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Abstract:

Long Term Evolution (LTE) mobile networks are becoming more available for people all

around the world, as it is the most deployed broadband communication technology. To address

the exponential data requirements projected for the future, a targeted solution for LTE is

network densi�cation, i.e., deploying small cells (cells with reduced radius compared to macro

cells), which will enable better frequency reuse. However, a challenge here is the backhauling

of these small cell evolved-NodeBs (eNBs), since the �ber-based backhauling is costly and is

not physically feasible for many cases. For this, a recent idea is to use LTE self-backhauling,

where an eNB can relay its data to another eNB through the use of LTE technology.

In this thesis, we develop and evaluate an implementation of LTE Self-Backhauling buil-

ding on an open-source software and commodity hardware (regular PCs and low-cost Software-

de�ned Radios) for the LTE system. For this, we implement a self-backhauled eNodeB (B-

eNB), which connects to an Anchor-eNB (A-eNB) using an LTE UE. Through physical ex-

perimentation using o�-the-shelf UEs, we show that the method proposed is viable and can

improve the network coverage and capacity.

Keywords: LTE, 4G/5G mobile networks, eNB, EPC, OpenAirInterface, Self-Backhauling.
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Chapter 1

Introduction

In the last years, LTE mobile communication has been the most deployed broadband

communication technology. This technology is growing fast, the number of mobile phone

users, nowadays, are close to 5 billions users [27]. There are many projections on exponential

increase in tra�c demand in cellular networks, which is a challenge for the mobile operators.

Moreover, due to the fast increase in number of the mobile phone users and their tra�c

demands, some base stations, in LTE known as evolved NodeB (eNB), are working at their full

capacity. This means that they are saturated, in consequence there must be more deployment

of eNBs to increase the capacity and the radio coverage of the LTE network.

In LTE, by design, it is known that a �xed eNB is physically connected to the core network

through a transport network. This connection is known as backhaul link, and the deployment

of this network is an issue, because the cost of its deployment has a lot of signi�cance in the

overall operation cost of the network. Moreover, there are places that an eNB can not be

deployed because transport network connection is not possible due to the environment.

For the wired connection in backhaul, �ber is used for the deployment of the access link

in LTE, to reach the high velocities required in this network. However, for scenarios such as

rural areas, �ber is not always feasible, in these cases, a wireless solution is a better choice

for the access link in LTE, and also is cost-e�ective.

One solution for wireless backhaul is the microwave [12] and another solution is Millimeter

Wave (mmWave) [28], bands between 30 and 300 GHz, where the available bandwidths are
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wider than the actual bandwidth of cellular networks [9]. The latter technology is suitable

for LTE backhaul and future 5G networks. However, the deployment of mmWave for cellular

networks has many technical obstacles [21], mmWave signals are extremely susceptible to

shadowing [21]. Moreover, the operation cost is high since the mmWave system is fraught

with considerable complexities [30].

An alternative and novel wireless backhauling solution is self-backhauling [4], which is

studied in this thesis. Self-backhauling enables the wireless backhauling of an eNB (named

self-backhauled eNodeB (B-eNB)) using the existing LTE radio interface of another eNB

(named Anchor eNodeB (A-eNB)) as a backhaul link. The concept of this solution is shown

in Figure 1.1.

Figure 1.1: Self-Backhauling Network

Using the existing LTE radio interface will provide a better cost-e�ciency solution, since

they are sharing the same O&M systems (Operation and maintenance) simplifying the system

management [3], also a higher spectrum utilization, since the reuse of time, frequency and

space resources between access and backhaul link [3]. However, using in-band self-backhauling

a new type of interference called access-backhaul interference or self-interference will be cre-

ated (shown in Figure 1.2), since access and backhaul link share the same carrier frequency,

this means that B-eNB transmits and receives in the same band, the transmitted signal inter-

feres with the received signal. And to mitigate this new interference, a sophisticated (complex)

scheduling of channel resources between access and backhaul will be required [4]. On the other

hand, self-interference does not occur when using out-band self-backhauling, where access and
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backhaul link operate on separate carrier frequencies, in consequence a better performance is

obtained, but the drawback is the extra transceiver costs.

Some use cases for self-backhauling LTE network would be core-isolated eNBs which are

eNBs that has no connection to the core network; small cells to increase the capacity of the

macro-cell of the network; and moving cells to use moving eNBs for transport applications[1].

Figure 1.2: Self-Interference at Self-Backhauling Network [5]

In this thesis, we develop and evaluate an implementation of LTE Self-Backhauling build-

ing on an open-source software for the LTE system. For this, we used the OpenAirInterface

(OAI) project, which enables the setup of an open LTE network on a generic purpose PC

[13][26] requiring only a small form-factor Software De�ned Radio (SDR). OAI provides an

open-source ecosystem for the core network, which is the Evolved Packet Core (EPC), and

the access network, which is the Evolved Universal Terrestrial Radio Access Network (E-

UTRAN). Using the OAI project it is possible to build an LTE base station and core network

on one or more PCs, and connect commercial User Equipments (UEs) using an SDR, in order

to test the LTE network in real time. Comparing with commercial existing solutions, the

solution provided by this project is cheaper since low cost PCs and SDRs are used, instead of

using real eNBs and EPC.

One of the major challenges encountered during the project was the double GTP encap-

sulation when the �rst setup was realized, this �rst setup is only using B-eNB and A-eNB as

traditional eNBs. In order to solve this double GTP encapsulation problem, several poten-

tial solutions are presented and one of the solutions is implemented and show to resolve this

problem.
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For the validation of the results of this project, physical evaluations were done to compare

several performance metrics between a UE connecting to the conventional LTE network setup

and the same UE connecting through a Self-Backhauling network. For the self-backhauling

network, two solutions were presented and evaluated: the �rst was in-band self-backhauling

network, where the self-backhauled eNB (B-eNB) shares the same central frequency and

bandwidth as the backhauling eNB (A-eNB) and the second was out-band self-backhauling

network, where they are assigned non-overlapping frequency spectrum. The performance of

the self-backhauling network and conventional approach with the OAI setup were evaluated

by measuring downlink and uplink throughput using the tools iperf and speedtest application.

Through physical experimentation using o�-the-shelf UEs, we show that the method proposed

is viable, and it is shown that in terms of performance using a self-backhauling network is a

good choice to increase the capacity of the network and the radio coverage.
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Chapter 2

Background

2.1. Evolved Packet System

The Evolved Packet System (EPS) is introduced by 3GPP standardization group as the

evolution of the 3G/UMTS standard. EPS is purely IP based [11], it routes the IP tra�c

from a gateway in the PDN to the UE using the concept of EPS bearers [25][18].

2.1.1. Long Term Evolution (LTE)

LTE is introduced in 3GPP Release 8 as the radio access evolution of the Universal Mobile

Telecommunications System (UMTS) through the Evolved Universal Terrestrial Radio Access

Network (E-UTRAN). LTE is a packet-switched system, di�erent from old mobile technologies

that are circuit-switched systems. LTE is the radio access part of the EPS, which provides

wireless Internet Protocol (IP) connection between user equipment (UE) and the packed data

network (PDN); and the System Architecture Evolution (SAE), which is the Evolved Packet

Core (EPC), is the evolution of the core network. LTE and SAE together comprise the

Evolved Packet System (EPS)

2.1.2. EPS Architecture

EPS provides access to internet to the end user with IP connectivity to a PDN. In �gure

2.1 is shown the overall network architecture of the EPS. EPS network comprises of the core

17



network EPC, which consists of many logical nodes that will be explained in the next section,

and the access network E-UTRAN, which consist in just one type of node called evolved

NodeB (eNB), that connects to the UEs. [25].

Figure 2.1: EPS Network Architecture

2.1.3. Elements of EPC

EPC is the core network of EPS, responsible of the complete control of the UE and the

establishment of the bearers. The logical nodes shown in Figure 2.1 are discussed in more

detail below: [24]

Home Subscriber Server (HSS) hosts database that contains the user subscription data

of the EPS. It provides user authentication and access authorization, also has the identity of

MME to which a user is attached or registered. In addition, HSS holds the information about

the PDNs that the user can connect. It is based on the Home Location Register (HLR) and

Authentication Centre (AuC).

