 implementation

In the PLCd program, the macro-scale problem is solved by a classical FE imple-
mentation and the micro-scale problem is also solved using a FE implementation.
The general framework of the solution consists in solving for each Gauss point of
each FE at the macro-scale, another FE problem defined by the RVE in order to
address the response at the micro-scale that will give the homogenized solution
of the Gauss point at the macro-scale.

However, considering that all materials in the micro-scale have an elastic be-
havior and assuming a perfect contact between the component materials, the
elastic constitutive tensor for the composite which relates the macroscopic ho-
mogenized variables remains constant. Therefore, the expression given by (3.32)
in the first-order homogenization and (3.81) in the enhanced-first-order homog-
enization can be expressed in a similar way as in the classical expression for
homogeneous materials as

S = C : E, (B.54)

whereC is a tensor formed by the elastic constants of the homogenized composite,
called homogenized elastic constitutive tensor and S and E are the macroscopic
or homogenized stress and strain tensors.

Rewriting (B.54) using a Voigt notation Si = CijEj , where i, j = 1 · · · 6 it is
possible to observe that one way to obtain this constitutive tensor of the material
is by applying a macroscopic strain tensor on the RVE in order to compute the
microscopic stress tensor Sμ. Then, the macroscopic stress tensor in the RVE
is calculated for each macroscopic strain tensor applied according to expression
given by (3.27) or (3.74).

Considering a three-dimensional problem, it is necessary six independent
strains cases to obtain the homogenized constitutive tensor, each one accounting
for a different principal direction. The macroscopic strain tensor for each direc-
tion is designed taking a unit value on the direction analyzed and zero for the
others. For example, in the X direction case is

Ej = [1, 0, 0, 0, 0, 0] ⇒ Si =
1

Vμ

∫
Ωμ

Sμ dV ⇒ Ci1 = Si[E1]
−1 = Si. (B.55)

Figure B.4 shows a flow diagram with the implementation in PLCd code to
calculate the homogenized constitutive tensor.
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Initial material and RVE
properties + boundary condition

Calculate elastic stiffness:
k = bT

μ : Cμ : bμ

Using Voigt notation:
Si = CijEj |i;j=1,··· ,6

S
(k)
i = 0 , E

(k)
j = 0 , E

(k)
k = 1

Calculate reduced system:

k(k)
r , rhs(k) ⇒ ū(k)

r = [k(k)
r ]−1 · rhs(k)

ū(k)
s = Ssm · ū(k)

m + �d
(k)

ū(k)
μ = {ū(k)

i |ū(k)
m |ū(k)

s }

F(k)
μ = bμ · ū(k)

μ + I

Obtain S(k)
μ through

CONSTITUTIVE MODEL

Calculate macroscale stress:

S
(k)
i = 1

Vμ

ˆ
Ωμ

S(k)
μ dV

Calculate k-column as: Cik = S
(k)
i

Homogenized constitutive tensor: C

k
=

k
+

1

k-loopk = 1, ..., 6

k = 6

Figure B.4: Flow diagram of the homogenized elastic constitutive tensor calculation in
PLCd code.
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Non-linear FE2 implementation

When a non-linear analysis is addressed by a FE2 numerical homogenization the
non-linear response of the homogenized composite is obtained through the anal-
ysis of the RVE. Therefore, the macroscopic stress tensor is obtained through
the solution of one RVE for each Gauss point at the macro-scale FE mesh. In
Figure B.5 is possible to observe a flow diagram of the FE2 numerical imple-
mentation developed for the FEM code used. The micro-scale problem is solved
using another FE problem. Therefore, when the non-linear behavior begins on
a component material in the RVE it is necessary an iterative process to address
the solution. Figure B.6 shows the flow diagram of the FE implementation at
the micro-scale. The flow diagrams shown that for each non-linear macro-scale
step there are one macro-scale iterative process and several micro-scale iterative
processes for each non-linear RVE.
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Initial material and geometric
properties + boundary conditions
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Figure B.5: PLCd flow diagram of the FE2 implementation.
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Macro input F(k) and G(k)
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Calculate elastic stiffness:
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Figure B.6: PLCd flow diagram of the FE2 implementation at the micro-scale.
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B.5.2 Numerical tangent constitutive tensor

The perturbation method used to obtain the homogenized tangent tensor of the
RVE is described in this section. It follows the same procedure defined in [79].
The tangent constitutive tensor (Ctan) is defined as

Ṡ = C
tan

: Ė. (B.56)

The matrix description given by (B.56) can be written for orthotropic materials
as ⎡⎢⎢⎣

Ṡ1
...

