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Abstract. The last decade has been a period of rapid growth for elec-
tromagnetic methods (EM) in geophysics, mostly because of their indus-
trial adoption. In particular, the marine controlled-source electromag-
netic method (CSEM) has become an important technique for reducing
ambiguities in data interpretation in hydrocarbon exploration. In order
to be able to predict the EM signature of a given geological structure,
modelling tools provide us with synthetic results which we can then com-
pare to real data. On the other hand and among the modelling methods
for EM based upon 3D unstructured meshes, the Nédélec Edge Finite
Element Method (EFEM) offers a good trade-off between accuracy and
number of degrees of freedom, i.e. size of the problem. Furthermore, its
divergence-free basis is very well suited for solving Maxwell’s equation.
On top of that, we present the numerical formulation and results of
3D CSEM modelling using the Parallel Edge-based Tool for Geophysi-
cal Electromagnetic Modelling (PETGEM) on unstructured tetrahedral
meshes. We validated our experiments against quasi-analytical results in
canonical models.
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1 Introduction

The electromagnetic methods (EM) are an established tool in geophysics, finding
application in many areas such as hydrocarbon and mineral exploration, reservoir
monitoring, CO2 storage characterization, geothermal reservoir imaging, water
prospecting, and many others. In particular, the marine Controlled-Source Elec-
tromagnetic Method (CSEM) has become an important technique for reducing
ambiguities in data interpretation in hydrocarbon exploration. In the traditional
configuration, the sub-seafloor structure is explored by emitting low frequency
signals from a high-powered electric dipole source towed close to the seafloor.
By studying the received signal, subsurface structures can be detected at scales
of a few tens of meters to depths of several kilometers [2].
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In order to be able to predict the electromagnetic signature of a given ge-
ological body, modelling tools provide us with synthetic results which we can
then compare to real data. These tools require a discretisation method in order
to obtain an accurate solution to the physical governing equations. As principal
discretisation techniques arises the Finite Difference Method (FDM) and Finite
Element Method (FEM). In geophysics electromagnetic modelling, the FDM is
still the most widely employed discretisation scheme and one of the most prac-
tical and highly efficient parallel codes was developed by [1]. However, the main
disadvantage of FDM is his incapacity to work with unstructured grids, which
limits its use in scenarios where irregular and complex geology has a significant
influence or measurements, e.g., a model with strong seabed bathymetry where
an imprecise representation could lead to false interpretations.

On the other hand, the FEM supports completely unstructured tetrahedral
meshes as well as local refinement, which enables the representation of complex
structures and thus improves the solution accuracy. Nevertheless, standard FEM
does not correctly take into account all the physical properties of vector fields.
In fact, there are three main problems when nodal-based FEM is employed to
represent vector fields, namely, occurrence of spurious solutions, inconvenience
of imposing boundary conditions at materials interfaces and the difficulty in
treating conducting and dielectric edges and corner [13].

Finally, Edge Finite Element Method (EFEM) is free of all the previously
mentioned shortcomings because of its uses so-called vector basis functions that
assign degrees of freedom (DOFSs) to the edges. As a consequence, EFEM meets
inherent requirements in geophysical electromagnetic modelling, namely, offers
unstructured meshing support, has the ability to eliminate spurious solutions
and is claimed to yield accurate results because it’s divergence-free basis is well
suited for solving Maxwell’s equations.

On top of that, we have developed a 3D CSEM tool based upon EFEM for
parallel computational architectures: Parallel Edge-based Tool for Geophysical
Electromagnetic Modelling (PETGEM). To overcome problems related to the
spatial singularity at the source, we have employed a secondary field formula-
tion of Maxwell’s equations in their diffusive form, namely, the electric field is
decomposed into primary and secondary field. In order to represent complex geo-
logical bodies, we use unstructured tetrahedral meshes as these are the easiest to
use for very large domains and because offers a good trade-off between accuracy
and number of degrees of freedom, i.e. size of the problem.

PETGEM is a Python code for the scalable solution of EM on tetrahedral
meshes. It supports parallelism on shared-memory platforms. As result, PET-
GEM allow users to specify edge-based variational forms of H(curl) for the sim-
ulation of electromagnetic fields in real 3D CSEM surveys with high accuracy,
reliability and efficiency.

In this paper we present the numerical formulation and results of 3D CSEM
modelling using PETGEM. It’s is divided as follows: Section 2 describes the
numerical formulation of 3D CSEM and its role as exploration tool. Section 3
shortly describes the theory associated to EFEM for CSEM applications. In Sec-
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tion 4 we validated our experiments against quasi-analytical results in canonical
models. Last section is dedicated to conclusions and future work.

2 CSEM problem

Controlled-source Electromagnetic Method (CSEM) is a type of geophysical
strategies to study the subsurface electrical conductivity distribution with an
ample range of applications. CSEM techniques can be divided into two groups
depending on the domain in which collected data is interpreted: time domains
(TDEM) or frequency domains (FDEM). In the case of oil prospecting, marine
CSEM surveys are done predominantly using FDEM [15].

