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Abstract—One of the most urgent challenges in event based
performance analysis is the enormous amount of collected data.
Combining event tracing and periodic sampling has been a
successful approach to allow a detailed event-based recording
of MPI communication and a coarse recording of the remaining
application with periodic sampling. In this paper, we present a
novel approach to automatically adapt the sampling frequency
during runtime to the given amount of buffer space, releasing
users to find an appropriate sampling frequency themselves.
This way, the entire measurement can be kept within a single
memory buffer, which avoids disruptive intermediate memory
buffer flushes, excessive data volumes, and measurement delays
due to slow file system interaction. We describe our approach
to sort and store samples based on their order of occurrence in
an hierarchical array based on powers of two. Furthermore, we
evaluate the feasibility as well as the overhead of the approach
with the prototype implementation OTFX based on the Open
Trace Format 2, a state-of-the-art Open Source event trace library
used by the performance analysis tools Vampir, Scalasca, and Tau.

I. INTRODUCTION

High performance computing (HPC) systems yield tremen-
dous computational resources, which comes, however, with
more and more complexity, as well. Today’s leading edge
HPC systems comprise millions of processing elements ac-
companied by specialized vendor hardware, networks, and
heterogeneous accelerators [1]. Building on top of these ar-
chitectures there is a variety of different parallel programming
models such as message passing (MPI), threading and tasking
(OpenMP), one-sided communication (PGAS), and architec-
ture specific models like interfaces to incorporate hardware
accelerators such as GPUs. Hence, supporting tools have
become an inevitable part of application development to utilize
those highly parallel and complex systems.

Performance analysis tools assist developers not only in
identifying performance issues within their applications but
also in understanding their behavior on complex heterogeneous
systems. Profiling and tracing form the two main approaches
in performance analysis. While profiling gathers aggregated in-
formation about different performance metrics, tracing records
runtime events or samples together with a precise time stamp
and further specific metrics.

Profiling with its nature of summarization decreases the
amount of data that needs to be stored during runtime.
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However, profiles may lack essential information and hide
dynamically occurring effects. In contrast, tracing keeps each
event or sample of a parallel application in detail. Thus, it
allows capturing the dynamic interaction between concurrent
processing elements and enables the identification of outliers
from the regular behavior.

While individual events and samples are rather small,
event-based tracing frequently results in huge data volumes.
In fact, the large amount of collected data, in particular,
for massively parallel or long running applications is one
of the most urgent challenges in event-based performance
analysis. The combination of event-based tracing and periodic
sampling has been a successful approach to allow a detailed
and accurate event-based recording of MPI communication
and a coarse recording of the remaining application with
periodic sampling to reduce the overall data volume. In this
paper, we present a novel approach to automatically adapt the
sampling frequency during runtime to the given amount of
buffer space, releasing users to find an appropriate sampling
frequency themselves. This way, the entire measurement can
be kept within a single memory buffer, which avoids disruptive
intermediate memory buffer flushes, excessive data volumes,
and measurement delays due to slow file system interaction.
We describe our approach to sort and store samples based
on their order of occurrence in an hierarchical array based
on powers of two. Furthermore, we evaluate the feasibility
as well as the overhead of the approach with the prototype
implementation OTFX based on the Open Trace Format 2, a
state-of-the-art Open Source event trace library used by the
performance analysis tools Vampir, Scalasca, and Tau. First,
the number of resulting trace files limits scalability since the
collected data is usually stored in one file per processing
element. While HPC parallel file systems are highly optimized
for data throughput, the simultaneous creation of hundreds of
thousands or even millions of event tracing files overwhelms
any parallel file system. Second, the aggregated size of the
resulting trace files quickly swallows up storage capacities
and overstrains analysis capabilities. Third, the bias caused
by intermediate memory buffer flushes. Recorded event data
is typically buffered before it is written to the file system to
reduce expensive file system interactions. Whenever such an
internal memory buffer is exhausted, the content is transferred
to the file system; usually in an unsynchronized fashion. Such
uncoordinated intermediate memory buffer flushes during a
measurement introduce extensive bias and lead to a falsifica-
tion of the recorded program behavior, which prevents a correct
and meaningful analysis.
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With this in mind, it becomes a necessity to limit the
volume of recorded data during runtime. For a performance
analysis that targets applications using MPI as main parallel
programming model, existing tools like Score-P [2] allow to
restrict the event recording to MPI events, which results in
much smaller trace size and, therefore, drastically reduces
measurement bias. Recording only MPI communication events
can be a valuable method to study communication, for in-
stance, communication patterns and communication inefficien-
cies. However, the recorded communication events lose their
context within the application behavior, for instance, it cannot
be determined anymore, which application context triggered an
inefficient communication pattern. Thus, the missing context
of communication events makes it difficult or even impossible
to infer information for performance optimization.

