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Abstract—High performance computing (HPC) applications
have parallel code sections that must scale to large numbers of
cores, which makes them sensitive to serial regions. Current su-
percomputing systems with heterogeneous or asymmetric CMPs
(ACMP) combine few high-performance big cores for serial
regions, together with many low-power lean cores for throughput
computing. The low requirements of HPC applications in the
core front-end lead some designs, such as SMT and GPU cores,
to share front-end structures including the instruction cache
(I-cache). However, little work exists to analyze the benefit of
sharing the I-cache among full cores, which seems compelling as
a solution to reduce silicon area and power.

This paper analyzes the performance, power and area impact
of such a design on an ACMP with one high-performance core
and multiple low-power cores. Having identified that multiple
cores run the same code during parallel regions, the lean cores
share the I-cache with the intent of benefiting from mutual
prefetching, without increasing the average access latency. Our
exploration of the multiple parameters finds the sweet spot on a
wide interconnect to access the shared I-cache and the inclusion
of a few line buffers to provide the required bandwidth and
latency to sustain performance. The projections with McPAT and
a rich set of HPC benchmarks show 11% area savings with a
5% energy reduction at no performance cost.

I. INTRODUCTION

High performance computing (HPC) needs more energy-
efficient designs to reach the Exascale milestone. Future
chip multiprocessors (CMP) used in HPC have to increase
performance per power and area unit by exploiting intrinsic
characteristics of HPC code.

Running mostly in parallel, HPC applications favor
throughput-oriented CMPs. Relying on the abundant TLP, and
for a given area or power budget, it is more beneficial to
implement many low-power cores instead of a few heavy-
weight ones, as in case of Intel’s Xeon Phi [1] and IBM’s
BlueGene/Q [2] architectures. Still, with more cores on a chip
and increasing available TLP, the sequential part of the code
eventually becomes the bottleneck [3]. To address this prob-
lem, HPC clusters usually employ a latency-optimized CMP
to handle serial code and an accelerator (GPU or many-core)
to run parallel sections. More tightly coupled, recent proposals
considered an Asymmetric CMP (ACMP) architecture with at
least one high-performance core for running in sequential and
many lean cores for throughput computing [4], [5].

The differences between HPC workloads and typical desk-
top applications lead to a different core front-end design and

sizing. Heavyweight cores support large instruction footprints
and complex branch behavior with private instruction caches
(I-cache) and sophisticated branch predictors. On the other
hand, HPC applications have small(er) code footprint, long(er)
basic blocks, and (more) predictable branches [6]. Moreover,
all parallel threads in HPC applications execute the same
code approximately at the same time. This makes sharing
the core front-end structures a potentially beneficial solution.
Simultaneous multithreading (SMT) [7], GPU [8], and AMD’s
Bulldozer [9] cores provide shared front-end structures to their
running threads to increase efficiency.

In this paper, we evaluate an ACMP design with a private
L1 I-cache for the high-performance core and a shared I-cache
for the set of lean cores. The potential benefits of sharing the I-
cache across multiple cores start with savings in chip area and
static power, and they extend to improved I-cache hit rates due
to constructive cross-thread instruction prefetching. Potential
drawbacks include increased I-cache access latency and con-
tention due to the shared access interconnection network. We
study different parameters to explore the limitations and find
an optimal design considering performance and hardware cost.

The contributions of this work are the following:
1) We characterize 24 workloads from three HPC bench-

mark suites distinguishing serial and parallel code re-
gions. Parallel parts of the code have longer basic blocks
compared with serial ones and the number of misses in a
standard-size 32KB I-cache is negligible. These findings
motivate tailoring an ACMP design for HPC by sharing
a smaller I-cache among worker threads and leaving a
standard-size I-cache private for the master thread.

2) To reduce the congestion and access latency to a shared
I-cache, we analyse the tradeoff in increasing the band-
width of the interconnect and adding more line buffers
per core. We find that increasing the bandwidth of an
interconnect is more beneficial than adding line buffers.

3) We estimate the performance, area, and energy savings
of our proposal using McPAT [10]. For ACMPs built
from one big and eight lean cores, we measure 11%
savings in area and 5% in energy, without performance
loss. In cases where initial I-cache miss ratio is high, we
even observe a performance improvement due to code
prefetching among lean cores that share the I-cache.
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Fig. 1: Potential speedup obtained by different CMP designs
depending on the serial code fraction. One big core spends
4× more resources for 2× more performance compared with
a small core.

4) With the large core executing both serial and parallel
code, we study a configuration where a single I-cache is
shared among all cores. Although attractive from the per-
spective of additional area and power savings, we show
that such a front-end organization degrades performance,
especially as the serial code fraction increases.