In marine 3D CSEM, also referred as seabed logging [11] or CSEM, a deep-
towed electric dipole transmitter is used to produce a low frequency electromag-
netic signal (primary field) which interacts with the electrically conductive Earth
and induces eddy currents that become sources of a new electromagnetic signal
(secondary field). The two fields, the primary and the secondary one, add up to
a resultant field, which is measured by remote receivers placed on the seabed.
Since the electromagnetic field at low frequencies, for which displacement cur-
rents are negligible, depends mainly on the electric conductivity distribution of
the ground, it is possible to detect thin resistive layers beneath the seabed by
studying the received signal [16]. Operating frequencies of transmitters in CSEM
may range between 0.1 and 10 Hz, and the choice depends on the dimensions
of a model. In most studies, typical frequencies vary from 0.25 to 1 Hz, which
means that for source-receiver offsets of 10-12 km, the penetration depth of the
method can extend to several kilometres below the seabed [12], [16].

The main disadvantage of CSEM is its relatively low resolution compared
to seismic imaging. Therefore, CSEM is often used in conjunction with seismic

surveying as the latter helps to constrain the resistivity model. Figure 1 depicts
the CSEM.
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Fig. 1. Controlled-source Electromagnetic Method (CSEM)
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3D CSEM is nowadays a well-known geophysical prospecting tool in the
offshore environment and a commonplace in industry, examples of that can be
found in [2], [7], [9], [10], [18].

3D CSEM modelling is typically solved in frequency domain, which involves
the numerical solution of Maxwell’s equations in stationary regimes for het-
erogeneous anisotropic electrically conductive domains. As already mentioned,
CSEM surveys generally work with low frequency electromagnetic fields (~1 Hz)
because the electric conductivity of the geological structures is much larger than
their dielectric permittivity. As a consequence, in an unbound domain I', the
electric field can be obtained by solving Maxwell’s equations in their diffusive
form:

VxE= iw,uoH (1)

VxH=1J,+6E (2)

where we have ommited the harmonic time dependence e~™*, with w is the
angular frequency, uo the free space magnetic permeability, J,; the distribution
of source current, 6E the induced current in the conductive Earth and & the
electrical conductivity which is assumed isotropic for simplicity.

In numerical approximations of EM fields there are two main drawbacks. The
first one is the inevitable spatial singularity at the source. The second is the grid
refinement requirements in order to capture the rapid change of the primary
field [3]. In order to mitigate these issues, we used a secondary field approach
where the total electric field E is obtained as:

E=E, +E, (3)

G =05+ A5 (4)

where subscripts p and s represent a primary field and secondary field respec-
tively. For a general layered Earth model, E, can be computed semi-analytically
by using Hankel transform filters. Based on this decomposition and following the
work by [17] the equation system to solve Ej; is:

V xV X E; +iwucE; = —iwpAcE, (5)

where the electrical conductivity o is a function of position that is allowed to
vary in 3D, whereas the vacuum permeability p is set to the free space value pyg.
We set homogeneous Dirichlet boundary conditions, E; = 0 on 0I'. The range
of applicability of this conditions can be determined based on the skin depth of
the electric field [19].



3D-CSEM modelling on unstructured tetrahedral meshes using EFEM 5

3 Edge finite element method

For the computation of E;, we have implemented the Nédélec EFEM which uses
vector basis functions defined on the edges of the corresponding elements. Its vec-
tor basis functions are divergence-free but not curl-free [13]. Thus, EFEM natu-
rally ensures tangential continuity and allows normal discontinuity of E4 at mate-
rial interfaces. In our approach we used unstructured tetrahedral meshes because
of their ability to represent complex geological structures such as bathymetry or
reservoirs as well as the local refinement capability in order to improve the so-
lution accuracy. Figure 2 shows the tetrahedral Nédélec elements (lowest order)
together with their node and edge indexing.
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Fig. 2. Tetrahedral Nédélec edge element with node/edge indexing.

We assign the tangential component of the secondary electric field to the
edges in the mesh. Therefore, all components of the electric field at a point x
located inside a tetrahedral element e can be obtained as follows:

6
B (x) = 3 N0 E (©

where IN¢ are the vector basis functions associated to each edge i and EY
their degrees of freedom. Considering the node and edge indexing in figure 2,
the vector basis functions can be expressed as follows:

N7 = ( f1v>\52 - 52V)‘§1)€? (7)

?

where subscripts i1 and i2 are the first and second nodes linked to the i-th
edge, A\¢ are the linear nodal basis functions, and ¢ is the length of the i-th edge
of the element e.