In particular, combining event tracing and periodic sam-
pling has been a common approach among tools like Extrae
[3] or Score-P [4]. Both tools allow a detailed event-based
recording of MPI communication by instrumenting the MPI
library and a coarse recording of the remaining application
with periodic sampling. Instead of runtime events, sampling
record the current state of an application, usually, with a fixed
frequency. The current state of an application that is recorded is
typically the current calling context and adequate performance
metrics. Recording the state of an application with a fixed
frequency provides the inherent benefit that the recorded data
rate can be approximated and regulated with the sampling
frequency. In addition, sampling introduces less overhead on
the measurement, except for applications with particularly low
event rates. However, finding an optimal sampling frequency
is a virtually impossible task: Using a too low sampling
frequency maps the application behavior very coarse. Using
a too high sampling frequency results in huge data volumes.
In addition, new approaches not only refer to time intervals
to record a sample but to intervals of hardware performance
counters [5], e.g., with every n-th cache miss or floating point
operation. For those approaches it is even more difficult to
find useful sampling intervals because their progress is not
predictable like a frequency based on time intervals.

Our contribution in this paper is a new approach to
automatically adapt the sampling frequency to the available
amount of memory buffer space. Our approach allows to start
recording in a very high sampling frequency and, whenever
the recording memory buffer is exhausted, one half of the
already stored samples (every second sample) is discarded
and the sampling frequency is halved, as well. This way,
the entire measurement can be kept within a single memory
buffer, which avoids disruptive intermediate memory buffer
flushes, excessive data volumes, and measurement delays due
to slow file system interaction. Such an approach releases the
user to find an appropriate sampling frequency on its own
by automatically adapting the sampling frequency to utilize
the recording memory buffer. Even more effective is such an
approach for not time-based and, therefore, not predictable
sampling intervals, for instance, those based on hardware
performance counters.

Our prototype implementation, called OTFX, is an in-
memory event tracing extension to the well-established event
tracing format and access library OTF2 [6], [7]. For our
new approach we build on existing capabilities of OTFX to

support a hierarchy based event representation and runtime
reduction [8], [9] and extended it to support the new features
for hierarchically storing and removing of samples.

In the following section we distinguish our work from
other approaches and in Section III, we highlight the tools
and libraries providing the starting point of our extensions. In
Section IV we describe our approach to allow a low-overhead
reduction of already stored samples and discuss aspects of the
implementation in Section V. In Section VI we evaluate the
overhead of our approach and define a model to verify its
feasibility. At the end, we summarize the presented work.

II. RELATED WORK

The Open Trace Format 2 (OTF2) [6] is an event tracing
format and access library used by the monitoring environment
Score-P [2] and by the trace analyzers Vampir [10], Scalasca
[11], and Tau [12]. As it is the origin for the OTFX in-memory
extension to OTF2 it shares many similarities with our OTFX
prototype, e.g., similar interfaces and event definitions.

Modern event tracing tools provide different strategies
to reduce the amount of collected data. For tools that use
instrumentation for the entire application, the main focus is on
limiting the effects of excessive event generation, which are
typical for applications that use a lot of tiny helper functions
or class methods like in C++. Score-P can filter function calls
based on their occurrence, i.e., the user can specify a value
n so that all calls to a function are filtered after this function
is called n times [2]. In addition, Stolle et al. introduce a
set of adaptive filter techniques that operate during runtime
[13]. Score-P also supports a rewind feature that allows to
statically or dynamically filter complete program phases, e.g.,
single iteration steps [2]. Scalasca offers a static code analysis
prior to source code instrumentation to exclude functions with
a short source code length [14]. In addition, OTFX [15] itself
includes techniques to deal with excessive event generation,
e.g. filtering functions based on their duration [16].

Next to these filter methods, approaches like compressed
complete call graphs CCCG [17] use pattern recognition to
accumulate recurring patterns to minimize trace data. While
these techniques are capable of reducing the trace data to a
nearly constant trace size (depending on the granularity of the
aggregation), they may be very time consuming.

