
EPC Enacted: Integration in an Industrial Toolbox
and Use Against a Railway Application

Enrico Mezzetti1, Mikel Fernandez1, Alen Bardizbanyan2

Irune Agirre3, Jaume Abella1, Tullio Vardanega4, Francisco Cazorla5,6
1Barcelona Supercomputing Center, Spain 2Cobham Gaisler, Sweden 3IK4-IKERLAN, Spain

4University of Padova, Italy 5Universitat Politècnica de Catalunya, Spain
6IIIA-CSIC, Spain

Abstract—Measurement-based timing analysis approaches are
increasingly making their way into several industrial domains on
account of their good cost-benefit ratio. The trustworthiness of
those methods, however, suffers from the limitation that their
results are only valid for the particular paths and execution
conditions that the user is able to explore with the available
input vectors. It is generally not possible to guarantee that the
collected measurements are fully representative of the worst-case
timing behaviour.

In the context of measurement-based probabilistic timing
analysis, the Extended Path Coverage (EPC) approach has been
recently proposed as a means to extend the representativeness of
measurement observations, to obtain the same effect of full path
coverage. At the time of its first publication, EPC had not reached
an implementation maturity that could be trialled industrially. In
this work we analyze the practical implications of using EPC with
real-world applications, and discuss the challenges in integrating
it in an industrial-quality toolchain. We show that we were able to
meet EPC requirements and successfully evaluate the technique
on a real Railway application, on top of a commercial toolchain
and full execution stack.

Index Terms—Measurement-based probabilistic timing analy-
sis; Path coverage; Evaluation

I. INTRODUCTION

Critical real-time embedded systems increasingly support
complex functionalities realized in software. Some of the
corresponding software functions need to pass extensive
conformity-assessment procedures, which include verification
in the timing domain. Measurement-Based Timing Analysis
(MBTA) approaches are very often used in that context in a
number of application domains, including automotive, avionics
and aerospace [1]–[3], because of their cost-effectiveness and
low intrusiveness in the development practice. Reportedly,
MBTA is used even for the highest-criticality applications such
as DAL-A in avionics [2].

MBTA aims at computing reliable worst-case execution
time (WCET) bounds on the timing behaviour of the target
program under all possible execution conditions. In practice,
however, the validity of MBTA results is limited to the set of
execution conditions that were actually triggered and observed
at analysis time. In this respect, the degree of path coverage
guaranteed during the analysis campaign critically affects the
soundness of the results. WCET estimates are in fact only
valid for the paths actually observed, and cannot be directly
generalized to the entire program [3], [4]. It is therefore left to

the user to guarantee that the input vectors used for analysis
do exercise the program paths that are relevant to the WCET
computation (and not necessarily to functional verification).

Unfortunately, however, reasoning on path coverage (or
path-representativeness) in timing analysis is very challenging.
As achieving exhaustive coverage by test is not practically
and economically feasible in the general case, measurement-
based methods typically assume that the input vectors needed
to exercise the relevant program paths are somehow made
available by the user. In practice, however, this assumption
turns out to be quite unrealistic: the very concept of relevant
path in WCET computation is unclear and there is no available
metric (alike to MC/DC in functional verification) for it
or heuristic supported by scientific arguments. That is, in
some sense, as fuzzy as the well-known industrial practice
of inflating the highest value observed with "safety margins
for the unknown".

Measurement-Based Probabilistic Timing Analysis
(MBPTA) [5] is a probabilistic variant of MBTA that
allows attaching quantitative confidence to the analysis
results, provided that certain conditions are met. MBPTA
computes probabilistic WCET (pWCET), representing bounds
to the program’s execution time, which can be exceeded
only with a given probability. MBPTA builds on a mixture
of randomization and upper-bounding (worst-case mode
enforced at analysis time) to ensure that most hardware-level
execution time variability is transparently captured in the
analysis observations. As observed in [6]–[8], however, path
representativeness is strictly related to the input vectors used
for the analysis, which remain under direct user control. The
coverage quality of the input vectors needs to be explicitly
taken into account to guarantee that the timing behaviour
observed at analysis time is representative of the system
behaviour during operation (that is, it exhibits all phenomena
of interest to capture).

In the context of MBPTA, the Extended Path Coverage
(EPC) approach [7] offers an elegant solution to address the
path representativeness problem. EPC builds on top of standard
MBPTA and improves the representativeness of its results:
the concept of probabilistic path-independence is exploited
to automatically generate a set of synthetic observations that
complement the set of measurements collected. This extended
set of measurements, when fed to MBPTA, produces the same
effect of full path coverage without requiring any additional© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87659877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

test effort to the user. MBPTA and EPC addresses the timing
behaviour of programs in isolation (i.e., not explicitly factoring
in the effects of preemption or multicore contention).

In this work, we focus on the EPC requirements, from the
standpoint of the applicability of the technique in realistic use
scenarios. In fact, EPC relies on the availability of structural
and timing information, whose provision translates into a set
of requirements at both hardware and software level. While
a prototype implementation and an initial evaluation of EPC
had already been presented in [7], they were performed on a
hardware simulator using synthetic benchmarks. Hence, EPC
requirements still need to be assessed in a real world scenario
and against a representative industrial application. In this work
we aim at filling this gap by discussing the challenges we
addressed in furthering the EPC technique from a tentative
prototype to an industrial-quality utility. We report on our ex-
perience in providing hardware and software support for EPC
on a real hardware platform and an automated infrastructure
comprising a commercial timing analysis tool. We show that
EPC can effectively be brought far past the prototype stage,
and successfully demonstrated it on an industrial application.

The reminder of the paper is organized as follows: Section II
introduces the necessary background on MBPTA and EPC;
Section III discusses EPC requirements and the challenges
we encountered in meeting those requirements in a real
setting; Section IV reports on the evaluation of EPC on both
a controlled experiment and a critical application from the
railway domain. Finally, Section VI draws some conclusions
and suggests future work.

II. BACKGROUND

The MBPTA approach [5] applies the powerful statistical
tools of extreme value theory (EVT) [9], historically used for
forecasting rare events (e.g., floodings), to software programs.
EVT is applied to a set of execution time observations, typ-
ically end-to-end measurements, to derive trustworthy upper-
bounds to the probability that the execution time of a given
program on a given platform may exceed a given (pWCET)
threshold. The representativeness of the MBPTA results is
warranted by ensuring that the timing behaviour of the hard-
ware components at analysis time exactly matches or upper-
bounds [10] their execution time under all possible operation
scenarios [11]. Whenever this is not possible, time random-
ization can be used to probabilistically characterize certain
hardware features and probabilistically upperbound [12] their
impact on the execution time of a program. Time-randomized
caches [13], with random placement and replacement policies,
fall in the latter category and have been shown to facilitate
the application of MBPTA [14]. Random caches also facilitate
incremental software integration [15] as the WCET estimates
derived at the unit level account for the impact of any memory
layout changes that may happen upon integration. This allows
preventing late detection of timing faults and costly corrections
of timing budget [15]. An aspect of representativeness that
MBPTA cannot guarantee by construction is the one related

to the analysis inputs. As any other measurement-based ap-
proach, MBPTA can only provide results for the subset of
paths triggered by the analysis inputs. Hence, being unable to
guarantee that the provided inputs have triggered all relevant
paths in the program diminishes the confidence in the resulting
pWCET estimates.

The Extended Path Coverage (EPC) technique [7] provides
a technical solution to increase the confidence on MBPTA
results by guaranteeing the same degree of representative-
ness as obtainable with full path coverage. In a nutshell,
EPC improves the representativeness of MBPTA results by
synthetically extending the set of measurements that are fed
to EVT and used to compute the pWCET distribution. The
addition of synthetic time traces is done in a way to achieve
the same effects of full path coverage as it would be guaranteed
by exhaustively extending the set of input vectors. Figure 1
outlines the interaction between EPC and MBPTA and the way
EPC operates to increase the representativeness of MPBTA
results.