By substituting expression (6) into (5), and using Galerkin’s approach, the
weak form of the original differential equation becomes:

0 = / N; [V x V x E, — iwpsE, + iwnAGE,)dV 8)
(9]
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The compact discretized form of (8) is obtained after applying the Green’s
theorem:

[ ;k + Z.(’~)(~7(5-Z\4jek] ) {Esk} = _iwﬂA&eRz (9)
where K¢ and M€ are the elemental stiffness and mass matrices which can be
calculated analytically or numerically [13] and R, is the right hand side which
requires numerical integration. Our formulation does not requires calculate the
jacobian matrix because the construction of elemental matrices is performed in
real space. The interested reader will find a rigorous mathematical development
of K¢ and M¢ in [4], [5], [13],
In our experiments, the numerical solution of the system of linear equations
was obtained using a quasi-minimum residual (QMR) method without precon-
ditioner.

4 Results

We validated our EFEM formulation and PETGEM solution against the quasi
analytical results of the canonical model by [7]. PETGEM code is developed as
open-source at Computer Applications in Science & Engineering (CASE) of the
Barcelona Supercomputing Center - Centro Nacional de Supercomputacion. The
interested reader will find a comprehensive description about PETGEM design
and capabilities in [5].

Model described in [7] consists in four-layers: 1000 m thick seawater (3.3
S/m), 1000 m thick sediments (1 S/m), 100 m thick oil (0.01 S/m) and 1400
m thick sediments (1 S/m). Our computational domain is a [0, 3500]> m cube.
Figure 3 shows a 3D view of the unstructured tetrahedral mesh for the halfspace
y > 1750, with the color scale representing the electrical conductivity o for each
layer.
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Fig. 3. Unstructured tetrahedral mesh for y > 1750.

For this model we used a 1 Hz x-directed dipole source as in [4] which is
located at z = 975 m, x = 1750 m and y = 1750 m. The receivers are placed in-
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line to the source position and along its orientation, directly above the seafloor
(z = 990). In order to validate the approach, we have prepared a set of hierarchi-
cally refined meshes in order to verify the convergence of the obtained solution.
For all cases the mesh has been locally refined around the source region.

Figure 4 shows a comparison of the x-component of total electric field be-
tween our EFEM solution and the quasi-analytical solution obtained with the
WHAM tool [14]. In figure 4 it is easy to see the effect of our imperfect absorbing
boundaries which can be mitigated by enlargening the domain with element sizes
increasing logarithmically outwards from the zone of interest. The total electric
field in figure 4 was calculated using a mesh with &~ 12 millions of edges (degrees
of freedom).
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Fig. 4. Total electric field comparative for x-component

Using WHAM as reference solution and excluding those receivers closest to
the boundaries, we have quantified the errors in our resulting electric fields by
means of the L', L? and L/ for our set of meshes, as plotted in figure 5. Degrees
of freedom, mesh spacing and errors for each mesh are depicted in table 1. We
can observe the expected linear convergence in our scheme for all error norms
and mesh sizes.

DOFs h(m) L L? it

Mesh 1 6.17 x 10* 2.0 x 10% 2.8447 x 1077 2.5059 x 10~7 2.4939 x 10~
Mesh 2 4.36 x 10° 1.0 x 10 1.6652 x 1077 1.0365 x 1077 9.0489 x 10~
Mesh 3 3.43 x 10° 5.0 x 10* 1.2859 x 10~7 8.9955 x 1078 7.3234 x 1078
Mesh 4 1.19 x 107 3.3 x 10* 1.5615 x 107® 8.3129 x 1078 7.0474 x 108

Table 1. Summary of results for convergence test
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Fig. 5. Convergence order in L', L? and L'/ norm.

Finally, in table 2 we include some information about the algorithmic effort
using a QMR solver for all cases.

iterations [|I7]

Mesh 1 1776 9.9777 x 10”7
Mesh 2 3468 9.9703 x 10~”
Mesh 3 5512  9.7994 x 10~
Mesh 4 8986 1.8174 x 107

Table 2. Summary of results for a QMR solver

4.1 Conclusions

We have studied the feasibility of 3D CSEM modelling on unstructured tetrahe-
dral meshes using Nédélec EFEM. The formulation is interesting because of its
low degree of freedom count and natural divergence-free property. We have em-
ployed a secondary field formulation to overcome problems related to the spatial
singularity at the source. In our examples, a simple QMR solver was sufficed
to obtain accurate solutions. Our formulation was validated against a canoni-
cal model of an off-shore hydrocarbon reservoir. The PETGEM solution of this
model shows a good agreement with the quasi-analytical results in canonical
models. The numerical results also demonstrate convergence to the reference so-
lution. Thus, we conclude that our modelling scheme is capable of computing
reliable results for 3D CSEM scenarios. Future work will aim at including other
features such as seafloor bathymetry and anisotropy to the scheme as well as
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comparing the behaviour of the PETGEM with other modelling approaches for
CSEM.
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