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ABSTRACT

Climate predictions tailored to the wind energy sector represent an innovation in the use

of climate information to better manage the future variability of wind energy resources. Tra-

ditionally, wind energy users employed a simple approach based on an estimate of a retro-

spective climatology. Instead, climate predictions can better support the balance between

energy demand and supply, as well as decisions relative to the scheduling of maintenance

work. One limitation for the use of the climate predictions is the bias, which has until now

prevented their incorporation in wind energy models because they require variables with

similar statistical properties to those observed. To overcome this problem, two techniques of

probabilistic climate forecast bias adjustment are considered here: a simple bias correction

and a calibration method. Both approaches assume the seasonal distributions are Gaussian.

These methods are linear and robust, and neither requires parameter estimation; essential

features for the small sample sizes of current climate forecast systems. This paper is the

first to explore the impact of the necessary bias adjustment on the forecast quality of an op-

erational seasonal forecast system, using the European Centre for Medium-Range Weather

Forecasts seasonal predictions of near-surface wind speed to produce useful information for

wind energy users. The results reveal to what measure the bias adjustment techniques are

indispensable to produce statistically consistent and reliable predictions, particularly the cal-

ibration method. The forecast quality assessment shows that calibration is a fundamental

requirement for a high-quality climate service.
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1. Introduction37

The demand for renewable energy sources as an alternative to fossil-fuel sources has increased38

due to reasons such as the need to mitigate the climate change resulting from anthropogenic green-39

house gas emissions, the interest in the creation of new economic opportunities and the provision40

of energy access to people living in areas without access to other sources of energy (Renewable En-41

ergy Policy Network for the 21st Century 2015; Solomon 2007). Furthermore, the 21st Congress42

of the Parties for the United Nations Framework Convention on Climate Change (COP21) agree-43

ment has recently proposed several polices to promote the energy efficiency and replace the fossil44

fuels by the use of renewable energies (Lane 2016). Wind energy is the cheapest option for the new45

sources of power generating capacity and the second leading renewable energy source worldwide,46

only exceeded by hydropower in terms of installed capacity (Pryor and Barthelmie 2010; Santos47

et al. 2015). In recent years, wind power installed capacity has experienced a rapid growth, with48

a total of 370 GW installed worldwide in 2014. As a consequence, wind energy has become a49

key element of the electricity supply in many parts of the world (World Wind Energy Association50

2015).51

Operational and economic issues related to wind energy, such as the need to match supply with52

demand at all times under the intermittent nature of wind, require the modeling and forecasting53

of wind power generation processes at a range of temporal and spatial scales (Pinson 2013). Pre-54

diction of the variability of wind energy resources, which has been identified as a challenge to the55

grid integration of wind energy systems (Najafi et al. 2016; Füss et al. 2013), is a key piece of56

the decision-making processes because it allows end users to take informed, precautionary action57

with potential cost savings to their operations. Hence, more efficient energy management strongly58

depends on having accurate resource forecasts. Wind energy forecasting options have been tra-59
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ditionally limited to short (from hours to a few days) time scales because near-surface winds and60

thus wind energy production, strongly depend on the meso- and synoptic-scale variability (Graff61

et al. 2014; Pryor and Barthelmie 2010). At longer time scales, the assessment of the economic62

feasibility of future wind farms is a function of, among other things, the expected energy yield63

and the maintenance requirements over their life span of periods from a month to several decades.64

However this information is not readily available to the relevant users, who have to rely on past65

information based on observations, and this is often only available as short time series. The need66

of climate information representative of the next few decades has raised the interest of the wind67

industry in climate projections, which are increasingly being used in long-term resource evaluation68

(Hueging et al. 2013; Reyers et al. 2015; Vautard et al. 2014).69

Focusing on time scales from one month to a decade into the future, current energy practices70

use an approach based on the future climate being a repetition of an estimate of the climatology71

(Garcia-Morales and Dubus 2007). However, advances in climate prediction science that cover72

the climate information gap between weather forecasting and climate change projections can be73

considered as an alternative to the state-of-the-art by providing predictive information that helps74

users to take more informed decisions and move beyond using only climatological information.75

It has been shown recently that climate predictions are capable to provide additional value for76

wind energy applications, especially for the management of power production plants (Clark et al.77

2017; García-Bustamante et al. 2009; Lynch et al. 2014; Troccoli 2010). For instance, climate78

predictions could allow electricity system operators to estimate the future production generated by79

wind farms and use it as input for load-balance models. Should this potential of climate prediction80

materialize, the matching of supply and demand could be optimized and significant cost savings be81

made with a better anticipation of market changes. This framework will favor greater penetration82

of the renewable electricity into the markets.83
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While the scenario described is of great interest to the renewable energy community, little84

progress had been made in practice. However in recent years the skill of the climate predictions has85

significantly improved (Doblas-Reyes et al. 2013). For instance, seasonal prediction systems (i.e.86

those providing information for periods ranging from one month to slightly longer than one year87

into the future) are now providing skillful forecasts for extra-tropical regions where no substantial88

skill was found before (Clark et al. 2017; Dunstone et al. 2016; Scaife et al. 2014). This will89

promote their application wind energy decision making as illustrated for different energy sources90

