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Abstract 

Protein-protein interactions play fundamental roles in biological processes including 

signaling, metabolism and trafficking. While the structure of a protein complex reveals 

crucial details about the interaction, it is often difficult to acquire this information 

experimentally. As the number of interactions discovered increases faster than they can 

be characterized, protein-protein docking calculations may be able to reduce this 

disparity by providing models of the interacting proteins. Rigid-body docking is a 

widely used docking approach, and is often capable of generating a pool of models 

within which a near-native structure can be found. These models need to be scored in 

order to select the acceptable ones from the set of poses. Recently, more than 100 

scoring functions from the CCharPPI server were evaluated for this task using decoy 

structures generated with SwarmDock. Here, we extend this analysis to identify the 

predictive success rates of the scoring functions on decoys from three rigid-body 

docking programs, ZDOCK, FTDock and SDOCK, allowing us to assess the 

transferability of the functions. We also apply set-theoretic measure to test whether the 

scoring functions are capable of identifying near-native poses within different subsets of 

the benchmark. This information can provide guides for the use of the most efficient 

scoring function for each docking method, as well as instruct future scoring functions 

development efforts. 
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Introduction 

Protein-protein interactions are known to play key roles in almost all cellular and 

biological processes such as signaling, metabolism, and trafficking.
1
 Thanks to 

experimental high-throughput screening techniques, the volume of annotated data on 

protein-protein interactions has experienced a huge increase in recent years.
2,3

 The 

structural characterization of such protein interactions can provide molecular details on 

the determinants of their specificity and affinity, as well as on their mechanism of 

association.
4,5

 However, technical difficulties in the determination of the 3D structures 

of protein complexes is causing the structural coverage of interactomes to increase at a 

much slower pace.
6
 In this context, computational methods such as protein-protein 

docking, which aims to predict the structure of a protein-protein complex from its 

monomeric constituents, can be extremely useful to complement current experimental 

efforts. International efforts like the Critical Assessment of PRedicted Interactions 

(CAPRI)
7 

have boosted the development of novel and more accurate predictive docking 

methods, by bringing new ideas into the field, establishing standard quality parameters, 

and providing protein models and structures for benchmarking the performance of any 

given docking method. 

 

 Two major technical aspects can be found in the majority of docking methods: 

the generation of a large variety of structural models (sampling) and the identification of 

the correct docking poses with a proper function (scoring)
8
. Many current techniques 

are successful if the interacting proteins undergo only small conformational changes 

upon binding. Even in these conditions, docking algorithms generate a large number of 

incorrect docking poses, so an important part of the success depends on the accuracy of 

the scoring function used to evaluate the docked conformations, as well as on their 
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capabilities to overcome the inaccuracies of their interacting surfaces and singling out 

near-native conformations.
9,10

 Generally speaking, scoring aims to identify the lowest-

energy state among the different possible states of a given interaction, and thus, in the 

case of docking, it should be ideally able to describe the energetic aspects of protein-

protein association.
11

 For practical predictions, the energy description of a system is 

estimated by approximate functions, and a large variety of scoring functions have been 

used. Docking algorithms often rely on the geometric complementarity of protein-

protein interfaces. The essential zones for binding are often preformed in the interacting 

proteins,
12

 and as a consequence the interface of a protein complex could be considered 

an inherent geometric feature of the protein structures. This has made shape 

complementarity a popular ranking criterion to distinguish near-native solutions. Still, 

many protein-protein interfaces are flat, so complementarity alone is not enough to 

describe the right association mode. This is one of the reasons why a sampling step 

based only on geometry criteria often fails to produce correct models. Indeed, the 

physicochemical nature of the residues has a major role in protein association. 

Important elements include the electrostatic forces with complementary charges helping 

to provide the micro environment needed for the interface formation and the correct 

orientation of the proteins, and the hydrophobic effect with the burial of hydrophobic 

patches favoring the desolvation of the interacting surfaces.
13,14

 Other factors are van 

der Waals attraction and repulsion, and hydrogen bonding. However, scoring functions 

that use energy-based terms to model these effects are not yet accurate enough to 

reliably select near-native solutions from a pool of decoys, and thus further 

investigation is required to improve the quality of docking predictions. 

 

 Given that docking programs typically report decoys ranked with only one or 
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two scoring functions, it remains to be seen whether a given method could further 

benefit from the accumulated knowledge derived from the variety of currently available 

scoring functions that have been reported in the literature, many of which were 

developed for different modeling problems. In a recent study,
15

 more than 100 scoring 

functions were used to evaluate docking models generated by SwarmDock, a semi-

flexible docking method. This analysis identified different scoring functions that 

improved the predictive rates for this method with respect to the original algorithm, and 

suggested new strategies to further improve the results by combining different pairs of 

scoring functions. Here we have extended this analysis to evaluate the performance of 

73 scoring functions selected from the CCharPPI server
16

 on rigid-body docking models 

generated by three FFT-based docking programs, ZDOCK,
17

 FTDock,
18

 and SDOCK,
19

 

for the cases of available protein-protein docking
20,21 

and scoring
22 

benchmarks. The 

results here provide a systematic assessment of the predictive capabilities and 

limitations of a variety of scoring functions, bring interesting insights on the risk of 

overtraining when developing methods for structural modeling in general, and suggest 

new strategies for improvement of current docking protocols. 