To the best of our knowledge, this is the first paper exploring
different aspects of a shared I-cache among cores based on the
specific characteristics of HPC workloads from a performance,
area, and energy perspective.

II. MOTIVATION

A. The advantage of an ACMP design

For any parallel application, the serial code fraction limits
the speedup over the sequential execution [3]. There is a need
to efficiently execute both parallel and sequential parts of the
code with an appropriate CMP design. To do that, previous
work suggested an Asymmetric CMP design, where multiple
single-ISA cores exist on a chip, but with different power,
area, and performance characteristics [4]. Serial code can thus
be executed on a single heavyweight core, while many lean
cores can execute the parallel code sections.

Figure 1 shows the potential speedup that different CMP
designs can provide depending on the serial code fraction
for a parallel workload. The cost model for multicore chips,
assumptions about core performance, constant cache and in-
terconnect cost, are all taken from previous work [4]. The
CMP designs we present on the figure have the same hardware
budget, equal to 16 base core equivalents or small cores. We
compare two symmetric CMPs, one with four big and one
with 16 small cores, to an asymmetric CMP with one big
and 12 small cores. With the serial code fraction above 2%,
an ACMP outperforms both symmetric CMP designs. As the
number of cores on a chip increases, the amount of time spent
inside the serial code becomes larger. An ACMP design stands
out as a solution capable of efficiently executing both parallel
and sequential code regions, combining a latency-oriented core
with a set of throughput-oriented cores.
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Fig. 2: The average dynamic basic block length in serial and
parallel parts of the code.
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Fig. 3: The I-cache MPKI values in serial and parallel parts of
the code using a 32KB, 8-way associative I-cache with 64B
lines, and LRU replacement policy. The I-cache MPKI values
in parallel code are very low.

B. The difference between sequential and parallel code

On an ACMP, the large core executes sequential code and
it joins the workers executing parallel code regions. Using
Pin [11] as an instrumentation library, we instrument only the
master thread and characterize the HPC applications separating
the serial and parallel sections by looking at the average basic
block size and the I-cache MPKI values.

Figure 2 shows the average dynamic basic block size for
each workload we use in our evaluation1. HPC applications
have 3× longer basic blocks in parallel than in sequential
code. This means that HPC benchmarks, while executed in par-
allel, provide high usefulness of the I-cache lines, increasing
the fetch bandwidth without any techniques such as trace cache
or multiple branch prediction per cycle [12], [13]. A single
I-cache line fetched inside the parallel region contains more
instructions to feed the core back-end than an I-cache line
from a serial region. Still, there are benchmarks, such as nab
and CoEVP, where basic blocks are longer in serial sections.
We will refer to these interesting cases later in Section VI-E.

Figure 3 gives the I-cache MPKI values for each benchmark
obtained in serial and parallel code regions. Not just that

1We describe the benchmarks and the input sets in Section V-C
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Fig. 4: Percentage of instruction sharing across all threads
running on an eight-core CMP per HPC benchmark (parallel
sections only).

sequential code sections miss more in a standard-size 32KB
I-cache, but parallel code sections have I-cache MPKI values
far below 1 (except for CoEVP). HPC applications spend most
of their time inside loops, so few basic blocks are fetched over
and over again, resulting in a few I-cache misses.

These findings point out the difference between sequential
code executed by the large, master core and parallel code exe-
cuted by all cores. With its aggressive back-end and short basic
blocks, the large core needs quick access to the instruction
memory to deliver enough instructions every cycle. On the
other hand, lean cores have less demanding back-ends and
3× longer basic blocks, so a prolonged I-cache access latency
is less likely to introduce additional stall cycles. Moreover,
parallel code sections have negligible I-cache MPKI.

C. Lean cores and the code they execute

The total area of a lean core is small, so private core front-
end structures, such as instruction cache, contribute signifi-
cantly to the area budget. Instruction supply spends 42% of
energy in embedded processors [14] or around 15% of the
total power in an ARM Cortex-A15 core [15]. McPAT shows
that ARM’s Cortex-A9 and Sun’s Niagara2 spend around 15%
of the core area and power on I-caches [10]. ARM’s lean cores
have similar area footprint compared to those in Intel’s Xeon
Phi or IBM’s BlueGene and recent works consider ARM a
potential player in this market [16], [17].

Figure 4 shows an intrinsic property of HPC applications:
inside the parallel regions, most of the threads execute the
same code. It gives the percentage of instruction footprint
shared among all the threads running the application. Instruc-
tion sharing is extremely high for HPC workloads. On average,
around 99% of dynamically executed instructions are the same
for all running threads. Different threads work on different sets
of data but the same set of instructions, as in parallel loops and
parallel tasks, which results in a large amount of duplication
across private I-caches.