(De Felice et al. 2015; Garcia-Morales and Dubus 2007). Currently however there are very few91

instances of the application of seasonal predictions in the wind energy industry. Improved climate92

information which includes seasonal forecasts may change this, for example by allowing innova-93

tive wind energy insurance and helping to cover high risk periods associated with persistent lower94

than expected wind resource.95

Seasonal predictions will be beneficial if they are skillful enough, but also if they must be tai-96

lored to the potential users in a decision-making context. In particular, seasonal predictions have97

systematic errors that make them unusable unless they are post-processed to have similar statis-98

tical features as the observational reference employed. This problem has been recognized by the99

climate science community as one of the main challenges for moving to a better use of climate100

predictions (Buontempo et al. 2014; Coelho and Costa 2010). The recent FP7 European projects101

on climate services EUPORIAS 1 and SPECS 2 have tried to address these challenges and support102

the development of sectorial climate services in Europe through the involvement of stakeholders103

in the definition of effective ways to develop climate information.104

1http://www.euporias.eu/
2http://www.specs-fp7.eu/
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This paper raises the limits associated with current seasonal prediction systems for their use in105

wind energy applications. It focuses on the description of appropriate bias adjustment techniques106

to overcome some of these limits and promote the use of the climate prediction information in107

those occasions in which it can provide greater accuracy than current approaches. The methodol-108

ogy described recognizes that end users must be provided with information about the prediction109

uncertainty (Alessandrini et al. 2013), so that a probabilistic approach is adopted because it is110

more valuable in user-specific loss functions (Pinson and Tastu 2013).111

An overview of the necessary steps to provide climate predictions to the wind energy sector is112

provided in Fig. 1, which summarizes the main challenges addressed in this paper. Section 2 of113

the paper introduces the data sets and describes one of the most widely used seasonal prediction114

systems and its limitations. Section 3 describes appropriate bias adjustment techniques and intro-115

duces forecast quality assessment measures and explains their relevance in a user context. Section116

4 presents the impact of the bias adjustments over the wind speed seasonal forecasts including117

an analysis of the changes in the statistical properties of the post-processed predictions. Finally,118

Section 5 reports the concluding remarks and provides a wider context for future work in the119

dissemination of climate predictions in user-relevant formats.120

2. Data121

In this study we use the 10-m wind speed forecasts from the European Centre for Medium-122

Range Weather Forecasts (ECMWF) System 4 (System 4) operational seasonal prediction system123

(Molteni et al. 2011), which is based on a global climate model, with coupled atmospheric and124

oceanic components. System 4 comprises of the ECMWF atmospheric model, the Integrated125

Forecast System (IFS) CY36R4 with a T255 spectral truncation (horizontal resolution of approxi-126

mately 80 km) and 91 vertical levels reaching up to 0.1 hPa, which is coupled to the ocean model127
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NEMO (Nucleus for European Modeling of the Ocean) version 3.0. The ocean model uses a grid128

with horizontal resolution of around 1° in the extratropics with equatorial refinement and 42 levels129

in the vertical. The atmosphere and ocean are coupled using a version of the OASIS3 (Ocean130

Atmosphere Sea Ice Soil) coupler developed at the CERFACS (Centre Européen de Recherche et131

de Formation Avancée en Calcul Scientifique).132

System 4 is run in ensemble prediction mode. Ensemble predictions are a way to deal with133

uncertainties in the climate system, in particular those associated with the imperfections of the134

initial conditions and in the model formulation (Slingo and Palmer 2011). For this reason, the135

operational System 4 forecasts are produced at the beginning of each month with 51-member136

ensembles. Each member of the ensemble uses slightly different initial conditions and different137

realizations of stochastic representations of sub-grid physical processes in the atmosphere. This138

allows the prediction of the forecast uncertainty (measured by the ensemble dispersion), along139

with the prediction itself. The simulations are performed for up to seven months into the future.140

Traditionally seasonal prediction systems do not produce operational forecasts of wind speeds at141

turbine height levels. Instead, wind speeds are made available at 10- or at different pressure levels.142

It is difficult to interpolate directly to hub height as the physical height of pressure levels is not143

constant over time. For that reason 10-m wind speeds have been selected for this analysis. Should144

the renewable energy community show an interest in seasonal prediction systems to deliver wind145

speed at hub-height, this might be possible by the forecast systems.146

The analysis in this paper focuses on the boreal winter as the winter season has larger wind speed147

variability in the Northern Hemisphere (Archer and Jacobson 2013).. In addition, the analysis of148

the seasonal predictions of wind speed in winter can be relevant due to the higher variability149

of wind power supply in that particular season (Bett and Thornton 2015). This illustrates the150

potential of seasonal predictions for end users as they potentially have more impact where the151
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inter-annual variability is the largest, although other seasons have also been analyzed (Fig. S1)152

and the conclusions apply equally. The predictions considered here are those issued on the 1st of153

November, for which three-month statistics for the December-January-February (DJF, also known154

as one-month lead seasonal forecast) period are made. Predictions over the period 1981–2013 have155

been used in the study. The prediction for DJF in 2013 has been used as an operational forecast156

and the predictions over 1981-2012 have been used as the retrospective predictions (hindcasts) to157

be used in the validation process. This consideration aims to emulate true operational prediction158

conditions when no observed information about the future is available.159

To evaluate the System 4 prediction quality, we compare the predicted 10-m wind speed with160

the corresponding variable of the ERA-Interim reanalysis (Dee et al. 2011). This reanalysis uses161

the ECMWF Integrated Forecast System (IFS) atmospheric model to assimilate observational data162

of many types, including in-situ observations and satellite retrievals, to produce a spatially and163

temporally complete ’best-guess’ gridded observational data set. ERA-Interim has the same reso-164

lution as System 4. This resolution is fairly coarse, but this product offers uniform global coverage165

in exchange. Given the sparsity of global wind observations reanalyses have demonstrated their166

potential usefulness for large-scale wind energy applications (Cannon et al. 2015).The problems167

related with the lack of long enough historical data needed have also promoted the use of reanaly-168

ses by the wind industry (Rose and Apt 2015).169

For this reason, and being aware that reanalysis estimates could often be far from point observed170

values, the reanalysis has been used as the best available estimate of wind speed. The choice171

of reanalysis is arbitrary and the conclusions are equally valid when using other reanalysis, both172

global or regional. Further work is needed to assess the seasonal predictions for specific wind farm173

locations.174
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3. Methodology175

a. Data Processing176

The wind speed forecasts are affected by biases resulting from the inability numerically repro-177

duce all the relevant processes responsible of climate variability (Doblas-Reyes et al. 2013). Apart178

from biases in the mean and other characteristics of the distribution of the simulated variables, for179

probabilistic forecasts additional difficulties appear such as the lack of forecast reliability (Pinson180