 

Materials and methods 

Protein-protein docking  

In the present work, we have used several well-known and freely available rigid-body 

protein-protein docking programs, which were run with the specifications described 

below (default parameters otherwise). FTDock 2.0
18 

was run with electrostatics on, grid 

cell size of 0.7 Å, and surface thickness of 1.3 Å, with a total of 10,000 docking poses 

generated for each case. Missing side chains of interacting proteins were reconstructed 

with SCWRL 3.0.
23

 ZDOCK 3.0.1
24

 was used to generate 54,000 docking poses, from 
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which only the highest-scoring 10,000 were kept for further analysis. SDOCK
19

 was run 

as recommended by their authors, and 1,000 clustered docking models were kept for 

further analysis.  

 

Protein-protein docking benchmark sets  

We computed the predictive success rates of the different scoring functions and their 

combinations on a well-known protein-protein docking benchmark, for which the 

structures of the unbound monomers and the bound complex are available. The docking 

benchmark version 4.0 (BM 4.0) contains a total of 176 targets
20 

while the docking 

benchmark update version 5.0 (BM 5.0) includes 55 additional targets.
21

 

 

 For additional validation, we also used a recently published scoring benchmark 

derived from models submitted in the CAPRI experiment, which contains 15 published 

targets from 23 assessments. The CAPRI score set benchmark
22 

contains more than 

19,000 protein complex models generated by 43 different predictors groups, including 

web servers. Only 10% of them are of acceptable quality or better according to the 

CAPRI criteria, with a range of 281 to 2182 decoys per case; the number of acceptable 

quality decoys is 835, medium quality decoys 784, and high quality decoys 479. 

 

Evaluation of docking predictions 

In order to evaluate the predictive success rate of each docking method on the BM 4.0 

and BM 5.0, CAPRI quality measurements were calculated for each of the generated 

structures, based on the fraction of native contacts (fnat), interface RMSD (IRMSD) and 

ligand RMSD (LRMSD) as defined by CAPRI
25 

with respect to the known reference 

complex structures. According to CAPRI criteria, the quality of the structures are 
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classified as follows: incorrect [ fnat < 0.1 or (LRMSD > 10 Å and IRMSD > 4 Å) ], 

acceptable [ [(0.1 ≤ fnat < 0.3) and (LRMSD ≤ 10 Å or IRMSD ≤ 4 Å)] or [(fnat ≥ 0.3) 

and  (LRMSD > 5 Å or IRMSD > 2 Å)] ], medium [ [(0.3 ≤ fnat < 0.5) and ( LRMSD ≤ 

5.0 Å or IRMSD ≤ 2 Å)] or [fnat ≥ 0.5 and (LRMSD  > 1.0 Å and IRMSD > 1.0 Å)] ], or 

high accuracy [ fnat ≥ 0.5 and (LRMSD ≤ 1 Å or IRMSD ≤ 1 Å) ]. This classification 

was already provided by CAPRI organizers for the models in the CAPRI score set 

benchmark. Success rates are defined as the percentage of cases in which a near-native 

solution, i.e. with acceptable quality or better (following CAPRI criteria), is found 

within the top N docking models as ranked by a given scoring function. 

 

Protein-protein scoring functions 

We selected 73 scoring functions from the CCharPPI server,
16

 as shown in Table S1. 

These functions were already described in a previous study.
15

 We did not use all the 

scoring functions provided in the CCharPPI server due to technical limitations of the 

computing platform employed to perform the calculations. For clarity purposes, the 

majority of contact and distance-dependent residue-level potentials were originally 

prefixed with ‘CP_’, while atomic and quasi-atomic potentials were prefixed with 

‘AP_’. 

 

Cardinality analysis and combination of the normalized values for re-rank 

For all scoring functions we calculated the set of complexes for which an acceptable or 

better solution appears in the top 10 decoys when ranked by that function. Then, for 

each pair of scoring functions (A, B), we calculated the size of their union (eq. 1) and 

symmetric difference (eq. 2) sets: 

 



8 

       BAB+ABA   =                                                 (1) 

      ABBA=BA \\                                                  (2) 

 

 These measures, which combine two scoring functions, indicate the extent to 

which the scoring functions are successful on different subsets of the complexes, and 

thus they provide an estimation of their predictive success complementarity. We also 

explored a strategy in which scoring functions are combined not just on the basis of 

their ability to find top 10 solutions in different subsets of the complexes, but also on 

different subsets of the decoys as delineated by the docking algorithm that was used to 

generate them. To do this, we combined three pairs of scoring functions, where each 

pair was evaluated and selected on the basis of its performance on the decoys generated 

by each of the three docking methods. We calculated the union cardinalities for the 

unified pair of scoring functions between the three docking methods (eq. 3), forming 

triplets of scoring functions containing one unified pair used with FTDock docking 

models, one unified pair with ZDOCK, and one unified pair with SDOCK, this way 

combining up to six different scoring functions together:  

 

             CBA+CBCABAC+B+A=CBA           (3) 

 

 where A represents a unified pair of scoring functions that performs well in 

FTDock, B a unified pair of scoring functions that performs well in ZDOCK, and C a 

unified pair of scoring functions that performs well in SDOCK.  

 

To calculate the success rates of these combined functions, we proceeded as 

follows. First, we combined different energy terms from pairs or triplets of scoring 
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functions, selected using the above measures. To do this, we first normalized each value 

using the z-score method (eq. 4): 

 

σ

μx
=Zi


                                                               (4) 

 

 where x is the value, µ the average and σ is the standard deviation. The 

normalized values of the scoring function pairs for a given pose were directly added and 

used to re-rank the list of the poses generated by each method. For combining triplets of 

scoring functions, we similarly summed the three z-scores. Note that this is a naive 

ranking and no weight optimization was undertaken. 

