
Parcus: Energy-aware and Robust Parallelization of
AUTOSAR Legacy Applications

Sebastian Kehr ∗, Eduardo Quiñones †, Dominik Langen ∗, Bert Böddeker ∗, Günter Schäfer ‡
∗ DENSO AUTOMOTIVE Deutschland GmbH, Eching, Germany

† Barcelona Supercomputing Center (BSC), Spain
‡ Telematics/Computer Networks Group, Ilmenau University of Technology, Germany

Abstract—Embedded multicore processors are an attractive
alternative to sophisticated single-core processors for the use
in automobile electronic control units (ECUs), due to their ex-
pected higher performance and energy efficiency. Parallelization
approaches for AUTOSAR legacy software exploit these benefits.
Nevertheless, these approaches focus on extracting performance
neglecting the system’s worst-case sensor/actuator latency and
energy consumption.

This paper presents Parcus; an energy- and latency-aware
parallelization technique that combines both runnable- and task-
level parallelism. Parcus explicitly models the traversal of data
from sensor to actuator through task instances, enabling to
consider the latency imposed by parallelization techniques. The
parallel schedule quality (PSQ) metric quantifies the success of the
parallelization, for which it takes the latency and the processor
frequency into account.

We demonstrate the applicability of Parcus with an automotive
case study. The results show that Parcus can fully utilize the
processor’s energy-saving potential.

I. INTRODUCTION

Multicore electronic control units (ECUs) have become
widely available for the automotive industry. They provide a
surplus of computational power while the energy consumption
is lower in comparison to a sophisticated single-core processor
with a complex pipeline structure. Additional idle time gained
from parallelization can be used for reducing the clock rate to
save power [1], which is of high interest for the automotive
industry. Nevertheless, there is a strong requirement for re-
using existing automotive control software for multicore ECUs.
This poses a challenge on the migration of legacy software to
exploit the performance benefits of multicore ECUs.

Automotive software is described according the AUTomotive
Open System ARchitecture (AUTOSAR) standard [2]. An
application is described by a hierarchical software-component
(SW-C) model, in which runnables (i.e. elementary code pieces)
inside SW-Cs implement the functions. Runnables with the
same release time (periodic or sporadic) are grouped into the
same task and scheduled by the OS. A high number of data
dependencies, resulting from the order in which runnables
process data (data-flow), is characteristic for automotive
software.

An application has an acceptable first-in-last-out (FILO)
latency [3], which is the maximum time between an input
value change and its last corresponding controller output, for
which the it is successfully validated and tested [4]. For

example the time between the push on a gas pedal and
the resulting injection. Guaranteeing the same latency after
parallelization is important for ensuring satisfaction of critical
reaction requirements. Hence, the migration of AUTOSAR
legacy software to a multicore ECU must extract parallelism
in the presence of many data dependencies and guarantee the
validated FILO latency of the original application configuration.

Preserving the original data-flow is one way to achieve this.
Different parallelization approaches of this kind are proposed;
for runnable-level (RunPar [5] or task splitting [6]) and for
task-level (timed implicit communication (TIC) [7]). The former
one statically allocates runnables of the same task to cores,
assigning them a logical execution time window [8] for the
execution. The latter one decouples the task’s communication
by logically transmitting data at the beginning and the end
of a task’s period; at the cost of an increased latency due to
buffering and distribution with a delay. These techniques enable
the parallelization of AUTOSAR legacy applications; reducing
the time for execution in a serial way. However, the impact of
parallelization on the latency and on the energy consumption
have not been studied so far.

This paper investigates how the combination of runnable-
and task-level parallelism can explore the aspired energy-saving
potential of multicores under strict latency constraints. The
contributions are as follows:
1) We propose the energy- and latency-aware parallelization

approach Parcus1. The traversal of data from sensor to
actuator through task instances is explicitly modelled to
consider the latency imposed by parallelization techniques.

2) We propose an evolutionary algorithm (EA) to explore
the large number of scheduling possibilities that uses the
parallel schedule quality (PSQ), a metric to quantify the
success of a parallelization, as fitness function to select the
best solution. This allows for handling the large solution
space and selecting the best schedule.

3) We evaluate Parcus in extensive simulation studies with a
real diesel engine management system (EMS), measure a
the Infineon AURIX TC277 [9] to get realistic data for the
energy-saving potential of voltage-frequency scaling, and
link the simulation results and with the measurements.

The remainder of this paper is organizes as follows. The next
section introduces the background to this work. Section III

1Latin: sparing, thrifty, economical, moderate.978-1-5090-5269-1/17/$31.00 c©2017 IEEE

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87659501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

first introduces related works and subsequently derives the
resulting research challenge addressed in this paper. Section IV
introduces Parcus and establishes the new metric PSQ, which
is used as fitness function of an EA presented in section V.
Section VI presents the evaluation and section VII finally
concludes the paper.

II. BACKGROUND

We define automotive control software as follows.

Definition II.1 (AUTOSAR application A): The AUTOSAR
application A consists of a set of n tasks: A = {τi | 1 ≤
i ≤ n, i ∈ N}. The real-time attributes (πi, Ti, Gi =
(Vi, Ei), Ci, Oi, Di) characterise each task τi ∈ A. πi is
the priority. Ti is the period. Gi is the runnable dependence
graph (RDG) of τi, i.e. a directed acyclic graph (DAG) that
represents the precedence constraints between runnables of
τi. Each node Vi represents a runnable. The edge (q, r) ∈ Ei
means q precedes r (q → r), with q, r ∈ Vi. A worst-case
execution time (WCET) estimate cr, expressed in time units,
further characterises each runnable r ∈ Vi. Ci is the task’s
WCET expressed in time units, i.e. the sum of runnable WCETs
of τi: Ci =

∑
r∈Vi

cr. Oi is the release time of the first
instance of the task, i.e. the offset with respect to the start
time of the system. Di ≤ Ti is the relative deadline of the
task; they are implicitly defined, i.e. Di = Ti. The release
time of τpi is opi = Oi + pTi. The absolute deadline of τpi is
dpi = opi +Di.

Definition II.1 also covers sporadic tasks, if they are considered
as periodic task with their maximal possible frequency. The
WCET in time units (Ci) depends on the clock rate of the
processor f . Therefore, the WCET of a τi ∈ A is converted
from processor cycles to time units depending on f . γr is the
WCET of runnable r ∈ Vi in processor cycles. The WCET
of τi ∈ A, in processor cycles, is denoted as Γi, i.e. the
sum: Γi =

∑
r∈Vi

γr. The WCET in time units for runnable
(cr) and task (Ci) scales with the processor’s clock rate f :
cr = γi/f and Ci = Γi/f. We call this frequency-scaled
WCET.