2012), which quantifies the agreement between the predicted probabilities and observed relative181

frequencies of a particular event. This is important from a wind energy point of view since reliable182

probabilities are expected to be included in decision-making processes. Hence, climate predictions183

require a bias adjustment stage to statistically resemble the observational reference, minimize fore-184

cast errors and formulate reliable probabilities. The bias adjustment of the wind speed has been185

identified as a requirement of the wind energy sector to fulfill acceptable reliability requirements186

to be used in their decision-making processes (Alessandrini et al. 2013).187

This paper illustrates the relative merits of different techniques for the statistical bias adjustment188

of ensemble forecasts to address different aspects of the forecast error. Two approaches, a simple189

bias correction and a calibration method, have been selected.190

1) SIMPLE BIAS CORRECTION191

The simple bias correction is based on the assumption that both the reference and predicted dis-192

tributions of seasonal wind speed, are well approximated by a Gaussian (normal) distribution. The193

adjustment creates predictions with the same mean and standard deviation as the reference data194

set. This is a zero-order approach for the correction of the systematic mean error that has been195

previously applied to correct temperature and precipitation (Leung et al. 1999). The Gaussian as-196
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sumption is a limitation of the approach because the monthly and seasonal wind speed distribution197

can be, at times, slightly non-gaussian.198

The bias correction scheme can be summarized in this way:199

yi j = (xi j − x̄)
σre f

σe
+ ō. (1)

Seasonal mean anomalies are calculated by subtracting the ensemble mean of the seasonal av-200

erages (x̄) from the seasonal average of each forecast (xi j) for each year i and for each member j.201

A new seasonal mean (yi j) is calculated by multiplying the seasonal mean anomaly by the ratio of202

the standard deviation of the reference data set (σre f ) to the interannual standard deviation of the203

ensemble members (σe), and adding the climatology of the reference data set (ō). This is done for204

each grid cell separately, resulting in a new wind speed forecast ensemble, with the same ensemble205

mean and standard deviation as the reference.206

2) CALIBRATION METHOD207

The calibration can be considered as a way of obtaining predictions with interannual variance208

equivalent to that of a reference data set in a similar way to the bias correction method, but at209

the same time ensuring an increased reliability of the probability predictions. Here we apply the210

variance inflation technique (Von Storch and Zwiers 2001). This calibration strategy has been211

selected because an inflation of the ensemble spread is required to obtain reliable probabilities and212

it is applied as in (Doblas-Reyes et al. 2005).213

If xi is the ensemble-mean prediction for any grid point at year i and zi j is the difference of214

ensemble member j with the ensemble mean, then the calibrated estimate of the ensemble member215

j can be expressed as216

yi j = αxi +β zi j. (2)
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The coefficients α and β are defined as follows:217

α = abs(ρ)
σre f

σem
, (3)

218

β =
√

1−ρ2 σre f

σe
. (4)

The σem is the standard deviation of the ensemble mean (the time series of xi), σe is the standard219

deviation of the ensemble, σre f is the standard deviation of the reference and ρ is the correlation220

between the ensemble mean of the retrospective forecasts and the reference data set. The α and221

β coefficients are found under two constraints. The former is that the standard deviation of the222

inflated prediction is the same as that for the reference and the latter is that the predictable signal223

after the inflation is made equal to the correlation of the ensemble mean with the reference data224

set.225

b. Forecast quality assessment226

Seasonal forecast systems, as in any other forecasting process, have to be systematically com-227

pared to a reference, preferably observations, to assess their overall quality in a multifaceted pro-228

cess known as forecast quality assessment (Mason and Baddour 2008). This is a fundamental229

step to the prediction problem because a prediction has no value without an estimate of its quality230

based on past performance (Doblas-Reyes et al. 2013). Moreover the quantification of the uncer-231

tainty is one of the most crucial aspects for the successful development of wind industry and the232

minimization of the financial risk.233

Three sources of uncertainty in common scoring metrics of probabilistic forecasts should be234

considered: improper estimates of probabilities from small-sized ensembles, insufficient number235

of forecast cases, and imperfect reference values due to observation errors. A way to alleviate236

these problems is to use several scoring measures to offer a comprehensive picture of the forecast237
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quality of the system (Jolliffe and Stephenson 2012) and to apply statistical inference as often as238

required.239

The reader should note that these sources of uncertainty are independent of the uncertainty of240

the individual forecasts: the user should consider and be provided with, both types of uncertainty241

when making decisions where this information is included.242

Several scoring measures are used in this paper, including skill and reliability measures such243

as the reliability diagram and the rank histogram. Forecast quality has been used to evaluate the244

performance of the seasonal predictions system as well as the impact of the two bias adjustment245

techniques over the forecast quality. The goal is to offer the most general and, a priori, relevant246

information for a user in the wind energy sector instead of the traditional view offered by climate247

scientists where the information provided to the users is mainly based on correlation, which is very248

useful, but gives only a small part of the information user requires.249

1) SKILL SCORES250

The skill estimates based on the performance of the system in the past, may guide users about251

the expected performance of the future forecasts (Weisheimer and Palmer 2014), always with the252

caveat that the predictability of the climate system might change over time. Skill scores are a tool253

for end users to develop alternative strategies to their baseline information to minimize the risk254

and to perform an optimal management (Pinson et al. 2009). Skill scores for both deterministic255