 

Results and Discussion 

Performance of scoring functions with different docking methods on the protein 

docking benchmark 4.0 

We evaluated the performance of the 73 functions for the scoring of rigid-body docking 

poses generated for the cases in BM4. Fig. 1A shows the performance of the ten most 

successful functions ordered by top 10 success rate for FTDock, ZDOCK and SDOCK, 

respectively. In general, scoring functions provided better predictive rates when 

evaluating ZDOCK and SDOCK models. Interestingly, for each docking method, there 

were always other scoring functions that performed better than its own in-built scoring 

procedure. The three scoring functions that were found among the ten most successful 

ones for all docking methods were AP_PISA,
26

 CP_TSC
27

 and CP_HLPL.
28,29

 The 

function CP_HLPL was originally developed for describing intramolecular contacts in 

protein structure modeling. The functions CP_TSC and AP_PISA were specifically 

designed for protein-protein docking using linear programing to train both functions.  
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CP_TSC is a coarse-grain potential with three interaction sites per residue (side-chain 

centroid and N and O backbone atoms), which calculates the energy of interacting pairs 

with a two-step potential well. AP_PISA is an atomic potential which has a three-step 

potential between atom pairs, and was trained using side chain refined interfaces. These 

two potentials showed the best performance for the three docking methods, with 

AP_PISA being particularly successful in evaluating docking models generated by 

ZDOCK and SDOCK methods, when considering both the top 1 and the top 10 success 

rates. One of the possible reasons for the difference in performance of the three docking 

methods is the high variability in the total number of near-native solutions generated by 

each method in all BM 4.0 cases (FTDock: 1,653; SDOCK: 18,700; ZDOCK: 37,709). 

This is an important factor that clearly can affect the capabilities of the scoring 

functions for discriminating near-native solutions from false positives. The lower 

enrichment in near-native docking solutions in the FTDock docking sets could in 

principle explain the worse performance of the scoring functions for this docking 

method. However, as we will discuss a few sub-sections later, this difference in 

performance cannot be fully explained on the basis of near-native enrichment. Actually, 

an alternative explanation is that some functions could have been overtrained in cases of 

BM 4.0, which advices to take with caution all the results above described. 

 

[INSERT HERE FIGURE 1] 

 

Performance of scoring functions according to protein flexibility 

The predictive success of rigid-body docking is known to strongly depend on the degree 

of conformational change that interacting proteins undergo upon binding.
30

 We 

evaluated here whether this is true for all scoring functions. For that, we classified the 
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BM 4.0 cases according to the extent of unbound-to-bound conformational changes, 

based on the average interface RMSD (avgeIRMSD) for unbound receptor and ligand 

when superimposed onto the corresponding molecules in the complex structure, 

defining five categories: "rigid" (avgeIRMSD ≤ 0.5 Å), "low-flexible" (0.5 Å < 

avgeIRMSD ≤ 1 Å) , "medium-flexible" (1 Å < avgeIRMSD ≤ 2 Å), "flexible" (2 Å < 

avgeIRMSD ≤ 3 Å), and "highly-flexible" (avgeIRMSD >3 Å). 

 

Fig. 1A shows the top 10 success rates for the above analyzed scoring functions 

on models generated by each docking method, for cases classified according to 

unbound-to-bound conformational changes. In general, for each combination of scoring 

function and docking method, the best success rates are obtained for the rigid cases, as 

expected, and the performance decreases for the most flexible cases. However, there are 

interesting exceptions. For instance, AP_PISA on ZDOCK models provided better 

performance on the medium and flexible cases than on the low-flexible ones, and almost 

as good as on the rigid ones. Similarly, the performance of CP_HLPL on ZDOCK was 

independent on the flexibility category. Interestingly, a few scoring functions with a 

specific docking method identified acceptable docking models within the top 10 decoys 

for the highly-flexibly cases. These are extremely challenging cases for rigid-body 

docking prediction, so the fact that selected scoring functions are able to predict some of 

these cases is quite encouraging. However, due to the smaller number of flexible cases 

in the benchmark these differences are not statistically significant (Wilcoxon signed 

rank test: FTDock p-value 0.333, ZDOCK p-value 0.667, SDOCK p-value 0.333). Only 

6% (11 cases) of the BM 4.0 correspond to the highly-flexible category, containing the 

monomers that undergo the biggest conformational changes upon binding. In general, 

the performance of the different scoring functions on the rigid cases shows more 
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consistency, while that on the most flexible cases shows more variability, which 

suggests possible random effects on the latter due to lower signal-to-noise ratios. 

However, as above discussed, all these results should be taken with caution because of 

the possibility of overtraining in cases of BM 4.0, as discussed a few sub-sections later.  

 

Performance of scoring functions according to binding affinity 

The predictive performance of rigid-body docking also strongly depends on the binding 

affinity of the complex.
31

 High-affinity complexes are in general predicted with higher 

accuracy. We explore here to what extent the performance of different scoring functions 

depend on the affinity of the complexes. We gathered the experimental binding affinity 

data from the Structural Affinity Benchmark
32 

for 125 cases of the protein-protein 

docking BM 4.0, classified according their binding ΔG value as “Strong” (ΔG ≤ -12 

kcal/mol) or “Weak” (ΔG > -12 kcal/mol). 

