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Abstract
Due to the technologies improvement, the volume of data generated in any discipline has
become massive. All this raw knowledge needs a post-processing in order to discern and
identify the embedded information. Hence, it is necessary to create a new investigation path
in discrete signal processing in order to mitigate this problem. This degree’s thesis proposes
a signal study with classical discrete processing techniques on graphs (DSPG).

First, some basic concepts of graphs theory are defined and discrete signal processing
tools are provided, such as filtering or frequency domain transformation, oriented to this
methodology. Then, two interesting applications are developed: signal compression and linear
prediction. It is demonstrated that graphs techniques are valid in order to treat very large
signals, improving the results of classical methods.

Finally, it is addressed the issue of identifying the ideal structure of a graph from the
information of its nodes. This problem stands for a novel research topic. Lot of literature
aim its own methodologies to achieve the solution. In this work it is identified the optimal
structure by minimizing the number of connections on the graph in order to avoid redundancy
and denoising introduced by incorrelated nodes.
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Resumen
Con el avance de las tecnologías, el volumen de datos generados en cualquier disciplina se ha
masificado. Todo este conocimiento bruto necesita de un post-procesado con tal de discernir
e identificar la información contenida. Es por ello que es necesario abrir una nueva ventana
en el procesado de señales discretas con tal de tratar este problema. En esta tesis se propone
el estudio de señales con técnicas del clásico procesado discreto orientado a grafos (DSPG).

Primeramente, se definen los conceptos básicos en teoría de grafos, y se adquieren conoci-
mientos en técnicas de procesado, tales como filtrado o transformaciones en el dominio frecuen-
cial, orientado a esta metodología. Seguidamente, se desarrollan dos aplicaciones de interés
como son la compresión de señales y la predicción lineal. Se demuestra que las técnicas em-
pleadas mediante grafos son muy válidas para tratar señales de mucho volumen, mejorando
los métodos clásicos.

Finalmente, se aborda el problema de identificar la estructura ideal de un grafo teniendo
en cuenta la información anexada a sus nodos. Esta cuestión es un tema de investigación
muy novedoso. Mucha literatura propone sus métodos para lograr este fin. En este trabajo se
desarrolla el método de identificar una estructura óptima minimizando el número de conexiones
del grafo con tal de reducir la redundancia y la distorsión introducida por posibles nodos
incorrelados.
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Resum
Amb l’avanç de les tecnologies, el volum de dades generat en qualsevol disciplina s’ha massi-
ficat. Tot aquest coneixement brut requereix d’un post-processat per tal de poder discernir i
identificar la informació. És per això que es necessari obrir una nova finestra en el processat de
senyals discretes per tractar aquest problema. En aquesta tesis es proposa l’estudi de senyals
amb tècniques del processat discret orientat a grafs (DSPG).

Primerament, es defineixen els conceptes bàsics en teoria de grafs, i s’adquireixen coneixe-
ments en tècniques de processat, tals com el filtrat o transformacions en el domini freqüencial,
orientat a aquesta metodologia. Seguidament, es desenvolupen dues aplicacions d’interès, com
son la compressió de senyals i la predicció lineal. Es demostra que les tècniques utilitzades
mitjançant grafs son molt vàlides per tractar senyals de molt volum, millorant els mètodes
clàssics.

Finalment, s’aborda el problema d’identificar l’estructura ideal d’un graf tenint en compte
la informació annexada als seus nodes. Aquesta qüestió és un tema d’investigació molt in-
novador. Molta literatura proposa els seus mètodes per assolir aquest fi. En aquest treball
es desenvolupa el mètode d’identificar una estructura òptima minimitzant el nombre de con-
nexions del graf per tal de reduir la redundància i la distorsió introduïda per possibles nodes
incorrelats.
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Notation

x A column vector.

X A matrix.

I The identity matrix.

0 All-zeros matrix or vector.

1 All-ones column vector.

X A set of subspace.

rankpXq The rank of X.

diagpXq A column vector containing the diagonal entries of X.

diagpxq A matrix whose diagonal contains the elements of x.

X# The Moore-Penrose pseudoinverse of X.

p¨q˚ The conjugate operator.

p¨qT The transpose operator.

p¨qH The hermitian (transpose and conjugate) operator.

d The Hadamard product.

b The Kronecker product.

˛ Khatri-Rao (column-wise Kronecker) product.

E The mathematical expectation operator.

||x|| The Euclidian norm of x.

||X||1 The `1 norm of X.

||X||2 The spectral norm of X.

R The field of real numbers.

C The field of complex numbers.
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1 | Introduction

1.1 Project Outline

Discrete signal processing on graphs is a novel field requiring an intensive and solid study. The
scope of this project is to set up a solid background in graph signals. Moreover, we address
the problem of identifying the graph structure from the signals on its nodes.