In the case of combined instrumentation and sampling
methods, the Paraver tool suite uses folding [18] to increase
the amount of information for low frequency sampling post-
mortem. This approach relies on clustering to detect repeating
program phases with similar behavior, e.g. the compute phases
within each iteration in iterative codes. Based on the provided
clustering, folding than maps multiple compute phases in the
same cluster onto each other to use all samples of all similar
phases, each with only a few samples, to create a single
representative phase with a high density of samples. Further-
more, Paraver’s monitoring tool Extrae allows recording uses
cluster and spectral analysis to reduce the number of events
in traces and, thus, the traces sizes during runtime [19]. This
approach forwards performance data and analyzes it on a front-
end during runtime. The results are broadcasted back to the
monitoring nodes, which use the information to selectively
record further events.



Although sharing a similar goal, our approach is distinct
from the former mentioned approaches. First, we do not utilize
any filtering techniques that, as sophisticated they are, always
rely on certain assumptions about the application behavior.
Second, techniques relying on filtering of events solve the
issue of massive data volumes but not the issues regarding
measurement slow down due to the instrumentation of small
function calls. Third, while folding allows regaining detail out
of a low sampling frequency, this approach is only applicable
for iterative codes and highly depended on a successful and
accurate clustering of the application phases. To the best of our
knowledge there are no approaches that automatically adapt the
sampling frequency during runtime to keep the measurement
within a single memory buffer.

III. BACKGROUND

Score-P is the joint measurement infrastructure for the
analysis tools Vampir, Scalasca, Periscope, and TAU [2], [10],
[11], [12]. It comprises the measurement functionality of these
tools into a single infrastructure, which provides a maximum
of convenience for users. The Score-P measurement infras-
tructure allows profiling, event tracing, and online analysis. It
contains the code instrumentation functionality and performs
the runtime data collection. For event tracing, Score-P uses the
Open Trace Format 2 (OTF2) to store the event tracing data
for a successive analysis [6]. The Open Trace Format 2 is a
highly scalable, memory efficient event trace data format plus
support library. It is the new standard trace format for Vampir,
Scalasca, and TAU.

OTFX [15] is a prototype implementation based on the
Open Trace Format 2 and includes different filters, enhanced
encoding techniques, and runtime event reduction to dynam-
ically adapt trace size during runtime to the given memory
allocation. The by far most important aspect of OTFX’s
capabilities is the so-called event reduction. Event reduction
dynamically adapts trace size during runtime to the given
memory allocation by eliminating events already stored in
the memory buffer. Hence, event reduction guarantees that
an event trace of arbitrary size fits into a single fixed-size
memory buffer. Supported methods for event reduction include
a reduction by event class, e.g., functions, communication, or
performance metrics; a reduction by the calling depth, i.e., start
elimination with the events that have the highest calling depth;
and a reduction by the duration of function calls. The different
event reduction strategies are discussed in detail in [8]. A new
data structure for event storage, called the hierarchical memory
buffer, allows applying the event reduction operations with
minimal overhead [9].

In the following two sections we detail our efforts to
automatically adapt the sampling frequency during runtime to
keep the measurement within a single memory buffer based on
the previous work in OTFX. In Section IV we illustrate our
concept to add an order-based hierarchy to periodic samples.
After that, Section V highlights the extensions to the existing
hierarchical memory buffer data structure and demonstrates
how the order-based hierarchy for periodic samples can be
used with the extended hierarchical memory buffer.

IV. HIERARCHICAL SAMPLE STORAGE

As stated before, combining event tracing and periodic
sampling can be useful to combine their benefits. Merging
event-based recording of the MPI communication and periodic
sampling of the remaining application allows to accurately
store the parallel behavior and communication patterns while
keeping the overall memory footprint and measurement over-
head reasonably small. Moreover, the recording data rate
can be approximated and regulated by adapting the sampling
frequency. However, applying an optimal sampling frequency
from the beginning of the measurement is a virtually im-
possible without prior knowledge about the application. This
results in either a very coarse mapping of the application
behavior when setting the sampling frequency too low or in
huge data volumes when setting the sampling frequency to
high. It becomes even more difficult with the addition of
approaches that record samples based on intervals of hardware
performance counters, e.g., cache misses or floating point
operations, which are less predictable as time-based sampling.