 

 Fig. 1A provides the success rates for the top 10 predictions of the previously 

analyzed scoring functions for the different docking methods on the benchmark BM 4.0 

cases as classified by binding affinity. In general, predictive performance on the strong 

affinity cases is better than on the weak affinity cases. However, there are some 

exceptions, being the most notable ones the SIPPER
33

 and PROPNSTS
34

 functions 

when evaluating FTDock models, which yielded much better predictions for the weak 

affinity cases. Interestingly, these two scoring functions are based on the same residue 

potentials derived from protein-protein complex structures. It seems that they are able to 

capture the binding energy determinants of weak complexes better than other atomistic 

potentials. Again, all these results should be taken with caution because of the 

possibility of overtraining in cases of BM 4.0, as discussed a few sub-sections later.  
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Performance of scoring functions on the CAPRI score set benchmark 

We evaluated the performance of the 73 scoring functions on the CAPRI score set 

benchmark, which is formed by 15 targets from the CAPRI experiment,
22

 for which a 

range of docking models were blindly generated by a variety of docking methods (see 

Methods). Fig. 2A shows the predictive rates for the best 30 scoring functions in this 

benchmark according to the top 10 success rate.  

 

 Many of these scoring functions overlap with those that perform well on the BM 

4.0, such as AP_T1,
35

 AP_T2,
35

 CP_DECK,
36

 CP_TB,
37

 CP_TSC and AP_PISA. 

Interestingly, the best success rates for the top 100 predictions were obtained by coarse-

grain potentials, in general. Perhaps coarse-grained potentials are providing a more 

balanced score that is more adequate to the heterogeneity of docking models generated 

by the large variety of docking methods in the CAPRI score set benchmark. The most 

successful function for the top 100 predictions is CP_TB, a scoring function designed 

for docking, which was among the most successful ones with FTDock on the BM 4.0.  

 

[INSERT HERE FIGURE 2] 

 

Performance of scoring functions with different docking methods on the protein 

docking benchmark 5.0 update 

In order to confirm the previous findings regarding the good success rates observed for 

some of the scoring functions on specific docking methods, such as AP_PISA on 

ZDOCK and SDOCK, we also evaluated the performance of the different scoring 

functions and docking methods on the recently available BM 5.0 update,
21

 formed by 
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cases that were not present in BM 4.0. This analysis provided unexpected and 

interesting results. Fig. 1B shows the success rates of the ten most successful functions 

(when considering the top 10 predictions) for FTDock, ZDOCK and SDOCK, on the 

BM 5.0 update. We can observe that the best scoring functions now are different from 

the best scoring functions of BM 4.0 (Fig. 1A), especially for ZDOCK and SDOCK, in 

which their performance in general is much lower. One of the most striking differences 

is AP_PISA, which shows much lower performance than on BM 4.0, and may be 

indicative of overfitting to the BM 4.0 complexes during the development of such 

functions. This may also explain some of the other differences observed. 

 

Fig. S1 shows the performance on the BM 5.0 update of the best-performing 

functions resulting of the previous BM 4.0 analysis. The predictive rates of these 

functions for the BM 5.0 update are much lower than those observed for the BM 4.0 

cases. In addition, there are now fewer differences in the best predictive rates for the 

different docking methods. Indeed, now the evaluation of ZDOCK and SDOCK 

docking models does not show better success rates than FTDock as is the case for the 

BM4.0. The performance for the scoring functions on the FTDock models, with similar 

success rates on both BM 4.0 and 5.0, is more consistent than that of ZDOCK and 

SDOCK. Interestingly, according to the total number of near-native solutions generated 

by each method in all BM 5.0 cases (FTDock: 454; SDOCK: 5,597; ZDOCK: 7,726) 

the enrichment of BM 5.0 in near-native solutions is similar to that of BM 4.0, which 

suggests that the lower performance of FTDock in BM 4.0 could not be fully explained 

on the basis of near-native enrichment. In fact, it seems that the performance obtained 

for some scoring functions on BM 4.0 with ZDOCK and SDOCK were excessively 

high. One reason could be that these scoring functions might have been overtrained on 
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cases from BM 4.0 during their development, using ZDOCK and SDOCK methods to 

generate docking decoys. Another explanation could be that SDOCK is technically 

similar to ZDOCK, and overtraining in any of these two methods could also affect the 

other one. 

 

The BM 5.0 update provides a set of cases that were not used for training, since 

it does not include complexes from previous benchmark sets. A key question is whether 

the best-performing scoring functions for BM 5.0 update represent bona fide success 

rates for docking in general or they appear good only for this particular set of cases for 

another reason. The fact that CP_HLPL and CP_TB are found among the best-

performing scoring functions with the three docking methods on BM 5.0 update, 

suggests that their good performance on BM 4.0 was not due to overtraining, and 

therefore they could be of more general applicability for new cases. Indeed, CP_HLPL, 

which used with SDOCK provided the best top 10 success rate among all functions 

(25%), was originally developed from intramolecular contacts for modeling protein 

monomers. On the other side, CP_TB was developed for docking but trained in a 

composite set of representative transient complexes. This knowledge-based potential 

was designed to tolerate small changes in side chain orientations, which may contribute 

to its avoidance of overtraining. 

 

Performance of scoring functions according to binding affinity and flexibility on 

BM 5.0 update cases  

We have analyzed the results on the cases in BM 5.0 update when classified according 

to unbound-to-bound conformational flexibility (Fig. 1B). Several functions (CP_TB 

with FTDock and SDOCK models; CP_BT, CP_BFKV and CP_SKOa with FTDock, 
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etc.) can provide similarly good performance for rigid and low-flexible cases.  