These facts motivate our study on sharing the I-cache
among lean cores in an ACMP. The potential benefits include
improved I-cache hit rates due to constructive cross-thread
instruction prefetching, as well as savings in chip area and

static power. For example, factoring out around 15% of per-
core private real estate for an eight lean core cluster, opens
an opportunity to spend that saving on an additional core. The
main potential drawback is a larger I-cache access latency due
to the introduction of a shared-access interconnection network.
The goal of this work is to evaluate this tradeoff and to provide
an optimal solution tuned to increase performance per power
and area.

III. RELATED WORK

Asymmetric processors have been proposed as a heteroge-
neous, single-ISA multicore design to reduce the execution
time of a parallel application for a given hardware budget [4],
[6], [18]–[20]. The large core (latency sensitive) would be
used to execute serial bottleneck, while many small cores
(throughput oriented) run parallel code. Our work shows how
HPC applications benefit from an ACMP by executing the
master thread on a large core and worker threads on small
cores. We further try to improve the performance per area by
evaluating the benefits of sharing an I-cache among lean cores
on an ACMP.

As soon as we start sharing resources among cores in
a CMP, we enter the blurred space between multicore and
multithreaded processors. The first papers dealing with simul-
taneous multithreaded (SMT) processors already identified the
shared front-end as one of the major bottlenecks [7]. There
have been proposals and products for multithreaded processors
with a lower resource sharing degree than SMT. Conjoined
cores [21], CASH [22], IBM Cyclops64 [23], and AMD’s
Bulldozer module [9] propose a CMP where adjacent cores
share some of the hardware structures such as the I-cache, the
data cache, and the floating point unit.

All of the previous proposals focus on sharing resources
among two adjacent heavyweight cores, while our intention
is to provide a thorough analysis on sharing only the I-cache
among many worker cores on an ACMP. Since the rest of the
core front-end is not shared, this design improves scaling and
it allows sharing among more than two cores. Our work points
the limiting factors with more cores sharing an I-cache, with
the main objective of increasing performance for the same
hardware budget.

The I-cache sharing has also been studied for OLTP work-
loads [24], which have instruction footprints that exceed the
capacity of the I-cache in general-purpose processors. Their
design advocates for sharing a larger capacity I-cache to reduce
the number of misses in the I-cache. We show that a single
shared I-cache, smaller than a private one, reduces the number
of I-cache misses due to inter-thread prefetching, and also
leads to area (and power) savings. In their work, the authors
focus only on miss analysis not concerning the implication of
the proposed design on execution time, as we do here.

Sharing the I-cache among many low-power embedded
processors has also been evaluated [25]. Their work is focused
on embedded micro-kernels and caches of 1KB in size. They
observe performance improvements up to 60%, and identify
conflicting accesses to the shared I-cache as a potential source
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Fig. 5: Schematic representation of baseline and shared I-cache architectures, including the instruction part of memory hierarchy.
Heavyweight core is not modified.

of problems. In this paper, we evaluate mechanisms to hide
the extra latency involved in conflicting accesses to the shared
I-cache and interconnect.

Finally, in the context of HPC workloads, NVIDIA GPU
accelerators [8] already use a shared I-cache for all CUDA
cores in a streaming multiprocessor (SM). Threads running
on an SM (a warp) fetch and execute the same instruction in
lock-step mode every cycle, which prevents conflicting I-cache
accesses and latency variations. We evaluate this approach in a
more general way focusing on ACMPs where each thread has
its own program counter and executes a separate instruction
stream without any constraints.

IV. SHARED I-CACHE ARCHITECTURE

For a baseline configuration, we consider an ACMP com-
posed of one large and eight lean cores with private L1 and
L2 caches, connected to an on-chip memory controller giving
access to off-chip memory. Figure 5 shows the instruction side
of the baseline and proposed ACMP architectures. It presents
four worker cores for simplicity. In our study, we use a
configuration with one big and eight small cores. We first detail
the core model, based on a decoupled front-end architecture.
After that, we present the evaluated ACMP architecture with
a shared I-cache among lean cores.

A. Core Front-End

Figure 5a shows the baseline architecture. The core model
decouples the I-cache from the branch predictor with a fetch
target queue (FTQ) [26]. With the objective of increasing fetch
bandwidth, the branch predictor and FTQ work with fetch
blocks (FB) instead of basic blocks. An FB is a sequence
of instructions that ends at a taken branch and, thus, it
may contain multiple basic blocks if their instructions are
consecutive.