To circumvent the requirement of finding a suitable sam-
pling frequency a priori, we propose a new approach that
automatically adapts the sample recording to the given memory
quota. Our approach allows to start recording in a very
high sampling frequency and whenever the recording memory
buffer is exhausted, half the stored samples (every second
sample) are discarded and the sampling frequency is halved,
as well. This approach requires two main methods. First, being
able to change the frequency in which a tool acquires samples
and, second, the ability to remove already stored samples from
the memory buffer in an efficient manner.

The first requirement is already met by some tools that
provide feedback from the memory buffer to the monitor. For
instance, the default setup of Score-P as the monitor with OTF2
as the tracing library carrying the buffer. Whenever a buffer is
exhausted OTF2 triggers a callback provided by Score-P that
decides how to proceed with the buffer and allows adjustments
to the measuring process. Our prototype OTFX supports the
same callbacks, which can be used to adapt the sampling
frequency within Score-P.

The second requirement is much harder to fulfill, at least in
an efficient way. OTFX already incorporates the hierarchical
memory buffer data structure to allow an efficient removal of
events from the memory buffer. Our contribution is to, first,
apply an order-based hierarchy to periodic samples that allows
to pre-order samples in a binary tree. Second, we extend the
capabilities of the hierarchical memory buffer data structure
and demonstrate how the order-based hierarchy for periodic
samples can be used with the extended hierarchical memory
buffer to efficiently remove already stored samples to meet the
second requirement.

Since samples contain similar hierarchical information to
events, e.g., the calling context, this hierarchy information can
be used to store samples similar to events as described in
OTFX’s methods for event reduction [8]. However, in contrast
to event-based trace data, hierarchical ordering in terms of
time is much more relevant. Since samples are triggered by the
sampling interval rather than application context, each sample
by itself represents a randomly chosen application state. In
particular, for any two individual samples it is infeasible to
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identify which one of these better represents the actual state
of an application. In addition, each sample on its own contains
the complete state of an application it represents; while most
events are only meaningful in combination with further events,
e.g., a code region is only represented with the according
enter and leave event together. Thus, removing a fixed ratio
of samples based on the order of occurrence, e.g., discarding
every n-th sample provides a useful method.

Although a sample by itself does not contain sufficient
hierarchy information to presort samples for a reduction based
on the ratio, the order of occurrence can be used to distribute
the samples to different hierarchy levels to allow an efficient
later reduction. The distribution function A : N — N that
maps each sample to a hierarchy level based on the order of
occurrence n can be expressed as:

A(n)zmam{péN‘nzOmon”} (D

This way each level \ contains every 2 *!th sample; compa-
rable to a binary tree representation. Figure 1 illustrates this
mapping for the first few samples. The lowest hierarchy level
Ao contains every 2nd sample, the second lowest hierarchy
level holds every 4th sample, and so on, up to the highest
hierarchy level Anax = |[lnmn], which consists of only one
sample. Since each level A contains every 2**'th sample, the
interval of levels [\, 00) contains every 2*th sample. Therefore,
the lowest hierarchy level )y contains one half of the samples
and the levels [A1, Anax] contain the other half of the samples.

In a later removal operation all samples on the lowest
hierarchy level are discarded and the according memory is
released. From that point the sampling frequency is divided in
half. Due to the distribution based on powers of two, after the
reduction operation the new lowest hierarchy level \; contains
one half of the remaining samples and the levels [Ag, Apax]
contain the other half of the samples. This way, the reduction
operation can be applied iteratively whenever the memory
buffer is exhausted; each time discarding every 2nd sample.

However, the maximum notation of the distribution func-
tion A in Equation 1 may be very compute intensive, especially,
for large numbers of samples. Since any natural number n can
be uniquely decomposed in two-potencies in the form of

n= Z a,2P with o, € {0,1}
p €N

the distribution function A of Equation 1 can be expressed as:

)\(n)—min{pEN‘n—Zap%’/\ ap_l} 2)

p €N

This minimum notation provides a more efficient way to
compute \ because the representation as two-potencies equals
the binary representation of integer values.