The clock rate has a direct impact on the schedulability of
an application, as a higher clock rate shortens the WCET in
time units. The relation is described by constraint II.1.

Constraint II.1 (Schedule Feasibility): Let A be an AUTO-
SAR application according to definition II.1 with frequency-
scaled WCET. Let the tuple S = (st0

1, st
1
1, . . . , st

n
i) be a

schedule that assigns start times to the task instances of A.
The finish time of a task instance is ftpi = stpi +Ci = stpi +γi/f .
Thus, the schedule is feasible under the clock rate f , iff

opi ≤ stpi < ftpi ≤ d
p
i ⇒ opi ≤ stpi < stpi +

γi
f
≤ dpi

A. Precedence Constraints

Precedence constraints between runnables of the same period
are expressed by a RDG. Inter-task communication is expressed
as repetitive pattern according to Forget et al. [10]. The extended
precedence constraints between two tasks τi and τj correspond

to a set of precedences between the instances of the tasks
(τi → τj).

Definition II.2 (Extended Precedence Constraint): For
any k ∈ N, let Ik = [0, k] and let lcm(a, b) be the least
common multiple of a and b. Let τni → τn

′

j denote a
precedence from instance n of τi to the instance n′ of τj . Let
pi,j = lcm(Ti, Tj). The extended precedence constraints are:

Mi,j = {(n, n′) | τni → τn
′

j , (n, n′) ∈ Ipi,j/Ti
× Ipi,j/Tj

}

The precedence relation between two tasks repeats every time
when both tasks are released simultaneously. The repetitive
pattern according to [10] is defined as follows.

Definition II.3 (Periodic Extended Precedence): The peri-
odic extended precedence M ′i,j are imposed by the extended
precedence constraints Mi,j such that:

M ′i,j =

{
(n, n′)

∣∣∣∣ ∃k ∈ N, (m,m′) ∈Mi,j ,
(n, n′) = (m,m′) + (k

pi,j
Ti
, k

pi,j
Tj

)

}
B. Data-flow and Latency Semantics

The main criterion for the robustness of automotive real-
time controllers is the latency between sensor and actuator. The
focus here is on the FILO latency [11], which is the worst-case
latency of the controller after a value change. A formal model
for end-to-end paths is introduced in [3]. In this model, a system
run r produces several timed paths (TPs) δ with timed events
(ki) and timestamps (ei): δ = 〈k1, e1〉, . . . , 〈k`, e`〉. A TP can
describe any chain of events. The subset TPFILO

r ⊆ TPr
contains all FILO paths in run r. The representation is adapted
for the purpose of this paper, as we focus on the covered path
through task instances from sensor to actuator only; not on
every single event. We only consider each path κ ∈ TPFILO

r

as a data-flow path through the task instances that κ traverses:

P̂i,j = τn0

l0
. . . τnk

lk
= τn0

i . . . τnk
j (1)

The ˆ (hat) indicates that P represents the longest possible
path; the FILO path. A superscript s denotes the path in a
sequential schedule and a superscript p denotes the path in a
parallel schedule. The FILO latency (FILOi,j) is calculated
from the start of the path in τn0

l0
= τn0

i , reading sensor input,
and the finish time of the last task in the path τnk

lk
= τnk

j ,
writing to the actuator:

FILOi,j = ftnk

lk
− stn0

l0
= ftnk

j − stn0
i (2)

For better illustration, fig. 1 shows an artificial single-core
schedule example and the longest possible sensor-/actuator path
(red arrow). Here, an input datum traverses the task instances
in a typical rate monotonic fashion; from the sensor, entering
the controller in τ0

1 , to actuator, leaving the controller in τ1
4 . In

the consequence, the input value is processed in τ1 and written
into a buffer register that is later read by τ2

2 etc. The FILO
path is taken, if a value change takes place just after the sensor
read-instruction in τ0

1 . Hence, τ1 does not process the changed
value. The resulting FILO path is P̂ s1,4 = τ0

1 τ
1
1 τ

2
1 τ

3
1 τ

4
1 τ

2
2 τ

1
4 .

The FILO latency in this example is FILOs
1,4 = ft1

3− st0
1 =

t [ms]

f [tick]

τ1
0 1 2 3 4 5 6 7

τ2
0 1 2 3

τ3
0 1

τ4
0 1

0 1 2 3 4 5 6 7 8

0 10 20 30 40

FILOs
1,4

P̂ s
1,4

core 0

Figure 1: The original system’s schedule Ss including the
critical sensor/actuator path P̂ s1,4 (red) and its FILOs

1,4 latency.

T3 + C1 + C1 + C3 + C4 = 5 ms. τ3 does not participate in
the computation, but it has a higher priority and thus increases
FILOs. Such a situation is likely to appear in automotive
software. The total traversal time in this example is 5 ms. This
reference latency must be guaranteed after the parallelization.
We define this constraint as follows.

Constraint II.2 (Robust Parallelization): Let FILOs
i,j be

the reference latency validated for the single-core ECU. Let
FILOp

i,j be the latency on the multicore ECU. The parallelized
application is said to be robust, iff FILOp

i,j ≤ FILOs
i,j .

III. RELATED WORKS AND PROBLEM ANALYSIS

This section describes approaches for automotive software
parallelization. They are discussed with respect to energy-
efficiency and robustness afterwards.

A. Automotive Software Parallelization

Several approaches for increasing parallelism of AUTOSAR
applications and maintaining the data-flow exist. They can be
divided in two groups.

a) Runnable-level parallelism: Under this approach, run-
nables of the same task are distributed to cores and the original
application configuration is kept. Graph decomposition [12]
distributes a task with different levels of granularity, but this
is not supported by AUTOSAR as tasks can only contain
runnables. A partitioned scheduler, like RunPar [5], distributes
runnables of the same task to cores. Therefore, RunPar
computes a static partitioning of the RDG Gi = (Vi, Ei)
of τi onto m identical cores: Φi = (ϕ1, . . . , ϕm) , where each
ϕk ∈ Φi, 1 ≤ k ≤ m, denotes a subset of runnables ϕp ⊆ Vi
that are mapped to core k. Thus, the WCET of the partitioned
task τi is defined as

CΦ
i = max

k=1,...,m

{∑
r∈ϕk

cr

}
. (3)

The approach guarantees the same data-flow, as in the original
application configuration for the single-core, and the validation

effort is drastically reduced. Large idle intervals due to a long
critical path can be filled by interleaving tasks [13].

b) Task-level parallelism: Under this approach tasks are
the unit of scheduling and they are distributed to available cores.
timed implicit communication (TIC) [7] can be used to increase
the level of parallelism through supplementing communication
among tasks by timestamps. The communication between
producer and consumer is decoupled by buffering; shifting
the reception of data by one producer period (compared to the
single-core schedule). The producer stores data in a buffer and
attaches a publication timestamp equal to the time of the end
of the current task period. Then, the consumer reads data with
the appropriate timestamp from the buffer. Thereby, producer
and consumer task can execute in parallel at an arbitrary point
within their period. Formally, the TIC transformation according
to [7] is defined as follows.