1.1.1 Requirements and Assumptions

The development of the project is described in the following lines. In order to make an accurate
study of graph signals and to identify some of their applications, the work has been basically
broken down into four main work-packages:

• Problem statement: in this starting point, it was required to get some knowledge and
tools to work with graph signals, in order to develop some techniques and applications
related to this field.

• Data acquisition and manipulation: in order to simulate and developing some applica-
tions on graphs, it is required to interact with large data sets. The chosen data was
provided by the United States National Climatic Data Center (USNCDC) [1], which
holds a huge database from lots of climatological measurements all around the American
territory.

• Study of the algorithms and implementation: it is required to identify, study and imple-
ment some algorithms and techniques on graphs.

• Data analysis and results validation: it is mandatory to verify simulations and algorithms
results. Moreover, simulations back up theoretical study and conclude the validity of
the theories.

Further information about time planning and realization of the different work-packages is
shown in appendix A, including the Gantt diagram.
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1.2 Organization

This degree’s thesis is organized into five chapters. The fist one, chapter 1, includes the
introduction of the work, where the project scopes and requirements are analyzed. This
chapter presents the structure of the project, and introduces and reference the starting point
of the project. Additionally, useful information that facilitate the understanding of the projects
is included before chapter 1, such as list of figures or notation.

In chapter 2 we introduce graph signals and some fundamental signal processing techniques
applied to graphs, such as filtering and frequency analysis. In chapter 3, we use the tools
introduced in the previous section to develop two interesting applications. The first one
consists in exploting the frequency analysis to perform signal compression, whereas the second
one deals with an important application of graph signals filtering. In chapter 4 we approach the
problem of identifying the optimal structure of the graph. We determine some requirements
and constraints on the graph, in order to make the problem affordable.

Finally, chapter 5 includes the conclusions and future tasks in order to make a complete
analysis of the topics introduced in this thesis.

Figure 1.1: Degree’s thesis structure.
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1.3 State of the art

In the recent times, massive data sets are generated constantly in any discipline. From indus-
trial applications to social networks. The large volume of raw data generated require accurate
and optimal techniques to process the information, but their volume and complex structure
limit the tools applied in small data sets. Analysis and processing this very large data sets,
known as big data, stands for a big challenge. New discrete signal processing (DSP ) techniques
have to be applied [2].

In this thesis it is reviewed data analysis based on the classical discrete signal processing
generalized to graphs (DSPG). This modern discipline, which is in constant development,
poses new investigation fields to develop. In graphical models, data is indexed by the nodes of
the graph. Hence, it can be easily seen that resulting signal remove any dependencies in the
original signal domain, such as time, frequency or space [6]. The goal of DSPG is to develop a
solid framework and tools for any data sets [3]. Graphs models can be directed or undirected.
In this work we define tools oriented to undirected graphs. Some of the definitions, such
as Fourier transform on graphs, is not applicable to directed graphs, which often happen in
real-world in non-stationary problems.

From the literature, we discuss how fundamental signal processing methodologies, such
as frequency analysis [7]–[8] or filtering [5] can be implemented efficiently for large data sets.
DSPG exploit these techniques from the structure of the graph. The structure determines how
data elements are related, that is by dependency, physical proximity, similarity or any other
property.

This main concept, the study of the structure of the graph, opens a new field of study.
Which is the optimal structure for a graph? This too generic and non-trivial problem leads
us to an intensive research topic. Furthermore, this simple question hide some important
characteristics and behaviors of the graph, such as constraints in the connections between the
nodes (or data elements). Again, some literature tries to explain and develop some algorithms
in order to estimate the optimal structure of a graph, no matter the nature of the original
data set [9].
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2 | Graph signals

This chapter is devoted to review main concepts of DSPG. First, we define graph signals and
its notation. We can consider important operations on graph signals, such as graph shifting
and graph filtering. Finally, we extend Fourier transform from DSP to graphs.

In order to illustrate all the definitions and applications, in this thesis we work with a large
data set obtained from the United States National Climatic Data Center (USNCDC) [1].

Figure 2.1 shows an example of a graph signal. The values at nodes refers to an average over
last thirty years of the maximum temperature registered by weather sensors. Edges represent
the connection between nodes of the graph, defining its structure.

Figure 2.1: Maximum average temperature measurements (oC) across the United States.

2.1 Graph signals

In graphical models, data is indexed by the nodes of the graph. The structure determines how
data elements are related, that is by dependency, physical proximity, similarity or any other
property.

From the large data set previously introduced, we can construct a representation graph
G “ pV,Aq, where V “ tv0, ..., vN´1u is the set of N nodes and A is the weighted adjacency
matrix of the graph [3]. From figure 2.1, each node vn corresponds to a climatological sensor,
making temperature measurements.

