-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by UPCommons. Portal del coneixement obert de la UPC

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 108C (2017) 685-694

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

Disaggregated Computing. An Evaluation of Current
Trends for Datacentres

Hugo Meyer!, José Carlos Sancho!, Josue V. Quiroga!, Ferad Zyulkyarov!,
Damién Rocal, and Mario Nemirovsky?

! Barcelona Supercomputing Center (BSC), Barcelona, Spain
2 ICREA Senior Research Professor at Barcelona Supercomputing Center (BSC), Barcelona, Spain
hugo.meyer@bsc.es, jose.sancho@bsc.es, josue.quiroga@bsc.es, ferad.zyulkyarov@bsc.es,
damian.roca@bsc.es, mario.nemirovsky@bsc.es

Abstract

Next generation data centers will likely be based on the emerging paradigm of disaggregated
function-blocks-as-a-unit departing from the current state of mainboard-as-a-unit. Multiple
functional blocks or bricks such as compute, memory and peripheral will be spread through the
entire system and interconnected together via one or multiple high speed networks. The amount
of memory available will be very large distributed among multiple bricks. This new architecture
brings various benefits that are desirable in today’s data centers such as fine-grained technology
upgrade cycles, fine-grained resource allocation, and access to a larger amount of memory and
accelerators. An analysis of the impact and benefits of memory disaggregation is presented in
this paper. One of the biggest challenges when analyzing these architectures is that memory
accesses should be modeled correctly in order to obtain accurate results. However, modeling
every memory access would generate a high overhead that can make the simulation unfeasible
for real data center applications. A model to represent and analyze memory disaggregation
has been designed and a statistics-based queuing-based full system simulator was developed
to rapidly and accurately analyze applications performance in disaggregated systems. With
a mean error of 10%, simulation results pointed out that the network layers may introduce
overheads that degrade applications’ performance up to 66%. Initial results also suggest that
low memory access bandwidth may degrade up to 20% applications’ performance.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

Keywords: remote memory, disaggregated computing, simulation, optical networks, datacenters

1 Introduction

Next generation servers in data centers may be based on the emerging paradigm of disaggre-
gated function-blocks-as-a-unit[7]. This new paradigm is departing from the current server
architecture where the server mainboard functions as a unit. In a disaggregated architecture,
functional blocks (bricks) such as compute, memory and peripheral will be spread through

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.129

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

https://core.ac.uk/display/87659955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.129&domain=pdf

686

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

the entire system and interconnected together through high speed networks. This paradigm
promises to bring new advantages to data centers such as: fine-grained technology upgrade cy-
cles, fine-grained resource allocation and access to a larger amount of memory and peripherals.

When researching on new architectures, simulation is a must for exploration and evaluation
of new systems and architectures. Simulation of disaggregated memory architectures is complex
because it requires knowing the memory access pattern of the applications. Accurate simulators
that models every application instruction such as Gem5 [1] could be used to simulate disag-
gregated memory systems. However, due to the fact that the typical workload in data centers
usually operates in large databases, an execution may be very time consuming. In addition,
this problem becomes exacerbated as the number of cores used by the application increases.
Analytical models may be used for initial designs and evaluations, but similar to other coarse
grained approaches, the amount of information and detail they provide is limited. In case a
detailed model is constructed, the analytical models often become complex.

Queue theory was used successfully (Zilan et al. [17]) to get the best of both full system
simulators and analytical models when modeling multicore processors. Queue model-based
techniques allow faster analysis while preserving accuracy and offer a flexible granularity scope
to include the most relevant components and techniques that form a modern architecture.
Queue model-based simulators are desired to conduct design space exploration and bottleneck
identification in a reasonable time frame.

This paper presents an extensive analysis of applications performance in systems with disag-
gregated memory architecture. It makes the following contributions: a) Design and implemen-
tation of a multicore queue-based simulator; b) Profiling and characterization of real datacenter
workloads; ¢) Performance analysis and identification of potential bottlenecks; d) Insights for
designing future systems with disaggregated memory.