Definition III.1 (TIC Transformation): Let Mi,j be the
periodic extended precedence constraints (definition II.3)
of the single-core ECU. The periodic extended precedence
constraints MMCi,j of the multicore ECU are

MMCi,j =

{
(n∗, n′)

∣∣∣∣ ∃n : (n, n′) ∈Mi,j ∧
n∗ = max(n ∈ Ipi,j/Ti

|dni ≤ on
′

j)

}
Figure 2 illustrates the idea of TIC for τ1 → τ2 with T1 = 16
and T2 = 32. We consider a single-core schedule, with O4 =
O7 = 0, as reference. The arrows represent communication.
First, we consider τ1

(0,0)−−−→ τ2 (fig. 2a). They execute in a

τ01 τ11 τ21 τ31

τ02 τ12

0 16 32 48

16ms 16ms
FILOs

(a) Single-core ECU.

τ01 τ11 τ21 τ31 τ41 τ51

t [ms]
τ02 τ12 τ22

0 16 32 48 64 80

24ms 24ms
FILOp

(b) Multicore ECU.

Figure 2: Example for parallelization with TIC.

serial way, whereas τ1 executes first and produces input data
for τ2 that are consumed without delay. In contrast, using
TIC on the multicore (fig. 2b) results in τ1 publishing data
every 16 ms. The receiver τ1

2 reads data from the previous
producer instance τ1

1 ; τ1
2 , because τ2

1 publishes data after
τ1
2 is released. Nevertheless, τ1

2 and τ2
1 can execute in parallel.

The data flows M2,1 = {(0, 1), (0, 2)} for the multicore ECU
are defined accordingly.

B. Discussion

The original runnable-to-task mapping of an AUTOSAR
application establishes, in combination with the task scheduling,
a valid configuration, for which the application is tested and
validated. This configuration establishes: (a) a specific data-
flow, i.e. the order in which runnables process data between
sensor and actuator, and (b) an acceptable upper bound on the
response time on a stimulus, which is equal to the end-to-end

FILO latency. The approaches described above are designed
to maintain the data-flow.

On the one side, runnable-level parallelization reduces a
task’s WCET, but it does not necessarily reduce its response
time. The reason is, the task activation and scheduling are
identical to the execution on the single-core. However, the
overall processing time is reduced, because tasks execute
faster. This additional computational time can be used for
other functionalities or for a reduction of the clock rate.

On the other side, task-level parallelization reduces the
response time of tasks, as they can potentially start earlier, at
the cost of increasing the latency between two communicating
task instances, as fig. 2b illustrated. Generally, the latency for
a path using TIC is at least the sum of task periods composing
it. It is important to remark that the actual value depends on
the finish time of the last task in the path.

Runnable- and task-level parallelism are complementary
strategies according to [13]. Unfortunately, none of the ap-
proaches considers the impact of parallelization on the latency.
The challenge in coordinating runnable- and task-level paral-
lelization is to optimize contradictory targets. Parallelization
adds additional idle times that can be used for reducing the
clock rate, but this is limited by a (typically) high number of
data dependencies among tasks. Yet, TIC enables elimination
of those dependencies at the cost of increasing the latency.

Consequently, the next section proposes a mechanism for
combining both runnable- and task-level parallelization. This
mechanism must maintain the robustness and provide a high
energy-saving at the same time.

IV. PARCUS

This section establishes a method for minimizing the energy
consumption of parallelized AUTOSAR applications on a
multicore ECUs, while ensuring robust parallelization. Parcus
operates on an AUTOSAR application A (definition II.1)
with frequency-scaled WCET. A feasible parallel schedule
Sp = (st01, st

1
1, . . . , st

n
i) (constraint II.1) is computed that

assigns start times to the task instances of A. Basically, any
scheduling can be used to derive Sp. Section VI describes a
scheduling heuristic based on an EA used for the evaluation
in this paper.

Parcus optimizes the given schedule Sp in three steps. (1)
Task-fitting: the lowest possible clock rate is derived; this
fills idle intervals in the schedule. (2) Latency-fitting: the task
periods and the clock rate are adjusted to equal the FILO
latency of Sp to the validated reference of the single-core. (3)
Finally, the parallel schedule quality (PSQ) metric is computed
to assess the parallelization success and enable comparison
with other schedules.

To motivate the optimization of the schedule, we look at the
effect of task-level parallelization (cf. definition III.1) on the
single-core scheduling example from fig. 1. Figure 3 shows
a possible parallel schedule Sp for the same application. In
the figure, all inter-task communication on the FILO path is
replaced by TIC and the clock rate is set to the value of the
single-core schedule Ss. We consider a situation, in which a

value change took place just after the sensor read instruction in
τ1. TIC buffers data until publication at the end of the producer

t [ms]

f [tick]

τ1
0 1 2 3 4 5 6 7 8 9 10 11

τ2
0 1 2 3 4 5

τ3
0 1

τ4
0 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12

0 10 20 30 40 50 60

FILOp
1,4

idle

P̂p
1,4

core 0

core 1

core 2

Figure 3: Parallel schedule with FILO path P̂ p1,4 and FILO
latency FILOp

1,4; running with f =5 kHz.

task’s period. Hence, data are not immediately processed by
subsequent execution of the receiver task. Thus, the resulting
FILO path is

P̂ p1,4 = τ1
1 τ

2
1 τ

3
1 τ

2
2 τ

3
2 τ

2
4 (4)

and the latency FILOp
1,4 (7.6 ms) is larger than the latency

FILOs
1,4 (5 ms) of Ss in fig. 1. The positive side effect from

parallelization is a potentially larger idle interval after a task
has finished execution, see τ0

2 in fig. 3 for example. These
additional idle intervals allow for the aspired reduction of the
clock rate to save energy.

A. Task-Fitting: Adjustment for Energy-saving

During task-fitting, an intermediate result f ′pmin for the
frequency is derived, which is thus marked with ′ (prime).
Therefore, the clock rate fn

i
is derived, which is the frequency

to the task instance τpi before its deadline dpi . The underline is
used to distinguish the frequency for each task instance from
the frequency of the application overall. The final frequency
for the parallel schedule is computed after determining the
latency impact in the next step.