 

 We also analyzed the results for the 35 cases of the BM 5.0 update for which 

there is experimental binding affinity available.
21

 These cases were classified as strong 

or weak, according to their experimental binding affinity (Fig. 1B). The affinity-

dependent performance of some of the scoring functions varies according to the docking 

method. For instance CP_HLPL shows no dependence on affinity with SDOCK, but 

strong dependence with FTDock. The performance of some of the functions for the 

strong binders in the BM 5.0 update is better than those in the BM 4.0, perhaps due to 

the fact that the BM 5.0 has fewer cases with affinity information. 

 

Scoring performance on models merged from different docking methods 

We merged all docking models generated by the three docking methods into a single 

decoy set, and evaluated the performance of each scoring function on this 

heterogeneous pool of docking solutions. Fig. 2B shows the performance for the best 30 

scoring functions on this set ordered by top 10 success rates. In general, the success 

rates for the best performing functions were lower than those obtained with the 

individual methods. For instance, the best performing scoring function on the merged 

pool of docking models is CP_TB, with 24% success rate for the top 10 predictions, 

while for the individual methods, CP_HLPL with SDOCK, and CP_BFKV
38 

with 

FTDock yielded higher success rates (over 25%). Surprisingly, these scoring functions 

yielded much lower success rates on the large docking set (20% and 12%, respectively). 

 

 This shows that some scoring functions are particularly efficient for a specific 

docking method, which suggests that it would be more reasonable to use each docking 
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method only with the scoring functions that have shown the best performance on such 

method. A different question is choosing the most adequate scoring function when we 

do not know which docking method was used to build each docking model. In this case, 

a good scoring function that could work for a particular method (i.e. CP_BFKV on 

SDOCK and FTDock) might give worse predictive rates in other docking method (i.e. 

CP_BFKV on ZDOCK). In this situation, it would be better to choose a more general 

scoring function that could provide good success rates in all methods according to our 

tests here (i.e. CP_TB or PYDOCK_TOT). This could be relevant in the CAPRI scorers 

experiment, for instance, in which a variety of docking models need to be scored, but no 

information is provided on how they were generated. However, as above described, 

currently available scoring functions show worse performance in heterogeneous sets. 

This could be due to the fact that most of them have been developed in homogeneous 

data sets. Therefore, it would be important to use heterogeneous data sets, such as the 

CAPRI score set benchmark, for developing and testing new scoring functions that 

could be of general applicability and thus not so dependent on a particular docking 

method. 

 

Performance of combined scoring functions 

We next explored whether the combination of scoring functions might improve the 

predictive rates. First, we identified pairs of scoring functions that provided successful 

results in complementary subsets of complexes. The first metric we used to do this is the 

size of the combined set of complexes for which an acceptable or better solution was 

found in the top 10 by either of the scoring functions (union cardinality). The second 

metric was similar, but excluding the complexes that are identified by both functions 

(symmetric difference cardinality). These measures were chosen to give an indication of 
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how both scoring functions bolster each other, and therefore, this could be used as an 

estimation of the potential synergistic effect of the two functions when combined. Fig. 3 

shows the cardinality values (for top 10 predictions) for the combinations of the ten 

functions with the greatest union values when paired, for each of the docking methods 

on the BM 5.0 update. Fig. S2 shows these values for all pairs of scoring functions. We 

can observe that some pairs of scoring functions are highly complementary, since they 

are able to capture near-native solutions on non-overlapping sets of complexes (e.g. 

PYDOCK_TOT/CP_BFKV with FTDock; PYDOCK_TOT/AP_T2 with ZDOCK; 

AP_MPS/SDOCK or AP_MPS/CP_RMFCEN1 with SDOCK). 

 

[INSERT HERE FIGURE 3] 

 

 From the above analysis, one could estimate the most favorable pairs of scoring 

functions, i.e. those ones that when combined would be expected to yield improved 

success rates. Therefore, we tested the predictive power of the cardinality analysis. For 

this, we normalized the energy values obtained from each pair of functions and 

converted them into z-scores. Then we added these values without weighting and used 

them to re-rank all the generated decoys for each case. Fig. 4 shows the predictive rates 

(on BM 5.0 update) for the combinations of the ten scoring functions that provided the 

largest union values (for top 10 predictions) on the BM 5.0 update. Some combinations 

yielded >30% success rates for FTDock models (as compared with 20-25% for the 

individual scoring functions). However, in the case of ZDOCK and SDOCK docking 

methods, success rates of the best combined scoring functions did not improve the 

individual ones. This small improvement in the success rates for a few combinations of 

scoring functions is not sufficient to guarantee that this strategy could be of general 
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applicability to a new set of cases, and requires further investigation. 

 

[INSERT HERE FIGURE 4] 

 

For some pairs of scoring functions, the cardinality analysis did not reflect well 

the success rate values after rescoring with the combined functions. For instance, with 

FTDock, the best union was found for PYDOCK_TOT/CP_BFKV, providing near-

native models for 42% of the cases within the top 10 predictions, but the combined 

functions have a top 10 success rate of 27%. Individually, PYDOCK_TOT has a top 10 

success rate of 20% and CP_BFKV of 26%. For some reason PYDOCK_TOT seems to 

contribute little at the combined success rate in the top 10 predictions in spite of the 

observed high cardinality. On the other hand, the best top 10 success rates after 

rescoring with the combined functions is provided by CP_SJKG/AP_dDFIRE (33%), 

while individually, CP_SJKG and AP_dDFIRE have much lower success rates (16% 

and 20%, respectively). For this pair, the union was not among the best values of all 

cases, so cardinality analysis was not able to foresee the strong synergy shown by the 

combination of these two scoring functions. 