Mobility Management Entity (MME) is the main element within the control plane of

the EPS, it handles the signaling between the UE and the core network (CN). The protocols

that are between UE and the CN are known as Non Access Stratum (NAS) protocols. It

provides the initial handshake process with the UE through the eNB by verifying the user

data in the HSS.
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Serving Gateway (SGW) deals with the user plane. It transports all user IP data tra�c

to the external networks by routing the incoming and outgoing IP packets. It is logically

connected to the PDN Gateway.

PDN Gateway (PGW) handles the connection between the EPC and the external IP

networks. These networks are called Packet Data Network (PDN). It is the responsible of

providing the IP address allocation to the UE, it also provides policy control and charging.

Policy Control and Charging Rules (PCRF) is responsible of making the policy control

decisions, and sends Quality of Service (QoS) setting information for each user's subscription

pro�le.

2.1.4. Evolved Universal Terrestrial Radio Access Network (E-UTRAN)

The E-UTRAN represents the access network of the EPS, it handles the tra�c between UE

and the EPC. The E-UTRAN consists in only one component called Evolved NodeB (eNB),

which is connected to the EPC through S1 physical interface. This S1 interface is divided

into two parts: one part is called S1-C interface which is the signaling procedure between

eNB and MME, and the other part is S1-U interface which is the connection between eNB

and SGW. It can also be connected to neighboring eNBs through X2 interface for handover

purposes. The E-UTRAN architecture is shown in Figure 2.2.
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Figure 2.2: E-UTRAN Architecture

2.1.5. Protocol Architecture

User Plane

In user plane, an IP packet for the UE is encapsulated in an EPC using a 3GPP speci�c

protocol. This protocol is called GPRS Tunneling Protocol - User Plane (GTP-U) which is

used over the core network interfaces S1 and S5/S8. After the GTP-U encapsulation, the

IP packet is tunneled between the PGW and the eNB for transmission to the UE [25]. The

overall user plane protocol stack is shown in Figure 2.3.

Figure 2.3: EPS User Plane Protocol Stack
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Control Plane

The control plane protocol stack between UE and MME is shown in Figure 2.4.

Figure 2.4: UE-MME Control Plane Communication Protocol Stack

2.1.6. Protocol Stack De�nition

Physical Layer (PHY) carries all the information from the MAC transport channels

over the air interface to physical channels[7]. It also handles the coding/decoding, modu-

lation/demodulation, and multi-antenna processing of the signal. [31].

Medium Access Layer (MAC) is responsible for mapping between logical channels and

transport channels, o�ering a set of logical channels to the RLC sublayer that the MAC mul-

tiplexes into the physical layer transport channels[23]. It is also responsible of the scheduling

for uplink and downlink, and the data multiplexing from di�erent radio bearers. There is

only one MAC entity per UE [31].

Radio Link Control (RLC) is responsible to transport the PDCP's PDUs. It can op-

erate in three di�erent modes: Transparent Mode (TM), Unacknowledged Mode (UM), and
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Acknowledged Mode (AM). Depending on the mode of operation, which depends of the reli-

ability provided, can provide HARQ error correction, segmentation/concatenation of PDUs,

reordering for in-sequence delivery, duplicate detection, etc. [23][7]

Packet Data Convergence Control (PDCP) is responsible of [7]:

Header compression and decompression of IP data,

Transfer of data (user plane or control plane),

Maintenance of PDCP Sequence Numbers (SNs),

In-Sequence delivery of upper layer PDUs at re-establishment of lower layers,

Duplicate packet detection,

Ciphering and deciphering of user plane data and control plane data,

Handover data habdling,

Integrity protection and validation.

Radio Resource Control (RRC) is responsible of [7]:

The broadcasted system information related to the access stratum (AS) and transport

of the non access stratum (NAS) messages.

Paging, establishment and release of the RRC connection between UE and E-UTRAN.

Security key management.

Establishment, con�guration, preservation and release of point to point Radio Bearers.

Handover.

QoS.
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Non Access Stratum (NAS) is a protocol between the UE and the MME on the network

side (outside of E-UTRAN). It performs authentication of the UE and security control to

establish and maintain IP connectivity between the UE and a PDN GW. [23][7]

GPRS Tunneling Protocol (GTP) is a group of IP-based communications protocols used

to carry GPRS in GSM, UMTS and LTE networks. It uses UDP/IP as transport protocol

and can be descomposed into separate protocols (GTP-U and GTP-C) [35].

GTP-U: It is used in user plane to carry user data packets in GPRS LTE networks.

GTP-C: It is used in the control plane for signaling (bearer activation, deletion and

modi�cation) in GPRS LTE networks.

S1 Application Protocol (S1-AP) is used ont the control plane. The S1-AP messages

are sent between the eNB and the MME, this messages are encapsulated by SCTP/IP. S1-AP

provides S1 bearer set-up and paging initiation which are signalling services[31].

Stream Control Transmission Protocol (SCTP) ensures the required reliable delivery

of the signalling messages. Only one SCTP association is established between one eNB and

one MME[31].

2.1.7. LTE Channel Quality Indicator

The channel quality information (CQI), as its name implies, is an indicator carrying the

information on how good or bad is the channel quality between UE and the eNB. In OAI

project, when eNB runs, it shows the CQI level when an UE is connected. In LTE, there are

15 di�erent CQI value ranging from 0 to 15. Its values and corresponding MCS settings are

shown in Table 2.1.
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CQI Index Modulation Code Rate x 1024 E�ciency

0 out of range

1 QPSK 78 0.1523

2 QPSK 120 0.2344

3 QPSK 193 0.3770

4 QPSK 308 0.6016

5 QPSK 449 0.8770

6 QPSK 602 1.1758

7 16QAM 378 1.4766

8 16QAM 490 1.9141

9 16QAM 616 2.4063

10 64QAM 466 2.7305

11 64QAM 567 3.3223

12 64QAM 666 3.9023

13 64QAM 772 4.5234

14 64QAM 873 5.1152

15 64QAM 948 5.5547

Table 2.1: 4-bit CQI Table

2.2. Heterogeneous Networks (HetNets)

Heterogeneous network (Figure 2.5) is the mix of macro cells and small cells to e�ectively

bringing the network closer to the user. In order to reduce the site-to-site distance in the

macro-network, smalls cells are introduced to existing macro-eNBs, through the addition of

low-power base stations (eNBs, HeNBs, or Relay Nodes(RN)) or Remote Radio Heads (RRH).

[32]
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Figure 2.5: Illustration of a HetNet with large and small cells [32]

In HetNets, the cells of di�erent sizes are referred as macro-cells, micro-cells, pico-cells and

femto-cells; these cells sizes are listed in order of decreasing base station power. In this list,

micro-cells, pico-cells and femto-cells are considered small cells, since they are small compared

to the macro cell coverage. The introducing of a heterogeneous network makes the network

planning more complex. In a network where the macro-cell and the small-cell use the same

frequency channel, the UE connects to the cell with the strongest received DL signal (SSDL).

In order to ensure that small cells can serve enough users, the coverage area of the small

cell is increased through the use of SSDL o�set, this is called Cell Range Extension (CRE).

However, the e�ect of the CRE increase the interference on the DL experienced by the UE

that is in the coverage of the small cell. To mitigate this interference problem, a number of

features added to the 3GPP LTE can be used. [32]
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Inter-cell Interference Coordination (ICIC)

ICIC was introduced in Release 8. In this concept, via the X2 interface, the eNBs can

communicate using ICIC in order to mitigate inter-cell interference at the cell edge for UEs.

In Release 10, enhanced ICIC (eICIC) was introduced. The principal change is the addition

of time domain ICIC through the use of Almost Blank Subframes (ABS), which transmit

control channels with reduced power, and allow that the UEs that are at the edge, typically

in the CRE region of the small cells, to receive DL information for both control and user data.