The clock rate f ′pmin is computed in three steps as follows.
1) Sp is initially derived for f ′pmin = 1. That means the

WCET of a task in time units is equal to the WCET in
processor cycles: Ci = γi.

2) fn
i

for τpi is derived from: ftpi ≤ d
p
i ⇒ fni ≥ γi/dpi−st

p
i .

3) Consequently, the minimal clock rate needed to guarantee
all deadlines is f ′pmin = max(fn

i
).

Knowing f ′pmin makes it possible to exactly calculate the
latency of the FILO path P̂i,j , because this specifies the
concrete finish time of a task instance (constraint II.1). This
is done analogous to [3, 11], whereas the transformation
with TIC is respected. That means produced data elements
are not available for the receiver task before the end of the
producer period, if TIC is used. The frequency impact reflects

the improvement by a reduction of the clock rate by parallel
execution and is defined as follows.

Definition IV.1 (Frequency Impact): Let fsmin and f ′pmin rep-
resent the minimal clock rate of the sequential schedule Ss
and the parallel schedule Sp for the AUTOSAR application
A, respectively. The frequency impact between the schedules
Ss and Sp is

Fs,p =
fsmin

f ′pmin

(5)

The clock rate for the parallel schedule is potentially smaller
than the one for the sequential schedule, because parallelization
allows more tasks (or runnables) to execute in a parallel way.
Thus, this fraction indirectly reflects the degree of parallelism,
similar to the well-known speed-up.

Figure 4 shows the schedule from fig. 3 after task fitting,
with a reduced clock rate f ′pmin = 1 kHz (previously 5 kHz).
Here, TIC makes it possible to execute τ1, τ2, and τ4 in a
parallel way. The clock rate is reduced until all task deadlines
are just met. Here, τn1 and τn3 limit the reduction, i.e. smaller
frequencies would result in deadline violations of both tasks.

t [ms]

f [tick]

τ1

τ2

τ3

τ4

0 1 2 3 4 5 6 7 8 9 10 11 12

0 5 10

FILOp
1,4

P̂p
1,4

core 0

core 1

core 2

Figure 4: Multicore schedule with a reduced clock rate (f ′pmin =
1kHz).

B. Latency-Fitting: Adjustment for Robustness

The target of latency-fitting is satisfaction of constraint II.2.
Lowering the clock rate (fig. 4) increases the finish time of
τ2
4 , which in turn enlarges FILOp

1,4 from 7.6 ms to 10.0 ms.
A straightforward way to bound the latency is limiting the
usage of TIC, by selecting an appropriate subset of inter-
task communication that tolerates a delay. This serialises the
execution of both tasks, although they are executed on different
cores. The resulting idle intervals can be utilized by applying
runnable-level parallelism.

Limiting the usage of TIC is a necessary step, but it is not
sufficient to reduce the latency down to the reference value.
For example, introducing a precedence constraint between τ1
and τ2 would reduce the latency at least by T1 (1 ms). Thus,
the idea is to also adjust the task period. Our assumption
is that, the period is a changeable design parameter initially

based on the legacy application’s configuration. Therefore, the
negative impact on the critical FILO path, when TIC is used,
is quantified by the latency impact.

Definition IV.2 (Latency Impact): For the AUTOSAR applic-
ation A, let FILOs

i,j represent the latency of the sequential
schedule Ss and let FILOp

i,j represent the latency of the
parallel schedule Sp after task-fitting. The latency impact is

Ls,p =
FILOs

i,j

FILOp
i,j

. (6)

For example, the latency impact for the parallel schedule in
fig. 4 in comparison with an assumed baseline latency of 5 ms
is L = FILOs

i,j/FILOp
i,j = 5 ms/10 ms = 1/2.

Scaling the original task periods with the factor Ls,p and
the previously computed clock rate f ′pmin with the factor 1/Ls,p

guarantees the same FILO latency as in the reference platform.

Definition IV.3 (Adjustment for Robustness): Let Ls,p be
the latency impact for a parallel schedule Sp for the
AUTOSAR application A. Let f ′pmin be the clock rate for Sp
after task-fitting. Let T ′i is the period of τi after task-fitting.
The application is adjusted as follows:

fpmin = f ′pmin ·
1

Ls,p
and ∀τi ∈ A : T ′i = Ti · Ls,p

Such a transformation is valid, because all tasks are scaled with
the same constant factor. Scaling the clock rate is necessary
to finish all tasks before their deadlines. The resulting parallel
schedule with adjusted task periods and frequency is shown in
fig. 5.

t [ms]

f [tick]

τ1

τ2

τ3

τ4

0 1 2 3 4 5 6 7 8

0 10

FILOp
1,4

P̂p
1,4

core 0

core 1

core 2

Figure 5: Schedule of fig. 4 adjusted for robustness.

C. Parallel Schedule Quality (PSQ)

Numerous parallel schedules are possible. Selecting a
schedule from a set of possible solutions requires a measure that
quantifies when one solution is superior to another. Therefore,
the parallel schedule quality (PSQ) is introduced in this section,
which quantifies the quality of a parallel schedule Sp in
comparison to the former sequential execution of the same
application with the schedule Ss.

The first relevant quality criterion for a parallel schedule
is the required clock rate, because the parallelization makes
it possible to reduce the clock rate. The second criterion is
the latency, which increases by task-level parallelization with
TIC. Both are derived for a given schedule and considered as
criteria. Quantifying whether the task-fitting and the adjustment
for robustness result in an overall benefit for the parallelization
is reflected by the PSQ.

Definition IV.4 (Parallel Schedule Quality): Let Fs,p be
the frequency impact and let Ls,p be the latency impact
of the parallel schedule Sp over the sequential schedule Ss
for the application A. The parallel schedule quality (PSQ) is
defined as

PSQs,p = Fs,p · Ls,p =
fsmin

f ′pmin

·
FILOs

i,j

FILO′pi,j
. (7)

Increasing the number of TIC communications in the parallel
application changes the fractions Fs,p and Ls,p in opposite
directions. The fraction Fs,p (definition IV.1) increases, because
more tasks can execute in a parallel way and this can result in a
reduction of fpmin. Contrarily, the fraction Ls,p (definition IV.2)
decreases, because the latency FILOp

i,j is increased. This
criterion means to counterbalance the negative impact of the
increased latency with the benefits of parallel execution. This is
done by applying TIC to communication that affects the latency
fewest and provides the best performance gain. Values larger
than 1 represent schedules that benefit from the parallelization.

Applying the metric to the schedules in figs. 3 and 4 gives
a PSQ of 0.66 and 2.5, respectively. Hence, the schedule with
the reduced clock rate (fig. 4) is the superior schedule, when
robustness is considered. However, the energy consumption of
the former one is potentially lower due to the smaller clock
rate. The next section describes how the PSQ can be used to
explore the large set of possible schedule solutions.