 

So far, we selected the top scoring functions for each docking method in BM 5.0 

update and evaluated its performance in the BM 5.0 itself. To make a blind test, we 

selected the ten scoring functions with the best top 10 success rates from BM 4.0, and 

computed their cardinalities on BM 5.0 update (Fig. S3). With FTDock the best 

cardinalities are found for combined pairs involving PYDOCK_TOT, being the highest 

ones the combinations with CP_HLPL and CP_TB. With ZDOCK there are many 

combinations that give a high cardinality, such as the combination of PYDOCK_TOT 
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with AP_T1/2 or AP_PISA. Fig. S4 shows the top 10 success rates on BM 5.0 for the 

best scoring function pairs formed by unweighted combination based on z-scores, using 

the ten scoring functions that showed better performance from BM 4.0. We found two 

pairs of combinations that reached a success rate above 30% within the top 10 

predictions: the pair PYDOCK_TOT/CP_HLPL with FTDock (31%), and the pair 

AP_PISA/CP_HLPL with SDOCK (31%). Thus, combined pairs formed by scoring 

functions selected on the basis of BM 4.0 yielded success rates on the external test set 

BM 5.0 as high as those obtained when the combined pairs were formed by functions 

selected among the best ones in BM 5.0 update. The fact that the pairs of functions 

selected either using the BM 4.0 or the BM 5.0 provided similar success rates on the 

BM 5.0, suggested that the selection of pairs on the basis of BM 5.0 had little or no 

overfitting.  

 

Overall, this is not a considerable increase in the success rate. To extend the 

number of existing near-native solutions and possibly improve the scoring performance, 

a heterogeneous pool of decoys could be created from the three docking methods and 

the best scoring functions for each docking method. In fact, a researcher is not limited to 

use only one docking method, e.g. the complementarity of ZDOCK and FTDock both 

using the PYDOCK_TOT scoring was used to help to model yeast interactome.
39

 In this 

line, we aimed to combine the pairs of scoring functions that performed well on each set 

of docking decoys generated by FTDock, ZDOCK and SDOCK, and tried to evaluate 

whether they would improve the predictive results. For this, we built scoring function 

pairs formed by unweighed combinations based on z-scores, using the ten scoring 

functions that provided the best top 10 success rates for each docking method in BM 

4.0. With them, we built triplets of combinations formed by one pair of scoring 
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functions from each docking method, and computed the union cardinality (for the top 10 

predictions) for each triplet on BM 5.0. Table S2 shows the combined triplets with the 

50 best union cardinalities. The best triplet combinations generated by this strategy 

captured 30 cases (55%), considerably more than the 18 cases (33%) predicted by the 

best-performing pairs of scoring functions (CP_SJKG and AP_dDFIRE with FTDock) 

from the cardinality analysis carried out with the individual docking methods. 

According to these results, the use of triplet combinations of the best pairs of functions 

for each method seemed to anticipate a large improvement in success rates. To confirm 

this, we used the best scoring function pairs for each method (according to BM 4.0), and 

computed the success rates of the triplet combinations of function pairs / docking 

methods on BM 5.0 (Fig. S5). The best triplet combination is formed by 

PYDOCK_TOT and CP_HLPL with FTDock, AP_T2 and AP_PISA with ZDOCK, and 

AP_calRWp and SDOCK scoring function with SDOCK (38% success rate). However, 

despite the expectances, this is not much better than the best performance we found for 

a pair of scoring functions (CP_SJKG/AP_dDFIRE with FTDOCK; top 10 success rate 

33% on BM 5.0).  

 

The combination of scoring functions performed here was based on a direct 

addition of the normalized functions. There was no attempt to improve the combination 

of values, by optimization of parameters, multi-parametric fitting, etc. However, due to 

the process of selection of scoring functions, there could be a possible bias towards the 

best-performing functions on the BM 5.0. The use of more sophisticated approaches to 

combine the scoring functions could yield better predictive rates, but such analysis 

should be done with caution, to minimize the risk of overfitting, for instance by putting 

feature selection within an outer cross-validation wrapper. 
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Conclusion 

We performed here a systematic analysis of the performance of 73 known functions for 

the scoring of rigid-body docking poses generated with different docking methods on a 

standard protein-protein docking benchmark. From a first analysis on an existing 

protein-protein docking benchmark (BM 4.0), we initially found that some of the 

functions provided much better predictive rates than those from the original functions 

used in each method. However, when they were evaluated in a new, independent set of 

protein-protein docking cases (BM 5.0 update), success rates for these functions were 

significantly lower, which suggested that much of the observed improvement in the first 

analysis could have been due to overtraining. In this external set, the performance of 

some scoring functions was highly dependent on each type of docking method, so the 

most logical approach would be to use the most appropriate scoring function for a given 

docking method. However, a few scoring functions were sufficiently robust to different 

types of docking methods, which can be of interest when evaluating a heterogeneous 

pool of docking models generated by a variety of methods. Finally, the combination of 

different scoring functions looks promising to obtain better predictive rates, but this 

should be carefully done in order to avoid overtraining. 
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FIGURE LEGENDS 

 

Figure 1. Performance of scoring functions on (A) BM 4.0, and (B) BM 5.0. The 

first three columns show the success rates for the ten best performing scoring functions 

for each docking method, for the top 1, 10 and 100 predictions. Only the ten best 

performing scoring functions according to top 10 success rates are shown. Columns F1-

F5 show success rates for the top 10 predictions according to conformational changes 

upon binding (F1: rigid; F2: low-flexible; F3: medium-flexible; F4: flexible, and F5: 

highly-flexible; see Methods). The two last columns show the success rates for the top 

10 predictions according to binding affinity (see Methods).  