In Release 11, ICIC was evolved to further enhanced ICIC (feICIC). Here its focus is on the

interference handling by the UE through ICIC for control signals, which enables further cell

range extension. [32]

Carrier Aggregation (CA)

CA was introduced in Release 10, in order to increase the total bandwidth available to

UEs, and thereby increase the bitrate, which is the transferring data measured in bits per

second.

Coordinated Multi Point (CoMP)

CoMP is used in order to provide the proper coverage at the cell edges. Here a number

of transmission/reception points (signal from two or more base stations) can be coordinated

to provide service to the UE, with this information, the UE located in the CRE can use the

best UL in the small cell and the best DL in the macro-cell.

2.3. Open Air Interface (OAI) Platform

OAI is developed by OpenAirInterface Software Alliance (OSA) [15], created by Eurecom

[6]. It is an open-source hardware and software for wireless technology platforms (simulation,

emulation, and realtime) for deployment of a simulate network with high level of realism. OAI

provides an open-source-software-based implementation of LTE network (based on release 8

and partially release 10), following the standard protocols of 3GPP for the Access Network
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and the Core Network. It includes E-UTRAN (eNB and UE) and EPC (MME, HSS, SGW,

and PGW), which are shown in Figure 2.6.[10]

Figure 2.6: OAI LTE Network [10]

As Figure 2.6 shows, in the scenario of OAI EPC, SGW and PGW are merged together

into one entity called SPGW, so there is no S5/S8 interface between SGW and PGW, as the

conventional EPS.

Software

The source code of the OAI Platform is divided in two parts. The part of the EPC is

called openair-cn, and the part of the E-UTRAN is called openairinterface5g. The source

code is found in the Git repository of OAI [10], and is organized as follows [8]:

Cmake-targets: Openair build system.

Common: Common code in all layers.

Openair1: Source code for Layer 1.

Openair2: Source code for Layer 2.

Openair3: Middleware code.

Openair-cn: Source code for Core Network.
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Targets: Speci�c code for executables.

Hardware

The software of OAI can be used with standard RF laboratory equipment (low cost de-

vices) for real-world experimentation and validation. In this section will be explained the

possible scenarios that can be used with OAI, and the hardware requirements for the setup.

2.3.1. Deployment scenarios

In OAI, di�erent scenarios can deployed as follows [13]:

Commercial UE <-> OAI eNB + Commercial EPC.

Commercial UE <-> OAI eNB + OAI EPC.

Commercial UE <-> Commercial eNB + OAI EPC.

OAI UE <-> Commercial eNB + OAI EPC (experimental).

OAI UE <-> Commercial eNB + Commercial EPC (experimental).

OAI UE <-> OAI eNB + Commercial EPC (experimental).

OAI UE <-> OAI eNB + OAI EPC.

OAI UE <-> OAI eNB.

In addition, when OAI eNB and OAI EPC is used, it can be setup on di�erent host or on

the same host, but it is recommended to setup them in di�erent host machines due to possible

con�icting packages/kernel. In this project, the scenario used is Commercial UE <-> OAI

eNB + OAI EPC on di�erent hosts [29].

2.3.2. Host Machines and Processors

According to hardware requirements in OAI [14], the host machines should ful�ll certain

requirements to be compatible with OAI project. The following are processor families that

have been successfully tested in OAI:
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Generation 3/4/5/6 Intel Core i5, i7.

Generation 2/3/4 Intel Xeon.

Intel Atom Rangeley, E38xx, x5-z8300.

2.3.3. Supported RF

OAI supports the following SDR hardware:

NI/Ettus USRP B200/B210 USB3 radio card, requiring a PC with a free USB3 port.

BladeRF over USB3 port.

LimeSDR over USB3 port.

EURECOM EXPRESSMIMO2 PCIe card, requiring a PC with a free 8/16-way PCIe

slot.

In this project, we used the USRP B200, which is a low-cost Single Input Single Output

(SISO) SDR, that has a frequency range from 700 MHz to 6 GHz [20]. It belongs to Ettus

Bus Series, with requirements of USB 3.0 to SuperSpeed transfer samples to eNB. If USB 2.0

is used, the sample transfer rate is very slow and the eNB will stop. The USRP B200 that is

used in this project is shown in Figure 2.7.
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Figure 2.7: USRP B200

2.3.4. User Equipment

In UMTS and 3GPP, a user equipment (UE) can be any device used directly by an end-

user to communicate. It can be an OAI UE (software-implementation of a UE), a mobile

phone, or a PC/Laptop using a USB Dongle LTE. In this project for mobile phone, we used

a Nexus 5 Smartphone (shown in Figure 2.8), and for Dongle LTE we used a Huawei E3372

(shown in Figure 2.9).
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Figure 2.8: Nexus 5 Smartphone

Figure 2.9: USB Dongle LTE: Huawei E3372

2.3.5. SIM Card

IMSI

International Mobile Subscriber Identity (IMSI) is a unique code of identi�cation for each

user in the mobile network. It is presented as a 15 digit number, the �rst 3 digits are the

Mobile Country Code (MCC), then the next digits are the Mobile Network Code, in this case
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it depends on the value of the MCC, either 2 digits for European standard or 3 digits for

North American standard, in this project the European standard is used, being 2 digits the

length of the MCC. The remaining digits are the Mobile Subscription Identi�cation Number

(MSIN) which length is 9 or 10 digits depending on the MNC length, in this project the MSIN

length is 10 digits. An IMSI code used in this project is shown as an example in the Table

2.2.

MCC 208 (France)

MNC 93 (new MNO MNC)

MSIN 0000000001

Table 2.2: IMSI: 208930000000001

ICCID

A SIM card contains its unique Integrated Circuit Card Identi�er (ICCID), it identi�es

each SIM chip internationally.

IMEI

International Mobile Equipment Identity (IMEI) is a unique number to identify 3GPP

mobile phone. It is usually found printed inside the battery compartment of the phone. The

IMEI is stored in the HSS to identify valid devices of the users.
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Chapter 3

The State of the Art

In this section, we will present solutions proposed in the literature to extend the radio

coverage or increase the capacity of LTE networks.

3.1. Evolved User Equipments (eUE) [1]

In this solution, proposed by Apostolaras et al. [1], the eUEs are presented as active

network elements to enable reliable multi-hop operation. These eUEs create a virtual link

air-interface to be able to forward L2/MAC packets with low latency. The low latency com-

munication is achieved by introducing a full protocol implementation mechanism for MAC/L2

packet forwarding that exploits bu�er aware scheduling [1]. The virtual link air-interface ex-

tends the classical point-to-point physical links of the radio access networks systems, as shown

in Figure 3.1. Basically, eUE stores incoming packets and relay the tra�c to the eNB through

multi-hop connection [1].
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Figure 3.1: LTE Network with Evolved UEs. [1]

3.1.1. Use Cases

In Figure 3.2, it is shown the network topology and the uses cases introduced by the

eUE-assisted forwarding.

Figure 3.2: Network Topology and Use Cases

Core-isolated eNBs

• eUEs enable wireless backhauling to core-isolated eNBS.

• eUEs are enabled as a service by the eNBs to relay tra�c.
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Moving Cells

• Public Safety and Private Mobile Radio.

• Intelligent Transport Systems (ITS) applications.

Small Cells

• eUEs can communicate to multiple eNBs by realizing a CoMP on the downlink

reception.

• eUEs allows eNBs to re-establish X2-interface.

3.1.2. Performance Evaluation

The OpenAirInterface (OAI) [15] was used in order to evaluate the performance, the

distributed synchronization procedures and the 3GPP protocol operations for eNBs and eUEs

(full implementation code is available online [22]).

The scenario consist of two eNBs and four eUEs located in an area of 500m2. The system

con�guration used by Apostolaras et al. is summarized in Table 3.1.

Parameter Value

Carrier Freq. 1.9 GHz

Bandwidth 5MHz

Frame Duration 10ms

TTI 1ms

eUEs 1, 2, 3, 4

Tra�c Type UDP

Fading AWGN Ch.