V. PARALLEL SCHEDULE GENERATION

Determining an optimal schedule is computational expensive,
because many possible alternatives must be considered. Hence,
meta-heuristics, such as simulated annealing [14, 15] or EAs
[16] are popular as they scale well. Generally, the PSQ can
be used as decision criterion in any heuristic. We decided to
implement Parcus based on an EA for solving the resource-
constrained project scheduling problem (RCPSP) [17], because
it is one of the best performing methods [18] and the
RCPSP is similar to static scheduling of AUTOSAR tasks
for a hyperperiod. Moreover, we decided to use RunPar as
representative method for runnable-level parallelism and TIC
as representative for task-level parallelism, because there is a
deep understanding of both methods. In addition, TIC has an
impact on the latency, which Parcus will try to compensate.

Adapting an EA to use the PSQ as fitness criterion for a
schedule is straightforward. The basic scheme [19] is:
1.) Generate initial population P
2.) Compute fitness for all individuals I ∈ P
3.) For G = 1 . . . N or a time limit:

1.) Produce a set of children C by crossover of P
2.) Apply mutation to C
3.) Compute fitness for C
4.) P = P ∪ C
5.) Reduce size of P by selection

The meta-heuristic M(J ,Kρ, Rρk,P, rJ,k, pJ) generates a
feasible hyperperiod schedule Sp for a job list J , precedence
relations P , on the limited renewable resources Kρ with per-
period availability Rρk, job resource request rJ,k, and job
processing time pJ . That means Sp defines start times of
tasks on a real-time axis in a way that each task instance τni is
not scheduled before its release time oni and it finishes before
its relative deadline dni .

The job list J is composed of all task instances that appear
in one hyperperiod of the AUTOSAR application A. The
predecessors of PJ of the job J represent the periodic extended
precedence constraints between the task instances. The target
is an ECU with one processor with multiple cores that means
Kρ = {1} and R1

1 = procnum(). The request of job J for
processor capacity is equal to the WCET of the corresponding
task in processor cycles that means pi = γi for J = τni .

The EA does not directly work on the solution of the
scheduling. Instead, an individual I = (λ, SGS, µ, w, δ, u)
encodes a unique schedule solution. The schedule generation
scheme (SGS) [20] transforms the activity list λ = (j1, . . . , jJ)
into a feasible schedule Sp = (s1, . . . , sJ), which assigns a
start time sj to each activity j ∈ J .

The SGS starts from zero and builds a feasible schedule
by stepwise extension of a partial schedule. In the partial
schedule, only a subset of the activities have been scheduled.
A distinction is made between activity- and time-incrementation.
Two different SGSs are used. The serial SGS performs activity-
incrementation, i.e. jobs are scheduled in the order as defined by
the activity list. Each activity is assigned the earliest precedence
and resource feasible start time possible. The parallel SGS
performs time-incrementation, i.e. it computes a decision point
at which an activity, to be scheduled, is started. At this point,
a set of eligible activities is determined and successively
scheduled until none is left. This process repeats until all
activities are scheduled. Interested readers may consult [20]
for further details.

The SGS does not refer to runnable- or task-level parallelism
of activities. It specifies the way how task instances (activities)
in the given task set J are scheduled and not whether the
task itself is parallelized. The combination of activity list and
SGS always produces the same schedule. Thus, shuffling the
activity list produces another schedule. The representation of
an individual has been extended by µ,w, δ, and u to express
properties of parallelism.

The communication list µ = ((τi, τj), . . .) represents
communication that is replaced by TIC and the task list
δ = {τ1, · · · , τJ} represents tasks that are parallelized with
RunPar. A tuple (τi, τj) ∈ µ represents periodic extended
precedence constraints between τi and τj . The order within
these lists decides whether task- or runnable-level parallelism

is used. This is carried out in the following way. The parameter
w represents the number of inter-task dependencies in µ that
use TIC, starting from the left of the list. The parameter u
represents the tasks in δ that are parallelized with RunPar,
also starting from the left of the list. As a consequence, a
task is performed in one out of two modes: serial or parallel.
Executing a task in the serial mode means one core is allocated
for the execution (ri,1 = 1). Contrarily, executing a task in the
parallel mode results in the allocation of all cores (ri,1 = R1

1),
but with a shorter WCET (as defined by RunPar). µ and δ are
instantiated with a random order during initialization of the
population.

The EA uses a two-point crossover and mutation randomly
changes the activity list or SGS. The crossover of two
individuals takes place analogous to [17]. The communication
and the task list are also merged with a two-point crossover.
Afterwards, both lists are traversed from left to right and an
element is shifted to the right with a probability pmutation = 0.05,
also recommended by [17].

Each iteration follows the basic scheme of an EA. The last
step in each iteration is the selection of the fittest individuals
for reuse in the next iteration. The PSQ (definition IV.4) is
used as fitness function for an individual whose value must
be maximized. Therefore, fpmin and FILOp

i,j are calculated
for every schedule in the population. Finally, the individuals
(schedules) are ranked by their fitness and the ones with the
highest value are selected for survival of the iteration.

In preliminary experiments, we found a population size of
100 individuals and six iterations are enough to find good
schedule solutions. The computation time for a large schedule
(5285 jobs) is approx. 200 s on average for one iteration. A
mechanism known as clone detection is used to avoid redundant
calculations.

VI. EVALUATION

First, we investigate Parcus’ potential for decreasing the
processor’s clock rate. Therefore, an automotive case study is
used. Subsequently, we investigate how the observed clock rate
reduction translates in energy-saving on a real processor.

A. Case Study

Parcus is not meant to be used for safety-critical software,
e.g. an anti-lock braking system. Hence, we selected a diesel
EMS as use case, composed of more than one thousand
runnables distributed among ten periodic tasks: τ1, τ4, τ5,
τ8, τ16, τ20, τ32, τ64, τ96, τ128 (index equals period) with
frequent communication in between. The crank-angle task
communicates asynchronously with periodic tasks and it is, thus,
not considered here. We apply task-level parallelization (TIC)
stepwise and observe the variation of the gas pedal/injection
latency (Ls,p) between τ16 (gas pedal sensor acquire) and
τ32 (injection quantity and timing calculation): FILOs

16,32.
Furthermore, we observe the variation of the latency in the
longest inter-task data-flow chain in a hyperperiod as a unique
end-to-end latency, in order to evaluate Parcus with a long

chain. Therefore, we identified the longest chain in the EMS
(FILOs

1,128) that ranges from τ1 to τ128:

P̂1,128 = τn0
1 τn1

4 τn2
5 τn3

8 τn4
16 τ

n5
32 τ

n6
64 τ

n7
128. (8)

Thus, the latency impact Ls,p (definition IV.2) depends on the
impact per path, i.e.