Measurements collected over
a subset of the program paths

..
.

EPC Synthetic measurements
for unobserved paths

EPC

MBPTA

E
xc

ee
d

an
ce

Pr
ob

ab
ili

ty

Execution time

Distribution valid only
for observed paths

"Fully representative" distribution
for all paths in a program obtained from

both observed AND synthetic observations
EPC

Representativeness gap

pWCET

NO EPC

Fig. 1. EPC in relation to standard MBPTA process and effects on its results.

The main requirement of EPC consists in the availability of
a set of measurements for each basic block (hence requiring
basic block coverage1), irrespective of the path leading to it.
In fact, to derive synthetic measurements, EPC focuses at the
level of basic blocks and exploits the probabilistic nature of
time-randomized hardware [13], [17] to derive probabilistic
path-independent execution times for each basic blocks. Each
basic block is likely to exhibit different timing behaviour
depending on the execution history, that is the specific path
leading to it. In this work we focus on time-randomized hard-
ware architectures [13], where time-randomized caches are the
main sources of (intra-core) variability on the execution time
of a basic block. Consequently, EPC makes the execution times
of basic blocks path-independent simply by probabilistically
summing up a penalty or padding each observed execution
time, to compensate for any positive cache effect arising from
a specific path provenance. To this end, EPC considers the
contribution of each memory access to the execution time of
a basic block and formalizes the notion of Access-Time Profile
(ATP) for each memory access as follows:

ATP (@A, φ) =

〈
Lhit Lmiss

Phit(@A, φ) Pmiss(@A, φ)

〉
(1)

Equation 1 simply models the fact that with time-randomized
caches the latency (either Lhit or Lmiss) incurred by an
access to a memory location @A along a path φ follows the

1Basic block coverage represents a common coverage requirement in DO-
178C already from DAL C [16].

probability distribution of that access to be a cache hit or
a cache miss. Along each path, the ATP is determined by
whether the intermediate accesses between the current and
the previous access to @A hit or miss in cache. Block exe-
cution times are made path-independent by adding a penalty
(Lpad = Lmiss−hit). Lpad compensates for potential cache
hits that @A can benefit along just a subset of the paths leading
to it. This helps derive a padded ATP+(@A) that tightly over-
approximates the theoretical worst-case ATP (@A) along any
path in the program, as graphically explained in Figure 2.

The ATP+(@A) is obtained by adding a (scalar) padding
with a given probability to memory accesses in ATP (@A, φ)
according to the following definition.

ATP(@A,φ) ATP+(@A)ATP(@A)

0

1

Cumulative ATP

LmissLhit Lmiss+pad

Phit (@A,φ)

Phit (@A)

P+
hit(@A)

P+
hit(@A)+ P+

miss(@A)

0

1

ATP

LmissLhit Lmiss+pad

P m
is

s
(@

A
)

P h
it

 (
@

A
,φ
)

P h
it

 (
@

A
)

P
+ h

it
(@

A
)

P
+ m

is
s
(@

A
)

P
+ m

is
s+

p
a
d
 (
@

A
)

P m
is

s
(@

A
,φ
)

Fig. 2. Relation among ATP (@A, φ), ATP+(@A) and ATP (@A).

ATP
+
(@A) = ATP (@A, φ) ⊗

〈
0 Lpad

1 − Ppad(@A, φ) Ppad(@A, φ)

〉
=

〈
Lhit Lmiss

Phit(@A, φ) Pmiss(@A, φ)

〉
⊗〈

0 Lpad

1 − Ppad(@A, φ) Ppad(@A, φ)

〉
=

〈
Lhit Lmiss Lmiss + Lpad

P+
hit

(@A) P+
miss

(@A) P+
miss+pad

(@A)

〉
(2)

To enforce this modified distribution, a padding Lpad is added
to each memory access @A along a path φ, according to
the probability Ppad, as shown in Equation 2. As formally
described in [7], the only constraint is that:

Ppad(@A, φ) ≥ 1 −
Phit(@A)

Phit(@A, φ)
(3)

where Phit(@A) is a lower bound to the hit probability of
@A along any possible path and Phit(@A, φ) is the exact
probability of @A to be a hit along path φ. To compute
Phit(@A) and Phit(@A, φ) we exploit the concepts of reuse
distance and unique accesses.

Definition (Reuse distance - rd). The rd of @A on a path φ is
defined as the number of memory blocks mapped to the same
set of @A accessed between @A and the previous access to the
memory block containing @A. The worst-case reuse distance
(along any path) for access @A is denoted by rd(@A).

Definition (Unique accesses - un). With unique accesses we
refer to the number of distinct memory blocks mapped to the

same set of @A accessed in between @A and the previous
access to the memory block of @A on a path φ.

Using reuse distance and unique accesses we compute
Phit(@A) and Phit(@A, φ):

Phit(@A) = 1− Pmiss(@A) (4)

where

Pmiss(@A) =

{
1−

(
w−1
w

)rd(@A)
if rd(@A) < w

1 otherwise
(5)

and
Phit(@A, φ) ≤ uPhit(@A, φ) (6)

uPhit(@A, φ) =

{
1 if un(@A, φ) < w(
w−1
w

)un(@A,φ)−w+1
otherwise

(7)

where w is the number of ways in a set-associative cache.
In our implementation, we over-approximate both Phit(@A)

and Phit(@A, φ) by computing rd and un on a restricted scope
(i.e., not considering all execution history backwards). This
has been empirically proved to guarantee sufficiently precise
results in most cases, at low computational costs.

The values computed for Phit(@A) and uPhit(@A, φ)
can be used in Equation 3 to compute a sound value for
Ppad(@A, φ), as shown in Equation 8.

Ppad(@A, φ) =

{
0 if uPhit(@A, φ) = 0

1 −
Phit(@A)

uPhit(@A, φ)
otherwise

(8)

To obtain path-independent observations for a basic block
bb we therefore augment each collected measurement Obs by
adding a padding for each memory access and path, according
to the computed Ppad(@A, φ). Therefore for all accesses @A
along path φ in bb:

Obs+(bb) +=

{
Obs(bb, φ) + Lpad if rand() ≤ Ppad(@A, φ)

Obs(bb, φ) otherwise

These path-independent figures are then combined together
to form synthetic end-to-end time traces for each non-observed
path φ in the program. The use of path-independent basic
block execution times ensures that the constructed collection
of values for φ is a valid upper-bound of any collection of real
measurements. It is worth recalling that (probabilistic) path-
independence is a necessary condition as we cannot simply
sum the execution time observations over basic blocks (even
maxima values) to obtain the execution time of unobserved
paths. The main reason is that observations are only relative
to a particular path traversal and its particular cache-level and
core-level timing dependencies2.

From a procedural standpoint, EPC operates on MBPTA
inputs and therefore it does not require any modification to the
way MBPTA uses EVT in the analysis process. However, in
order to generate an extended set of measurements, EPC relies
on the availability of basic-block level timing information and

2Timing anomalies, which we do not consider here as they do not appear in
our reference platform, would make this naive approach even more unsound.

basic knowledge on the structure of the program, which are
not part of the standard MBPTA process. In fact, MBPTA
operates as a black-box process where all representativeness
issues are left to the user. The collection of the structural and
timing information is necessary for EPC to: (i) understand
basic block boundaries; (ii) reconstruct memory accesses to
compute the reuse distance and unique accesses; and, (iii)
find unobserved (but still feasible) paths. Whereas the required
information may be simple to collect in a synthetic and
controlled environment [7], it poses some requirements when
moving to realistic setting and applications. In the following
section, we discuss the challenges we had to face when trying
to meet EPC requirements in an industrial setting, and analyze
a representative industrial application.