Experimental results suggest that the accuracy of our simulator (~ 10% of mean error)
is within the acceptable range for driving an exploratory design space analysis. Simulation
results are produced in a very short time (~ 30 secs.). The analysis of the results suggest that
network layers and communication protocols involved in accessing the disaggregated memory
may introduce non-negligible overhead as high as 66%. Aditionally, memory bandwidth can be
another source of bottleneck causing up to 20% performance degradation.

2 Background and Related Work

The concept of disaggregation in computing servers has the intent to break the boundaries of
current compute, memory, network and storage components built in a hard, unique and tighly
connected unit. The Machine project from HPE calls for reinventing the traditional CPU-
centric architecture of nowdays to a new Memory-Driven” Computing with the use of Memristors
[2]. Disaggregation of the memory has an important focus of attention. Memory footprint
of applications is increasing and the interconnection between the disaggregated memory and
processing components[9] adds more latency to the already complicated memory system.

The full-system simulators are good for detailed high-accuracy simulations and validating in-
dividual components, but they are cumbersome in dealing with the initial stages of design space
exploration due to the lengthy simulation time and substantial development effort involved.

To solve the problem of the simulation execution time, Genbrugge et al. developed a tech-
nique called interval simulation [4], which abstracts certain processors components and the
simulation is guided by certain events such as cache misses and branch miss-predictions.

Other works focus on trace-driven simulators [11] [5] in an effort to reduce the execution
time while maintaining accuracy. This technique is based on obtaining an instruction trace from

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

a previous execution of an application. However, managing these traces is not easy especially
considering that applications with large working sets and long execution times can lead to
significant storage problems. As a way to improve the trace-based simulations, Wunderlich et
al. make use of representative reduced traces [15] which are capable of capturing and evaluating
the behavior of the real programs while executing fewer instructions. However, the complexity
of the processor model is the same as with the full system simulators.

Analytical models may be used for initial designs and evaluations, but similar to other coarse-
grained approaches, the amount of information and detail they provide is reduced. In case a
detailed model is constructed, the analytical models often become complex. To improve the
outputs of these models, some researchers have proposed the use of queuing theory to construct
models from superscalar [6] and multithreaded processors [13] to multiprocessor systems [17]
and data center workloads. Queuing modeling techniques allow faster analysis while preserving
accuracy and offer a flexible granularity scope to include the most relevant components and
techniques that form a modern architecture. Queuing model based simulators complement
to more detailed simulators and simplify the design space exploration as well as bottleneck
identification for architects when evaluating how to improve current systems.

3 Disaggregated Architectures: dReDBox Proposal

The dReDBox project [7] focuses on designing a highly modular software-defined architecture
for datacentres, where SoC-based microservers, memory modules and accelerators will be placed
in separated modular trays interconnected through opto-electronic fabric. dReDBox aims to
deliver a full-fledged integrated datacentre-in-a-box prototype to show the benefits of disaggre-
gation in terms of scalability, efficiency, reliability, performance and energy reduction.

Figure 1 introduces the architecture of a disagregated memory system used in the dReDBox
project. In this example, two racks interconnected through a reconfigurable Optical Circuit
Switch (OCS) are shown. Each rack is housing multiple interconnected bricks. Compute bricks
are dedicated to run application code whereas the memory brick is where the main memory
is placed. Compute bricks contain FPGAs that are in charge of remote memory addressing.
Memory requests are captured and the FPGAs use them to create a packet containing the
necessary information to access the specific memory segment required. Once the packet is
generated, an network endpoint (Port) is used to transmit the packet passing through a switch
(in this case an OCS, but could be an electrical switch as well). Once a memory request
arrives to a Memory Brick, it is decoded in the FPGA and the requested memory is returned

Ak Configuration RACEZ

] F _Port Port " Pttt
b Compute | Sl 7o o Memory
! Brick 1 G "port e Por[_G Brick 1
e __k A Port S £y Port A LR

AT
Port \ Port p [RRR Ty

[F F

: Compute [SlTm T o | Memory
[Brick2 (R I Brick 2
L Port rt

~——=-

-~

Configuration

Figure 1: Overview of the disagregated memory architecture in the dReDBox project.

687

688

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

(considering a Load operation).