The Fetch Predictor (which is actually the branch predictor)
generates the fetch address for the next fetch request and stores

it in the FTQ. An FTQ entry contains the starting address and
the length of the FB. The private I-cache is then accessed
using the FB starting address at the front of the FTQ. If the
instructions to be requested to the I-cache happen to be already
in one of the line buffers, no request is made to the I-cache,
and the contents of that line buffer are reused instead. With
more line buffers, the front-end is capable of having more
outstanding requests to its I-cache, one request per line buffer.
When the requested I-cache line is returned from the cache,
it is stored in one of the line buffers, which act as prefetch
buffers. Using shift and rotate logic, instructions are extracted
from the line buffer and stored in the instruction queue. From
that point, the back-end, representing the rest of the pipeline,
executes and retires those instructions. In case of a branch
misprediction, the pending I-cache requests are discarded and
all front-end stages of the pipeline flushed.

Figure 5b details the shared I-cache architecture. The FB
predictor, FTQ, line buffers and decode logic are as in the
baseline architecture. The main difference is that the I-cache
is placed outside of the core and connected to multiple cores.
Depending on the sharing degree, more or less cores may share
one I-cache. In the figure, two lean cores share one I-cache
thus, there are two I-caches for four cores.

B. Shared I-cache and Interconnect
Multi-banked caches consist of several cache banks, provid-

ing multiple accesses in the same cycle, up to one access per
bank. This technique is attractive for last-level caches since
they are usually shared among cores. The same logic can be
applied to a shared I-cache. Instead of serializing core accesses
to the I-cache, multiple requests can be served as long as they
fetch from different banks.

To fully utilize a multi-banked cache, all cores must be
connected to all banks, which means using a crossbar switch as
interconnect or multiple buses. Although crossbar and multi-
buses provide higher bandwidth and reduce the congestion,
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they are expensive in area and power. According to previous
work [27], the area cost of a crossbar increases quadratically
with the number of cache banks, whereas the area of a bus
increases linearly. Given our main objective of reducing area
and power without hurting the performance, we evaluate this
tradeoff in Section VI-B.

V. SIMULATION METHODOLOGY

A. Simulation Framework

Our simulation framework is based on TaskSim [28], a
trace-driven cycle-level simulator for parallel architectures
running multithreaded applications. We use Pin [11] as the
instrumentation framework for tracing the benchmarks. At
runtime, our PinTool creates a trace file per thread storing
the sequence of executed instruction addresses. For branch
instructions, beside the address, it also stores its outcome
(taken or not-taken) as well as branch target address. That
way, we store all the information needed for reproducing the
instruction stream. To resolve the weaknesses of trace-driven
simulation such as inter-thread ordering and synchronisation,
we introduce synchronisation events inside the trace files. We
implement five events that cover all OpenMP primitives in
the evaluated workloads: parallel start, parallel end, wait and
signal on critical sections and semaphores, and barrier. The
simulation framework thus has a double role. First, it models
the entire ACMP as shown on Figure 5, reads the trace files,
and sends the requests to the I-caches for every fetch block.
Second, it mimics the run-time system by managing the state
of every thread according to the synchronization events in
order to reproduce the same static scheduling of the application
running in the real machine.

The simulation framework models the core front-end of
both the baseline and shared I-cache architectures in detail
following the description given in Section IV. We implement
the core back-end so it can simulate processors with different
levels of performance. Each cycle, the back-end attempts to
commit up to a given number of instructions (commit rate)
from its instruction queue. The capability of keeping the
maximum commit rate in the back-end every cycle directly
depends on front-end performance. This way we analyse the
performance of our shared I-cache architecture avoiding back-
end design artefacts. To distinguish master and worker cores,
we apply the IPC values measured on a separate run using
performance counters [29] on two different platforms. Running

each benchmark with a single thread, we obtained IPC values
for each serial and parallel code section so that TaskSim can
change the commit rate of the cores depending on which part
of the application it currently simulates.

Figure 6 illustrates the simulation process. PinTool produces
the traces, one per thread, capturing the instruction stream
(step 1 ). Using performance counters from two different plat-
forms (one for master and other for worker threads/cores), we
add IPC values to the traces, for each parallel and sequential
code section (step 2 ). Finally, TaskSim reads the traces and
models the entire ACMP (step 3 ).

We surveyed a set of existing simulators and did not find
one that had a front-end pipeline modelled at such level of
detail that allowed us to reason about the baseline and shared
I-cache organizations described in Section V-A. For example,
having a pipelined front-end implementation is crucial in our
analysis since an access to the shared I-cache can take multiple
cycles. Also, the core front-end includes a set of line buffers
that behave as a micro-cache or loop-buffer [30], [31] reducing
the number of accesses to the I-cache (private or shared).
Our core implementation in TaskSim models these features
together with all the other hardware components shown in
Figure 5 in a cycle-accurate way.

