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1 Recovering the conductances on a 3–dimensional grid

A three dimensional grid is the discretization of any cuboid in R3. Let us take three integers `i ∈ N,
i = 1, 2, 3. We define the three dimensional grid with boundary as the network Γ = (V, c) with vertex set

V = {xijk : i = 0, . . . , `1 + 1, j = 0, . . . , `2 + 1, k = 0, . . . , `3 + 1}

and conductivity function c given by

c(xijk, xpqr) > 0 when


p = i± 1, q = j and r = k,

p = i, q = j ± 1 and r = k,

p = i, q = j and r = k ± 1

for all i = 1, . . . , `1, j = 1, . . . , `2 and k = 1, . . . , `3, c(xij0, xij1) > 0, c(xij`3 , xij`3+1) > 0, c(x0jk, x1jk) > 0,
c(x`1jk, x`1+1jk) > 0, c(xi0k, xi1k) > 0 and c(xi`2k, xi`2+1k) > 0 for all i = 1, . . . , `1, j = 1, . . . , `2 and
k = 1, . . . , `3 and c(x, y) = 0 otherwise. We say that i, j and k are the first, the second and the third
component of the vertex xijk ∈ V , respectively.

We define the following sets of vertices

Aj = {xijk : i = 1, . . . , `1, k = 1, . . . , `3} , j = 0, . . . , `2 + 1,

Rj =
{
xijk : i = 0, `1 + 1, k = 1, . . . , `3

}
∪
{
xijk : i = 1, . . . , `1, k = 0, `3 + 1

}
, j = 1, . . . , `2.

If we consider the set F =
`2⋃
j=1

Aj , then its boundary is given by δ(F ) = A ∪R ∪B, where

A = A0, R =

`2⋃
i=1

Ri and B = A`2+1.

See Figure 1 for an illustration of a three dimensional grid with `1 = `3 = 2 and `2 = 3, and the
associated boundary sets A, B and R1, . . . , R`2 .

Given an index i ∈ {1, . . . , a}, we consider the partial layers of vertices

Di =
{
xijk ∈ F̄ : k = a+ 1− i, . . . , `, j = 1, . . . , p

}
,

Da+1 =
{
xa+1 jk ∈ F̄ : k = 1, . . . , `, j = 1, . . . , p

}
and D0 =

{
x0jk ∈ F̄ : k = a+ 1, . . . , `, j = 1, . . . , p

}
. In

particular, Da+1, D0 ⊂ R.
The recovery of conductances on a 3 dimensional grid is an iterative process, for we are not able to give

explicit formulae for all the conductances at the same time but we can give a recovery algorithm instead.
Hence, we describe the algorithm in steps, each of them requiring the information obtained in the last one.
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To start with, let Nq be an irreducible and symmetric M–matrix of order n = 2(`1`2 + `1`3 + `2`3)
satisfying that is a response matrix. Let λ ≥ 0 be the lowest eigenvalue of Nq and σ ∈ Ω(δ(F )) the eigenvector
associated with λ. In addition, we choose ω ∈ Ω(F̄ ) such that ω = kσ on δ(F ) with 0 < k < 1.

Step 0

In this step we do not recover any conductance. However, we set the necessary tools to obtain them in future
steps. Having fixed two indices r ∈ {1, . . . , p} and s ∈ {1, . . . , `}, we consider the overdetermined partial
Dirichlet–Neumann boundary value problem that consists in finding urs ∈ C(F̄ ) such that

Lq(urs) = 0 on F, urs = εxa+1 rs on A ∪R and
∂urs
∂n

F

= 0 on A. (1)

There exists a large set of vertices of the 3 dimensional grid Γ where urs = 0. We denote this set by

Z(urs) =
{
x ∈ F̄ : urs(x) = 0

}
= supp(urs)

c ⊆ F̄ .

Clearly, A ⊆ Z(urs). The size of Z(urs), however, is much bigger than the size of A.

Proposition 1.1. Fixed j = 1, . . . , `2 and xijk ∈ Rj, it is verified that for any x ∈ As, 0 ≤ s ≤ j, and for
any x ∈ Aj+r \Nr(xij+rk), r = 1, . . . , `2 − j + 1

P̃
q
(x, xijk) = 0.

Moreover, fixed xi0k ∈ A, it is verified that for any s and x ∈ As \Ns−1(xisk), s = 1, . . . , `2 + 1

P̃
q
(x, xi0k) = 0.