III. IMPROVING REPRESENTATIVENESS

EPC strengthens the quality of MBPTA results by extending
the analysis inputs to achieve the same degree of repre-
sentativeness of full path coverage. Whereas MBPTA inputs
typically consist in coarse-grained timing traces, EPC relies on
additional information as well as adequate mechanisms for this
information to be efficiently collected. The entailed complexity
became evident when we considered to move EPC from an
early-stage prototype running on a simulator, to an industrial-
quality toolchain executing on top of a real platform. In the
following we report on our experience in implementing EPC
as a plug-in of the RVS3 analysis suite and targeting a time-
randomized FPGA design [13], based on the LEON3 family of
processors4. To this extent we first single out the peculiarities
and requirements of EPC process when compared to standard
MBPTA and then provide a technical discussion on how those
requirements were effectively met.

A. EPC process requirements

When considering the overall timing analysis process,
MBPTA can be unfolded into four main phases: (i) preparation
of the target program (ii) collection of traces; (iii) processing
of traces; and (iv) final computation. Table I itemizes the EPC
requirements and classifies them according to the part of the
MBPTA process that they pertain to, as well as to the type
of hardware (HW) or software (SW) support that they call
for. In the remainder of this section, we first discuss each of
these requirements and then illustrate how we met them in our
implementation.The preliminary preparation phase is responsible for set-
ting up instrumentation for trace collection and building the
executable. Instrumentation can be performed with hardware
or software means. The former is in general transparent so
that it causes no overhead on program execution time, but
requires specialized hardware. The latter, which we use in
our framework, represents the most generic and portable
solution. As a known drawback, software instrumentation
affects timing (i.e., probe effect). Deploying the instrumented
code could penalize performance, while removing it may be

3Rapita System Ltd., https://www.rapitasystems.com.
4Cobham Gaisler, LEON3 IP Core, http://www.gaisler.com/index.php/

products/processors/leon3.

TABLE I
EPC REQUIREMENTS BROKEN DOWN INTO HARDWARE AND SOFTWARE

Id Phase Type Requirement
R1 Preparation SW Instrumentation at basic block level
R2 Collection HW Tracing throughput adequate to fine-grained soft-

ware instrumentation
R3 Collection HW Collection of memory accesses information
R4 Collection HW Collection of information on random seeds for

memory placement
R5 Processing SW Augmented empirical execution time profiles
R6 Processing SW Generation of synthetic observations

difficult to justify against stringent industrial qualification and
certification standards. Recent work [18] shows how to exploit
nop operations to substitute instrumentation instructions in a
way that simplifies qualification/certification and at the same
time reduces the impact of instrumentation. To support EPC,
instrumentation is necessarily applied at basic block level:
automatic support to instrument and build an instrumented
version of the target executable is required (R1).

The collection phase includes gathering timing traces for
each input vector (and thus for each path). The set of input
vectors should provide full basic block coverage. Note that
basic block coverage is less demanding than the most com-
mon coverage metrics widely adopted in functional testing.
Basic block level instrumentation, however, requires largest
throughput to be supported by the trace infrastructure (R2).
Moreover, the collection phase is where all the data required by
the analysis is gathered. With EPC the set of data is not limited
to timing traces, but also includes structural information on the
set of data and instruction addresses within each basic block as
it is required to properly compute EPC probabilistic padding.
In fact both reuse distance (rd) and number of unique accesses
(un), as defined in Section II, are determined by combining in-
formation on memory accesses and how they map to the cache,
which in turns depends on cache placement and replacement
functions. Although this kind of information could be statically
computed from, for example, information derived from the
compiler, we decided to derive it from a dynamic analysis
step. It consists in the collection of address and instruction
traces with an additional run for each observed path, solely
seeking structural information, without considering timing.
In contrast with timing traces, where several runs of each
path are required to characterize their timing behaviour, one
single run is sufficient to collect an address trace with all the
required structural information. As a result we need to derive
and store information on both cache mapping and memory
accesses. In time-randomized cache, cache mapping depends
on the current seed used to determine random placement and
replacement functions: while the effect of random replacement
is transparently captured by the timing traces, the seed used
to determine the random placement function is crucial in the
computation of rd and un. We therefore need efficient means
to collect memory accesses for data and instruction (R3) and
information on the random placement function (R4).

In the processing phase, the collected information is un-

Fig. 3. Schematic of the Ethernet Tracing feature and steps to output traces.

derstood and organized in a way that allows later use in the
analysis, which amounts to building an augmented control
flow graph (CFG) representation of the target program (R5).
As specific steps in EPC, the collected structural and timing
information is exploited to compute the probabilistic padding
as well as to find the set of unobserved paths. Automated and
computationally efficient tool support is needed to generate
the set of complementary synthetic measurements (R6).

EPC does not pose any requirement on the final computa-
tion phase. In it, we proceed exactly as in standard MBPTA,
with the only difference that, owing to the extended set of
inputs that we provide, the results are representative of a larger
(ideally exhaustive) set of paths. Real and synthetic traces
are fed to the EVT tool box and a worst-case distribution is
computed and used to derive pWCET figures for the thresholds
of interest.

B. Hardware-level requirements

The hardware platform to which EPC can be applied must
provide a number of features. Some of those features are
transitively derived from MBPTA prerequisites while other are
specific to EPC. In particular, EPC needs the processor to be
made MBPTA-compliant using random modulo placement and
random replacement for cache memories [13]. Such hardware
features, along with other modifications to attain MBPTA com-
pliance, have been implemented in an FPGA prototype [19]
combining components from LEON3 and LEON4 architec-
tures developed by Cobham Gaisler, and extended to match the
timing properties required by MBPTA and inherited by EPC.
To further support the additional requirements set by EPC,
the hardware platform has been augmented with a number of
tracing and interfacing capabilities.

R2 - Tracing throughput adequate to fine-grained soft-
ware instrumentation: The tracing support originally available
on the board consisted on the capability of outputting pairs
identifying instrumentation points and timestamps through
the GPIO pins. However, this showed severe drawbacks: it
only allowed reading traces at a very low speed; limited
the instrumentation points to 256 (only 8 bits available per
core); and caused stalls in the execution when instrumentation
instructions were over-saturating the output.

To overcome these limitations, a new tracing solution has
been implemented on top of a decoupled Ethernet tracing

scheme, as shown in Figure 3. First, instruction and data
addresses (if any), opcode and timestamp of all instructions are
output through the debug interface (DSU) not to interfere with
program execution. A dedicated memory controller stores only
the instruction address and timestamp of timing instrumenta-
tion instructions in a private external DDR2 SDRAM region,
thus decoupling trace collection from trace outputting. Then,
a dedicated trace controller reads asynchronously those traces
and outputs them through a dedicated high-speed Ethernet
port. Since the Ethernet port works at high speed, its pins are
not devoted to specific cores and thus, an arbitrary number
of bits can be used to encode instrumentation points. This
tracing mechanism allowed producing all timing traces without
interfering with the execution of the application.

R3 - Collection of information on memory accesses: The
very same hardware feature for timing trace collection is used
for address trace collection. The mechanism is analogous but,
instead of storing in SDRAM information for instrumentation
instructions, it is configured to record all data sent through
the DSU for all instructions. Since the amount of information
to be collected is much higher than in the case of timing
traces, trace dumping to the host may not keep pace with
the execution of the program being traced. However, since
address traces are collected independently from the timing
information, whenever the tracing feature cannot keep pace
with the execution of the program, execution is stalled to not
lose any information.