B. Simulation Setup
Table I shows the configuration parameters for the sim-

ulated ACMP. The cache hierarchy, fetch predictor, shared
I-interconnect, memory controller, and off-chip memory are
modelled in detail. Cores-per-cache or cpc stands for the
number of worker cores that share one I-cache. For example,
with eight worker cores in total and cpc = 4 there are two
groups of four cores where each group share one I-cache. The
I-cache size, line width, associativity and latency remain the
same for any degree of sharing. We focus our evaluation on
the parameters that most affect the impact of our proposal:
different degrees of sharing (cpc), the number of line buffers,
and the I-interconnect bandwidth.

C. Benchmark Suites
We evaluate our proposal using three HPC benchmark

suites: NAS Parallel Benchmarks (NPB suite), SPEC OMP
2012 (SPECOMP suite), and ExMatEx Applications. We run
all of the 10 benchmarks from NPB suite with input set
C, and 10 benchmarks from SPECOMP suite with reference
inputs.2 We also use four ExMatEx Applications (CoEVP,
CoMD, CoSP, and LULESH) with default input parameters.
Our evaluation is based on 24 HPC workloads in total,
all of them implemented using the OpenMP programming
model.3 The input size for each benchmark was chosen so
that the instrumentation takes an acceptable amount of time,
but always executing at least 20 billion instructions in total.

We evaluate OpenMP applications in this paper but our
conclusions are also applicable to other HPC programming

2SPEC OMP benchmark suite has three more applications which are identical to the
corresponding ones from NPB suite.

3ExMatEx workloads are implemented using MPI+OpenMP programming model and
we run them with one process in our experiments.



Parameter Value(s)
ACMP 1 master and 8 worker cores

master core IPC values from an Intel’s i7 core
worker core IPC values from an ARM’s Cortex-A9 core

Cores-per-cache (cpc) [1, 2, 4, 8]
1 stands for a baseline (private I-caches)

I-cache size = 32KB, 8-way
latency = 1 cycle
line width = 64B

Line buffers [2, 4, 8]
width = 64B

I$-interconnect type = single or double bus
latency = 2 cycles + contention4

width = 32B
arbitration = round-robin

Fetch predictor 16KB gshare + 256-entry loop predictor

L2 cache size = 1MB, 32-way
latency = 20 cycles
line width = 64B

L2-DRAM bus latency = 4 cycles + contention
width = 32B

DRAM size = unlimited
timing parameters = standard5

TABLE I: Configuration parameters for the simulated ACMP.

models, including distributed memory models like MPI. Al-
though MPI tasks run on separate processes, they still run
the same executable. In such case, the OS maps all the code
regions to the same physical page, since code pages are read
only. The same applies for shared libraries. This means that
multiple processes in MPI applications, running on a single
node, share the same code as they access the same physical
code pages.

VI. EVALUATION

In this section we present the evaluation of sharing the I-
cache among lean cores on an ACMP. We start by checking
how simple I-cache sharing affects the performance. Increasing
the I-cache access latency by putting a shared bus between
worker cores and the I-cache, we measure the performance
loss for some workloads especially with the higher degrees of
sharing. We evaluate how adding more line buffers and dou-
bling the bandwidth of a shared bus overcomes this problem as
a tradeoff between the performance and energy consumption.
At the end, we find the scalability limits of this proposal and
answer the question if a single I-cache can be shared among
all cores on an ACMP, including the master core.

A. Naive I-cache Sharing

First, we evaluate sharing a 32KB I-cache among two, four,
and eight small cores, and compare with the baseline architec-
ture (private, 32KB I-caches). Figure 7 shows the normalized
execution time with respect to the baseline architecture for

4Contention refers to the number of cycles waiting on a busy bus due to its utilization
by some other core.

5Values for DRAM timing parameters match the Micron DDR3-1600 specification.
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Fig. 7: Naive scaling. Execution time for different levels of
sharing a 32KB I-cache among worker cores. We use four
line buffers and a single bus as the interconnection network.
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Fig. 8: Naive scaling. Normalized CPI stack per benchmark
for the highest level of sharing (cpc = 8).

different levels of sharing. For some benchmarks, a single I-
cache shared among eight cores increases execution time, up
to 18% in the case of UA. Figure 8 gives the normalized
CPI stack per benchmark when a single I-cache is shared
among all eight cores. Very few additional stall cycles are
caused by the latencies from I-cache misses, branch misses,
and fetch requests to the upper levels of memory hierarchy.
HPC applications have predictable branches and a simulated
16KB gshare augmented with a loop predictor provides a low
number of branch mispredictions (with 3.8× higher branch
MPKI values in serial code than in the parallel sections). The
majority of stall cycles are due to the extra latency brought
by the intermediate shared bus. Most stall cycles are caused
by contention on the I-bus. We explore two potential features
to overcome these stall cycles: putting more line buffers or
increasing the bandwidth of the shared interconnect.