(ensemble mean) and probabilistic predictions are considered.256

The Pearson correlation coefficient between the ensemble mean and the reference data set has257

been used as a measure of the linear correspondence between the forecasts and the reference. This258

deterministic skill measure is invariant to changes in scale, hence the bias correction and calibra-259

tion of the forecasts do not change the correlation of the ensemble mean with the observations.260
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However the bias adjustment techniques that are illustrated in this paper (defined in section 3.a)261

have been applied in leave-one-out cross-validation to mimic as closely as possible an operational262

context in which new coefficients might be estimated to predict each year. In cross-validation mode263

the prediction to be adjusted is removed from the sample used to estimate the coefficients. As a264

result the correlation of the post-processed forecast changes relative to the correlation computed265

directly with the uncorrected forecasts.266

A comprehensive measure of the predictive skill for the probabilistic seasonal predictions of267

categorical events is the ranked probability skill score (RPSS) (Epstein 1969; Wilks 2011). This is268

a squared distance between the cumulative probabilities of the categorical forecast and reference269

vectors relative to a naive forecast strategy, that in our case has been taken as the climatology (made270

of all the possible events recorded in the past) because this is the preferred current choice of the271

users targeted by this analysis. The RPSS is based on the rank probability score (RPS), a measure272

of the squared distance between the forecast and the reference cumulative probabilities. In the273

present case the RPSS has been computed based on categorical forecasts for terciles. Three equi-274

probable events associated with the two terciles of the climatological distribution of the reference:275

wind speed exceeding the upper tercile (above normal category), not exceeding the lower tercile276

(below normal category) and values between the two terciles (normal category). The probabilities277

have been computed as the fraction of ensemble members in the corresponding category. This is278

only one example, other categories could be defined if they better represent the decisions involved279

in precautionary climate action. The individual values of the reference data set in the verification280

time series can fall in any of the three categories with probability determined by the probability281

density function (PDF) for the target season.282

The continuous ranked probability skill score (CRPSS) is a commonly used probabilistic skill283

score (Jolliffe and Stephenson 2012) that has been used to evaluate the predictive skill of the full284
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probability distribution. It is based on the continuous ranked probability score (CRPS), a score285

that reduces to the mean absolute error if a deterministic forecast is used. The CRPS measures the286

difference between the predicted and observed cumulative distributions and it can be converted287

into a skill score, measuring the performance of a forecast relative to the climatology.288

The RPSS and CRPSS range between 1 to −∞. Skill scores below 0 are defined as unskillful,289

those equal to 0 are equal to the climatology forecast, and anything above 0 is an improvement290

upon climatology, up to 1, which indicates a ‘perfect’ forecast.291

Fair scores to ensemble forecasts have been recently introduced (Fricker et al. 2013; Ferro 2014).292

A skill score is fair when it favours predictions with ensemble members that perform as if they293

have been sampled from the same distribution than the reference dataset. The fair version of the294

RPSS and CRPSS have been used in order to give an estimate of what the skill is when an infinite295

ensemble size is used (a measure of potential skill). The differences between the results of the fair296

and the basic scores are small as has been shown for the RPSS in the supplementary material (Fig.297

S2).298

2) RELIABILITY299

Reliability analysis of prediction systems remains as a prime concern for the wind energy sec-300

tor, as for any user of probability predictions, due to the risks and uncertainties involved in the301

forecasting of wind resources (Chaudhry and Hughes 2012).302

Rank histograms are a simple tool to evaluate the reliability of ensemble forecasting systems303

(Elmore 2005). They are generated by dividing the observations among a limited number of bins,304

thereby defining a set of exhaustive and mutually exclusive events. Then the observed frequencies305

for these bins are compared with the corresponding forecast probabilities. Rank histograms help306

to know if the forecast is assumed to be reliable and then it is expected to be flat. However,307
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some deviations from uniformity can appear for reliable forecasts due to randomness. The rank308

histograms have been displayed on probability paper (Bröcker 2008). In the y-axis rank histograms309

display cumulative probabilities instead of the traditional observed frequency which indicate how310

probable that observed frequency would be if the prediction was reliable. This information is311

useful to identify if the deviations from a reliable behavior are systematic or merely random. In312

addition the readability of the rank histogram is further improved by scaling the ordinate by a logit-313

transformation, that has the effect of displaying both small and large probabilities equidistantly.314

On the right the 90, 95, and 99 percent simultaneous confidence intervals have been represented.315

Rank histograms illustrate if the ensemble members and the verifying observation come from316

the same probability distribution, in which case the forecasts are statistically consistent then no317

calibration of the ensemble is needed. This happens when the rank histogram is flat (as if coming318

from a uniform distribution). However, because of sampling variations the histograms are almost319

never flat. To assess if the deviations from flatness are attributed to chance or deficiencies in the320

forecasts, goodness-of-fit test statistics are computed: Pearson χ2, the Jolliffe-Primo test statistic321

for slope (JP slope) and the Jolliffe-Primo test statistic for convexity (JP convex) (Jolliffe and322