Ls,p = max(FILOs
16,32/FILOp

16,32, FILOs
1,128/FILOp

1,128). (9)

The static timing analysis tool set OTAWA [21] is used to
estimate the WCET of tasks. The approach presented in this
paper is independent of the timing analysis method applied.
Any other tool can be used to compute the WCET estimates
of tasks.

B. Minimal Possible Processor Frequency

The processor frequency can be reduced proportionally with
the supply voltage. That means the clock rate gives a first
indication about the energy-saving potential.

1) Experiment Configuration: We consider a time-
predictable quad-core processor [22] as the target platform,
upon which the EMS is scheduled. Each core has a private
instruction scratchpad, a data cache (256 KB), and is connected
to an on-chip SDRAM memory device through a network-
on-chip (NoC), featuring a wormhole-based tree topology
implementing three simple pipelined 2-to-1 routers. The
maximum access latency to the NoC and the memory device,
which are the main sources of interferences, is pre-computed.
Such a processor is comparable to the AURIX.

The EA explores different combinations of runnable- and
task-level parallelism and the schedule with highest PSQ
is selected. The number of freely selectable RunPar tasks
(runnable-level) is set to 0, 6, and 10. That means none, 6 or
10 tasks are allowed to distribute runnables to all available
cores. The resulting graphs are labelled as f0

min, f6
min, and f10

min,
respectively. For each f imin, the number of TIC communications
(task-level) increases over the x-axis, from left to right. That
means complete tasks can run in parallel, in addition to other
tasks that distribute runnables over all cores.

We conduct two experiments. An experiment A, we observe
f0

min, f6
min, and f10

min when task- and latency-fitting are applied,
i.e. the parallel program is efficient and robust. That means the
clock rate and task periods are adjusted according to section IV.
In experiment B, we observe f0

min, f6
min, and f10

min when only
task-fitting is applied, i.e. the parallel program is optimized
for efficiency. We observe in both experiments the processor
frequency relative to execution in a serial way (100 %), on one
core using a non-preemptive scheduler.

2) Results of Experiment A (fpmin with Task- & Latency-
Fitting): Figure 6 shows the minimal clock rate needed to
guarantee all deadlines of the schedule relative to the frequency
needed for execution in a serial way. The plot shows the
result of the schedule with the highest PSQ for the given
combination of runnable- and task-level parallelism. The sole
use of runnable-level parallelism (f10

min) means no task can
execute in parallel. Instead, all tasks are executed in a sequential
order but with a shorter WCET due to parallel execution of

0.0

25.0

50.0

75.0

100.0

0 6 12 18 24 29 35 41 47 53 65 71 76 88 94 100

R
e
la

ti
v
e
 p

ro
c
e
s
s
o
r

fr
e
q
u
e
n
c
y
 [
%

]

Amount of inter-task communication with TIC [%]

f
0
min f

6
min f

10
min

Figure 6: Results of experiment A. The minimal clock rate
needed to guarantee all deadlines after adjustment for robust-
ness by task- and latency-fitting.

runnables. Combining this with task-level parallelism leads
to a higher latency, because communication between tasks
is buffered. As a consequence, the frequency needs to be
increased as the amount of TIC communication grows. Such
combinations do not make sense in practice, but they clearly
illustrate the impact of TIC on the latency. Interestingly, the EA
does find schedules that do not affect the latency (between 0 %
to 12 %), if some inter-task communication is on the critical
path. The maximum possible frequency reduction of f10

min is
58.5 %.

Contrarily, only using task-level parallelism (f0
min) requires

a large amount of connections to be replaced (at 53 %) in order
to have the same processor frequency as with runnable-level
parallelism (f10

min). Further, increasing the amount of task-level
parallelism even reduces the frequency down to 54 % (grey
area from 65 % to 76 %). Larger values again increase the
frequency due to the adjustment for robustness. The maximum
possible frequency reduction of f0

min is 73 %.
Combining runnable- and task-level parallelism (f6

min) leads
to the envisioned improvement over the individual approach,
when the amount of inter-task communication is between 6 %
and 35 % (grey area on the left). However, the maximum
possible frequency reduction of f6

min is 69 %. Thus, Parcus
enables a reduction of the processor frequency, even if strict
latency constraints are considered. The largest frequency
reduction under strict constraints is 73 % (with f0

min).
3) Results of Experiment B (fpmin with Task-Fitting Only):

Figure 7 shows again the minimal clock rate needed to
guarantee all deadlines of the schedule relative to the frequency
needed for execution in a serial way, but this time only task-
fitting is applied. In contrast to experiment A, the frequency of
solely using runnable-level parallelism (f10

min) does not change
as the amount of task-level parallelism increases, because
latency-fitting is not applied. The latency increases, but there
is no compensation. Hence, all values for the frequency are
equal and maximum frequency reduction with f10

min of 58.5 %
is possible.

Again, the combination of both methods (f6
min) outperforms

the individual approaches in the range from 6 % to 47 %
(grey area on the left). This area is larger than in experiment
A, because no adjustment is made. The maximum possible
frequency reduction of f6

min is 81.5 % and is shown outside

0.0

25.0

50.0

75.0

100.0

0 6 12 18 24 29 35 41 47 53 65 71 76 88 94 100

R
e
la

ti
v
e
 p

ro
c
e
s
s
o
r

fr
e
q
u
e
n
c
y
 [
%

]

Amount of inter-task communication with TIC [%]

f
0
min f

6
min f

10
min

Figure 7: Results of experiment A. The minimal clock rate
needed to guarantee all deadlines after task-fitting.

this region when the amount of task-level parallelism is 88 %
or 94 %.

The overall best results are achieved, when only task-level
parallelism is used. The needed processor frequency goes
down to 17.5 % compared to the processor frequency of task
execution in a serial. This is illustrated by the grey area on the
right side, where the amount of task-level parallelism ranges
from 65 % to 100 %. Hence, the maximum possible frequency
reduction of f0

min is 82.5 %. Such a parallelization would only
be acceptable, if the application tolerates the latency increment.

On the one hand, these results promise possible energy-
savings, because the supply voltage can be scaled down
proportional to the frequency. The maximum possible frequency
reduction under strict latency constraints is 73 % and increases
to 82.5 %, when latency constraints are relaxed. The large
reduction results from a pessimistic baseline system with
non-preemptive scheduling. Nevertheless, this gives a useful
hint about the potential for reducing the frequency. As a
result, one would expect a likewise large energy-saving on
a target processor, but modern manufacturing techniques shrink
the margin for energy-saving from voltage-frequency scaling.
Hence, we investigate the available energy-saving margin of a
real processor in the next section.