Pathloss -50dB

Pathloss Exp. 2-67

Mobility Random

Table 3.1: System con�guration setup [1]
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The results of the system con�guration of Table 3.1 is shown in Figure 3.3. As the Table

3.1 indicates, they are using AWGN channel as a parameter, and OAISIM is used for the

setup of this channel according to OAI, which is a system emulator that allows simulation

and emulation of an OpenAirLTE network [16].

Figure 3.3: OAI Measurements Results of LTE using eUEs. [1]
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As it is shown in Figure 3.3, when the number of eUEs increases, the latency and packet

loss rate (PLR) are reduced, and the throughput increases. In the case of 4 eUEs, in Figure

3.3-a, it is shown that the latency is improved up to 16.94%. Figure 3.3-b shows that the

PLR is reduced up to 59.25%, and �nally Figure 3.3-c shows that the throughput is improved

up to 68.49%. As it is seen, when more eUEs are used to for multiple eNB communication,

the performance of the network is improved.

3.2. Enhanced Evolved NodeB (2eNB) [19]

The concept of enhanced evolved NodeB (e2NB) is introduced by Romain Favraud and

Navid Nikaein [19], to enable wireless mesh backhaul link between e2NBs. The e2NB uses

the existing LTE air interface to establish communication between e2NBs. The di�erence

between an ordinary eNB and a e2NB are its components, shown in Figure 3.4.

Figure 3.4: Enhanced Evolved NobeB [19]

eNB: Provides the same operations as a normal eNB.

MME and HSS: Allow that the e2NB can work in standalone functionality, and this
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components can interact with the embedded eNB [19]. The HSS provides the same

operations as a normal HSS, that is the database of authorized users on the network.

Virtual UEs: Establish the communication between e2NBs.

Coordination and Orchestration Entity (COE): It manages the entire life-cycle of

vUEs, provides them IMEI and a SIM service to be authenticated by the others e2NBs.

It determines the IP address and routing algorithms. It controls the access to the radio

required by the embedded eNB and vUEs of the e2NB. [19]

Routing and data forwarding: Enables fast routing and data forwarding of IP

packets between eNB and vUE PDCP layer [19]. e2NB can be seen as an endpoint,

contrary to normal eNBs.

3.2.1. Performance Evaluation

The OpenAirInterface (OAI) was used to build an emulation platform [13][26]. The net-

work architecture for the connection between two e2NBs is shown in Figure 3.5, where links

1 and 2 are the links between the two e2NBs and their respectives vUEs, and links 3 and 4

are the connection with their respective real UEs.

Figure 3.5: Network Architecture e2NB [19]

The network architecture of Figure 3.5 is used to perform three experiments with the

emulation parameters shown in Table 3.2.

38



Parameter Value

Carrier Freq. 0.9 GHz

Bandwidth 5MHz

Pathloss at 1Km -91dB

Pathloss Exp. 3

Noise Model AWGN

Trans. Mode 1

Antenna Omni 0dBi

Max. Tx Pwr. (dBm) eNB 24.7 - vUE 23

Max. MCS DL 26 - UL 16

RLC Mode UM

RLC reorder timer 35ms

SR Periodicity 2ms - even SF only

Packet IDT uniform 10-50 ms

Packet size uniform 64-1408 bytes

Table 3.2: Emulation Parameters [1]

Fixed Cells

In this scenario, the performance of the backhaul link between the two e2NBs (3.5-(a) and

3.5-(b)) is evaluated without any connected UE. Table 3.3 shows the di�erent scenarios, with

di�erent subframes (SF) allocation for each link, that were used in this experiment.

39



Scenario DL SF (a) �> (b) DL SF (b) �> (a) Total DL/UL SFs

1 1, 2, 3, 6, 7, 8 none 6/6

2 1, 2, 6, 7, 8 3 6/6

3 1, 2, 6, 7 3, 8 6/6

4 1, 2, 6 3, 7, 8 6/6

5 1, 6 3, 8 4/4

6 6 8 2/2

Table 3.3: Subframes Allocations [1]

Here each e2NB is connected to each other using their respective vUEs through links 1

and 2. In this experiment, when scenario 1 is used, the only link that is established is the

link 1, due to the SF allocation.

Figure 3.6: Performance of inter-e2NB backhaul link on a �xed scenario [19]
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As shown in Figure 3.6, (E) and (F) are box plots that represents the results of the packet

latency of UL and DL �ows for each scenario. Then (G) and (H) represents the results of

average gooput, tra�c �ow data rate for the variable bit rate (VBR) �ow, and the maximum

data rate for links from (a) to (b) and from (b) to (a). It can be seen that when the number

of available DL or UL SFs increases, the latency, the goodput and the maximum data rate are

improved. Nevertheless, it is seen that the latency over a DL path is lower than the latency

over the UL path, this means that the DL provides much higher goodput.

Moving Cells

In this experiment, the e2NBs of Figure 3.5 are moving in opposite directions starting

from 4Km to 17.2Km of distance, and both with a maximum speed of 20m/s [19]. Both

e2NBs reach their destination after 400 seconds. For SF allocation, Table 3.3 (also see Figure

3.5) is used. Here two types of tra�c are considered: VBR and VoIP G729. For VBR tra�c,

the packet size and the IDT is the same as the ones de�ned in Table 3.2.

Figure 3.7: Performance of inter-e2NB backhaul link on a moving scenario [19]

It can be seen in Figure 3.7 that the DL path has a lower latency and a better goodput than

the UL, especially for VBR tra�c. Also, it is seen that the VBR tra�c of the DL path after

15.5Km is not good, and the UL path is not good after 10Km. According to Romain Favraud

and Navid Nikaein [19], it is caused due to two factors, one is the lack of capacity caused by
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the adaptive modulation and coding scheme (MCS), and the other is the transmission errors

due to channel degradation. In addition, it is seen that using DL or UL path, the LTE QoS

requirement of 100ms latency for VoIP is ful�lled throughout the whole experiment [19].

Multi-hop Operation

In this last experiment, the two e2NBs are �xed and connected to UEs (c) and (d) re-

spectively (see Figure 3.5). To forward data to the destination in a multi-hop scenario, static

routes are added. In addition, as the experiment of moving cells, VBR and VoIP G729 tra�c

are generated.

Figure 3.8: Latency of VBR �ow and VoIP over multi-hop [19]

In Figure 3.8, it is seen that in VBR end-to-end latency, UL path is almost the double of

DL path. And as the previous experiment, it is seen that the LTE QoS requirement of 100ms

latency for VoIP is met throughout the whole experiment[19].

3.3. Relay Nodes

In order to improve and extend the radio coverage area or increase the capacity of 4G

networks, the concept of relaying was de�ned for LTE-Advanced in 3GPP Release 10 of the

LTE speci�cations by the introduction of Relay Nodes (RNs) [33][34]. Figure 3.9 illustrates
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the concept, which includes the following terminology used in 3GPP for a Relay Network:

Donor eNB: The source where the RN receives its signal.

Donor cell: The coverage area of the eNB.

Relay Node: Lower power base station that works as an eNB.

Relay cell: The coverage area of the RN.

Backhaul link: The link between the donor eNB and the RN.

Access link: The link between the RN and the UE.

Direct link: The link between the donor eNB and the UE.

Figure 3.9: Relay Network

As shown in Figure 3.9, the RN is connected to the donor eNB using the existing LTE

radio interface to extend the radio coverage of the LTE network.

Relaying strategies can be categorized by the protocol layer functionality of the RN. [17]

3.3.1. Layer 1 RN (Repeater)

In 3GPP Release 8, a relay as a form of repeater was introduced, which is known as wireless

repeater or Layer 1 Relay Node (L1 RN) [2]. This repeater receives the signal of the eNB and

ampli�es it and transmits it again to the destination. The process of the repeater is performed
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at Layer 1 (physical layer-PHY). L1 relay is a good solution for mitigating coverage holes [2].