Primo 2008). The Jolliffe-Primo statistics are obtained from the decomposition of the Pearson323

χ2 in components that allow the identification of bias (slope) or under/over-dispersion (convexity)324

in the forecast ensemble. The detailed mathematical definition of this goodness-of-fit test can be325

found in the appendix of Jolliffe and Primo 2008.326

Reliability diagrams are a common diagnostic of probabilistic predictions that assess both reli-327

ability and skill. They consist of a plot of the observed relative frequency against the predicted328

probability of a dichotomous event, providing a quick visual assessment of the impact of tuning329

probabilistic forecast systems. A perfectly reliable system should draw a line as closely as possible330

to the diagonal, within a certain measure of uncertainty.331
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The information provided by the reliability diagram should be interpreted with care because even332

a perfectly reliable forecast system is not expected to have an exactly diagonal reliability diagram333

due to the limited samples typical of seasonal forecast systems (Jolliffe and Stephenson 2012).334

To deal with this problem we have inclded consistency bars (Bröcker and Smith 2007) in these335

diagrams. They indicate how likely the observed relative frequencies are, under the assumption336

that predicted probabilities are accurate.337

To draw a reliability diagram, discretization and grouping into probability bins (ten in this pa-338

per) of the probability forecasts have to be done. A reliability diagram also includes the frequency339

of the forecast probabilities included in each bin, which is known as sharpness diagram. Sharp-340

ness gives an indication of the variation in forecast probabilities issued by the prediction system,341

independently of the observations.342

The rank histogram and the reliability diagram are complementary tools to assess the reliability343

of the system. The former assesses the full forecast ensemble and does not require the formulation344

of forecast probabilities, an aspect that is necessary in the case of the reliability diagram, where345

one assesses the features of both the forecast system and the statistical model that transforms the346

ensemble into probabilities.347

4. Results348

Total wind power installed indicates the wind power capacity available in each wind farm. It has349

been represented in Fig. 2 to identify which are the most important locations from a wind energy350

user point of view. To illustrate the performance of the seasonal predictions two key regions for the351

wind energy sector because wind farms are located there have been selected. For the selection of352

the regions we have also taken into account the potential skill available in such regions (Fig. S1).353

The first region is in Canada [longitude:112.5°-113.2°W and latitude: 50.3°-51.0°N]. This country354
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is an important player in terms of energy resources (Vaillancourt et al. 2014) and a global leader355

in the sustainable development of wind energy. This region had an exceptional year in 2014 for356

wind energy development, ranking seventh globally in terms of new installed capacity (Canadian357

Wind Energy Association 2015) that year. The North Sea region [longitude: 9.8°-10.6°E and358

latitude: 58.0°-58.7°] is the second region considered. It is the most important region for offshore359

energy activities in Europe due to the large and consistent wind resource, the relatively shallow360

water that minimizes the cost of the wind farms and the proximity to developed electricity markets361

(Schillings et al. 2012).362

Fig. 3 displays the predictions for the uncorrected, bias corrected and calibrated sets for these363

two regions. The effect of the bias adjustment over the predictions is that when the corrections are364

applied, the hindcasts (grey dots) show similar mean and variance to the reference data set (black365

dots). After the bias adjustment the probabilities in each category differ as a result of the changes366

in the ensemble distribution. The skill changes accordingly with the bias adjustment, showing a367

decrease in the correlation and an increase in the probabilistic skill scores. The decrease of the368

correlation is due to the cross-validation, which leads to an implicit leakage of information and369

a degeneracy in this measure of potential skill (Barnston and van den Dool 1993; Barnston et al.370

2012). The improvement of the fair RPSS and CRPSS are associated with the reduction of the371

systematic errors. Contrary to the correlation, the RPSS and the CRPSS are both sensitive to the372

systematic differences in the statistical properties (mean, variance) of the predicted variables with373

respect to those in the observations as well as to the inadequacy of the ensemble dispersion to374

act as a prediction of the forecast error (the lack of reliability). This is a useful example of the375

importance of using more than one forecast quality measure, in particular when dealing with user376

relevant variables.377
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The information provided by global forecast systems is relatively coarse. In a global context,378

the sizes of the two selected regions are small. Besides, for a small region the skill is expected379

to be noisier and less robust than for a larger one. In order to explore how the size of the region380

affects the forecast quality we have estimated the forecast quality for larger regions (Fig. S2).381

The comparison shows that the skill differences are small when a larger region is considered.382

Future work will focus on the formulation of predictions for specific sites. This is a non-trivial383

task because the bias adjustment techniques necessary in seasonal forecasting require long-enough384

observational references that are not readily available.385

The forecast system considered allows estimating the global forecast quality of the different386

sets of predictions. The fair RPSS maps for the uncorrected, bias corrected and calibrated wind387

speed are shown in Fig. 4. The uncorrected predictions (Fig. 4 (a)) display very low scores all388

around the world. The highest values are found in tropical regions, in particular in some regions389

of North East of South America and North Western Africa. This maximum can be explained390

because the largest predictability at seasonal timescales is attributed to anomalies in the tropical391

sea surface temperatures (SST) resulting from coupled ocean-atmosphere phenomena, in particular392

those related to El Niño-Southern Oscillation events (Kirtman and Pirani 2009) that affect mainly393

the regions mentioned above.394

Fig. 4 (b) and (c) show that the fair RPSS increases globally when bias adjustment is applied.395

This kind of assessments are widely available for variables like temperature and precipitation,396

but are not available for wind speed. The skill improvement has been quantified in the Fig. 4397