B. Scalable I-cache Sharing

With more line buffers, the front-end is capable of having
more outstanding requests to its I-cache, one request per line
buffer. Every time the starting address of the current fetch
block exists in a line previously brought into one of the line
buffers, the front-end reuses that line buffer and does not issue
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Fig. 9: I-cache access ratio for different number of line buffers.
More than eight line buffers does not reduce the I-cache access
ratio significantly.

a request to the I-cache. This reduces the number of accesses
to the shared I-cache and contention on the shared bus.

Figure 9 shows how using more line buffers reduces the I-
cache access ratio, defined as the number of lines fetched from
the I-cache divided by the total number of fetch requests. This
is expected due to high temporal locality that is present in the
code. It is interesting how this temporal locality complements
our analysis on average basic block length (see Figure 2). For
almost all of the benchmarks where the average basic block
length is small, the I-cache access ratio is also low (CG, IS,
botsalgn, botsspar, CoSP). On the other side, when the basic
blocks are long, almost all the accesses are to the I-cache (BT,
LU, ilbdc and LULESH).

Another way of reducing the contention on a shared inter-
connection is to increase its bandwidth. Instead of a single bus,
we use a shared multi-banked I-cache so that each bank now
has its own bus connected to all worker cores. For example,
having an I-cache with two banks, one with even and one with
odd cache lines, we connect a separate bus for each bank, so
that the I-cache requests of even cache line addresses route
through the first bus, and the requests with odd line addresses
route through the second bus. That way, a shared multi-banked
I-cache is able to provide two cache lines per cycle as long
as they are found in different cache banks. Doubling the
number of buses increases the area of the I-interconnect by 4×
compared to a single bus proposal. With the cost of dedicating
more area and power budget to this solution, we reduce the
contention on the shared I-interconnect.

Figure 10 shows how these two techniques affect the total
execution time. Adding more line buffers is beneficial for
some benchmarks where it reduces the I-cache access ratio,
such as UA. But, in most cases, the baseline with four
line buffers already captures most executed basic blocks and
hot loops, thus adding more line buffers to this set has a
limited effect. On the other hand, doubling the bandwidth of
the interconnection network between the lean cores and the
shared I-cache completely removes the stall cycles caused by
prolonged I-cache access latency. By using two I-buses instead
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Fig. 10: Trade-off between adding more line buffers and dou-
bling the interconnection bandwidth when a single 16KB I-
cache is shared (cpc = 8). The execution times are normalized
to the baseline architecture (private, 32KB I-caches).

of one, we halve the number of cores requesting the I-cache
line per bus, and reduce the contention.

C. Miss Analysis

Figure 11 shows how sharing an I-cache among all worker
threads (cpc = 8) affects the number of misses per kilo
instruction (MPKI). The numbers above the bars represent the
absolute MPKI values obtained with a set of private, 32KB I-
caches. As we have seen before on Figure 3, HPC applications
miss very few times accessing an I-cache in parallel regions.
On average, sharing the I-cache reduces the number of misses
by 50%, and up to 90% in case of LU and SP, compared
to a baseline architecture (private I-caches). Even a smaller I-
cache shared among all lean cores (cpc = 8 :: 16KB) provides
fewer misses than the set of per core 32KB I-caches. This is
a direct consequence of the code sharing among threads in
HPC workloads. Threads prefetch instructions for each other
in a shared I-cache and we have observed in some cases a
complete absence of cold misses for some threads. Sharing the
I-cache increases the number of non-compulsory misses for
some benchmarks due to the lower overall capacity (botsalgn,
smithwa). In those cases the MPKI values are still reduced,
which implies that compulsory misses are dominant. In some
other cases (SP, imagick, LULESH), even non-compulsory
misses are reduced due to almost perfect time alignment
among threads accessing the same line in the shared I-cache.

The most interesting case is the CoEVP benchmark. That
is the only HPC workload we analyse for which the I-
cache MPKI value is above 1 for a private, 32KB I-cache.
Sharing a single I-cache among all worker cores halves the
number of misses, and with a double I-bus we provide enough
bandwidth so that congestion does not introduce additional
stall cycles. With these two things combined, we even observe
a 2% performance improvement, as shown on Figure 10. For
HPC applications where I-cache misses introduce a significant
performance degradation, our proposal of sharing the I-cache
among lean cores stands not just as an area and power saving
technique, but also to increase the performance.
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Fig. 11: MPKI values for an I-cache shared among all eight
lean cores in its two sizes, 32KB and 16KB, normalized to a
baseline ACMP (private 32KB I-caches). Numbers above the
graph represent absolute MPKI values for each benchmark
with private I-caches.