R4 - Collection of information on random seeds for mem-
ory placement: The particular seed used for random modulo
placement in caches can be intercepted by software means.
We identified two ways to collect those seeds: either recording
them whenever they are set or obtaining them from hardware.
The implied software process is only slightly different. Since
software layers may not allow connecting the module setting
the seed with the tracing features in place, we collect the
seeds by reading the specific register where they are mapped.
We use the GRMON monitor to access the specific memory
location where the seed is stored right before the execution
of the program and dump it into a file. While this interface is
slow, it only needs to be used once per run and right before
the execution of the program, thus not affecting timing.

Applicability to other platforms: The hardware framework
and solutions implemented and evaluated in this work do
not necessarily represent the only possible way to enable the
industrial use of EPC.

For (time) tracing, EPC does indeed require non-negligible
throughput capabilities. Basic block level instrumentation pro-
duces a larger amount of timing information than coarser-
grained hybrid instrumentation approaches. The solution we
adopted, while specific to the processor we used, does not rely
on ad-hoc HW features, but simply makes smart use of stan-
dard tracing facilities (DSU, Memory and Ethernet controllers)
already present in the LEON processor family. Other processor
architectures either already provide or are introducing similar
features, in response to stringent market requests. Advanced
tracing functionalities, such as the Nexus Interface [20] for

NXP (formerly Freescale) or the Coresight [21] for ARM,
are increasingly being considered for measurement-based and
static timing analysis solutions [22], [23].

Besides timing information, EPC also relies on the avail-
ability of a detailed characterization of instructions and data
accesses within each basic block, as memory accesses are
required in the computation of the probabilistic padding. Both
static and dynamic methods can be adopted to derive this kind
of information. In our implementation we opted for a dynamic
approach and took advantage of the native support provided
by the LEON AHB bus interface that allows full access to
the bus traffic. As already discussed, the resulting timing
interference is of no consequence to the analysis, as we are not
considering the timing aspect in this step. The fact that a given
architecture does provide support for finer-grained snooping
is not preventing us from collecting the same information
by exploiting standard compiler information and data-flow
analysis. The complexity of statically deriving information on
memory accesses is generally acceptable (considerably less
than end-to-end static timing analysis) and is supported by
standard timing analysis tools.

Finally, even the adoption of time randomized caches in
hardware is not really mandatory. Indeed, time-randomized
cache behaviour is a key assumption to EPC and charac-
terizes the way padding is computed and applied to the
timing measurements at basic block level. However, analogous
randomization effects can be obtained by means of specific
software libraries, transparent to the application, as shown
in [17]. Applying EPC to a software-randomized setting should
only require minor modifications to the padding computation
libraries. This is part of our future work.

C. Software-level requirements

To be usable industrially, EPC must be accompanied with
adequate software infrastructure support for all the tasks
entailed in the analysis. We built the EPC process on top of
the RVS analysis suite and its suite of tools and utilities, on
account of it being a DO-178C-certified [16] tool set for timing
verification of embedded systems. The EPC implementation
thus relies on standard RVS toolchain elements and custom
tools that use the RVS APIs. The resulting toolchain provides
support for the whole EPC process and meets the technique
requirements, as they were highlighted in Section III-A.

R1 - Instrumentation at basic block level: EPC works
on timing information at the granularity level of single basic
blocks. Ideally, the analysis should be performed on object-
level basic blocks, which may differ from the source-level ones
due to completely transparent compiler transformation and
optimizations. The RVS suite already provides fully automated
support for pre-processing and instrumenting the source code
that can be easily integrated into any industrial software
development environment.

Source-level basic blocks are the most fine-grained level of
abstraction supported by RVS instrumentation and timing data
manipulation libraries. To preserve the applicability of EPC,
we forced the application to be compiled with no aggressive

compiler optimizations so that source- and object level basic
blocks coincide. There is no theoretical impediment to facing
compiler optimizations as long as the toolchain is able to re-
construct the program structure from the binary. Static analysis
industrial-quality tools typically offer this functionality.

R5 - Augmented empirical execution time profiles:
Timing data need to be stored along with information on
context of execution and on the random placement seed in
use when the measurement was collected. Both aspects are in
fact crucial in the computation of the probabilistic padding in
that they determine both the set of basic block predecessors
and the tightness of random cache metrics. RVS toolchain
already organizes timing data in a data structure shaped on
the program CFG. RVS operates on empirical execution time
profiles, where basic blocks execution times are associated
with their respective frequency of observation.

This organization is particularity convenient for EPC. We
therefore exploited the RVS framework and extended its core
data structure to hold all the extra information specific to EPC.
Currently, the contextual information is limited to the set of
immediate predecessors in the CFG and improved with limited
virtual loop unrolling. Based on preliminary experiments, this
has been considered to provide enough precise information for
a first implementation. Extending the framework to hold more
information on execution context is part of our future work.

In order to compute and apply EPC probabilistic padding
to execution time profiles we implemented an external library
based on the RVS API that could be called at the appropriate
time by standard tools in the RVS toolchain.

R6 - Generation of synthetic observations: In order to
produce the complementary set of synthetic observations, EPC
relies on knowledge of observed and unobserved paths5. The
complexity of providing automated support to this step of
EPC was not made evident in [7], owing to the prototype
nature of the tool and its ad-hoc evaluation. Discovering
all paths in a program may easily hit the complexity wall.
The number of paths grows exponentially with the number
of conditional branches and loops, which makes the path
enumeration problem poorly scalable and already intractable
with relatively simple programs. However, it is also true
that not all structurally feasible paths are always feasible
in practice, due to the combination of execution conditions.
The set of semantically feasible path is typically much more
manageable. Based on this observation, we developed a tool
that support semantic information and relies on an efficient
program model to explore and generate a large number of
paths, without compromising efficiency in time and space.

This internal model is built through a set of model-to-
model transformation from a tree-based representation of the
program CFG that is already present in RVS. The model
is augmented with information on the maximum observed
loop bounds (used to further reduce the search space) and
with support for simple control-flow constraints to refine the

5Collecting synthetic measurements for already observed paths would
introduce unnecessary pessimism.

semantics of the program. The use of semantic information
(flow facts) to narrow the number of paths to be considered in
the analysis is a well-known approach, for example, in static
timing analysis techniques [24]. The basic support to flow facts
currently implemented allows to defining maximum iterations
of loops and correlations between conditional constructs.

Our tool only intercepts unobserved paths as the set of
observed paths is automatically derived from the timing infor-
mation in the RVS core data structure. The optimized program
model allows the tool to perform also full path enumeration
in just a few seconds, even for real-scale industrial programs.
Synthetic observations for unobserved paths are generated by
sampling timing data from the RVS data structure [7].

IV. EVALUATION

In general, providing a qualitative and quantitative evalu-
ation of the precision of measurement-based timing analysis
approaches is a complex endeavour. In realistic scenarios, the
complexity of the analyzed application does not typically offer
a-priori knowledge of its worst-case timing behaviour (and
the execution path leading to it). The focus of our evaluation
is on comparing the EPC results with maximum observed
execution times and plain MBPTA results. Assessing MBPTA
(and EPC) against static deterministic approaches falls outside
the scope of this work. Interested readers can refer to [25] for
a preliminary comparison and a discussion on the complexity
of making a fair comparison.

The results obtained with EPC necessarily dominate those
obtained with standard MBPTA. As EPC augments the
MBPTA input space, it is always guaranteed to produce
pWCET distributions that are at least equal to those obtained
from real measurements. Results become representative of all
possible paths in the program, even of those that have not been
traversed during measurements and whose timing behaviour
is unknown. The results of EPC, however, also include a
certain degree of over-approximation as a consequence of the
conservative application of probabilistic padding. Hence, when
looking at the pWCET profiles obtained with EPC against
those produced by standard MBPTA, it is difficult to tell apart
the contribution of the extended path coverage from the effect
of overestimation.