(d) and (e), which indicate that the skill scores for the bias adjusted predictions increase more398

than 1 relative to the uncorrected ones. The fair RPSS maps (Fig. 4 (b) and (c)) for the post-399

processed predictions have their maximum values in the tropics. Although the skill is relatively400

low at extratropical latitudes, some positive skill is found in those regions. For instance, some401
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regions in Europe as the North Sea or Scandinavia display positive values. Wind speed predictions402

show the highest skill in Northern Europe, while in Southern Europe negative RPSS values is403

found. This is in agreement with previous work (e.g. Weisheimer et al. 2011) indicating that404

seasonal dynamical predictions have limited forecast quality over Europe.405

The skill improvement is also present in South-eastern Asia, central United States or North-406

eastern South America where positive values appear when bias correction and calibration tech-407

niques are applied. The bias adjustment allows the skill in those regions associated with ENSO408

teleconnections (Hamlington et al. 2015; Quan et al. 2006), as well as with other sources of sea-409

sonal to interannual predictability, such as the persistence of the North Pacific decadal oscillation410

(Gershunov and Cayan 2003) to emerge. Wind speed with positive skill in North American regions411

has important implications for the wind energy sector in this economically active region.412

The differences between the correlation and CRPSS before and after the bias adjustment of the413

wind speed forecasts have been included in the Fig. S3 and S4. The correlation of the uncorrected414

forecasts is always higher due to the cross-validation leakage mentioned above. It is noticeable415

that the correlation spatial distribution in the calibrated hindcasts is noisier than the two other types416

of forecasts considered. This is due to the coefficients estimated in the calibration having a smaller417

spatial decorrelation length and being less robust than the mean and variance used in the simple418

bias correction.419

For the uncorrected predictions (Fig. 5 (a) and (b)), the overpopulated lower ranks and the neg-420

ative slope in the rank histogram illustrate that a positive unconditional bias is present in the data.421

These biases appear for the predictions of both regions, although the effect of this deficiency seems422

more important in Canada (Figure 5 (a)) where all the observations are exceeded by the majority423

of the ensemble members, leaving the highest rank categories almost empty. The bias corrected424

and calibrated forecasts show more homogeneously populated ranks indicating that the reliability425
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of the ensemble improves when the bias adjustment is applied. However, the deviation of the flat-426

ness of these rank histograms could be the result of some forecast deficiencies still remaining after427

the bias adjustment. For instance, for the calibrated forecasts in Canada (Fig. 5 (e)), the rank 50428

shows a very large value that might indicate that the ensemble overestimates the true uncertainty429

range.430

To assess if the deviations from flatness of the rank histograms are attributed to either chance or431

deficiencies in the forecasts, goodness-of-fit test statistics, with the null hypothesis being that the432

rank histogram is uniform, are computed and included in Table 1. The three statistical tests, the433

Pearson χ2, the JP slope and JP convex, allow us to identify if the forecasts are biased or whether434

the ensemble has over or under-dispersion.435

Table 1 shows that departures from flatness exist for the uncorrected forecasts, especially in436

Canada, where the tests take very high values, showing that the ensembles are under-dispersive, as437

evidenced by the high JP convex test. The high values of the JP slope show that the forecasts are438

also affected by biases. The uncorrected forecasts in the North Sea have also biases and are under-439

dispersive, although the statistical tests have smaller values than those in Canada. The results are440

statistically significant, with the p-values being virtually zero.441

The tests applied to the simple bias corrected and the calibrated forecasts indicate that the de-442

viation from flatness is minimised when the bias adjustment is applied. The Pearson χ2 for the443

calibrated data in the Canada region has higher values than the bias corrected ones (p-value 0.01),444

while the JP tests provide no evidence of departures from flatness with p-values higher than 0.01.445

Consequently this result shows that the biases and the under-dispersion in the raw ensemble are446

corrected, and the deviations from uniformity are independent of these specific problems. Making447

sure that the ensemble is well calibrated, which is a critical aspect of the forecast for the user,448

because it suggests that the ensemble predictions represent the forecast error, within statistical449
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sampling, and can be trusted in specific applications that have been developed using meteorologi-450

cal observational references.451

To further analyse the impact of the bias adjustment on reliability, reliability diagrams (Fig. 6)452

allow the comparison between the observed frequencies with forecast probabilities (obtained from453

the ensemble forecasts) for binary events. The events are defined by the thresholds of the lower and454

upper terciles, as for the RPSS but in a dichotomous way. If the prediction system is reliable, then455

a good agreement should exist between forecast probabilities and observed relative frequencies456

and the graph should be close to the diagonal.457

The slope of the reliability diagrams is positive. This shows that as the forecast probability of458

the event occurring increases, so does the verified chance of observing the event and therefore the459

forecasts have some reliability. The reliability curves for the three events have a steeper slope than460

the diagonal in both regions suggesting that the probability forecasts are overconfident. For the461

uncorrected forecasts in Canada (Fig. 6 (a)), the curve for the below-normal category (blue line)462

flattens when the forecast probability is above 0.45. This means that when the forecast probability463

is higher than 0.45 there is no relationship between the forecast probabilities and the frequency of464

the observed below-normal wind speeds. The reliability diagram for the uncorrrected predictions465

in the North Sea (Fig. 6 (b)) shows only a narrow set of probabilities issued, with values ranging466

from 0.1 to 0.5 for the above (red line) and below normal (blue line) categories and from 0.4 to467

0.7 for the normal category (orange line). In addition the above-normal category is so steep that468

falls outside the consistency bars. This illustrates the poor reliability for that event in the North469