C. Energy-saving on the Infineon AURIX

The energy-saving depends on the processor architecture.
To this end, we consider the Infineon AURIX [9] with three
cores; a typical representative for an automotive embedded
multicore processor. This microcontroller is fabricated in a
65 nm technology. Its core logic is qualified for an operating
voltage of 1.3 V and the maximum clock rate is 200 MHz.

1) Experiment Configuration: The AURIX microcontroller
runs the same EMS application during all measurements, which
is parallelized to run on its three cores. The test application
is parallelized with the runnable-level approach RunPar. The
AUTOSAR stack Elektrobit tresos AutoCore Generic [23]
runs the application. Additionally, one of the cores runs an
Ethernet stack, which is used to exchange data with a host PC.
The data exchange is carried out to monitor the behaviour of
the application, e.g. to check if all parameters are calculated
correctly. Moreover, we set the voltage for the core logic (using
the microcontroller embedded voltage regulator) and display
the core voltage, which is measured by an internal ADC.

In experiment C, we measure the lowest supply voltage
at a predefined frequency, for which the core logic is still
operational. Therefore, the voltage is lowered until the mi-
croprocessor does not operate in a normal manner any more.
Only the internal flash and SRAM are used as memories.
The bus/NoC frequencies are scaled according to the core
frequencies. Hence, the full system scales linearly.

Criteria for normal operation are correct results and a
working connection to the PC via Ethernet. The microcontroller
runs for several seconds on each voltage level. In cases of an
insufficient voltage setting, the microcontroller stops working
at once. Thus, stable operation can be assumed after several
seconds of operation. We are well aware that the microprocessor
is operated out of its specification and hence the failure rate is
higher under these conditions. For all frequencies, the same
relative safety margin of 30 % for the voltage is used; as
observed at 200 MHz. The lowest observed working voltages
here is 1.0 V, whereas the specification demands 1.3 V.

In the subsequent experiments D and E, we are interested in
energy-saving potential with Parcus on the AURIX. Therefore,
the measured operating points of experiment C are interpolated
over the full operational range of the processor. The resulting
energy-saving for the processor frequencies got in experiments
A and B are computed.

2) Results of Experiment C (Measurement of lowest working
core voltage): The measured lowest working voltages are listed
in column 2 of table I, for the frequency listed in column 1. The
resulting supply voltage with safety margin is listed in column
3. We assume these values for further experiments. Column 4
lists the energy per operation relative to the 1.3 V operating
point. The energy per operation is proportional to the square
of the supply voltage. The results in table I show that lowering

Table I: Measured lowest working core voltage depending on
frequency.

Frequency Voltage Voltage + margin Relative energy

200 MHz 1.00 V 1.30 V 1.00

175 MHz 0.96 V 1.25 V 0.92

150 MHz 0.93 V 1.21 V 0.86

120 MHz 0.88 V 1.12 V 0.77

100 MHz 0.86 V 1.12 V 0.74

75 MHz 0.86 V 1.12 V 0.74

50 MHz 0.86 V 1.12 V 0.74

the frequency from 200 MHz to 100 MHz allows reducing the
supply voltage for the core logic by about 14 %. This reduction
of the supply voltage leads to 26 % less energy per operation.
However, further reducing the frequency, i.e. below 100 MHz,
does not give any additional headroom to further lower the
core logic supply voltage and the energy per operation. Hence,
the potential of energy-saving by voltage-frequency scaling is
limited for this microcontroller to 26 %.

3) Results of Experiment D (Energy-saving with Task- &
Latency-Fitting): Figure 8 shows the cubic Hermite spline

interpolation [24] of the voltage-frequency scaling of the
AURIX based on the measurements conducted in experiment
C, listed in table I. This curve is used to determine the energy-

R
e

la
ti
v
e

 e
n

e
rg

y
 p

e
r

o
p

e
ra

ti
o

n
 [

%
]

Processor frequency [MHz]

100

95

90

85

80

75

70
200150100500

AURIX samples

Interpolation

Figure 8: Interpolation of the relative energy consumption per
instruction on the Infineon AURIX.

saving on a real platform. At this point, we are interested
in the slope when one parallelization method results in a
frequency reduction. Therefore, the values of f0

min, f6
min, and

f10
min from fig. 6 are used to compute the relative energy per

instruction. Figure 9 shows the resulting curves that are named
P0, P6, and P10, respectively. Based on the results in fig. 6,

60.0

70.0

80.0

90.0

100.0

0 6 12 18 24 29 35 41 47 53 65 71 76 88 94 100

R
e
la

ti
v
e
 e

n
e
rg

y
 p

e
r

In
s
tr

u
c
ti
o
n
 [
%

]

Amount of inter-task communication with TIC [%]

P0 P6 P10

Figure 9: Relative energy consumption per instruction after
adjustment for robustness by task- and latency-fitting.

one would expect that differences of the frequency reduction,
between different combinations, manifest in an equally sized
difference in the energy-saving. Contrarily, the differences are
much smaller and the energy-saving is equal when 18 % to
41 % of the inter-task communication is replaced by TIC (grey
area). In this area, all combinations of runnable- and task-level
parallelism fully utilize the available energy-saving margin
of the AURIX. Replacing more inter-task communication by
TIC (i.e. introduce more task-level parallelism) shrinks the
energy-saving only in the case of P10, because the adjustment
for robustness increases the latency. In contras, only relying in
task-level parallelism (P0) only provides minor energy-saving
potential when applied rarely, because most of the tasks need
to be executed in sequential order.

4) Results of Experiment E (Energy-saving with Task-Fitting
Only): Therefore experiment, the values of f0

min, f6
min, and

f10
min from fig. 7 are used to compute the relative energy per

instruction. Figure 10 shows the resulting curves that are again
named P0, P6, and P10, respectively. One can see that the

60.0

70.0

80.0

90.0

100.0

0 6 12 18 24 29 35 41 47 53 65 71 76 88 94 100

R
e
la

ti
v
e
 e

n
e
rg

y
 p

e
r

In
s
tr

u
c
ti
o
n
 [
%

]

Amount of inter-task communication with TIC [%]

P0 P6 P10

Figure 10: Relative energy consumption per instruction after
task-fitting.

full energy-saving potential is exploited by all runnable- and
task-level combinations, when at least 18 % of the inter-task
communication uses TIC. Larger energy-saving, as one might
expect from fig. 7, are not possible here. Additional measures
must be taken to further reduce the energy consumption.