It is cost e�ective and has low latency compared to the other relay scenarios. However,

as it ampli�es the signal coming from the donor eNB, it also ampli�es the noise and the

interference, and transmit them together to the destination with the desired signal. In the

following �gures, the protocol stack for the control plane (Figure 3.10) and user plane (Figure

3.11) for L1 RN solution are shown [17].

Figure 3.10: Protocol stack L1 RN - Control Plane

Figure 3.11: Protocol stack L1 RN - User Plane

3.3.2. Layer 2 RN

In Layer 2 Relay Node solution, RN forwards user plane and control plane tra�c in

the sublayers PDCP, RLC and MAC [2], as shown in Figures 3.12 and 3.13. Here delay is

introduced, since the relay decodes and re-encode before sending the received data, but there
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is no noise in the data that is forwarded by the L2 RN.

Figure 3.12: Protocol stack L2 RN - Control Plane

Figure 3.13: Protocol stack L2 RN - User Plane

3.3.3. Layer 3 RN: Wireless Router

In L3 RN, known as wireless router [4], is similar to the L2 RN, but L3 RN also forwards

IP packets. A solution in this layer called self-backhauling, was proposed by Hoymman et al.

[4]. This self-backhauling relay has the same functionality as the eNB, but it transmits a lower

power and has a smaller cell size than the eNB. The relay must support LTE radio interface

protocols, since it is connected to the eNB through LTE radio interface for communication

[2]. The control plane and user plane tra�c forward is shown in Figures 3.14 and 3.15.

This solution is also evaluated by A. Mourad in Interdigital [3]. Even though Hoymman and

A. Mourad have researched about self-backhauling solutions, they do not have results of an

implemented self-backhauling network, only potential solutions for future deployment.
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Figure 3.14: Protocol stack L3 Self-Backhauling RN- Control Plane

Figure 3.15: Protocol stack L3 RN Self-Backhauling - User Plane
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Chapter 4

Implementation

For OAI installation, Linux PCs need to run Ubuntu 14.04 LTS 64-bit. This version is

supported and recommended by the OAI project, based on the experience at EURECOM.

Other Linux distributions are not recommended because OAI needs lot of packages and is

very sensitive to version numbers, linux kernel, etc. The OAI project gives a tutorial for the

setup for a conventional LTE network, as explained in Chapter 2. The �nal scenario that is

used in this project is based on the tutorial of Commercial UE <-> OAI eNB + OAI EPC on

di�erent hosts [29], which is the setup shown in Figure 4.1. Hence, the installation of eNBs

and EPC should be done following this tutorial. In the following, we present the speci�c

con�guration and setup details.

Figure 4.1: Conventional Architecture of LTE Network

4.1. General System Requirements

The Linux PC that is used as an eNB (PC1 in Figure 4.1) needs to perform lots of

calculations and receives frames from UEs through USRP B200 connected to USB 3.0 in real
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time. For this reason, eNB needs a low-latency kernel. The kernel version used for eNB in

this project is 3.19.0-61-lowlatency. Then for the EPC (PC2 in Figure 4.1) requires a generic

kernel version 4.7.x to create a GTP tunnel for SPGW, this tunnel is used to deliver UE IP

packets coming from eNB towards P-GW. The kernel version used for EPC in this project is

4.7.1.

4.2. Conventional LTE Architecture Setup

For conventional LTE architecture setup, as shown in Figure 4.1, we use PC1 for eNB and

PC2 for EPC, which are connected through an Ethernet cable, and the connection between

PC1 and USRP B200 is via USB 3.0 for real time data tra�c purposes. For the installation

of the OAI software, it can be obtained from the EURECOM GitLab server as mentioned

in Chapter 2 [10]. It is important to use the correct branch, there are two main branches

(master and develop), the develop branch is the one recommended by the OAI team. The

detailed setup for conventional LTE is shown in Figure 4.2.

Figure 4.2: Detailed Conventional LTE setup with ethernet interfaces and IP addresses

The UE SIM card used in this project is con�gured with the information shown in Table

4.1.
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MCC (Mobile Country Code) 208

MNC (Mobile Network Code) 93

TAC (Tracking Area Code) 1

IMSI (International Mobile Subscriber Identity) 208930000000001

OP (Operator Key) 11111111111111111111111111111111 (32 digits)

Table 4.1: UE SIM card con�guration

The con�guration �les for eNB, HSS, MME and SPGW have to be modi�ed in order to

setup the LTE network. For the con�guration of the eNB, the parameters to be changed in

the �le �enb.band7.tm1.usrpb210.conf� are shown in Table 4.2.

eNB_ID 0xe00;

downlink_frequency 2670000000L;

N_RB_DL 25;

tx_gain 90;

rx_gain 125;

tracking_area_code �1�;

mobile_country_code �208�;

mobile_network_code �93�;

mme_ip_address (ipv4) �192.168.12.63�;

ENB_INTERFACE_NAME_FOR_S1_MME �eth6�;

ENB_IPV4_ADDRESS_FOR_S1_MME �192.168.12.83/24�;

ENB_INTERFACE_NAME_FOR_S1_MME �eth6�;

ENB_INTERFACE_NAME_FOR_S1_MME �192.168.12.83/24�;

ENB_PORT_FOR_S1U 2152;

Table 4.2: eNB parameters to be changed for conventional LTE network

For the con�guration of the EPC, the parameters of HSS, MME, and SPGW to be changed

are shown in following subsections.
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HSS

In the HSS, as it is a database, MySQL is installed during the HSS build. Here two

�les have to be con�gured: �hss.conf� and �hss_fd.conf�;. These parameters that have to be

changed are shown in Table 4.3 and Table 4.4 respectively.

MYSQL_server �127.0.0.1�;

MYSQL_user �root�;

MYSQL_pass �linux�;

MYSQL_db �oai_db�;

OPERATOR_key �11111111111111111111111111111111�;

Table 4.3: Parameters to be changed in �hss.conf�;

Identity �hss.openair4G.eur�;

Realm �openair4G.eur�;

Table 4.4: Parameters to be changed in �hss_fd.conf�;

MME

In the MME, like HSS, two �les have to be con�gured: �mme.conf� and �mme_fd.conf�.

These parameters that have to be changed are shown in Table 4.5 and Table 4.6 respectively.
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MAXENB 2; #power of 2

MAXUE 16; #power of 2

GUMMEI_LIST ({MCC=�208� ; MNC=�92�; MME_GID=�4� ;

MME_CODE=�1�; });

TAI_LIST ({MCC=�208� ; MNC=�93�; TAC = �1�; });

MME_INTERFACE_NAME_FOR_S1_MME �eth3�;

MME_IPV4_ADDRESS_FOR_S1_MME �192.168.12.63/24�;

MME_INTERFACE_NAME_FOR_S11_MME �lo�;

MME_IPV4_ADDRESS_FOR_S11_MME �127.0.11.1/8�;

MME_PORT_FOR_S11_MME 2123;

SGW_IPV4_ADDRESS_FOR_S11 �127.0.11.2/8�;

Table 4.5: Parameters to be changed in �mme.conf�

Identity �younes.openair4G.eur�;

Realm �openair4G.eur�;

ConnectPeer �hss.openair4G.eur� { ConnectTo = �127.0.0.1�; No_SCTP ; No_IPv6; Pre-

fer_TCP; No_TLS; port = 3868; realm = �openair4G.eur�;};

Table 4.6: Parameters to be changed in �mme_fd.conf�

SPGW

As mentioned in Chapter 2, S-GW and P-GW are merged together, and the con�guration

�le that has to be con�gured is �spgw.conf�. The parameters to be changed are shown in

Table 4.7 and Table 4.8.
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SGW_INTERFACE_NAME_FOR_S11 �lo�;

SGW_IPV4_ADDRESS_FOR_S11 �127.0.11.2/8�;

SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP �eth3�;

SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP �192.168.12.63/24�;

SGW_IPV4_PORT_FOR_S1U_S12_S4_UP 2152;

SGW_INTERFACE_NAME_FOR_S5_S8_UP �none�;

SGW_IPV4_ADDRESS_FOR_S5_S8_UP �0.0.0.0/24�;

Table 4.7: Parameters of S-GW to be changed in �spgw.conf�

PGW_INTERFACE_NAME_FOR_S5_S8 �none�;

PGW_IPV4_ADDRESS_FOR_S5_S8 �0.0.0.0/24�;

PGW_INTERFACE_NAME_FOR_SGI �eth4�;

PGW_IPV4_ADDRESS_FOR_SGI �147.83.47.159/24�;

PGW_MASQUERADE_SGI �yes�;

UE_TCP_MSS_CLAMPING �no�;

IPV4_LIST (�172.16.0.0/24�;);

DEFAULT_DNS_IPV4_ADDRESS �8.8.8.8�;

DEFAULT_DNS_SEC_IPV4_ADDRESS �8.8.4.4�;

UE_MTU 1400;

Table 4.8: Parameters of P-GW to be changed in �spgw.conf�;

After all the changes done in the con�guration �les, the user needs to be registered in the

database (HSS). To do that, we use MySQL to add the user to the user table �oai_db.users�;,

and also the tables �oai_db.mmeidentity� and �oai_db.pdn� have to be updated.