The packetization process (in the critical path) and the available bandwidth have a major
influence in the memory accesses. Current datacenter applications are written considering high
memory bandwidth and delays in the order of nanoseconds. However, in disaggregated archi-
tectures, the available bandwidth would depend on the number of ports (and port bandwidth)
used to transmit requests to a Memory Brick and delays would highly depend on the trans-
mission protocols used. If a Compute Brick is connected to several Memory bricks (accessing
a huge amount of memory), there may be not enough ports to provide a bandwidth similar to
current memory bandwidths. Taking this facts into account, the rest of the paper focuses on
modeling and analyzing memory access and their influence in applications’ performance when
executing in the dReDBox architecture.

4 Simulation framework for disaggregated processor ar-
chitectures

Queue models are based on queue structures, message passing, and latency accumulation that
allow to model systems. A message is received at the tail of a queue structure, propagated
until it reaches the head of the queue and then a delay is added to emulate the amount of time
that the action for that particular message or component takes. For example, for the case of an
Integer ALU, the queue models the ALU input queue where the message passed represents a
particular arithmetic instruction such (add, substract, equals) and the delay added will depend
on the amount of time the ALU unit typically takes to execute that arithmetic instruction.

The simulation occurs as a collection of discrete events which in our model is represented
as one computational cycle. Execution progress (including instruction generation, propagation,
waiting, execution, and retirement as well as resource usage and branch and memory misses)
is simulated within the queuing model for every event (i.e every cycle). Total performance is
measured as a collection of processed messages per total events, i.e., instructions per cycle.
The event driven queuing model we are proposing uses a modular combination of various queue
structures, dependency tracking, and probabilistic execution flow to simulate particular systems.

The queue-model based methodology (called iQ [12]) emulates processor components by
abstracting the implementation details into modular components composed of queue structures,
delay parameters and probabilistic driven message generation and event control.

CPUssll L2 CB1 0oCs cB2
c S (B e Same
pa [F = Fg -
w :.-. oty T oit
; Al L— B3
a Local Mem a
I/O Bricks Memory Bricks
|
D. | CBY
a

COMPOUND MODULES TYPES
Non pipelined-> servTime = latency ; delay = 0
Pipelined -> servTime = 1 ; delay = latency - 1
-2 Partially pipelined >
7| servTime = non pipelined latency;
delay = latency - servTime

Figure 2: iQ model that represents different components of the dReDBox Infrastructure.

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

To model the behavior of the dReDBox system, we developed a simulation queue-based
model. Figure 2 shows the bricks’ interconnection through an optical switch for simplification
purposes. In order to represent processors, memories and other components using queuing mod-
els, we have implemented a modular queue structure that models different behaviors through
a set of variable configurations (the red a letter indicates the beginning of instruction process-
ing). At the left-bottom side of Figure 2 is depicted the module that is used to represent each
component. The module is formed by a queue, a server and a delay. The queue length and
delays required to process instructions are flexible and configurable. The length parameter is
used to model resource contention and availability. The service time (servTime) represents the
time needed to process an instruction until the following instruction may start to be processed.
The instructions total execution time inside a compound module will be the sum of its own
servTime plus the service time of all previous executed instructions (pipelining). The lower the
service time, the higher level of pipeline and vice versa. The delay (delay) parameter is used to
complement the servTime to ensure the appropriate total delay is added to the instruction.

Instructions are generated according to the statistical information collected during the pro-
filing stage and they are introduced at the entry point of the compute bricks (CB) as shown in
Figure 2. Then, depending on the probability values the instructions will move from one queue
to the other or to the sink (point a in the Figure 2). Instructions move from the different levels
of cache and the local memory. In the case that instructions need to access remote bricks (I/0,
Memory, etc.), they may need to go through the Optical Circuit Switch (OCS).

The model shown in Figure 2 has been used to design and implement a multicore iQ using
the Omnest simulation framework [14]. Dependencies between instructions as well as between
pipeline stages or within computation resources (e.g. ALUs, branch predictors, Out-of-Order
tracking) are also accounted, in order to increase the accuracy of simulations.