Therefore, the statement in Equation 2 is equal to the
number of consecutive trailing zeros in a binary representation
of n, which can be calculated with minimal costs using only
five basic operations (see Figure 2). The AND comparison
with the negation (input & -input) extracts the least significant
1 bit from input. Multiplying this expression with the De
Bruijn sequence' 0x077CB531UL results in a unique pattern
of bits into the five highest bits for each possible bit position
it is multiplied with. When there are no bits set, it returns 0.
With a 27-bit right shift this unique sequence can be used
to look up lambda (i.e. the number of consecutive trailing
zeros) in a small table [20]. This multiply and lookup method
allows to compute A\ within 2-2.5 clock cycles on most modern
architectures.

unsigned int input;
int lamdba;

static const int lookup[32] =

{
o, 1, 28, 2, 29, 14, 24, 3,
30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7,
26, 12, 18, 6, 11, 5, 10, 9

bi

lambda = lookup[ ((input & —-input) = 0x077CB531U) >> 27];

Fig. 2. Finding the number of consecutive trailing zeros in an integer.

This distribution function allows to efficiently order sam-
ples based on their occurrence in a way that separates samples
to keep from samples to potentially discard. In the following
section we extend the hierarchical memory buffer data struc-
ture to support this representation of samples and demonstrate
how this hierarchical ordering for periodic samples can be used
with the extended hierarchical memory buffer to perform the
actual removal efficiently.

'A De Bruijn sequence is a cyclic sequence in which every possible string
of length n out of an alphabet A occurs exactly once as a substring. For
example, the De Bruijn sequence of A = {0, 1} and n = 2 is 0011 since this
sequence contains all strings of length n = 2 (00, 01, 10, 11) as substring
exactly once.




Flat Continuous Memory Buffer

Flat Continuous Memory Buffer

[ trece Daa [ |[[| [ VALY AT AT LT[0

(a) Collecting samples and events until the memory buffer is filled.

Flat Continuous Memory Buffer

RECIUNN (1 01 BIJINIBIEET 10|

(b) The memory buffer is filled and scanned for every second sample.

Flat Continuous Memory Buffer

(c) The memory sections of these samples are marked as free.

Fig. 3.

V. EXTENSION OF THE HIERARCHICAL MEMORY BUFFER

The hierarchical memory buffer is a novel data structure
that is designed to store events in a hierarchical representation
rather than in a flat continuous way. This allows low overhead
access methods to identify and eliminate items that are already
stored in the memory buffer. To highlight its capabilities we
compare the hierarchical memory buffer to a flat continuous
memory buffer that is the default for all common tracing tools
and libraries. We exemplarily execute one reduction operation
that is triggered whenever the buffer is exhausted and which
removes every second sample out of a mixed set of periodic
samples and events that describe MPI communication; which is
our initial target scenario that combines the benefits of periodic
sampling with event-based tracing of the parallel MPI library.

A flat continuous memory buffer stores the recorded sam-
ples and events in the order they occur until the memory
buffer is exhausted (see Figure 3(a)). Although allowing the
identification and elimination of items already stored in the
memory buffer, a flat continuous memory buffer introduces
an enormous overhead when engaged. Since all events are
scattered over the memory buffer, the entire memory buffer
needs to be scanned to find all items that match the criterion
for reduction (see Figure 3(b)); in this case, every 2nd sample.
When all samples matching the reduction criteria are found,
they are discarded and the according memory sections are
marked as free (see Figure 3(c)). As a result, there are plenty
of small free sections scattered over the whole memory buffer.
This leaves a highly fragmented memory buffer that cannot be
used for writing further samples or events. Thus, all non-free
memory sections need to be moved to collapse the fragmented
memory buffer to a single continuous memory segment that
leaves a continuous free memory section at the end to store
further items (see Figure 3(d)) [15].

The computational complexity of the removal operation
is in O(n), with n being the number of stored samples
and events. Since a memory buffer, depending on its size,
can contain several million items such a removal operation
introduces a remarkable overhead when using a traditional flat
continuous memory representation.

In contrast to a flat continuous memory buffer, the hier-
archical memory buffer is organized as a multi-dimensional
array, where each hierarchy dimension represents one possible
hierarchical order with a flexible number of different values
within that hierarchical order, called hierarchy levels. We

Removal of every second sample with a flat continuous memory buffer.

(d) The remaining non-free memory is collapsed to one memory section to
provide a continuous free memory section at the end for new samples or
events.

extended the existing prototype within OTFX [15] to further
distinguish samples from events and to implement the above
described ordering of samples based on two-potencies, as
described in Figure 2. In the context of the given scenario,
one dimension is used to distinguish periodic samples from
events describing MPI communication. The second dimension
for samples implements the different levels for A = 0,1, 2, ...
to store every sample according to the distribution function.
Instead of one huge memory chunk, the total memory alloca-
tion for the according memory buffer is divided in plenty of
small memory sections, called memory bins. These memory
bins can be dynamically distributed to any hierarchy level in
any dimension. Whenever a sample or event needs to be stored
at a certain hierarchy level and there is either no memory bin
assigned yet or the current memory bin is exhausted, a free
memory bin is distributed to this hierarchy level.