Then HSS, MME, and SPGW are compiled and run. To have a successful connection

between MME and HSS, in the terminal �STATE_OPEN� message has to be shown as illus-

trated in Figure 4.3. SPGW creates a GTP tunnel to connect the eNB and the P-GW, and

this tunnel can be seen through the command �ifcon�g� as an interface called �gtp0� (Figure

4.4).

52



Figure 4.3: State Open on HSS (left) and MME (rigth) terminal

Figure 4.4: gtp0 interface

When eNB is compiled and run, MME will show the established connection between eNB

and EPC by indicating the local address of the EPC and the remote peer address of the

eNB, and also number of eNBs connected in the EPC as shown in Figure 4.5 and Figure 4.6

respectively.
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Figure 4.5: Addresses of eNB and EPC on MME terminal

Figure 4.6: Number of eNBs connnected to the MME

To connect the UE to the LTE network, the APN information in the UE (Nexus 5) has

to be changed with the parameters that are shown in Table 4.9 in the path Settings ->

Mobile Network Settings -> Access Point Names -> Add a new apn.

Name �eur�

APN �eld �oai.ipv4�

Bearer �LTE�

Table 4.9: Parameters of APN to be changed in UE

After con�guring the UE and connected to the LTE network, the status of Figure 4.6 will

change to the one shown in Figure 4.7. And the UE will indicate successful connection to the
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LTE network as shown in Figure 4.8

Figure 4.7: Number of UEs and eNBs connected to the MME

Figure 4.8: UE connected to the LTE network

When Dongle LTE is used as a UE, the con�guration of the APN can be changed through

the graphical interface that can be accessed using an Internet browser with the IP address

192.168.8.1 as shown in Figure 4.9. And the successful connection to the LTE network is

shown in Figure 4.10
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Figure 4.9: APN con�guration Dongle LTE

Figure 4.10: Successful connection Dongle LTE

4.3. Self-Backhauling Architecture Setup

For the self-backhauling architecture, we used the previous traditional LTE architecture

setup for the A-eNB, which is the following: a low cost USRP B200 (Universal Software De-
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�ned Radio) is used and connected to a PC1 that works as an A-eNB, this A-eNB is connected

via Ethernet to PC2 that works as an EPC. For the Self-Backhauled network, a second USRP

B200 is used and connected to a PC3 that works as the B-eNB. The B-eNB is connected to a

dongle LTE, which allows the B-eNB to connect to the A-eNB network as an user equipment,

to provides the backhaul link to the EPC. And �nally an UE is connected via LTE radio

interface through the USRP B200 that is connected to the B-eNB. This implementation is

shown in Figure 4.11.

Figure 4.11: Self-Backhauling First Setup with OAI project

The detailed setup of the self-backhauling network is shown in Figures 4.12 and 4.13.

Figure 4.12: Detailed Traditional Network part of the Self-Backhauling network architecture

Figure 4.13: Detailed Self-Backhauling Network
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B-eNB

eNB_ID 0xe10;

downlink_frequency 2640000000L;

N_RB_DL 25;

tx_gain 90;

rx_gain 125;

tracking_area_code �1�;

mobile_country_code �208�;

mobile_network_code �93�;

mme_ip_address (ipv4) �192.168.12.63�;

ENB_INTERFACE_NAME_FOR_S1_MME �eth8�;

ENB_IPV4_ADDRESS_FOR_S1_MME �192.168.8.100/24�;

ENB_INTERFACE_NAME_FOR_S1_MME �eth8�;

ENB_INTERFACE_NAME_FOR_S1_MME �192.168.8.100/24�;

ENB_PORT_FOR_S1U 2152;

Table 4.10: B-eNB parameters to be changed for Self-Backhauling LTE network First Setup

As it is showed in Table 4.10, there are some parameters that are di�erent from the one

used in Table 4.2, such as "eNB_ID" which must be di�erent from the eNB from conventional

LTE network to not have any con�ict with the IDs, another parameters are the IPs and

interfaces which are con�gurated to use the ones given to the B-eNB by the Dongle LTE to

route the incoming and outcoming packets.

4.4. Double GTP encapsulation problem for Self-Backhauling

After compiling and running all the setups, a problem was found, the UE was not able to

connect to the Internet. After detailed investigation, it was found that since B-eNB does the

GTP encapsulation of the data received from UE to send the data to A-eNB, and the A-eNB

does not recognize which packets are from a normal UE or from B-eNB, A-eNB was realizing
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another GTP encapsulation of the incoming packets from B-eNB, and we obtained a double

GTP encapsulation that is shown in the wireshark captures in Figures 4.14, 4.15 and 4.16 .

Figure 4.14: Wireshark capture of incoming packets in S-GW

Figure 4.15: Wireshark capture of incoming packets in P-GW

Figure 4.16: Wireshark capture of incoming packets in SGi
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Figure 4.14 shows the packets that A-eNB sends to the S-GW, Figure 4.15 shows the

packets that S-GW use gtp decapsulation to send to the P-GW, and Figure 4.16 shows the

packets that are sent through SGi interface to the Internet. As we can see, there is a double

GTP encapsulation and when the S-GW does the gtp decapsulation, it only decapsulates one

of them, having GTP packets in the data when it is sent to the Internet. This process will be

better explained by showing the user plane in Figure 4.17

Figure 4.17: User Plane of LTE network with double GTP problem

First let's talk about possible solutions to mitigate the problem of double gtp encapsula-

tion/decapsulation:

Update the A-eNB code, to recognize which are packet from a normal UE and which

are from the B-eNB, if the packets are from the B-eNB it will only relay them without

any GTP encapsulation to the EPC, but if the packets are from a normal UE they will

be relay with GTP encapsulation to the EPC.

Update SGW, to be able to remove the second GTP encapsulation.

Use an SGW at B-eNB, to remove the GTP encapsulation before sending the packets

to the A-eNB.

Hence, we focused on the last option and implemented a solution based on this idea. To
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implement this solution it was not enough to put an SGW in B-eNB, because using OAI,

SGW and PGW are merged together, and also the SPGW must be connected to one MME,

so a virtual MME and a virtual SPGW were added to the B-eNB. In consequence, the �nal

setup is shown in Figure 4.18.

Figure 4.18: Self-Backhauling Final Setup with OAI project

In the detailed description of the self-backhauling LTE network, we are still using the

traditional LTE network from Figure 4.12 for A-eNB and its EPC connection, but for the

self-backhauling part of the network we are using the detailed description shown in Figure

4.19

Figure 4.19: Detailed Self-Backhauling Network with vMME and vSPGW

In B-eNB as we are using a virtual machine to setup vMME and vSPGW, the B-eNB
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con�guration �le has to be changed as shown in Table 4.11 to direct the SPGW and MME

connections to the new virtualized SPGW and MME accordingly.

mme_ip_address (ipv4) �172.16.173.128�;

ENB_INTERFACE_NAME_FOR_S1_MME �vmnet8�;

ENB_IPV4_ADDRESS_FOR_S1_MME �172.16.173.1/24�;

ENB_INTERFACE_NAME_FOR_S1_MME �vmnet8�;

ENB_INTERFACE_NAME_FOR_S1_MME �172.16.173.1/24�;

ENB_PORT_FOR_S1U 2152;

Table 4.11: B-eNB parameters to be changed for Self-Backhauling LTE network Final Setup

vMME

In the vMME, as the traditional MME, two �les have to be con�gured: �mme.conf� and

�mme_fd.conf�;. These parameters that have to be changed are shown in Table 4.12 and

Table 4.13 respectively.