5 Analysis and Evaluation

Since memory accesses in disaggregated systems rely on the interconnection network between
compute bricks and memory bricks, here we evaluate how bandwidth and latency would impact
applications’ performance. We analyze and profile real datacenter applications focusing on
Load/Store instructions and memory accesses, since this information is critical to analyze the
impact of disaggregated architectures in applications performance. The profiling information is
used to feed the simulator and evaluate its confidence, by comparing real results with simulation
results. Finally, we present a disaggregated memory access model and an extensive analysis on
how bandwidth and packetization times may affects datacenter applications’ performance.

5.1 Application Profiling and Simulator Validation

Several data center applications were evaluated in the disaggregated memory architecture. Pro-
filing information about their execution were obtained in a 6-core Intel Xeon CPU X5675 run-
ning at 3.07GHz server. Each core has 64KB of L1 cache (32 KB data and 32 KB instruction),
256 KB of L2 cache, and 12 MB of LLC cache shared across cores.

Table 1 summarizes the profiling information for the selected workloads. The workloads
which we used are described below:

e FFMPEG [3]: it is a popular video processing application, able to perform various oper-
ations on a video file such as decode.

689

690 Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

Table 1: Application Profiling Information.

Metrics FFMPEG Video Analytics Network Analyt- NFV
ics
Input Size 2.2 GB 2.2 GB 2 GB 3 GB
Number of | 4/1 1/1 1/1 1/1
Cores/Apps. per
Core
Number of Instruc- 6.30E+412 2.98E+11 44,236,862 47,111,048
tions
Cycles 3.68E+12 1.95E4+11 57,483,561 65,344,290
Branch (%) 7.97 8.64 19 19.39
Branch Miss(%) 4.33 3.39 3.24 2.76
Load (%) 14.69 31.68 29.99 25.04
Store (%) 4.82 15.40 20.58 18.20
L1 Load Miss (%) 4.50 1.68 4.73 4.12
L1 Store Miss (%) 4.87 1.14 2.02 1.57
L2 Load Miss (%) 16.60 45.78 39.84 39.67
L2 Store Miss (%) 29.24 0.005 5.95 4.05
LLC Load Miss (%) 38.53 46.08 7.74 18.31
LLC Store Miss (%) 23.52 23.21 16.52 24.29
Execution Time 1175 1800 27.01 481
(Seconds)

e Video Analytics [8]: this application performs video content analytics and indexing on
video files and streams.

e Network Analytics [16]: the DetectPro is a network analytics application that performs
two critical tasks for network monitoring: Packet parsing and flow statistics generation.

e Network Function Virtualization (NFV) [10]: this application uses a key server for collab-
orative encryption functions. The Key Server is a NFV in charge of generating a session
Key in a collaborative way with an edge server.

Table 2 depicts the results obtained with the multicore version of the iQ simulator. The
real values shown were obtained during the profiling step (Table 1). We validated our simulator
using profiling information obtained in systems where the memory is not disaggregated. By
contrasting the simulated IPC with the real IPC we are able to determine the error percentage
(which ranges between 5.19% and 20.83%). The IPC is used as a performance indicator in all
the experiments, and it helps to analyze the impact of disaggregation in the applications.

Table 2: Simulator Validation. Comparison of Real IPC against Simulated IPC.

Applications | Input Size No. of | Simulation Real TPC Simulated Error(%)
Cores/Apps. | Ex. Time IPC
per Core (Secs.)
FFMPEG 2.2 GB 4/1 29.75 1.71 1.57 -8.29
Video Ana- 2.2 GB 1/1 27.77 1.53 1.44 5.88
lytics App.
Network An- | 2 GB 1/1 20.18 0.77 0.81 5.19
alytics App.
NFV App. 3GB 1/1 31.90 0.72 0.87 20.83

5.2 Memory Access Analysis

Figure 3 presents the model that we used to simulate how memory bricks are accessed from
compute bricks. MNwTimeln represents the time that takes from preparing the request and
transmitting it over the network. MQueueTimeln represents the time that the request spent