Figure 4 demonstrates the removal of samples with such a
hierarchical representation of the memory buffer. For simpli-
fication this example considers only the storage and removal
of samples. Thus, the according memory buffer’s layout is an
one-dimensional array. The second dimension distinguishing
between samples and MPI events can be imagined as dimen-
sion into the depth but is left out to keep the illustration clearly
readable.

When the first sample needs to be stored, A-level 0, no
memory bin has been assigned to this hierarchy level, so far.
Thus, the memory buffer checks if there is a free memory
bin available, which is true in this case, and one memory
bin is assigned to the hierarchy level A\ = 0, so, the sample
can be stored. If a sample or event needs to be stored on
a different hierarchy level (a different A-level or an MPI
event), a free memory bin is assigned the same way. The same
applies, when on any hierarchy level the current memory bin
is exhausted. After some time, this leads to a situation like in
Figure 4(a): Five memory bins are assigned to the hierarchy
A-levels 0—3 and three free memory bins are available. Hence,
three additional memory bins can be assigned to the hierarchy
levels. After that, all memory bins are assigned and there are
no free memory bins available anymore. This leads to the
situation in Figure 4(b): A sample needs to be stored at the
A-level O but there are no free memory bins available. At this
point, the sampling frequency is automatically adapted, i.e.
halved. In the monitoring tool the new sampling frequency is
set for all further probes. In the hierarchical memory buffer
all samples of the lowest A-level (in this case level A = 0) are
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(d) One of the free memory bins is assigned to level A = / and A = 2 to
store further samples.

Fig. 4. Storage and removal of already stored samples in the hierarchical memory buffer.

grouped together and all memory bins assigned to level A = 0
are revoked and all samples are automatically discarded. This
way, the remaining samples (every second sample) match the
new sampling frequency, as well. After that, the four revoked
memory bins are available again (see Figure 4(c)). Therefore,
two of them can be assigned to the A-levels 1 and 2 and
new samples can be stored (see Figure 4(d)). In addition,
the hierarchy level A = 0 is marked as closed, so, all future
samples on this hierarchy level are discarded right away. This
allows sorting out future samples with the previous frequency
even if the sampling frequency in the monitoring tool has
not been adapted. If it is adapted in the monitoring tool, the
distribution function A is simply increased by one, so, all future
samples are assigned to the levels A > 1.

This way, the computational complexity of the removal
operation is reduced to be in O(b), with b being the number
of memory bins to revoke. Since, due to the nature of the
distribution function, the number of bins to revoke is less than
or equal to half the number of total memory bins, the removal
operation introduces only a small overhead.

VI. EVALUATION

Comparing different trace monitors and libraries is not a
trivial task. Event tracing libraries such as OTF2 and OTFX are
usually bundled with their according monitoring tools, which
blends effects caused by the trace monitor from those caused
by the tracing library. In addition, many parameters like times-
tamps or the execution details deviate in each measurement
run. To clearly distinguish the effects of the tracing library and
to provide maximum comparability, we do not use the OTF2
and OTFX libraries directly for the measurements. Instead, we
generate an OTF2 trace with Score-P and use this trace as a
baseline. For the comparison run with OTFX, we replay each
application from its baseline trace. This method eliminates

the tracing monitor and ensures that both traces (OTF2 and
OTFX) use exactly the same input data eliminating the effects
of runtime deviations.

The evaluation is based on traces of the molecular dynam-
ics package Gromacs [21] including 10,000 iteration blocks;
the cloud simulation model system COSMO-SPECS+FD4 [22]
recording two simulation iterations; the computational fluid
dynamics solver Nek5000 [23] using two examples from
the source code: 3dbox that runs 600 iterations on a three-
dimensional box with 262,144 grid points and pipe that runs
400 iterations on a pipe with 86,400 grid points; and the
molecular dynamics simulator LAMMPS [24], [25] using three
examples from the source code: colloid running for 50,000
time steps and simulating interactions between 90,000 atoms
on a two-dimensional plane, rigid running for 3,000 time
steps and simulating interactions between 5,600 atoms in a
three-dimensional orthogonal box, and Lennard-Jones used for
official benchmarks running 1,000 time steps for 32 million
atoms on a two-dimensional plane.