 

Figure 2. Performance of scoring functions on heterogeneous docking sets. (A) 

Success rates on the CAPRI score set benchmark. (B) Success rates on the merged 

docking sets from the three docking methods in BM 5.0 update. Only the 30 best 

performing scoring functions are shown. 

 

Figure 3. Cardinality analysis of pairs of scoring functions on BM 5.0. The heat-

maps show the union (left panels) and symmetric difference (right panels) values for 

pair combinations of the ten scoring functions that provided the highest union values 

(top 10 predictions) for each docking method on BM 5.0 update, with functions grouped 

using single linkage clustering. 

 

Figure 4. Success rates on BM 5.0 for pair combinations of scoring functions using 

z-scores. Performance on BM 5.0 of scoring function pairs formed by unweighted 

combination based on z-scores, using the ten scoring functions that provided the best 
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union values (for top 10 predictions) on BM 5.0 for each docking method. The ten pairs 

of scoring functions with the best top 10 success rates are shown for each docking 

method: A) FTDock, B) ZDOCK, and C) SDOCK.  
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SUPPLEMENTARY FIGURE LEGENDS 

 

Figure S1. Performance on the BM 5.0 update for the ten best-performing 

functions from BM 4.0. For each docking method, the ten scoring functions with the 

best top 10 success rates on BM 4.0 were selected, and their performance on BM 5.0 

update is shown.  

 

Figure S2. Cardinality analysis for all pairs of scoring functions on BM 5.0. The 

heat-maps show the cardinality values (union in left panels; symmetric difference in 

right panels) for all scoring function pairs using the top 10 predictions, with functions 

grouped using single linkage clustering, for FTDock, ZDOCK and SDOCK. 

 

Figure S3. Cardinality analysis on the BM 5.0 update for pair combinations of the 

best-performing scoring functions from BM 4.0. The heat-maps show the cardinality 

values (union in left panels; symmetric difference in right panels) on BM 5.0 for pair 

combinations of the ten most successful (top 10 predictions) scoring functions from BM 

4.0, with functions grouped using single linkage clustering. 

 

Figure S4. Success rates on BM 5.0 for pair combinations of the best-performing 

scoring functions from BM 4.0. Performance on BM 5.0 of scoring function pairs 

formed by unweighted combination based on z-scores, using the ten most successful 

(top 10 predictions) scoring functions from BM 4.0, for each docking method: A) 

FTDock, B) ZDOCK, and C) SDOCK.  

 

Figure S5. Success rates on BM 5.0 for triplet combinations of the best performing 
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scoring functions and docking methods from BM 4.0. Performance on BM 5.0 of the 

triplets formed by unweighted combination of scoring functions (z-scores) with each of 

the docking methods, using the ten most successful (top 10 predictions) scoring 

functions from BM 4.0 for each docking method.  
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Table S1. Scoring functions used in this work. 