Sea when the predictions are uncorrected.470

The reliability curves of the bias corrected predictions (Fig. 6 (c,d)) show similar features to the471

uncalibrated ones. One should bear in mind that, apart from correcting the mean and standard472

deviation of the forecast distribution, the simple bias correction does not have any additional im-473
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pact on the predictions and, hence, no substantial changes beyond the effect of the cross-validation474

should be expected in the reliability diagram.475

The calibrated predictions for the above-normal and below-normal events (Fig. 6 (e,f)) have re-476

liability diagrams with their points lying closer to the diagonal than found for the uncorrected and477

bias corrected predictions. This corresponds to a better agreement between the forecast proba-478

bilities and the probability of the observed event than in the other two cases suggesting that the479

overconfidence has been corrected. In the North Sea (Fig. 6 (f)) the slope of the curve for the480

normal category (orange line) (Fig. 6 (f)) becomes horizontal suggesting that the system can not481

discriminate between predictable and unpredictable normal wind speeds in this region, which is482

not surprising because normal events might not have strong signals, which are those associated483

with the predictability of the system.484

In addition, for the predictions of below-normal and above-normal wind speeds after calibration485

the sharpness diagrams (Fig. 6 (e,f)) show more homogeneously populated bins for both regions.486

This means that the forecast system is able to predict those events with a larger range of forecast487

probability values. Conversely, the uncorrected and simple bias corrected predictions display their488

frequency peaks near the climatological frequency, so that they predict often the event with a489

climatological probability. These results show the improvement in the reliability of the predictions490

obtained when calibration is applied, improvements that are particularly relevant to the users.491

5. Conclusions492

Seasonal predictions have not yet been widely taken into account by the wind-energy sector.493

However, some applications in the energy sector of this type of forecasts have been recently iden-494

tified. They illustrate that predictions at seasonal time scales can be used as input by the industry495
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in decision-making processes to replace the current naive climatological information. In this paper496

we illustrate a strategy for the use of wind speed seasonal predictions by the wind energy sector.497

After describing one of the most popular operational seasonal forecast systems, ECMWF’s Sys-498

tem 4, and its forecast quality characteristics, two different bias adjustment techniques to correct499

the typical deficiencies of the predictions of global forecast systems are described. It is shown500

that bias adjustment is indispensable for the predictions to be usable. The System 4 predictions501

have skill in predicting wind speed at seasonal time scales, especially in the tropics, but also in502

extratropical regions of relevance to the wind-energy sector. This is an encouraging result that has503

not been documented elsewhere. However, dynamical seasonal predictions suffer from a number504

of important systematic errors that also affect wind speed predictions. bias adjustment methods505

are required for the predictions to have the same statistical properties of the observational refer-506

ence and hence to be applicable by the users. Concerning the bias adjustment, the simple bias507

correction and the calibration methods produce predictions with statistical properties that allow508

their actual application. The most important gain in forecast quality for the seasonal predictions509

comes through the increase in their skill and reliability, the latter a critical aspect of the forecasts510

from the user perspective. These gains in forecast quality cannot be evidenced using correlation,511

which suggests that more than one forecast quality measure is needed even in a user context.512

The predictions and the impact of the bias adjustment are illustrated on two skillful regions that513

are crucial for the wind energy sector, the North Sea and central Canada. A further analysis of the514

predictions reveals that both the bias correction and calibration methods produce an improvement515

in the consistency of the ensemble. Besides, the reliability diagrams demonstrate that the calibra-516

tion method, which also corrects the deficiencies in the ensemble spread, provides more reliable517

predictions than the simple bias correction technique. Improvements in reliability are fundamental518

from a user perspective because it guarantees the trustworthiness of the predictions.519
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Our work demonstrates that calibration is necessary because it produces an improvement in both520

skill and reliability, making this technique essential for the seasonal predictions to be usable. The521

development of these strategies is part of a recent initiative undertaken by the climate community522

where climate services are developed to provide more relevant, reliable and action-oriented climate523

information (Buontempo et al. 2014). This paper illustrates the fact that seasonal predictions of524

near-surface wind speed have skill in several regions where there is substantial installed power,525

and that after bias adjustment the predictions are reliable for their use.526

Future improvements include the combination of seasonal predictions from different sources,527

based on both dynamical and empirical-statistical forecast systems. The global and illustrative528

character of this paper requires the use of a reanalysis as reference data. The verification against529

other reanalyses and regional observed wind speed data might offer slightly different results be-530

cause of the observational uncertainty, which is an additional factor that will be taken into account531

in future analyses, but the need of a bias adjustment process will be unavoidable. Finally, there are532

simple ways to convert the wind speed into energy density that will be explored from the seasonal533

prediction point of view, while the use of empirical downscaling could offer additional benefits534

when considering seasonal predictions for specific power plants.535

The work described here opens the field to the next step in the development of a climate service:536

the creation of tailored products that facilitate the widespread use of climate predictions by the537

wind-energy sector (Step 4 in Fig.1). The release of climate services can range from knowledge538

transfer (informing, documenting and providing training in the best bias adjustment techniques)539

to the creation of operational online interactive interfaces to allow wind industry user easily ex-540

plore probabilistic predictions. An example of a prototype of interactive platform that incorporates541

bias-adjusted predictions can be found at Project Ukko3 interface designed in the framework of542

3http://www.project-ukko.net
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the EUPORIAS project. In addition, the New European Wind Atlas (NEWA4), which is currently543

in development will provide access to skill evaluations of climate predictions. Further interactions544

between the climate science community and renewable energy community are also indispensable545

to quantify the actual economic value of climate predictions and evaluate the predictions perfor-546

mance in the past. This is a necessary step to demonstrate to energy stakeholders the saliency of547

climate predictions outcomes.548
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Uncorrected Simple bias corrected Calibrated