A. Runtime and Removal Overhead

To evaluate the overhead of our approach we study two
critical properties of the prototype implementation: first, the
general runtime overhead introduced by storing the sample and
event data in the new format and, second, the delay introduced
by the removal operation.

To determine the runtime overhead introduced by the
prototype we applied the trace replay described above for
all target applications. We compare our OTFX prototype to
the state-of-the-art tracing library OTF2, Score-P’s standard
tracing library. For the overhead measurements both tracing
libraries were modified to use up to 2 GiB of memory to keep
trace data in main memory. This allows eliminating all effects
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of file interaction in OTF2 and the sample removal or any
other optimizations in OTFX and evaluating only the event
writing and internal data management for both. Next to the
benefits described above, the trace replay enables to measure
only the overhead caused by the tracing library itself without
the overhead introduced by a monitor like Score-P.

Figure 5(left) shows the relative runtime of OTF2 in
comparison to our OTFX prototype for the target applications.
Since our approach to organize and store sample data ac-
cording to the above described A-distribution utilizes features
already in place within OTFX, they do not introduce additional
overhead to OTFX. The main additional step affecting the
storage of sampling data is the computation of the \-level,
which can be achieved within 2-2.5 clock cycles with the above
described multiply and lookup method (see Figure 2), i.e. adds
only negligible extra time to the general overhead of handling
and storing data within the library.

The measurements proved our assumption; within measure-
ment accuracy there have been no differences to the original
runtime of OTFX. In comparison to OTF2, our prototype was
on average slightly faster than OTF2. However, this can be
attributed to other previous optimizations within OTFX and
is not a result of our new approach. In general, the library
times of OTFX account on average for 7.8 % of the overall
measurement runtime. This demonstrates that our prototype
suffices our requirement to not introduce additional overhead
in the measurement process.

Next to the general runtime overhead, the delay caused by
the removal of already stored samples is critical for assessing
the feasibility of our approach. Keeping in mind that one of the
main ideas is to avoid the bias caused by the delay of memory
buffer flushes, the delay of the removal operation should be as
small as possible and drastically smaller than a memory buffer
flush.

As stated above, the complexity of the removal operation
primarily depends on the number of memory bins that are
revoked in the hierarchical memory buffer. For that, we use
synthetic benchmark to be able to manage and exactly steer
the grade of the removal operation. The synthetic benchmark
writes 100 MB of data and then a removal is triggered revoking
a pre-defined amount of memory bins; in this case from 10 %
to 90 % of the distributed memory bins. Figure 5(right) shows
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Overhead OTFX: runtime overhead of OTFX in comparison to OTF2 (left) and overhead of removal operation for a 100 MB memory buffer (right).

the overhead of the removal operation for different grades of
the removal (from 10 % to 90 %) for a 100 MB memory buffer.
The time spent in the removal operation and, thus, its overhead
increases linearly with the percentage of revoked memory bins.
For the above described distribution of samples according to
the A\-function, a single removal operation revokes a maximum
of 50 % of the memory bins equal to half the stored samples.
Depending on the number of other stored events, e.g. MPI data,
the actual number of revoked memory bins can be smaller.
Consequently, the maximum overhead of the removal operation
is about 10 ms for a 100 MB memory buffer. Thus, the removal
operation creates a minor but noticeable interruption of the
application, however, this overhead is drastically smaller than
a memory buffer flush which accounts on average for 500-
600 ms; not including varying file system response times due
to system load or additional delays for file creation at the first
memory buffer flush.

B. Feasibility and Use Cases

In this section we describe different measurement scenarios
in which a user can benefit from our new approach and
also its limits in regard to measurement runtime, sampling
frequency and application behavior. In this respect, we define
a model that considers (a) the initial sampling frequency f,
(b) the measurement duration t,,, (c) the amount of collected
additional information per sample ds, and (d) the rate r. of
other events, e.g. MPI events.