A numerical evaluation of EPC on an heterogeneous set of
synthetic benchmarks has been already presented in [7]. That
evaluation, however, was performed on a prototype implemen-
tation running on a hardware simulator, as part of a research
toolchain. In this work instead we present an evaluation of a
solid implementation of EPC in an industrial-quality setting
against a real-world application. As the original evaluation
in [7] did not look into what factors contributed to the EPC
results, in this work, we also study: (i) the extent to which
the EPC results are determined by better representativeness as
opposed to overestimation, and (ii) to what extent the incurred
pessimism relates to path coverage (i.e., how many synthetic
paths are considered in the computed worst case). To assess
the latter, however, we need to have full control over the
coverage of the program paths, which is generally too complex

in real-world applications. For this reason, before moving to
the evaluation of our technique on an industrial case study, we
present an evaluation on a synthetic controlled experiment.
A. Controlled experiment

The first objective in our evaluation was to gain better
insight on the precision of the EPC results (i.e., tightness with
respect to the actual worst-case path), especially considering
whether and to what extent path coverage affects the final
EPC results. Reasoning on precision, however, is impaired
by the fact that, for a given target program, we typically
do not know the actual WCET (and path leading to it). We
equally cannot try to derive it as an afterthought by forcing
the execution of the worst-case path identified by EPC since
controlling all aspects of execution through input parameters
may be exceedingly hard, owing to the complex interaction of
input vectors with internal software/hardware states.

We therefore put together a synthetic demonstrative exam-
ple, small enough to be easily managed but at the same time
not trivial, to experiment the technique. This example uniquely
aims to let the reader have a feel of EPC’s precision (i.e.,
improved representativeness against overestimation) in relation
to the initial set of observations. This discussion therefore
should not be intended as an exhaustive quantitative evaluation
of the EPC results, for which the results reported in [7] should
suffice. For these reasons, we kept the illustrative example as
simple as possible to allow for a clear mapping between input
vectors and execution paths.

The example, which we call MultiBranch, consists in a
single procedure exhibiting four if-then-else constructs
in a sequence (thus yielding a total of 16 paths). Each branch
performs some computations and executes some loops with a
different number of iterations so that each path is expected to
exhibit a different timing behaviour. An overview of the struc-
ture of MultiBranch is provided in Figure 4. The program
structure is represented by a simplified control flow graph,
where basic blocks are conveniently grouped to highlight
conditional branches. A representation of the possible paths
is also reported (smaller diagrams on the right), where darker
nodes represent program parts that belong to that specific path.

The outcome of each branch decision is explicitly controlled
by a value in the input vector of MultiBranch so that
we can generate 16 input vectors and trigger 16 different
paths, by simply operating on 4 input parameters. In this
way we are able to exercise full control on the program’s
behaviour and identifiy the minimum number of paths – that
is just the two paths framed in red in Figure 4 – required to
fulfil EPC coverage requirement. Knowledge on the program
semantics also allowed us to identify a priori the worst-case
path (i.e., leading to the worst-case behaviour), framed in black
in Figure 4. Full control on branch decisions, in conjunction
with the limited number of feasible paths, allowed us to collect
exhaustive measurements for all paths in MultiBranch.
Note that the sets of structurally and semantically feasible
paths coincide.

We focused on five different scenarios of application of EPC
with varying number of observed paths:

worst-case
path

basic block
coverage

exit

entry

true false

true false

true false

true false

v1

v2

v3

v4

v1

v2

v3

v4

v1 v2 v3 v4

input vector

Fig. 4. Overview of MultiBranch structure.

• 16paths All paths triggered at analysis time so that
measurements are already fully path-representative;

• 8paths Half of the paths actually measured, excluding
the worst-case path.

• 4paths Four paths actually measured, excluding the
worst-case path.

• 2paths Only two paths actually measured (providing
basic block coverage), excluding the worst-case path.

• W-8paths Half of the paths actually measured, in this
case including the worst-case path.

Under each configuration we applied MBPTA on all pro-
gram paths separately. Among all paths we then selected the
maximum pWCET for the probability thresholds we were
interested in. For each path we collected (or generated, for
synthetic paths) 2000 runs that were sufficient for MBPTA to
converge. The so-obtained set of inputs successfully passed
statistical independence and identical distribution tests so we
could apply EVT.

TABLE II
MBPTA RESULTS FOR THE FULL PATH-COVERAGE SCENARIO

(MULTIBRANCH).

Path MOET 10−03 10−06 10−09 10−12

16paths P1 5420 5642 5781 5995 6210
P2 5777 6011 6165 6399 6633
P3 5649 5887 6045 6275 6512
P4 5727 5952 6105 6322 6547
P5 5621 5694 5774 5897 6020
P6 5543 5765 5922 6150 6385
P7 5424 5670 5823 6067 6304
P8 5383 5427 5490 5580 5676
P9 5528 5730 5856 6052 6241

P10 5235 5467 5628 5862 6097
P11 5844 6096 6259 6498 6736
P12 5972 6164 6308 6512 6723
P13 5714 5758 5823 5918 6012
P14 5959 6229 6404 6655 6913
P15 5193 5407 5554 5767 5988
P16 6152 6395 6551 6787 7022

Focusing on the 16paths scenario, Table II reports the
Maximum Observed Execution Time (MOET) and pWCET
estimate for each individual path. The pWCET estimate, which
is shown at relevant thresholds, is computed by MBPTA over

TABLE III
MBPTA RESULTS FOR PARTIAL COVERAGE PLUS EPC SCENARIOS

(MULTIBRANCH).
Test MOET % 10−3 % 10−6 % 10−9 % 10−12 %
2p 5777 -6.1 6018 -5.9 6179 -5.7 6398 -5.7 6654 -5.2
EPC 6917 +12.4 7254 +13.4 7496 +14.4% 7855 +15.7 8214 +17.0
4p 5727 -6.9 5945 -7.0 6083 -7.1 6300 -7.2 6511 -7.3
EPC 7021 +14.1 7337 +14.7 7604 +16.1 8009 +18.0 8384 +19.4
8p 5844 -5.0 6011 -6.0 6165 -5.9 6399 -5.7 6633 -5.5
EPC 6878 +11.8 7180 +12.3 7445 +13.6 7837 +15.5 8238 +17.3
W-8p 6152 +0.0 6395 +0.0 6551 +0.0 6787 +0.0 7022 +0.0
EPC 6987 +13.6 7369 +15.2 7644 +16.7 8056 +18.7 8369 +19.2

the set of measurements obtained by exhaustively observing
all paths in MultiBranch. As expected path number 16
(P16) corresponds to the worst-case path. We used MOET
and pWCET values obtained in the 16paths scenario as the
baseline for comparison of all the other scenarios. By having
the MBPTA results on all observed paths, we can reason
on both the un-representativeness (and un-safeness) of partial
coverage results and the overestimation incurred by EPC.

Table III shows the results observed in the remaining
four experimental scenarios. The largest MOET and pWCET
are reported for each threshold and compared against the
respective values in the 16paths scenario, by reporting the
difference in percentage. Several interesting observations can
be drawn from the experiments. First, results confirms that
EPC delivers fully representative pWCET figures that over-
approximate the pWCET obtained by actually observing all
paths in a program. Conversely, MBPTA results obtained with
partial coverage are necessarily flawed when the worst-case
scenarios are not captured at analysis time. The degree of
overestimation incurred by the current implementation of EPC
is approximately 16% in the average, with minimum and
maximum at 10% and 19% respectively, when compared to the
worst case scenario we were able to detect in the full-coverage
controlled experiment. In almost half of the scenarios, apply-
ing the 20% margin widely adopted in industry produces more
pessimistic results than EPC (although in this particular case it
is shown to be effective in over-approximating the worst case).
In particular, the pessimism introduced by path-independence
and synthetic path generation, as observed in the increase on
the MOET, is very limited (+14% in the worst-case). As
shown in Figure 5, the residual increase in the pWCET is
a direct effect of "moving" the pWCET curve to the right.