Ṡn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
C

tan

11 · · · C
tan

1n

...
. . .

...

C
tan

n1 · · · C
tan

nn

⎤⎥⎥⎦
⎡⎢⎢⎣

Ė1

...

Ėn

⎤⎥⎥⎦ . (B.57)

The stress vector rate can be obtained as the sum of n stress vectors, which are
the product of the j component of the strain vector rate and the j column of the
tangent tensor. Then

Ṡ ≡
n∑

j=1

δjS =
n∑

j=1

C
tan

j .δEj , (B.58)

where

C
tan

j =
[
C

tan

1j C
tan

2j · · · C
tan

nj

]T
. (B.59)

Equation (B.58) can be used to obtain the j column of the tangent constitutive
tensor as

C
tan

j =
jṠ

Ėj

≡ δjS

δEj
(B.60)

The perturbation method consists in defining n small variations, or perturbations,
of the strain vector δEj , to obtain n stress vectors δjS to obtain the numerical
approach given by (B.60) of the tangent constitutive tensor. Figure B.7 is showing
a flow diagram of the implementation in the PLCd of the perturbation method
described to obtain the macroscopic tangent constitutive tensor.
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Figure B.7: Flow diagram of the perturbation method implemented at PLCd to obtain
the macroscopic tangent constitutive tensor.
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B.5.3 PLCd parallelization and memory improvements

Parallelization tasks

The objective of parallelizing the code is to reduce the computing time in order to
improve the overall performance of the FE2 homogenization method developed.
The parallelization of the FEM code has been done using OpenMP (http://www.
OpenMP.org).

OpenMP is a shared memory application program interface that can be im-
plemented on a broad range of architectures. It consists in a set of compiler di-
rectives, run-time library routines and environment variables that can be added
to sequential FORTRAN code in order to specify how the work is to be accessed
and shared among threads that will execute on different processors or cores and
to order accesses to the shared data as needed.

According to Amdahl’s law, to obtain a maximum speedup or scalability,
in a parallel program, is important parallelize the maximum percentage of the
code. Therefore, the parallelization of a computational code is an unfinished task.
Because of this, during the study many sequential loops in the PLCd have been
parallelized to improve the scalability, such as convergence element loop, writing
database no-converged to converged element loop, assemble sparse stiffness matrix
element loop and assemble residual forces vector element loop.

On the other hand, in a non-linear analysis, the tasks balance between the
cores is a significant variable to maintain the speedup. Then, an efficient par-
allelization strategy in the constitutive element loop (see Figure B.8) has been
addressed with the aim to improve the tasks balance in the threads during a
non-linear analysis. The “OMP SET SCHEDULE(type,chunk)” instruction is
used to configure the parallel strategy. In the default static type strategy the
number of elements is divided into the number of threads and they are assigned
to the threads at the beginning of the loop. Therefore, when a thread receives
many elements with a non-linear behavior the tasks balance is lost. This situa-
tion is more critical in a FE2 implementation because the composite constitutive
model is another micro FE problem. To conserve a good tasks balance a dynamic
type strategy with a chunk of 1 is set. The dynamic strategy assigns the chunk
quantity of elements to the threads at the beginning and then, when a thread
has finished with that task, a new chunk number of elements is assigned to it. In
other works, the tasks assigned to each thread is dynamic.

Memory manager

The advantage of the reduced memory requirement of the multiscale approach
in linear range is lost when the method is extended to non-linear case. The non-
linear behavior of the component materials in the RVE depend of the internal
variables and strain tensor history. Therefore, the internal RVE database for each
Gauss point of the macro-scale mesh should be saved in the memory. To minimize
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the memory requirements for non-linear analyses a management procedure to
assign dynamic memory is implemented in PLCd code. While all component
materials in the RVE of the macro Gauss point are in the elastic range the code
does not reserve memory for the internal RVE database. However, if some micro
Gauss points of the RVE of a macro Gauss point begin with a non-linear behavior
only for these Gauss points is reserved space in memory. With this memory
strategy, the memory requirement for non-linear analyses through a multiscale
homogenization is reduced to the minimum required.



206 Appendix B. Computational implementation

Initial material and geometric
properties + boundary conditions
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Figure B.8: PLCd flow diagram of the parallel element loop implementation at the
macro-scale.
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Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon
nanotubes. Polymer, 45(18):6097–6102, 2004. [Cited in page 26 ]

[72] J. Lubliner. Plasticity theory. Collier Macmillan, New York, NY, 1990.
[Cited in page 16 ]

[73] J. Lubliner, J. Oliver, S. Oller, and E. Oñate. A plastic-damage model for
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