In particular, P̃q(As;Rj) = 0 for any j = 1, . . . , `2 and 0 ≤ s ≤ j and P̃q(A;A) = P̃q(A1;A) = I.

Proposition 1.2. The following equality is satisfied:

Z(urs) =
{
xijk ∈ F̄ : i = 1, . . . , a, k = 1, . . . , `, j = 1, . . . , r −max{0, i− a + k − s}, r + max{0, i− a + k − s}, . . . , p

}
.

Step 1

Let us fix the indices r ∈ {1, . . . , p} and s ∈ {1, . . . , `} for this step and let us consider the unique solution
urs ∈ C(F̄ ) of problem (2). We already know that urs = 0 on A ∪ (R r {xa+1 rs}) and u(xa+1 rs) = 1.
Moreover, the values of urs on B are given by the matricial equation

ursB = −Nq(A;B)−1 · Nq(A; xa+1 rs).

Notice that this means that all the values of urs on B are known, for the Dirichlet–to–Robin map is
known. In consequence, urs is known on all the boundary δ(F ). Let us define the vector uB = ursB for the
sake of the simplicity of the notation. In Figure 1(b) we show all the information obtained at the end of this
step.

Step 2

In this step we recover the conductances of all the boundary spikes by means of the boundary spike formula.
However, we first need to determine some values of the modified Green matrix of a 3 dimensional grid.

Lemma 1.3. For all j = 1, . . . , p and k = 1, . . . , `, the value G̃q(xajk, xajk) is always zero.
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Now we are ready to determine the conductances c(x0j , x1j) for all j = 1, . . . , `, using the boundary
spike formula.

Corollary 1.4. The conductances of the edges joining the vertices of Da+1 with the vertices of Da are given
by

c(xa+1 jk, xajk) =
ω(xa+1 jk)

ω(xajk)

(
Nq(xa+1 jk; xa+1 jk)− Nq(xa+1 jk;B) · Nq(A;B)

−1 · Nq(A; xa+1 jk)− λ
)

for all j = 1, . . . , p and k = 1, . . . , `.

Step 3

Again, let us fix the indices r ∈ {1, . . . , p} and s ∈ {1, . . . , `} in this step and let us consider the unique
solution urs ∈ C(F̄ ) of problem (2). Then, we know all the values of urs on Da, as the following result shows.

Lemma 1.5. The values of urs on Da are given by

urs(xajk) =
1

c(xa+1 jk, xajk)

(
λu(xa+1 jk)− Nq(xa+1 jk; xa+1 rs)− Nq(xa+1 jk;B) · uB

)
+

ω(xajk)

ω(xa+1 jk)
urs(xa+1 jk)

for all j = 1, . . . , p and k = 1, . . . , `.

Step 4

Here we find the conductances of all the edges with both ends in Da and such that the third compenent of
their ends is different. However, we state a more general result.

Proposition 1.6. Let i ∈ {0, . . . , a − 1}. For every r = 1, . . . , p and s = 1, . . . , `, let us suppose that we
know the values of urs on Di+2 and Di+1. Also, we suppose that the conductances of all the edges joining
vertices from Di+2 and Di+1 are known. Now we fix the indices r = 1, . . . , p and s = 1, . . . , `. Then, the
conductances c(xi+1 r s+a−i−1, xi+1 r s+a−i) are also known. They are given by

c(xi+1 r s+a−i−1, xi+1 r s+a−i) = −urs(xi+2 r s+a−i−1)

urs(xi+1 r s+a−i)
c(xi+1 r s+a−i−1, xi+2 r s+a−i−1).

When i = a−1, Proposition 1.6 shows that c(xars, xar s+1) is known for all r = 1, . . . , p and s = 1, . . . , `.
See Figure 1(e) in order to see all the known information at the end of this step.

Step 5

In this step we give the conductances of all the edges with both ends in Da that are still unknown. Further-
more, we state a more general result.

Proposition 1.7. Let i ∈ {0, . . . , a − 1}. For every r = 1, . . . , p and s = 1, . . . , `, let us suppose that we
know the values of urs on Di+2 and Di+1. Also, let us assume that we know the conductances of all the
edges joining vertices from Di+2 and Di+1, and the ones of the edges with both ends in Di+1 and such that
the ends have different third component. Now we fix the indices r = 1, . . . , p and s = 1, . . . , `. Then, the
conductances c(xi+1 r+1 s+a−i, xi+1 r s+a−i) are also known. They are given by

c(xi+1 r+1 s+a−i, xi+1 r s+a−i) = −urs(xi+1 r+1 s+a−i+1)

urs(xi+1 r s+a−i)
c(xi+1 r+1 s+a−i, xi+1 r+1 s+a−i+1).