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0 2000 4000 6000 8000 10000 12000

Ex
ce

ed
an

ce
 p

ro
ba

bi
lit

y

Cycles

Max pWCET EPC 8 paths (WCP included)
Max pWCET EPC 8 paths
Max pWCET EPC 4 paths
Max pWCET EPC 2 paths

HWM full coverage
Max pWCET full coverage

Fig. 5. EVT projections: full-path vs EPC over-approximations.

Notably, the extent of the resulting overestimation does not
seem to strongly depend on the degree of coverage before
applying EPC. Although it is not appropriate to draw general
conclusions from a single small example, we deem this exper-
iment to provide solid evidence that synthetic measurements
smooth over the possible execution-time differences among
program paths. This is in part explained by the fact that
synthetic measurements are not always identical as they sum
up random effects from basic block execution times and
therefore their contribution to the pWCET is neither constant
nor easily predictable. Interestingly, this means that basic
block coverage is really the only test requirement stemming
from EPC. The results from the W-8paths scenario show
that the worst-case values after applying EPC are greater than
the real (measured) ones. This indeed may happen when the
difference between the worst-case and other values is not so
large that it can be flattened by EPC (in fact it lays beyond
the 14% average increase on MOET).

B. Industrial case study

Subsequently, we evaluated our EPC implementation on a
real application from the railway domain. The trial applica-
tion is a simplified European Train Control System (sETCS)
railway signaling subsystem. The "simpified" tag should not
mislead the reader: the sETCS is a faithful reimplementation
of a real train control application, developed by the same
senior engineers that implemented the original system, which
is currently in use. Hence, while the application we experi-
mented with is not the original one, it is fully equivalent to
it for execution semantics, timing behaviour, and structural
complexity.

The sETCS is a safety-critical application (SIL 4) that
keeps train motion under control. Essentially it supervises
the traveled distance and speed, and activates the brakes if
authorized values are exceeded. The central safety processing
unit of the ETCS system is called European Vital Com-
puter (EVC) and, for safety purposes, it is implemented by
three parallel implementations of the same logic (i.e., Triple
Module Redundant - TMR computing nodes). At a lower
level, each computing node supports an instance of the safety
software application, which comprises three main tasks that
are sequentially executed: (a) Odometry module (OMS): is
the responsible of estimating a set of parameters based on
the information received from the train environment (e.g.,
estimated train position); (b) Emergency module (ES): controls
the Emergency braking system; and (c) Service module (SS):
controls the Service braking system.

In our evaluation we focused on the ES module as the core
of the safety-critical elements of sETCS. The ES logic includes
several data-dependent paths. The analyzed module has been
automatically generated from a Simulink model and includes
more than 50 conditional branches (few of which are switch
constructs), 90 procedures (for approx. 330 procedure calls)
and nearly 120 basic blocks. Experiments were run at the
user’s premises and the application was made available along
with an extremely limited set of input vectors (just 10) that do

TABLE IV
BASELINE MBPTA RESULTS (SETCS).

Experiment MOET 10−03 10−06 10−09 10−12

Test0 107218 107343 107602 107731 107990
Test1 108114 108292 108423 108684 108945
Test2 100595 100937 101301 101665 102029
Test3 100330 100737 101101 101585 102069
Test4 101604 101822 102191 102559 102927
Test5 101089 101313 101557 101922 102166
Test6 108283 108855 109508 110161 110813
Test7 114775 114938 115077 115492 115631
Test8 71955 72319 72928 73450 74058
Test9 68110 68270 68517 68764 69094

not warrant full path coverage. Those input vectors were not
identified and constructed for the purpose of our experiments:
they were part of the standard functional validation suite of
the sETCS and were selected by the industrial user because
they warranted the sought basic block coverage.

The application of MBPTA and EPC has required no
modification to the industrial application, except for those
needed for software instrumentation. We generated an in-
strumented version of the program by exploiting the fully
automated and transparent framework from the RVS toolchain.
The instrumented version is then compiled (with a standard
GCC cross-toolchain) into a binary and loaded into the target
platform. In order to collect timing measurements (and address
traces), the available subset of input vectors, characterizing
the train environment, are fed to the hardware platform by an
Ethernet communication channel. Our EPC experiment reused
the technical assets available at the user premises without
asking for any effort to prepare and performs the observation
runs. In the experiment setting, each provided input vector
did not directly correspond to a given path in the program,
but rather contributed to updating the internal software state,
which in turn triggers a given path of the ES. Without a
profound knowledge of the application – which we did not
have and could possibly obtain from the software owner –
it was beyond our reach to trigger different paths by solely
operating on the provided input vectors.

To establish a reference comparison, we first analyzed the
ES module according to the base MBPTA method. Results
are obtained by performing the EVT calculation on the set
of collected measurements, sorted per path. In this way, we
obtain per-path pWCET distributions. We select the maximum
pWCET among all observed paths for a given threshold. Since
the provided input vectors do not exercise all paths, these
figures are only valid for the set of observed paths and no
general conclusion on the pWCET of the ES can be drawn.

As shown in Table IV, Test7 is the path that exhibits the
worst-case observed end-to-end timing and it is also associated
to the highest pWCET value for all exceedance thresholds.
Notably, this is not a given, as pWCET values at the given
threshold are largely determined by the slope of the pWCET
envelope rather than a single (maximum) observed value.

We applied EPC to extend the representativeness of the
collected measurements by generating synthetic observations
for unobserved paths. As discussed above, the application
only came with a very small number of input vectors, drawn

from the consolidated set of input vectors used for functional
validation. The input vectors were, however, enough to trigger
the 10 different paths needed to meet the basic block coverage
requirement of EPC. In order to extend path coverage, we
first used our custom path-generator tool to identify the set
of structurally feasible paths: a total of 12996 paths were
detected by the tool. The user was then asked to provide
additional control flow information, in the form of annotations,
to restrict the number of paths to be considered by EPC to
the set of semantically feasible paths. The few flow facts
provided by the user caused our tool to exclude 12970 paths
that were recognized to be either semantically infeasible or
not relevant to the analysis (e.g., exception handling). Thanks
to this pruning, the number of paths to be considered to
guarantee exhaustive path coverage was reduced to just 26.
Since 10 of them were already covered in the observation
runs, EPC was used to generate synthetic measurements for the
remaining 16 additional paths. The extended input provided to
MBPTA consisted in 5,000 observations for each observed and
unobserved path (a total of 130,000 samples), enough for all
of them to meet the MBPTA convergence criteria.

TABLE V
EPC RESULTS (SETCS).