D. Area and Power Savings

We estimate the area and power savings relative to a set
of lean cores with private I-caches as the baseline. Master
core, LLC and NoC are not included in this analysis. Sharing
an I-cache among cores reduces the occupied area and total
power but at the same time the additional shared bus introduces
overheads.

We use McPAT [10] and CACTI [32] to estimate the area
and energy consumption of cores, I-caches, I-buses, and line
buffers. We have selected the ARM Cortex-A9 configuration
file from the McPAT bundle because it has been validated
against real silicon and is representative of lean cores. We run
McPAT for different ACMP configurations and I-cache sizes
and use statistics from simulation outputs and performance
counters. Then, we obtain the area and power numbers and
compare them with the baseline values.

Both wires and logic of the shared bus contribute to in-
terconnection overhead. When a bus is wired without array
structures underneath, logic can be placed under the bus
without additional area overhead [27]. The area occupied by
a bus is determined by the number of wires, the wire pitch
and length. In our model, bus width is the same as the I-cache
line width, which determines the number of wires plus address
lines. The wire pitch for a 45 nm technology is 205 nm [33].
The length of the bus is estimated as the number of cores
times the bus width [34]. This gives a quadratic dependence
of bus area on line width. For power estimation we use the
power-to-area relation taken from the McPAT values of the
NoC component (bus). It gives a linear dependence of total
power on area. With previously obtained area values for the
bus, we apply this coefficient to get its total power numbers.
For dynamic power, we set the number of transactions on the
NoC as the number of accesses to the shared I-cache and apply
the same dynamic-to-total power ratio, once we calculate the
total power.

Figure 12 presents execution time, energy, and area con-
sumption of eight worker cores for different design points,

baseline cpc=8
4 line buffers

single bus

cpc=8
4 line buffers

double bus

cpc=8
8 line buffers

single bus

cpc=8
8 line buffers

double bus

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Execution Time Energy Area

Fig. 12: Energy and area savings adding more line buffers and
doubling the interconnection bandwidth when a single 16KB
I-cache is shared (cpc = 8). All the values are normalized to
the baseline architecture and averaged across the benchmarks.

averaged across the benchmarks and normalized to the base-
line. For the highest level of sharing (cpc = 8), we focus
on the trade-off between using more line buffers or doubling
the bandwidth. Compared to the baseline, sharing an I-cache
reduces the area and static power. The number of accesses to
the shared I-cache increases 8× but since we share smaller,
16KB I-cache, its dynamic power is also lower compared
to a set of private I-caches. We calculate the energy as the
product of total power (dynamic and static) and execution
time. Configurations with only one I-bus have the highest
area savings but modest energy savings, mostly due to the
increased execution time. With the methodology explained in
the previous paragraph, we estimate that the area budget of a
double I-bus is around 45% of a 16KB I-cache. More line
buffers brings less activity on the bus and less accesses to the
I-cache but more area and energy for a line buffer access.

Figure 12 also presents optimal designs for different metrics.
In case we are mostly interested in area savings, sharing the
I-cache among eight cores with four line buffers and single
bus, stands as the optimal design. Unfortunately, it also brings
4% of performance degradation on average. If hurting the
performance is not an option, the best configuration is an I-
cache shared among eight lean cores with four line buffers
and a double I-bus that provides savings of 5% in energy and
11% of area.

These savings can be used to increase performance for the
same power and area budget. A shared I-cache architecture
among worker cores allows adding an extra core for the same
area. This can be attractive for many-core designs such as
Xeon Phi, configuring the processing elements in octa-core
clusters each with a single shared I-cache. Another possibility
is to increase other hardware structures, such as data cache
and SIMD execution unit. HPC codes benefit from additional
thread- and data-level parallelism, therefore leading to higher
CMP performance per unit of area and energy efficiency.

E. A single I-cache shared among all cores on an ACMP

Besides executing serial parts of the code, the master core
acts as an additional worker core during parallel code sections.
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Fig. 13: Execution time ratio dependence on the serial code
fraction.

Here, we analyse whether the master core can be joined to
the set of worker cores sharing a single I-cache. That way, it
can benefit from inter-thread code prefetching and contribute
further to the area and energy savings by discarding its private
I-cache. In this analysis we use shared 32KB I-cache, so that
we do not hurt the master core execution by reducing the I-
cache size. Configuring the I-interconnect as a double bus, we
compare all-share proposal (master and workers share a single
I-cache) with the previously evaluated worker-shared proposal
(the I-cache is shared only among worker cores).