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

Memory Bricks

Compute Brick
P MNwTimem

CB

MNwTimeoye

GTH Ports Memory Banks

Figure 3: Model that represents accesses between Compute Bricks and Memory Bricks.

before starting to be serviced by the specific memory bank. MemDelay is the time taken to move
the requested data to the memory bank buffer. MQueueTimeOut represents the time spent in
the output queue of the memory brick. Finally, MNwTimeQut is the time spent in preparing
and transmitting the output packet to the compute brick. In order to model the memory access
time, we have used the described model which is represented in the next equations:

Total MemTime = MemServiceTime + MemDelay (1)

MemServiceTime = MemNwTime + MemQueuelime (2)

MemNwTime = M NwTimeln + M NwTimeOut (3)

MemQueueTime = MQueueTimeln + MQueueTimeOut 4)
MNwTimeln = 2 x pkPrep + NwDelay + PacketSize/NwBandwidth (5)
M NwTimeOut = 2 x pkPrep + NwDelay + PacketSize/NwBandwidth (6)

The MemServiceTime includes the times spent in the network and in the queues.
MNwTimeIn and MNwTimeOut include the time spent in preparing/processing the packet
in the compute and memory brick (2 * pkPrep) and the time spent in transmitting the packet
over the network. MemQueueTime is divided in MQueueTimeln and MQueueTimeOut since
the time in the queues may vary when arriving to the memory brick and when leaving it.

The presented equations allow us to carry out sensibility analysis and design exploration
analysis by modifying different parameters taking into account current datacenters infrastruc-
tures as baselines and compare them with expected values in the disaggregated architectures.

Below we present an example of the model using default values found in todays datacen-
ter machines (no disaggregated memory architectures). We are modeling a Load operation,
and assuming, for simplicity, that cache line matches request size as well (64B). We consider
the next values for the equations: CPU Clock=2.6 Ghz.; MemDelay=20 cycles; pkPrep=10 cy-
cles; MQueueTimeln = MQueueTimeOut=15 cycles; PacketSize=64 Bytes (Cache Line Size);
NwBandwidth=102.4 Gbps (DDR3 bandwidth); and NwDelay=26 cycles (10 ns.).

6
MemNwTime = (2 x 1 2 ———— X 2.6GH
emNwTime = (2 x 10 + 26 + 102.4Gbps x 2.6GHz) .
4
2x1 2 —— X 2.6GH
+(2 x 10 + 6+102.4Gbpsx 6GHz)
MemNwTime = 118cycles (8)
MemServiceTime = 118 + (15 4+ 15) = 148cycles (9)

TotalMemTime = 148 4+ 20 = 168cycles (10)

691

692

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

The NwBandwidth and pkPrep time are used in the queues that represent the network ports
(Figure 3). The service time (servTime) of the queue model (Section 4) represents the pkPrep
time and the delay represents the delay proportional to the bandwidth plus the memory bank
delay (MemDelay).

When applying our analytical model using dReDBox expected values, the main value
changes would be in MemNwTime due to the bandwidth options available in the system and the
pkPrep times. The MemQueueTime can be also affected when several requests from different
compute bricks are going to the same memory brick, and even the same memory bank. Table
3 depicts how the variation in certain values affects the MemService Time and in consequence
the TotalMemTime. We increase the NwBandwidth and the pkPrep. TotalMemTime is pre-
sented in cycles in the inner cells. The highlighted cells have been selected in order to perform
simulations and evaluate the impact in the performance of applications.

Table 3: Projection of TotalMemTime increasing NwBandwidth and pkPrep.

NwBan- 16 32 48 64 80 96 112 128
dwidth

(Gbps)

pkPrep

(cycles)

15 308.40 225.20 197.47 183.60 175.28 169.73 165.77 162.80
50 448.40 365.20 337.47 323.60 315.28 309.73 305.77 302.80
100 648.40 565.20 537.47 523.60 515.28 509.73 505.77 502.80
150 848.40 765.20 737.47 723.60 715.28 709.73 705.77 702.80
200 1048.40 965.20 937.47 923.60 915.28 909.73 905.77 902.80
250 1248.40 1165.20 1137.47 1123.60 1115.28 1109.73 1105.77 1102.80
300 1448.40 1365.20 1337.47 1323.60 1315.28 1309.73 1305.77 1302.80

Table 4 presents results of the 4 applications running each one in 1 core. FFMPEG appli-
cation was executed using 4 cores, while the others were run using 1 core. We analyzed how
NwBandwidth and pkPrep variation affects the IPC. In a dReDBox-like system the main values
that may vary are bandwidth and the packet preparation time.