Experiment MOET 10−03 10−06 10−09 10−12

SynthTest0 182438 190255 204396 217864 230995
SynthTest1 179803 187309 200111 211998 223886
SynthTest2 180440 183855 193071 201595 210120
SynthTest3 182977 189679 202229 213848 225468
SynthTest4 182560 190485 202810 214669 226529
SynthTest5 180703 188167 198545 208460 218376
SynthTest6 181257 186042 194645 203014 211151
SynthTest7 182721 189052 201127 212969 224580
SynthTest8 183779 200116 222674 244058 265676
SynthTest9 179049 187896 200389 212427 224692
SynthTest10 179818 183464 192189 200454 208948
SynthTest11 182609 187470 197928 207921 218147
SynthTest12 184026 188449 200485 212049 223377
SynthTest13 179069 182793 191440 199631 208051
SynthTest14 184003 187541 197652 207528 217403
SynthTest15 181357 182770 188802 194602 200170

Increase wrt +60% +74% +94% +111% +130%Worst-Case MBPTA

Table V reports the results of applying MBPTA on the
extended set of observations. and compares EPC results
against the baseline ones. As expected, the extended set of
paths obtained with EPC exhibits new maxima. The new
MOET (determined by the synthetic Test12) is in fact 184026
cycles, which corresponds to a 60% increase over the 114775
MOET of the original set of observations. When it comes
to pWCET figures, the increase of the fully representative
results (determined by synthetic Test8), as compared to the
baseline ones, is starting at +74% and is increasing with lower
exceedance probabilities, owing to the slope determined by
synthetic measurements.

When analysing the obtained pWCET distributions, it is
difficult to reason on EPC precision by telling apart the
contribution of unobserved paths from the effect of conserva-
tive assumptions. In contrast with the controlled experiment,
we were not able to directly stimulate the synthetic paths
discovered by EPC without resorting to ad-hoc modifications

to the program source code (which we did not want), since
we could not establish direct correlation between inputs and
paths.

On the other hand, however, the additional information
available as a by-product of EPC allows drawing some con-
clusions. In particular, we can derive the enumeration of basic
blocks on each observed and synthetic path, as well as the
baseline and augmented empirical execution time profiles for
each basic block. This information can be used to map back
the worst-case path computed by EPC on the program control
flow structure and roughly reason on tightness.

We first focused on the characterization of SynthTest12,
the worst-case path reported by EPC. By construction, we
know that SynthTest12 was not in the original set of observed
paths. Looking at its specification in term of basic blocks, we
observed a strong similarity with Test7, the worst-case path
according to the actual observations. By code inspection we
concluded that they only differ in a high-level branch decision
in the decision part of the control algorithm, which results in
an additional procedure call and few more computations in
SynthTest12. This confirms that the worst-case path observed
at analysis time was not the actual worst case, which is instead
singled out by EPC.

Subsequently, we made an attempt to gauge the precision
of EPC in the particular case of the sETCS. To this end, EPC-
padded data have been compared with the respective baseline.
Figure 6 summarizes the effect of applying the probabilistic
padding at basic block level. For each basic block we consider
the set of (observed and synthetically extended) execution
times and report the maximum value before and after padding,
represented by the darker and lighter columns respectively.

Notably, not all basic blocks were augmented by the
padding. In our experiments, in fact, probabilistic padding was
only applied to 24 basic blocks out of 113 in the target appli-
cation, a mere 23%. In the average case, probabilistic padding
only determines a relatively small increase as compared to the
baseline value to which padding is applied. Exceptions occur
for a limited number of basic blocks (highlighted by light-
red columns) where the padding has the effect of determining
a maximum observed execution time that is up to 4x the
original one (from 645 to 3,445 cycles in the worst case). The
average increase, instead, was around 10.5%. The effect of
over-pessimistic application of padding depends on the block
execution frequency and, finally, on the relative contribution
of the basic block to the end-to-end path.

To further reason on EPC precision, we focused on the
MOET associated to observed and synthetic paths and in
particular to the worst-case ones (Test7 and SynthTest12 in
Table V). Although we could not execute the SynthTest12
path on the hardware, it is still possible to reason on MOET
tightness by considering the contribution of the single basic
blocks to the path timing.

Table VI compares the MOET (the synthetic one for Syn-
thTest12) of the two paths against the timing obtained by
respectively summing up the maximum (Max Cumul) and
minimum (Min Cumul) observed values, and the maximum

0

2

4

6

8

10

12

14

16

18

20
C
yc

le
s

(t
h
o
u
sa

n
d
s)

Basic blocks

Observed
Padded

Fig. 6. Original and padded execution times per basic block (sETCS).

TABLE VI
REASONING ON EPC PRECISION.

MOET Max Cumul Min Cumul Max EPC Inflation
Test7 114775 127282 80105 145282

SynthTest12 184026 163520 92699 191717

Increase 60% 29% 16% 32%

inflated (Max EPC Inflation) execution times for each basic
block in the path. The MOET synthetically computed for
SynthTest12 is larger that the Maximum cumulative timing
and near to the maximum inflation incurred by EPC. This is
because the (synthetic) MOET includes potentially unobserved
cache effects and is actually computed by summing EPC
inflated execution times. For similar reasons, the maximum
and minimum cumulative values define a valid range for the
MOET only for Test7. In case of SynthTest12, the MOET
is necessarily going to be larger than that of Test7 (as we
know it is the worst-case path) and smaller than the MAX
EPC Inflation. The differences between the two paths seem to
suggest that the worst-case path could incur some 30% larger
execution time that Test7, which seems to be compatible with
what we could determine from code inspection. This means
that the synthetic MOET computed by EPC seems to introduce
another 30% factor by applying over-pessimistic paddings.

Looking into the source code and binary, we were able
to understand that overly-pessimistic padding was generally
ascribable to data accesses in case of dynamic references and
misinterpreted always-miss accesses. In the sETCS, dynamic
references are used to provide inputs to the core computations:
function parameters passed by reference are conservatively
considered as dynamic (i.e., unknown) reference although they
are following known patterns for each specific execution path.
Unfortunately, the current tool infrastructure is not able to
either understand or exploit this kind of information. Cat-
egorizing them as dynamic accesses dramatically increases
the number of applied paddings and negatively affects the
probabilities of surrounding accesses. Always-miss memory
accesses are those accesses that invariably trigger a cache
miss, independently of the specific path. In some cases, the
available structural information is not sufficient to intercept
those accesses: as a result, we may end up applying a
probabilistic padding even when accesses are always-miss, to
use a well-known term in static WCET analysis.

In the analyzed application (automatically generated) we
found both dynamic references and relatively large sequences
of initialization code, whose effects in term of precision were

non-negligible and seem to largely affect the overall precision
of EPC results.The pessimism incurred in the sETCS case
could be cured by extending the computation model to improve
the support for contextual information. Although there was
no technical impediment to those modifications, it was not
possible to incorporate them into the toolchain as they would
have required considerable modifications to the consolidated
RVS industrial-quality tool. It is certainly part of our future
work to further investigate possible extensions to RVS.

V. RELATED WORK

The reliability of measurement-based timing analysis ap-
proaches has been repeatedly questioned [3]. The main argu-
ment used against these approaches cites the inherent difficulty
to provide evidence that the worst-case scenario, in terms of
both inputs and hardware state, has been actually observed.
MBTA approaches, in fact, only capture what is known as
the maximum observed execution time (MOET). The consol-
idated industrial practice is then to add an engineering safety
margin to account for unobserved and hidden factors that may
contribute to the WCET. MBTA can provide fully trustworthy
WCET figures only when it can be guaranteed that all possible
paths and execution conditions for a program-processor pair
have been exhaustively observed. With respect to program
paths, full coverage cannot be generally met within an indus-
trial qualification process where timing testing typically reuses
figures obtained during the functional verification phase.

The Single-Path Approach [26] sloughs off the complexity
of path coverage by potentially reducing all programs to a
single execution path. To this extent, specific compiler support
and special processors supporting constant-time predicated
instructions [27] are advocated. This however poses some
requirements on the platform and compiler infrastructure,
which might break consolidated industrial practice. On the
opposite side of the spectrum of potential solutions, methods
based on genetic algorithms and model checking have been
proposed, with alternate fortune, in the last years to auto-
matically generate the input vectors required to achieve full
path coverage [28], [29]. However, the genetic algorithm these
methods rely on are generally exposed to local minima/max-
ima that can prevent them from being successfully applied.