To define different scenarios we use an initial sampling
frequency f; of 10kHz, i.e. one sample every 0.1 ms. While
tools like Score-P or Extrae use 10 and 50 ms, respectively, as
their default sampling interval, much lower frequencies can be
used without introducing significant overhead [4]. We consider
0.1ms a good trade-off between accuracy and overhead. For
the amount of additional information per sample we consider
two options: a smaller one with two hardware performance
counters, e.g. instructions and cycles to compute the rate of
instruction per cycle (IPC) that defines the compute intensity,
and large one with eight counters as used as default by
Extrae. Based on the current implementation in OTF2 (without
runtime compression) this results in d, € {48 B,102 B}
containing the timing, the sample record and two or eight
counter records [26]. For the amount and frequency of MPI
events we use again two options: a low rate of 1KB/s and
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higher communication density of 10 KB/s, which are oriented
on the behavior of Gromacs and Cosmo-Specs+FD4. Thus,
we use r. € {1kB/s,10kB/s}. Furthermore, we consider
tm, to be variable, i.e. by varying the problem size of a given
application. The runtime t,, is used to characterize the length
of the measurement. We set a maximum runtime of four hours,
which represents most types of applications; at least in a
scenario where they are analyzed. In addition, in the following
scenarios the hierarchical memory buffer has a capacity of
100 MB and keeps the MPI events until they reach 50 % of the
total memory buffer; after that, they are completely removed.
This is the current default in OTFX since most analyzers fail
on partial communication data.

Based on this, Figure 6 shows the buffer utilization and the
automatically adapted sampling frequency over time for the
following four scenarios based on the above described model
parameters:

e Scenario A: fs =10kHz,d; =48 B,r. = 1kB/s

e Scenario B: f, =10kHz,ds = 102B,r. = 1kB/s
e Scenario C: f, =10kHz,ds = 48 B,r. = 10kB/s
e Scenario D: f, =10kHz,ds = 102 B,r. = 10kB/s

Model of buffer utilization and sampling frequency for the Scenarios A to D (top to bottom).

In all four scenarios the initial sampling frequency drops
quite quickly in the first minutes and then is halved with
increasing intervals. In the first two scenarios the MPI events
can be kept for the entire measurement duration; in the second
two scenarios the communication data reaches the 50 % limit
at about 1:23h is completely removed from the buffer, i.e. from
this point the measurement only keeps the sampling data. In
the first and third scenario (with two counters/sample) the sam-
pling frequency is halved seven times during the measurement
and reaches 78.125 Hz at the end of the measurement; which
is in the order of the 100 Hz default frequency of Score-P. In
the second and fourth scenario (with eight counters/sample)
the sampling frequency drops almost twice as fast and reaches
39.0625 Hz at the end, which is still about twice the default
frequency of Extrae (20 Hz). From the given scenarios it can
be inferred that, first, the default sampling frequency of the
tools is for the majority of cases too low, which results in
a very coarse sampling and reduced level of detail. Second,
while this model can also be used to estimate a suitable
sampling frequency from the beginning, finding an appropriate
sampling frequency is complex, especially for short runtimes.
The advantage of the automatic frequency adaption is that it
completely frees the user from any estimation or guessing and
always selects a suitable sampling frequency.



VII. CONCLUSION

In this paper, we present a novel approach to automatically
adapt the sampling frequency during runtime to the given
amount of buffer space. It is applicable for sampling-based
performance monitors and hybrid sample/event-based monitors
combining a detailed event-based recording of MPI commu-
nication and a coarse recording of the remaining application
with periodic sampling. With the new approach the entire
measurement can be kept within a single memory buffer,
which avoids disruptive intermediate memory buffer flushes,
excessive data volumes, and measurement delays due to slow
file system interaction. It allows recording in a very high sam-
pling frequency and whenever the recording memory buffer
is exhausted, half the stored samples (every second sample)
are discarded and the sampling frequency is halved, as well.
Moreover, our approach releases the user to estimate or guess
an appropriate sampling frequency on its own by adjusting
automatically to a suitable sampling frequency.

We evaluate our prototype implementation OTFX on the
basis of seven application traces from different scientific
domains. In comparison to the state-of-the-art tracing library
OTF2, our prototype introduces on average 5.1 % less over-
head, while the maximum overhead of the removal opera-
tion to adapt the sampling frequency is about 10ms for a
100MB memory buffer and, thus, drastically smaller than
a memory buffer flush which accounts on average for 500-
600 ms. Furthermore, we describe a model for our approach in
typical usage scenarios that highlights the automatic adaption
of the sampling frequency and reveals that the default sampling
frequency of common monitors is too low for many use cases
resulting in a very coarse sampling and reduced level of
detail, while our approach always selects a suitable sampling
frequency.
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