MAXENB 2;

MAXUE 16;

GUMMEI_LIST ({MCC=�208� ; MNC=�92�; MME_GID=�4� ;

MME_CODE=�1�; });

TAI_LIST ({MCC=�208� ; MNC=�93�; TAC = �1�; });

MME_INTERFACE_NAME_FOR_S1_MME �eth0�;

MME_IPV4_ADDRESS_FOR_S1_MME �172.16.173.128/24�;

MME_INTERFACE_NAME_FOR_S11_MME �lo�;

MME_IPV4_ADDRESS_FOR_S11_MME �127.0.11.1/8�;

MME_PORT_FOR_S11_MME 2123;

SGW_IPV4_ADDRESS_FOR_S11 �127.0.11.2/8�;

Table 4.12: Parameters to be changed in �mme.conf� for vMME
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Identity �nano.openair4G.eur�;

Realm �openair4G.eur�;

ConnectPeer �hss.openair4G.eur� { ConnectTo = �192.168.12.63�; No_SCTP ; No_IPv6;

Prefer_TCP; No_TLS; port = 3868; realm = �openair4G.eur�;};

Table 4.13: Parameters to be changed in �mme_fd.conf� for vMME

As we can see in Table 4.13, to connect to the HSS from the traditional network, the

�ConnectPeer� parameter is pointing to the IP of the EPC.

vSPGW

As the traditional SPGW, the con�guration �le that has to be con�gured is �spgw.conf�.

The parameters to be changed are shown in Table 4.14 and Table 4.15.

SGW_INTERFACE_NAME_FOR_S11 �lo�;

SGW_IPV4_ADDRESS_FOR_S11 �127.0.11.2/8�;

SGW_INTERFACE_NAME_FOR_S1U_S12_S4_UP �eth0�;

SGW_IPV4_ADDRESS_FOR_S1U_S12_S4_UP �172.16.173.128/24�;

SGW_IPV4_PORT_FOR_S1U_S12_S4_UP 2152;

SGW_INTERFACE_NAME_FOR_S5_S8_UP �none�;

SGW_IPV4_ADDRESS_FOR_S5_S8_UP �0.0.0.0/24�;

Table 4.14: Parameters of S-GW to be changed in �spgw.conf� for vSPGW
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PGW_INTERFACE_NAME_FOR_S5_S8 �none�;

PGW_IPV4_ADDRESS_FOR_S5_S8 �0.0.0.0/24�;

PGW_INTERFACE_NAME_FOR_SGI �etho�;

PGW_IPV4_ADDRESS_FOR_SGI �172.16.173.128/24�;

PGW_MASQUERADE_SGI �yes�;

UE_TCP_MSS_CLAMPING �no�;

IPV4_LIST (�192.16.0.0/24�);

DEFAULT_DNS_IPV4_ADDRESS �8.8.8.8�;

DEFAULT_DNS_SEC_IPV4_ADDRESS �8.8.4.4�;

UE_MTU 1400;

Table 4.15: Parameters of P-GW to be changed in �spgw.conf� for vSPGW

In this �nal setup, before sending the packets from the B-eNB to the A-eNB, they are sent

to the vMME and vSPGW to do the GTP decapsulation, and when the data is sent to the A-

eNB, it is seen as normal data from an UE, so when A-eNB does the GTP encapsulation, the

�nal result will not have the double gtp encapsulation/decapsulation problem. This process

will be better explained by showing the updated user plane in Figure 4.20.

Figure 4.20: User Plane of the �nal Self-Backhauling LTE network setup
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Chapter 5

Results

In order to obtain results for the implemented setup we used Band 7 which is composed

of frequencies between 2620 and 2690 MHz. We compared the throughput observed by a

UE connected to the conventional LTE network and the same UE connected through the

implemented self-backhauling network. The throughput is measured in terms of uplink and

downlink bitrate using iperf and speedtest Android application, respectively. The reason we

used speedtest Android application for downlink bitrate is because in the self-backhauling

network since the UE is connected to the vMME and vSPGW of the B-eNB and not to the

MME and SPGW of the conventional LTE network, the vSPGW does the NAT of that UE

and sends the tra�c with the IP of the dongle LTE given by the EPC, so the EPC does not

know the IP of the �nal UE, it only sees tra�c coming from dongle LTE. For the iperf test

we used TCP connection with the parameters shown in Table 5.1. Multiple tests (around 20)

were made, since the di�erence between each result is insigni�cant the variance is not shown,

only the average of the results are shown in this chapter.

Server iperf3 -B 172.16.0.1 -s;

Client iperf3 -c 172.16.0.1 -M 1400;

Table 5.1: Iperf parameters for server and client

Figure 5.1 shows the frequencies and bandwidth used for conventional LTE network and

in-band self-backhauling network evaluations, where both A-eNB and B-eNB uses the same
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central frequencies. This represents the case, where the operator have limited spectrum or

decides to do the set-up in this speci�c way. Figure 5.2 shows the frequencies and bandwidth

used for out-band self-backhauling network evaluations.

Figure 5.1: Spectrum used for conventional LTE network and In-Band Self-Backhauling tests

Figure 5.2: Spectrum used for Out-Band tests

Figures 5.3, 5.4 and 5.5 show the implemented setup in a real environment using the

components explained in chapter 4.

66



Figure 5.3: Conventional LTE network implemented in a real environment

Figure 5.4: Self-Backhauling LTE network implemented in a real environment
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Figure 5.5: EPC implemented in a real environment

As we can see in Figure 5.4, there are two PCs, one for A-eNB and the other for B-eNB.

In the B-eNB there is a Dongle LTE connected to the USB port, as explained before, this

will allow B-eNB to work as a UE. There are two SDRs, we can see in the �gure, one is for

A-eNB and the other for B-eNB, and �nally the UE that is close to the SDR of the B-eNB

is the one used for the test in this project. The EPC is implemented in a separate PC shown

in Figure 5.5.
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5.1. Conventional LTE Network

We vary the �Tx� and �Rx� gain parameters of A-eNB to change the size of the cell, and

evaluate the conventional LTE network setup under di�erent gain values. By default, the Tx

and Rx gain values provided by the OAI implementation are 90 and 125, respectively. Figure

5.6 illustrates the relative radio coverage observed for various gain value tuples. This coverage

information was obtained by checking the position of the UE that would have the coverage

of A-eNB.

Figure 5.6: Radio coverage for conventional LTE network when changing Tx and Rx Gain

parameters

For the rest of the evaluations, we �x the UE location and evaluate the throughput results

of the network for UL and DL for varying gain value tuples, which are shown in Figures 5.7

and 5.8, respectively.
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Figure 5.7: Results of Uplink with connection between UE and traditional LTE network

As we can see in Figure 5.7, the UE only has results when �Tx� gain is 90 and �Rx� gain is

125 using 5MHz, 10MHz and 20MHz of badwidth, and when �Tx� gain equal to 85 and �Rx�

gain equal to 120 using 5MHz and 10MHz of bandwidth, however the rest of the results are

zero, in which case the UE can not access the LTE network because it is out of the coverage

as shown in Figure 5.6.
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Figure 5.8: Results of Downlink with connection between UE and traditional LTE network

In Figure 5.8, as Figure 5.7, the UE only has results when �Tx� gain is 90 and �Rx� gain is

125, in the case of �Tx� gain equal to 85 and �Rx� gain equal to 120 the UE only has results

when it uses 5MHz and 10MHz of bandwidth.