VII. CONCLUSION

This paper presented an energy- and latency-aware parallel-
ization technique named Parcus that combines both runnable-
and task-level parallelism. Parcus explicitly models the traversal
of data from sensor to actuator through task instances, enabling
to consider the latency imposed by parallelization techniques.
This makes it possible to determine the latency and adjust
the system to guarantee the worst-case. The success of the
parallelization is quantified by the PSQ metric, which takes
the latency and the processor frequency into account.

We demonstrated the applicability of Parcus with an automot-
ive case study. Under ideal conditions, the processor frequency
can be reduced by 73 % guaranteeing strict latency constraints.
Furthermore, we measured the voltage-frequency curve of the
Infineon AURIX multicore processor and found a maximal
possible reduction of 26 % from voltage-scaling. When linked
to the measured curve, we could observe that Parcus can fully
utilize the processor’s energy-saving potential.

Another crucial factor for parallelization is the mapping of
labels to memory regions. Thus, our future work focuses on
the memory mapping.

ACKNOWLEDGMENTS

This research received funding from the EU FP7 no. 287519
(parMERASA), the ARTEMIS-JU no. 621429 (EMC2), and the
German Federal Ministry of Education and Research.

REFERENCES
[1] Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe et al.,

‘Parallelizing Compiler Framework and API for Power Reduc-
tion and Software Productivity of Real-time Heterogeneous
Multicores’, in Languages and Compilers for Parallel Com-
puting, Springer, 2011.

[2] AUTOSAR GbR, ‘AUTomotive Open System ARchitecture
(AUTOSAR)’, Standard v4.1, 2014.

[3] AC Rajeev, Swarup Mohalik, Manoj G Dixit et al., ‘Schedulab-
ility and End-to-end Latency in Distributed ECU Networks:
Formal Modeling and Precise Estimation’, in 10th ACM
SIGBED EMSOFT, ACM, 2010.

[4] Marco Di Natale, Wei Zheng, Claudio Pinello et al., ‘Optim-
izing End-to-end Latencies by Adaptation of the Activation
Events in Distributed Automotive Systems’, in 13th IEEE
RTAS, IEEE, 2007.

[5] Miloš Panić, Sebastian Kehr, Eduardo Quiñones et al., ‘Run-
Par: An Allocation Algorithm for Automotive Applications
Exploiting Runnable Parallelism in Multicores’, in Proc.
IEEE/ACM/IFIP CODES+ISSS, New York: ACM Press, 2014.

[6] Martin Lowinski, Dirk Ziegenbein and Sabine Glesner, ‘Split-
ting Tasks for Migrating Real-time Automotive Applications
to Multi-core ECUs’, in Proc. IEEE SIES, 2016.

[7] Sebastian Kehr, Eduardo Quiñones, Bert Boeddeker et al.,
‘Parallel Execution of AUTOSAR Legacy Applications on
Multicore ECUs with Timed Implicit Communication’, in
52nd ACM/EDAC/IEEE DAC, 2015.

[8] Julien Hennig, Hermann von Hasseln, Hassan Mohammad et
al., ‘Towards Parallelizing Legacy Embedded Control Software
Using the LET Programming Paradigm’, in 2016 IEEE RTAS,
2016.

[9] Infineon, AURIX - TC27x B-Step, 32-bit Single-Chip Micro-
controller, User’s Manual, v14.1.

[10] Julien Forget, Frédéric Boniol, Emmanuel Grolleau et al.,
‘Scheduling Dependent Periodic Tasks Without Synchroniza-
tion Mechanisms’, in Proc. 16th IEEE RTAS, IEEE, 2010.

[11] Nico Feiertag, Kai Richter, Johan Nordlander et al., ‘A Com-
positional Framework for End-to-End Path Delay Calculation
of Automotive Systems Under Different Path Semantics’, in
CRTS Workshop, 2008.

[12] Daniel Cordes, Peter Marwedel and Arindam Mallik, ‘Auto-
matic Parallelization of Embedded Software Using Hierarchical
Task Graphs and Integer Linear Programming’, in Proc.
IEEE/ACM/IFIP CODES+ISSS, New York: ACM Press, 2010.

[13] Sebastian Kehr, Miloš Panić, Eduardo Quiñones et al., ‘Super-
task: Maximizing Runnable-level Parallelism in AUTOSAR
Applications’, in DATE, IEEE, 2016.

[14] Marco Di Natale and John A Stankovic, ‘Applicability of
Simulated Annealing Methods to Real-time Scheduling and
Jitter Control’, in Proc. 16th IEEE RTSS, IEEE, 1995.

[15] H.R. Faragardi, B. Lisper, K. Sandstrom et al., ‘An Efficient
Scheduling of AUTOSAR Runnables to Minimize Communic-
ation Cost in Multi-core Systems’, in IST, 2014.

[16] Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha et al.,
‘An Optimization Approach for the Synthesis of AUTOSAR
Architectures’, in ETFA, IEEE, 2013.

[17] Sönke Hartmann, ‘A Self-adapting Genetic Algorithm for Pro-
ject Scheduling Under Resource Constraints’, Naval Research
Logistics (NRL), vol. 49, no. 5, 2002.

[18] Rainer Kolisch and Sönke Hartmann, ‘Experimental Investiga-
tion of Heuristics for Resource-constrained Project Scheduling:
an Update’, EJOR, vol. 174, no. 1, 2006.

[19] John Henry Holland, Adaptation in Natural and Artificial
Systems. The University of Michigan Press, 1975.

[20] Rainer Kolisch and Sönke Hartmann, ‘Heuristic algorithms
for the resource-constrained project scheduling problem: Clas-
sification and computational analysis’, in Project Scheduling:
Recent Models, Algorithms and Applications, Jan Węglarz, Ed.
Boston, MA: Springer US, 1999.

[21] Haluk Ozaktas, Christine Rochange and Pascal Sainrat, ‘Auto-
matic WCET Analysis of Real-Time Parallel Applications’, in
WCET, 2013.

[22] Theo Ungerer, Christian Bradatsch, M Gerdes et al., ‘parMER-
ASA – Multi-core Execution of Parallelised Hard Real-Time
Applications Supporting Analysability’, in Euromicro DSD,
2013.

[23] Elektrobit Automotive GmbH. (12th Oct. 2016). EB tresos
AutoCore - Elektrobit Automotive, [Online]. Available: https:
//www.elektrobit.com/products/ecu/eb-tresos/autocore/.

[24] Carl De Boor, ‘A practical guide to splines’, in, ser. Math-
ematics of Computation 149. 1978, vol. 27, ch. IV Piecewise
Cubic Interpolation.

https://www.elektrobit.com/products/ecu/eb-tresos/autocore/
https://www.elektrobit.com/products/ecu/eb-tresos/autocore/