The analysis presented above takes into account worst case scenarios, so we can see what
can be the lower performance expected. It is important to highlight that the number of network
ports used are going to limit the memory access. For example, if 1% of the total instructions go
to main memory and a memory access takes 84ns (using a single endpoint of 16Gbps, assuming
roundtrip packets of 512 bits and NwDelay of 10ns), then, 100 instructions will be executed in
no less than 84ns, just considering the memory access. Then, it can be important to set more
than one port in order to avoid a high impact in performance.

However, the biggest source of overheads for disaggregated architectures is probably going
to be the pkPrep time. If requests are queued until other packets are processed, and the pkPrep
time is around 300 cycles, the overheads could be as high as 66.88%, as observed with the
FFMPEG application. Then, it is critical to maintain a low pkPrep time, or to have several
modules that can work in parallel to process packets.

6 Conclusions

Taking into account that disaggregated architectures are an emerging paradigm that most
likely will replace current mainboard-as-a-unit systems, in this paper we have presented an
extensive analysis and evaluation of the disaggregated architecture proposed in the dReDBox
project. These architectures will bring major benefits such as fine-grained technology upgrade
cycles, fine-grained resource allocation, and access to a larger amount of memory. However,

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

Table 4: Application results with different NwBandwidth and pkPrep time.

App./Input NwBand- pkPrep (cy- Normal Dat- Simulated Overhead (%)
Size/No of | Width (Gbps) | cles) acenter Sim- | IPC Disaggre-
Cores ulated IPC gated Mem
Real IPC
16 15 1.57/1.71 1.34 14.65
16 15 1.57/1.71 0.80 49.04
16 300 1.57/1.71 0.52 66.88
64 15 1.57/1.71 1.55 1.27
7;12\45]313/3 64 150 157/1.71 0.80 49.04
. 64 300 1.57/1.71 0.58 63.06
128 15 1.57/1.71 1.57 0.00
128 150 1.57/1.71 0.85 45.86
128 300 1.57/1.71 0.64 59.24
16 15 1.44/1.53 1.14 20.83
16 150 1.44/1.53 0.64 55.56
16 300 1.44/1.53 0.52 63.89
. . 64 15 1.44/1.53 1.34 6.94
>’21d2e§B‘>rl‘aly“CS 64 150 1.44/1.53 0.76 47.22
) 64 300 1.44/1.53 0.52 63.89
128 15 1.44/1.53 1.36 5.56
128 150 1.44/1.53 0.74 48.61
128 300 1.44/1.53 0.48 66.67
16 15 0.81/0.77 0.8 1.23
16 150 0.81/0.77 0.67 17.28
16 300 0.81/0.77 0.58 28.40
64 15 0.81/0.77 0.81 0.00
{\I‘éfc“;‘);g Gé*/nla‘ 64 150 0.81/0.77 0.70 13.58
yhies 64 300 0.81/0.77 0.62 23.46
128 15 0.81/0.77 0.81 0.00
128 150 0.81/0.77 0.70 13.58
128 300 0.81/0.77 0.58 28.40
16 15 0.87/0.72 0.83 4.60
16 150 0.87/0.72 0.63 27.59
16 300 0.87/0.72 0.5 42.53
64 15 0.87/0.72 0.87 0.00
NFV /3 GB/1 64 150 0.87/0.72 0.68 21.84
64 300 0.87/0.72 0.57 34.48
128 15 0.87/0.72 0.89 -2.30
128 150 0.87/0.72 0.66 24.14
128 300 0.87/0.72 0.52 40.23

there are many challenges regarding low-latency memory access and applications performance
implications.