5.2. Self-Backhauling Network

Figure 5.9 illustrates how the changing of the �Tx� and �Rx� gain parameters a�ects the

radio coverage of the self-backhauling LTE network setup. For all the tests done in self-

backhauling network, in B-eNB �Tx� gain is 75 and �Rx� gain is 110.
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Figure 5.9: Radio coverage for self-backhauling LTE network when changing Tx and Rx Gain

parameters

5.2.1. Self-Backhauling In-Band

Figures 5.10 and 5.11 show the throughput results of the self-backhauling in-band network

setup.

Figure 5.10: Results of Uplink with connection between UE and Self-Backhauling LTE In-

Band network
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As we can see in Figure 5.10, the UL throughput is very low, this happens because of the

self-interference that exists when in-band solution is used.

Figure 5.11: Results of Downlink with connection between UE and Self-Backhauling LTE

In-Band network

In contrast to Figure 5.8, in Figure 5.11 we obtain results for all the tested values of �Tx�

and �Rx� gain. Hence, with a self-backhauling solution we can extend the coverage of the

conventional LTE network, even if an in-band solution is used.

Although there is self-interference when in-band solution is used, we obtained better results

in downlink bitrate than in uplink bitrate, the reason could be the type of modulation they

use, since downlink uses Orthogonal Frequency Division Multiple-Access (OFDMA) and UL

uses Single-Carrier Frequency-Division Multiple-Access (SC-FDMA). OFDMA uses multiple

subcarries and this could be reducing the self-interference in contrast to SC-FDMA which

uses a single carrier.
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5.2.2. Self-Backhauling Out-Band

Figures 5.12 and 5.13 shown the throughput results of the self-backhauling in-band network

setup for UL and DL, respectively.

Figure 5.12: Results of Uplink with connection between UE and Self-Backhauling LTE Out-

Band network

In contrast to in-band solution (see Figure 5.10), where the access and the backhaul

link share the same frequency, in the out-band solution there is no self-interference, so the

throughput of the uplink is better as we can see in Figure 5.12.
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Figure 5.13: Results of Downlink with connection between UE and Self-Backhauling LTE

Out-Band network

Although we obtained an enhancement of the conventional LTE network in the downlink

when in-band solution was used, using out-band the results are even better because (see Figure

5.13), as explained before, in this setup there is no self-interference. As we have shown, using a

self-backhauling eNB help us to increase the radio coverage of the conventional LTE network.

5.2.3. End-to-end Delay and Packet Delivery Ratio (PDR) Results

Table 5.2 shows the range of ping results when using conventional LTE network using both

Nexus 5 and Dongle LTE Huawei E3772 as UEs. Table 5.3 shows the range of ping results

when using self-backhauling LTE network using Nexus 5 as a UE. In this test, ping sends

data with small packet sizes, and six tests were made using in-band and out-band solution,

the �rst two when �Tx� gain is 90 and �Rx� gain is 125, the next two when �Tx� gain is 85

and �Rx� gain is 120, and the last two when �Tx� gain is 80 and �Rx� gain is 115.
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UEs Delay PDR

Nexus 5 15ms - 25ms 100%

PC (DONGLE LTE Huawei E3772) 30ms - 50ms 100%

Table 5.2: Range of ping results in conventional LTE network

UEs Delay PDR

Nexus 5 40ms - 65ms 100%

Table 5.3: Range of ping results in Self-Backhauling LTE network

5.2.4. Packet Captures Analyzing the Self-Backhauling Setup

In the following �gures, wireshark captures of how the self-backhauling network works are

shown. In these pictures it will be shown when a UE is sur�ng through the Internet.

Figure 5.14: Wireshark capture of the packets in vSGW

Figure 5.14 shows the wireshark captures of the vSGW when the B-eNB sends the data

received from UE after the GTP encapsulation. As we can see the UE is sending tra�c

through DNS protocol in 192.16.0.2 (IP of the UE) -> 8.8.8.8 (public DNS of google) which

is encapsulated by the B-eNB using GTP encapsulation.
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Figure 5.15: Wireshark capture of the packets in vPGW

Figure 5.15 shows the wireshark captures of the vPGW when the vSGW sends the data

received from B-eNB after the GTP decapsulation. As seen in the capture, here, the packet

is decapsulated and the resulting IP packet source is B-eNB and the destination is the DNS

server.

Figure 5.16: Wireshark capture of the packets in B-eNB Dongle before sending to A-eNB

Figure 5.16 shows the wireshark captures of the B-eNB Dongle interface when it sends the

data as a an LTE UE attached to the A-eNB. Here, the IP source address is changed by the

dongle to 192.168.8.100, i.e., to the IP of interface assigned dongle at B-eNB PC.
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Figure 5.17: Wireshark capture of the packets in A-eNB

Figure 5.17 shows the wireshark captures at A-eNB when it sends the data received from

B-eNB after the GTP encapsulation is done. Here we can see that the IP is changed since

the EPC gives to the dongle the IP 172.16.0.2, and the data is coming from the B-eNB.

Figure 5.18: Wireshark capture of the packets in SGW

Figure 5.18 shows the wireshark captures of the SGW when the A-eNB sends the data after

its GTP encapsulation. As we can see, the headers are the same with the previous capture,

since in Figure 5.17 the packets that the A-eNB sends to the SGW after GTP encapsulation

are shown, and here the packets received by SGW machine (i.e. the machine hosting EPC)

are shown.
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Figure 5.19: Wireshark capture of the packets in PGW

Figure 5.19 shows the wireshark captures of the PGW when the SGW sends the data

received from A-eNB after the GTP decapsulation. As can be seen, there is no tunnel created

for S5 interface (SGW-PGW interface) in OAI, possibly because they run in a single (spgw)

executable. After the GTP encapsulation, it can be seen that, the IP source of the packet is

now the LTE dongle (i.e., B-eNB dongle) and the destination is the DNS server.

Figure 5.20: Wireshark capture of the packets in SGi

Figure 5.20 shows the wireshark captures of the SGi interface when the PGW sends the

data received from SGW to send it to the Internet. As seen in the �gure, now a global IP

replaces the source address, since this is the �public� IP used by the PGW for SGi. This

packet will go to DNS server and the reply will be targeted to this same SGi interface that

will be forwarded to the UE.

As we saw in the previous �gures, it is shown through physical experiments that the

self-backhauling LTE network solution developed in this project works successfully, and the

problem of the double GTP encapsulation was solved.
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Chapter 6

Conclusions and Future Work

In this thesis, we propose and develop an LTE self-backhauling solution built on an open-

source LTE and EPC project (by OpenAirInterface project) and using commodity hardware.

First, a conventional LTE network is implemented, which covers all protocol stack of

3GPP in E-UTRAN and EPC. This is used as a base to setup the self-backhauling network,

and also to compare with the �nal results. For the self-backhauling network, two solutions

were presented and evaluated: the �rst was in-band self-backhauling network, where the self-

backhauled eNB (B-eNB) shares the same central frequency and bandwidth as the backhauling

eNB (A-eNB) and the second was out-band self-backhauling network, where they are assigned

non-overlapping frequency spectrum.

Through physical evaluations and using an o�-the-shelf UE, it was shown that a self-

backhauling network allow us to extend the radio coverage of the conventional LTE network.

Besides using out-band solution is better in performance compared to in-band solution, since in

out-band solution the self-interference does not exist, because in contrast to in-band solution,

it uses di�erent frequencies for B-eNB and A-eNB.

For future work, in terms of better performance, the code of the A-eNB can be changed

in order to distinguish the incoming packets from a normal UE and a B-eNB, for intelligent

resource scheduling olution. Moreover, this way the packets coming from B-eNB might not be

encapsulated through GTP (assuming static connections). With this solution, it will not be

necessary to setup a virtual MME and SPGW as shown in this project, since the A-eNB will
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solve the problem of the double GTP encapsulation shown. Another solution would be that in

the EPC, the SGW code can be updated to be able to remove the double GTP encapsulation.
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