The role of input data in MBPTA was recognized re-
cently [5], [7], [8]. The path representativeness problem was
not exhaustively examined in [5] where the authors were
relying on the user to be able to provide a set of relevant paths.

As we already observed, this assumption does not generally
hold in practice as the user does not typically owe the tools or
heuristics to capture relevant paths with respect to (p)WCET.
The importance of providing representative inputs to MBPTA
was first explicitly raised in [6] contextually with the proposal
of Path Upper Bounding (PUB), a method to upper bound
all possible paths in a program by artificially balancing the
different branches of conditional control flow constructs. Al-
though they may share their motivations, EPC and PUB differ
in requirements: PUB is applied on a semantically-preserving
extended version of the program, which may require an ad-hoc
qualified compiler, while EPC [7] relies on the collection of
additional information. The need for path representativeness
was recently reinforced in [8], where analysis inputs were
identified as a feature critically affecting MBPTA results.
Some other works on MBPTA seem to disregard the path rep-
resentativeness problem and focus exclusively on the statistical
fitness of their model [30].

VI. CONCLUSIONS

MBPTA results are only valid for the execution conditions
that have been captured at analysis time, and cannot be
generalized to include unobserved paths. Exhaustive coverage
by test is not a practical option for both the complexity
and costs it implies. Measurement-based methods generally
assume that the user is responsible for providing the input
vectors that trigger the most relevant paths in the program.
In practice, however, the user is not provided any means to
collect or consolidate such knowledge.

The EPC approach, first introduced in [7], builds on the con-
cept of probabilistic path independence to synthetically extend
the path representativeness of MBPTA results to include also
unobserved paths. In this work, we presented the challenges
we faced and the solution we adopted in our attempt to bring
EPC from an academic prototype to a solid toolchain. Despite
its inherent complexity, EPC could be implemented on top
of an industrial-quality toolchain and successfully evaluated
against a real-world program. The initial results results on a
realistic application are quite encouraging and allowed us to
identify some room for improvement. As future work we plan
to further consolidate the EPC implementation, in particular
by improving the amount of contextual information to be
considered in the analysis. We also plan to extend its evalu-
ation against representative applications from other industrial
domains, knowing that each of them has its own special traits
and poses different challenges to novel technology concepts.

ACKNOWLEDGMENTS

This work has received funding from the European Commu-
nity’s Seventh Framework Programme [FP7/2007-2013] under
grant agreement 611085 (PROXIMA, www.proxima-project.
eu). This work has also been partially supported by the Span-
ish Ministry of Economy and Competitiveness (MINECO)
under grant TIN2015-65316-P and the HiPEAC Network of
Excellence. Jaume Abella has been partially supported by
the MINECO under Ramon y Cajal postdoctoral fellowship

number RYC-2013-14717. The authors are grateful to Antoine
Colin from Rapita Ltd. for his precious support.

REFERENCES

[1] O. Scheickl, C. Ainhauser, and P. Gliwa, “Tool support for seamless
system development based on autosar timing extensions,” in Proceedings
of Embedded Real-Time Software Congress (ERTS), 2012.

[2] S. Law and I. Bate, “Achieving appropriate test coverage for reliable
measurement-based timing analysis,” in Euromicro Conference on Real-
Time Systems, ECRTS, 2016.

[3] R. Wilhelm et al., “The worst-case execution time problem: overview of
methods and survey of tools,” Trans. on Embedded Computing Systems,
vol. 7, no. 3, pp. 1–53, 2008.

[4] E. Mezzetti and T. Vardanega, “On the industrial fitness of WCET
analysis,” 11th International Workshop on Worst-Case Execution-Time
Analysis, 2011.

[5] L. Cucu-Grosjean et al., “Measurement-based probabilistic timing anal-
ysis for multi-path programs,” in ECRTS, 2012.

[6] L. Kosmidis et al., “PUB: Path upper-bounding for measurement-based
probabilistic timing analysis,” in ECRTS, 2014.

[7] M. Ziccardi et al., “EPC: Extended Path Coverage for Measurement-
Based Probabilistic Timing Analysis,” in Real-Time Systems Symposium,
2015 IEEE, 2015, pp. 338–349.

[8] G. Lima, D. Dias, and E. Barros, “Extreme value theory for estimating
task execution time bounds: A careful look,” in Euromicro Conference
on Real-Time Systems (ECRTS), 2016.

[9] S. Kotz and S. Nadarajah, Extreme Value Distributions: Theory and
Applications. Imperial College Press, 2000.

[10] M. Paolieri et al., “Hardware support for wcet analysis of hard real-time
multicore systems,” in ISCA, 2009.

[11] L. Kosmidis et al., “Probabilistic timing analysis and its impact on
processor architecture,” in DSD, 2014.

[12] F. Cazorla et al., “PROARTIS: Probabilistically analysable real-time
systems,” Transactions on Embedded Computing Systems, 2013.

[13] L. Kosmidis et al., “A cache design for probabilistically analysable real-
time systems,” in DATE, 2013.

[14] E. Mezzetti et al., “Randomized caches can be pretty useful to hard
real-time systems,” LITES, vol. 2, no. 1, 2015.

[15] E. Mezzetti and T. Vardanega, “A rapid cache-aware procedure posi-
tioning optimization to favor incremental development,” in 19th IEEE
RTAS, 2013.

[16] Special Committee of RTCA, “DO-178C, Software Considerations in
Airborne Systems and Equipment Certification,” 2011.

[17] L. Kosmidis et al., “Probabilistic timing analysis on conventional cache
designs,” in DATE, 2013.

[18] E. Diaz et al., “Mitigating software-instrumentation cache effects in
measurement-based timing analysis,” in Proceedings of the 16th Inter-
national Workshop on Worst-Case Execution Time (WCET) Analysis,
2016.

[19] C. Hernandez et al., “Random modulo: A new processor cache design
for real-time critical systems,” in Proceedings of the 53rd Annual Design
Automation Conference, ser. DAC ’16, 2016.

[20] “Nexus 5001 forum.” [Online]. Available: http://www.nexus5001.org
[21] “ARM R© CoreSight c©ip.” [Online]. Available: https://www.arm.com/

products/system-ip/coresight-debug-trace
[22] B. Dreyer et al., “Precise Continuous Non-Intrusive Measurement-Based

Execution Time Estimation,” in 15th International Workshop on Worst-
Case Execution Time Analysis (WCET 2015), 2015.

[23] B. Dreyer et al., “Continuous Non-Intrusive Hybrid WCET Estimation
Using Waypoint Graphs,” in 16th International Workshop on Worst-Case
Execution Time Analysis (WCET 2016), 2016.

[24] R. Kirner and P. Puschner, “Classification of Code Annotations and Dis-
cussion of Compiler Support for Worst-Case Execution Time Analysis,”
in 5th International Workshop on Worst-Case Execution Time Analysis,
2005.

[25] J. Abella et al., “On the comparison of deterministic and probabilistic
wcet estimation techniques,” in ECRTS, 2014.

[26] P. Puschner, “The single-path approach towards WCET-analysable soft-
ware,” in International Conference on Industrial Technology, 2003.

[27] S. A. Mahlke et al., “A comparison of full and partial predicated
execution support for ilp processors,” in ISCA, 1995.

[28] I. Wenzel et al., “Automatic timing model generation by cfg partitioning
and model checking,” in DATE, 2005.

[29] S. Bünte et al., “Improving the confidence in measurement-based timing
analysis,” in ISORC, 2011.

[30] L. Santinelli et al., “On the Sustainability of the Extreme Value Theory
for WCET Estimation,” in 14th International Workshop on Worst-Case
Execution Time Analysis, 2014.