Canada North Sea Canada North Sea Canada North Sea

Pearson χ2 2080.37 148.25 36.12 57.25 77.56 68.62

p value 0.00 2.01×10−11 0.94 0.25 0.01 0.05

JP slope 291.69 38.46 0.17 0.1 0.03 0.12

p value 2.12×10−65 0.56×10−11 0.68 0.75 0.87 0.72

JP convex 319.69 11.32 1.15 1.77 0.73 3.07

p value 1.69×10−71 0.76×10−04 0.28 0.18 0.39 0.06

Table 1. Goodness-of-fit tests: Pearson χ2 , JP-slope and JP-convex statistics formulated by Jolliffe and Primo

2008. They have been computed from the rank histograms (Fig. 4) of 10-m wind speed forecasts from ECMWF

System 4 in winter (DJF) for the period 1981-2012.
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SEASONAL CLIMATE SERVICE 
FOR WIND ENERGY
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available and review their limitations for 
the prediction of 10-m wind speed.
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CLIMATE PREDICTIONS

Describe  bias-adjustment approaches to 
correct the typical biases of seasonal 
predictions of wind speed  from global 
prediction systems.

PROVIDE TOOLS TO MINIMISE 
FORECAST ERRORS
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evaluate the performance of the seasonal 
prediction systems and the impact of the 
bias-adjustments over the forecast quality.
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facilitate the use of seasonal prediction in 
the wind energy sector.

RELEASE TAILORED, RELEVANT &
USABLE SEASONAL PREDICTIONS
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CALIBRATION

FIG. 1. Main steps for the development of a climate service for the wind energy sector based on seasonal

climate predictions. Steps 2 and 3 in the diagram outline the main challenges addressed in this paper.
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FIG. 2. Total installed wind power capacity for each individual wind farm (operational and under construction

have been included) in 2015 (Source:www.thewindpower.net).
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FIG. 3. Time series of 10-m wind speed from ECMWF System 4 and ERA-Interim reanalysis in winter (DJF).

These predictions have been initialized on the first of November for the period of 1981-2013. The ensemble

members of the hindcasts are represented as small grey dots and the ensemble mean is represented with a large

grey dot for each start date. The grey horizontal line shows the mean of the hindcast in whole period (1981-2012)

and the blue and red horizontal lines show its lower and upper terciles, respectively. The ensemble members of

the forecast year (2013) are represented as red dots. The percentages indicate the fraction of members in each

category, which are limited by the terciles. The black dots represent the 10-m wind speed values of ERA-Interim.

The black horizontal line shows the mean of the ERA-Interim in the 1981-2012 period. Correlation, RPSS and

CRPSS are shown in the upper part of each panel.
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(a) Uncorrected

(b) Simple bias corrected (c) Calibrated
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(d) Simple bias corrected − Uncorrected (e) Calibrated − Uncorrected
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FIG. 4. Fair Ranked Probability Skill Score (RPSS) for tercile events of 10-m wind speed forecasts from

ECMWF System 4 and ERA-Interim reanalysis in winter (DJF). These predictions have been initialized on the

first of November for the period of 1981-2012.
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0.001

0.01

0.1

0.5

0.9

0.99

0.999

(e) Canada - Calibrated

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

(f) North Sea - Calibrated

rank

cu
m

u
la

ti
v

e 
p

ro
b

ab
il

it
y

cu
m

u
la

ti
v

e 
p

ro
b

ab
il

it
y

rank

cu
m

u
la

ti
v

e 
p

ro
b

ab
il

it
y

cu
m

u
la

ti
v

e 
p

ro
b

ab
il

it
y

rank

rank rank

cu
m

u
la

ti
v

e 
p

ro
b

ab
il

it
y

cu
m

u
la

ti
v

e 
p

ro
b

ab
il

it
y

0.001

0.01

0.1

0.5

0.9

0.99

0.999

90
%

95 
%

99
%

90
%

95 
%

99
%

90
%

95 
%

99
%

90
%

95 
%

99
%

90
%

95 
%

99
%

90
%

95 
%

99
%

FIG. 5. Rank histograms of 10-m wind speeds forecasts from ECMWF System 4 and ERA-Interim reanalysis

in winter (DJF). These predictions have been initialized on the first of November for the period of 1981-2012.

These rank histograms have been represented on probability paper to show if the deviations from a reliable

behavior are systematic or random. The x-axis represents the ranks. The probabilities of the cumulative observed

frequency on a log-it scale are shown in the y-axis. On the right 90, 95 and 99 percent simultaneous confidence

intervals are indicated. If all ranks were equally likely on average, approximately 90 percent of all rank histogram

would be contained in the 90 percent confidence interval and approximately 10 percent of all rank histograms

would have at least one bar that falls outside this interval.
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(a) Canada - Uncorrected (b) North Sea - Uncorrected

(c) Canada - Simple bias corrected (d) North Sea - Simple bias corrected

(e) Canada - Calibrated      (f) North Sea - Calibrated

FIG. 6. Reliability diagrams of 10-m wind speeds forecasts from ECMWF System 4 and ERA-Interim re-

analysis in winter (DJF). These predictions have been initialized on the first of November for the period of

1981-2012. Three events are represented: above-normal wind speeds (red line), normal wind speeds (orange)

and below-normal wind speeds (blue). Right panels show the sharped diagrams with the distribution of samples

for each bin and each event.The consistency bars have been represented as vertical lines to illustrate how likely

the observed relative frequencies are under the assumption that predicted probabilities are reliable.
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