When i = a − 1, Proposition 1.7 shows that c(xa r+1 s+1, xar s+1) is known for all r = 1, . . . , p and
s = 1, . . . , `. See Figure 1(f) in order to see all the information gathered at the end of this step.
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Step 6

Let us define the linear operator ℘ : C(F̄ ) −→ C(F ) given by the values

℘(v)(xijk) = c(xijk, xij k−1)v(xij k−1) + c(xijk, xij k+1)v(xij k+1) + c(xijk, xi j−1 k)v(xi j−1 k)

+ c(xijk, xi j+1 k)v(xi j+1 k) + c(xijk, xi+1 jk)v(xi+1 jk)

for all v ∈ C(F̄ ) and xijk ∈ F . This operator will be useful in this and also in the following steps.
In this step we give the conductances of all the edges joining the vertices from Da and Da−1. See

Figure 1(g) in order to see all the information obtained at the end of this step.

Step 7

In this step we are able to obtain the unknown values of urs on Da−1 for all r = 1, . . . , p and s = 1, . . . , `. In
fact, let us state a more general result.

Proposition 1.8. Let i ∈ {0, . . . , a − 1}. For every r = 1, . . . , p and s = 1, . . . , `, let us suppose that we
know the values of urs on Di+2 and Di+1. Also, let us suppose that we know the conductances of all the
edges joining vertices from Di+2 and Di+1, from Di+1 and Di and the ones of the edges with both ends in
Di+1. Now fix the indices r = 1, . . . , p and s = 1, . . . , `. Then, the values of urs on Di are also known. They
are given by

urs(xijk) =
℘(urs)(xi+1 jk)

c(xi+1 jk, xijk)
− ℘(ω)(xi+1 jk)

ω(xi+1 jk)c(xi+1 jk, xijk)
urs(xi+1 jk)− ω(xijk)

ω(xi+1 jk)
urs(xi+1 jk)

for all j = 1, . . . , ` and k = r + a− i, . . . , `.

Proof. Fixed three indices i ∈ {0, . . . , a − 1}, r = 1, . . . , p and s = 1, . . . , `, let j ∈ {1, . . . , p} and k ∈
{r + a− i, . . . , `}. Observe that ℘(ω)(xi+1 jk) and ℘(urs)(xi+1 jk) are already known. Then,

0 = Lq(urs)(xi+1 jk) =
urs(xi+1 jk)

ω(xi+1 jk)
℘(ω)(xi+1 jk)− ℘(urs)(xi+1 jk)

− c(xi+1 jk, xijk)urs(xijk) +
ω(xijk)

ω(xi+1 jk)
c(xi+1 jk, xijk)urs(xi+1 jk)

and hence urs(xijk) is the unique unknown term of this equality.
In particular, when i = a − 1, Proposition 1.8 shows that urs is known on Da−1 for all r = 1, . . . , p

and s = 1, . . . , `. Observe that we already knew some of the values of urs on Da−1, which are those of the
vertices in Z(urs). Figure 1(h) shows the information obtained until this step.

Step 8 and beyond

We keep repeating the same process to obtain more conductances, that is, we keep applying Proposition 1.6
from Step 4, then Proposition 1.7 from Step 5, ?? from Step 6 and then Proposition 1.8 from Step 7 for
each i = a− 2, . . . , 1. We stop when we have obtained all the conductances between and all the vertices in⋃a

i=1Di, see Figure 1(j).
The final step left is to rotate the grid (see Figure1(k)), that is, to consider the new boundary sets

A =
{
xij `+1 ∈ F̄ : i = 1, . . . , a, j = 1, . . . , p

}
and B =

{
xij0 ∈ F̄ : i = 1, . . . , a, j = 1, . . . , p

}
instead of the

previous ones, and consider now the overdetermined partial Dirichlet–Neumann boundary value problem

Lq(urs) = 0 on F, urs = εx0rs
on A ∪R and

∂urs
∂n

F

= 0 on A. (2)
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for r ∈ {1, . . . , p} and s ∈ {1, . . . , `}. By proceeding analogously to the last steps, we obtain the lacking
conductances of the 3 dimensional grid, see Figure 1(l).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1: The bold items are the ones known at the end of each step for the case r = s = 1.
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