Figure 13 explains why for some benchmarks it is harmful
to share a single I-cache among all cores. It shows how
the performance ratio between all-shared and worker-shared
proposals depends on the fraction of serial code. In general,
with higher percentage of serial code, all-shared needs more
time to complete the same job compared to worker-shared
configuration. The master core has more aggressive back-
end (heavyweight core) and it runs alone in serial code parts
that have shorter basic blocks on average. Sharing an I-
cache, every time it fetches the sequential code it has to
send the request through the I-interconnect bringing back
fewer instructions. With the increased I-cache access latency
and shorter basic blocks, the master core does not provide
enough instructions to its back-end, introducing stall cycles
and hurting the performance. We estimate this dependency
with the area between two diagonal black lines on Figure 13.
Still, there are few outliers that we break down into groups,
each with different reasons being distant from the general
dependency:

• Group 0 - default behavior: Most of the benchmarks
belong to this group as they have a negligible amount
of instructions executed in serial parts. Benchmarks like
fma3d and LULESH show the general trend, for every
5% of serial code fraction the performance degrades for
1% compared to worker-shared configuration.

• Group 1 - code locality in serial code: Although with
significant amount of instructions executed in serial by
master core (especially for CoMD) the execution time
is the same as in worker-shared setup. The reason is
high code locality of serial code. For example, when
we configure the core front-end with four line buffers

(baseline), CoMD rarely accesses the shared I-cache when
executing sequential code. Only one line buffer is not
enough to exploit the serial code locality, thus CoMD
moves to Group 0.

• Group 2 - long basic blocks in serial code: Figure 2
shows that HPC applications have short basic blocks
in sequential code regions, with two benchmarks as
exceptions, nab and CoEVP. That is the reason why these
two benchmarks do not belong to Group 0. With longer
basic blocks, the master core behaves like worker cores
in parallel regions.

• Group 3 - scalability limitations: If we use a single
I-bus, EP, FT, and UA benchmarks show performance
degradation when the master core also shares the I-cache.
This time, the stall cycles are not caused due to prolonged
I-cache access latency in serial code sections, but in
parallel ones. Adding one more core to a single I-bus
increases the congestion and the execution time. This
finding exposes the scalability limits. Sharing an I-cache
among more than eight cores introduces additional stall
cycles which can not be mitigated with a double bus inter-
connect and four line buffers. With higher interconnection
bandwidth and line buffers, the performance degradation
can be reduced, but the extra area and energy cost do not
justify such an investment, leading to a design with the
same performance and the same area and power budget
as the baseline ACMP.

This final analysis further stresses the difference between
parallel code commonly run on HPC systems and serial
bottleneck that exists in every parallel application. There is
a need to tailor the cores on a CMP differently, depending on
the parts of the code they execute. Although attractive with the
additional energy and area savings, sharing an I-cache among
all cores on an ACMP shows performance degradation as the
amount of serial code increases. Our findings suggest that an
I-cache can be shared among worker cores providing energy
and area savings for the same performance, but the master
core should be left with its private I-cache.

VII. CONCLUSION

In this paper we have analysed sharing the I-cache among
multiple worker cores to provide a more balanced ACMP
architecture for HPC workloads, based on their intrinsic code
characteristics. The parallel code regions are executed by
worker threads running the same code with long basic blocks.
Due to initially low I-cache MPKI values and with the mutual
code prefetching among threads, the shared and smaller I-
cache feeds instructions to lean worker cores using a simple
double bus as an I-interconnect, and a standard, small set of
prefetch buffers.

Sharing an I-cache, the arbitration policy on an I-bus be-
comes the fetching policy, previously evaluated in the context
of SMT cores. We believe that the evaluation of these policies
can further reduce the impact of contention on a shared I-
bus, and maybe increase the performance in some cases.
Moreover, customizing the rest of the multicore front-end



and sharing both the iTLB and branch predictor may also
provide benefits from similar cross-thread prefetching and
constructive interference effects. This creates opportunities
to further improve the energy efficiency of HPC multicores
exploiting the specific properties of ”single program, multiple
data” workloads to be explored in future work.

Our results on 24 workloads from three HPC bench-
mark suites show considerable area and energy savings of
around 11% and 5%, respectively, without performance loss.
The analysis suggests that constructive interference between
threads reduces the number of I-cache misses and almost
eliminates cold I-cache misses. In cases where the initial I-
cache MPKI values were high, sharing an I-cache among
worker cores even increases the performance.
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