Remote memory addressing would require packetization protocols that would be in the
critical path of memory access, and also packets may be transmitted over a network with
different bandwidths. The implication of these variables should be explored in order to foresee
applications performance and to drive software/hardware decisions when building disaggregated
systems. In this work we have introduced the iQQ multicore simulator that in the order of
seconds can accurately predict the performance of applications when migrating them from
current datacenters to disaggregated systems. With a mean error of 10%, simulation results
demonstrate that high packetization times may degrade applications performance up to 66%
and low memory access bandwidths can degrade up to 20% performance.

7 Acknowledgements

This project has received funding from the European Unions Horizon 2020 research and innova-
tion programme under grant agreement No 687632 (dReDBox project) and TIN2015-65316-P
- Computacion de Altas Prestaciones VII.

693

694

Hugo Meyer et al. / Procedia Computer Science 108C (2017) 685-694

References

(1]

(10]

(1]

(12]
(13]

(14]

[17]

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1-7, August 2011.

Rachel Courtland. Can hpe’s” the machine” deliver? IEEE Spectrum, 53(1):34-35, 2016.
FFmpeg Developers. FEFMPEG tool (version beld324). http://ffmpeg.org/, 2016.

D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising the level of abstraction
in architectural simulation. In HPCA - 16 2010 The Sizteenth International Symposium on High-
Performance Computer Architecture, pages 1-12, Jan 2010.

Hugo Meyer, Jose Carlos Sancho, Milica Mrdakovic, Wang Miao and Nicola Calabretta. Optical
packet switching in HPC. An analysis of applications performance. Future Generation Computer
Systems, 2017.

Tejas S Karkhanis and James E Smith. A first-order superscalar processor model. In Computer
Architecture, 2004. Proceedings. 31st Annual International Symposium on, pages 338-349. IEEE,
2004.

K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos, I. Koutsopoulos,
K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo, Q. Chen, M. Nemirovsky, D. Roca,
H. Klos, and T. Berends. Rack-scale disaggregated cloud data centers: The dredbox project vision.
In 2016 Design, Automation Test in Europe Conference Exhibition, pages 690-695, March 2016.
Kinesense. Kinesense kes. http://www.kinesense-vca.com/product/, 2016.

Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K Reinhardt, and
Thomas F Wenisch. Disaggregated memory for expansion and sharing in blade servers. In ACM
SIGARCH Computer Architecture News, volume 37, pages 267-278. ACM, 2009.

Javier Gusano Martnez. Key server that implements the tls session key interface (ski). http:
//github.com/mami-project/KeyServer, 2016.

A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero. Trace-driven simulation of
multithreaded applications. In (IEEE ISPASS) IEEE International Symposium on Performance
Analysis of Systems and Software, pages 87-96, April 2011.

Damian Roca. High level queuing architecture model for high-end processors. In Master Thesis.,
2014.

Thin-Fong Tsuei and Wayne Yamamoto. Queuing simulation model for multiprocessor systems.
Computer, 36(2):58-64, 2003.

Andras Varga and Rudolf Hornig. An overview of the omnet++ simulation environment. In
Proceedings of the 1st International Conference on Simulation Tools and Techniques for Commu-
nications, Networks and Systems & Workshops, Simutools '08, pages 60:1-60:10, ICST, Brussels,
Belgium, Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering).

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. Smarts: Acceler-
ating microarchitecture simulation via rigorous statistical sampling. SIGARCH Comput. Archit.
News, 31(2):84-97, May 2003.

Jose Fernando Zazo, Marco Forconesi, Sergio Lépez-Buedo, Gustavo Sutter, and Javier Aracil.
TNT10G: A high-accuracy 10 gbe traffic player and recorder for multi-terabyte traces. In 2014
International Conference on ReConFigurable Computing and FPGAs, ReConFigl/, Cancun, Mex-
ico, December 8-10, 2014, pages 1-6, 2014.

R. Zilan, J. Verdu, J. Garcia, M. Nemirovsky, R. A. Milito, and M. Valero. An abstraction method-
ology for the evaluation of multi-core multi-threaded architectures. In 2011 IEEE 19th Annual

International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, pages 478—481, July 2011.