Scoring Function Descriptiona 

CP_BFKV Contact potential calculated between intermolecular residues 

CP_BL Contact potential calculated between intermolecular residues 

CP_BT Contact potential calculated between intermolecular residues 

CP_GKS Contact potential calculated between intermolecular residues 

CP_HLPL Contact potential calculated between intermolecular residues 

CP_MJPL Contact potential calculated between intermolecular residues 

CP_MJ3h Contact potential calculated between intermolecular residues 

CP_MJ2h Contact potential calculated between intermolecular residues 

CP_MJ1 Contact potential calculated between intermolecular residues 

CP_MJ2 Contact potential calculated between intermolecular residues 

CP_MSBM Contact potential calculated between intermolecular residues 

CP_MS Contact potential calculated between intermolecular residues 

CP_Qa Contact potential calculated between intermolecular residues 

CP_Qm Contact potential calculated between intermolecular residues 

CP_Qp Contact potential calculated between intermolecular residues 

CP_RO Contact potential calculated between intermolecular residues 

CP_SKOb Contact potential calculated between intermolecular residues 

CP_SKOa Contact potential calculated between intermolecular residues 

CP_SJKG Contact potential calculated between intermolecular residues 

CP_TD Contact potential calculated between intermolecular residues 

CP_TEl Contact potential calculated between intermolecular residues 

CP_TEs Contact potential calculated between intermolecular residues 

CP_TS Contact potential calculated between intermolecular residues 

CP_VD Contact potential calculated between intermolecular residues 

CP_TSC The residue level interaction two-step potential 

CP_SKOIP The residue level interaction contact potential 

AP_DCOMPLEX The DComplex potential 

AP_dDFIRE Interaction energy calculated using the dDFIRE potential 

AP_DFIRE2 Interaction energy calculated using the DFIRE2 potential 

CP_RMFCEN1 The 6bin-HRSC centroid-centroid potential 

CP_RMFCEN2 The 7bin-HRSC centroid-centroid potential 

CP_RMFCA The C_alpha-C_alpha potential 

CP_TB The residue level interaction contact potential 



CP_TSC The residue level interaction two-step potential 

AP_T1 The first atomic two-step potential 

AP_T2 The second atomic two-step potential 

AP_DOPE The DOPE statistical potential 

ELE Total electrostatic energy as calculated using PyDock 

DESOLV Desolvation energy as calculated using PyDock 

VDW Van der Waals energy as calculated using PyDock 

PYDOCK_TOT Total pyDock energy 

ODA The optimal docking area (ODA) score 

PROPNSTS Amino acid propensity score 

SIPPER The SIPPER potential 

AP_DARS The DARS potential 

AP_URS The URS potential 

AP_MPS The MPS potential 

AP_WENG The pair-wise statistical potential implemented in Zdock 

CP_DECK The residue level distance-dependent potential 

CP_ZPAIR_CB The E_pair Z-score C_beta potential 

CP_ZLOCAL_CB The E_local Z-score C_beta potential 

CP_ZS3DC_CB The E_ZS3DC z-score C_beta potential 

CP_Z3DC_CB The E_3DC Z-score C_beta potential 

CP_EPAIR_CB The E_pair C_beta potential 

CP_ELOCAL_CB The E_local C_beta potential 

CP_ES3DC_CB The E_ZS3DC C_beta potential 

CP_E3DC_CB The E_3DC C_beta potential 

CP_E3D_CB The E_3D C_beta potential 

CP_ZPAIR_MIN The E_pair Z-score R_min potential 

CP_ZLOCAL_MIN The E_local Z-score R_min potential 

CP_ZS3DC_MIN The E_ZS3DC z-score R_min potential 

CP_Z3DC_MIN The E_3DC Z-score R_min potential 

CP_EPAIR_MIN The E_pair R_min potential 

CP_ELOCAL_MIN The E_local R_min potential 

CP_ES3DC_MIN The E_ZS3DC R_min potential 

CP_E3DC_MIN The E_3DC R_min potential 

CP_E3D_MIN The E_3D R_min potential 

AP_calRW The calRW distance-dependent atomic potential 



 

 

 

 

 

 

 

 

 

a
 A more detailed description for each function, including references can be found in the 

SKEMPI web site (https://life.bsc.es/pid/mutation_database/) 

  

AP_calRWp The calRWplus orientation-dependent atomic potential 

AP_GOAP_ALL The total GOAP energy 

AP_GOAP_DF The DFIRE term in the GOAP energy 

AP_GOAP_G The GOAP_ag term in the GOAP energy 

AP_PISA The PISA score 



Table S2. Union cardinality for triplets formed by scoring function pairs with each 

docking method. 

FTDock ZDOCK SDOCK UNION 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 30 

PYDOCK_TOT and AP_GOAP_DF PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 29 

AP_PISA and CP_TSC PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 29 

PYDOCK_TOT and AP_GOAP_DF PYDOCK_TOT and AP_T1 AP_T2 and CP_TSC 28 

PYDOCK_TOT and AP_GOAP_DF CP_DECK and ZDOCK AP_T2 and CP_TSC 28 

PYDOCK_TOT and AP_GOAP_DF AP_T2 and PYDOCK_TOT AP_T2 and CP_TSC 28 

PYDOCK_TOT and AP_GOAP_DF AP_T2 and CP_DECK AP_T2 and CP_TSC 28 

PYDOCK_TOT and AP_GOAP_DF AP_PISA and PYDOCK_TOT AP_T2 and CP_TSC 28 

PYDOCK_TOT and AP_GOAP_DF AP_PISA and CP_TSC AP_T2 and CP_TSC 28 

CP_RMFCA and AP_GOAP_DF PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28 

CP_HLPL and PYDOCK_TOT PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 28 

CP_HLPL and PYDOCK_TOT PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28 

CP_HLPL and PYDOCK_TOT AP_PISA and CP_TSC CP_QP and CP_TS 28 

CP_HLPL and PYDOCK_TOT AP_PISA and CP_TSC AP_calRWp and CP_TS 28 

CP_HLPL and CP_RMFCA PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and CP_TS 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and CP_HLPL 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and AP_PISA 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_QP and AP_dDFIRE 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK CP_HLPL and AP_PISA 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_dDFIRE and CP_HLPL 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_calRWp and CP_TSC 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_calRWp and CP_TS 28 

CP_HLPL and CP_DECK PYDOCK_TOT and ZDOCK AP_calRWp and AP_dDFIRE 28 

CP_HLPL and CP_DECK AP_T2 and PYDOCK_TOT CP_QP and AP_calRWp 28 

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_QP and CP_TS 28 

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_QP and AP_PISA 28 

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_QP and AP_calRWp 28 

CP_HLPL and CP_DECK AP_PISA and CP_TSC CP_HLPL and AP_PISA 28 

CP_HLPL and CP_DECK AP_PISA and CP_TSC AP_calRWp and CP_TS 28 



CP_HLPL and AP_PISA PYDOCK_TOT and ZDOCK CP_QP and AP_calRWp 28 

CP_HLPL and AP_PISA PYDOCK_TOT and ZDOCK AP_T2 and CP_TSC 28 

CP_HLPL and AP_PISA PYDOCK_TOT and ZDOCK AP_calRWp and CP_TSC 28 

CP_HLPL and AP_PISA AP_PISA and CP_TSC CP_QP and AP_PISA 28 

CP_HLPL and AP_PISA AP_PISA and CP_TSC CP_QP and AP_calRWp 28 

CP_HLPL and AP_PISA AP_PISA and CP_TSC CP_HLPL and AP_PISA 28 

CP_HLPL and AP_PISA AP_PISA and CP_TSC AP_T2 and CP_TSC 28 
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