4



Given this graph, the set of measurements at nodes forms a graph signal, defined as

s “ r s0 s1 . . . sN´1 s
T , (2.1)

where each value sn is related to the node vn. In general, it is appropriate to consider sn P C,
defining the subspace S of graph signals. A graph is also represented by the adjacency matrix
A. This matrix defines the relations between the nodes. Hence, it defines the structure of the
graph. In this chapter, the procedure used to build the graph is based on the similarity of the
nodes based on the distances between them, so am,n P R [2]-[3]. Each node is connected to
K nearest sensors, known as neighbors. The set of indices of nodes connected to vn is called
neighborhood of vn and it is denoted as

Nn “ tm | an,m ‰ 0u . (2.2)

In this chapter, we consider nodes connected with undirected edges weighted depending
on the distance dn,m between the nth and the mth sensor [2], where m P Nn, so

am,n “
e´d

2
n,m

b

ř

kPNn
e´d

2
n,k

ř

lPNm
e´d

2
m,l

. (2.3)

The adjacency matrix A contains information of the neighborhood connections, as well
as the value of this connections. Hence, the adjacency matrix can be decomposed into two
matrices, that is

A “ BdW , (2.4)

where B is the edges matrix containing only the connections between nodes, so bm,n P t0, 1u.
Matrix W contains the weighting information of the edges, so wm,n P C. Note that matrices
are related by the Hadamard product [11]. For two general M ˆ N matrices X and Y, the
Hadamard product pXdYq is a matrix of the same dimensions as the operands, whose entries
are given by

pXdYqm,n “ pxm,nqpym,nq 0 ď m ăM , 0 ď n ă N . (2.5)

2.2 Graph shift

The most simple operation to be done with the graph signal is called graph shift. It consists
in filtering the input graph signal s with the adjacency matrix A related to the graph, so

s̃ “ r s̃0 s̃1 . . . s̃N´1 s
T “ As . (2.6)
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Equation (2.6) is the one-step shifted version of the graph signal. The k -step shifted version
of the signal is denoted as s̃k “ Aks . This operation replaces the sample sn related to the
node vn, with the weighted linear combinations of the signal samples at its neighbors, so

s̃ “
ÿ

m PNn

An,msm . (2.7)

In order to understand the effects of the graph shift operator, we construct a subgraph as
it is explained in section 2.1, such as G1 “ pV 1,Aq, where V 1 “ tv10, ..., v1N´1u is a set of N “ 40

nodes. That nodes correspond to sensors placed at 4 separated places: Florida, Ohio, New
Mexico and Oregon. This produces a temperature snapshot with high temperature contrasts.
The adjacency matrix A has been built considering K “ 5 neighbors.

Figure 2.2: Graph shift applied to a snapshot of temperature measurements.

Figure 2.2 shows the effects of applying the graph shift to a signal, and we can extract
several conclusions. To guarantee the numerical stability of the shifted signal, we can define
the normalized adjacency matrix

Ā “
1

|λmax,A|
A , (2.8)

where λmax,A denotes the maximum eigenvalue of A. That is, |λmax,A| ě |λm,A| for all
0 ă m ďM ´ 1, where M is the rank of A [7]. This guarantees that the shifted signal is not
scaled up, as the normalized matrix has spectral norm ||Ā||2 “ |λmax, Ā| “ 1.

Again, as illustrated in figure 2.2, the shifted signal Ās is an approximation of s. This
interesting property is exploited to construct a signal compressor based on graphs, in section
3.1. Another case to study is the effect of graph shifting in terms of signal variance.
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2.2.1 Performance of the graph signal variance

Graph signal variance plays an important role in some DSPG applications such as signal
compression on linear prediction, which will be reviewed in chapter 3. In order to achieve
better compression ratios, low variance signals are required.

In the following lines we show the procedure to compute the variance of the graph signal
s, and can be extrapolated to the case of the shifted graph signal s̃.

It is defined the error vector ε as the difference between the graph signal s and its mean
vector,

ε “ s´ms “ PKs . (2.9)

The mean vector is described as ms “ ms1, where ms is the mean value of the graph
signal s, that is ms “

1
N 1

T s. This difference can be defined in terms of graph signal s. Hence,
we can define the error vector as ε “ PKs, where PK “ I´ 1

N 11
T is the orthogonal projector

of the mean of the graph signal.
The variance is computed as the squared norm of the error vector defined in (2.9) normal-

ized by the power of the graph signal, that is

varpsq “
||ε||2

||s||2
“

sHPKs
sHs

. (2.10)

In equation (2.10) we have taken into consideration the idempotence property of a projector
to simplify the expression, that is PKPK “ PK.

Taking this procedure, we can study the variance of a graph signal. Using the large data
set of temperature measurements, we develop two different scenarios. Hence, we build two
graphs. The graph G1 “ pV,Aq indexes the nearby sensor network with N “ 200 nodes. The
adjacency matrix A is built as (2.3). The other graph, G2 “ pV,Bq indexes the same set of
nodes, but the adjacency matrix B is built as

bm,n “

#

1 if m P Nn
0 otherwise

, (2.11)

denoting the definition of the edges matrix from the adjacency matrix decomposition described
in (2.4).

Figure 2.3 shows the behavior of the variance in terms of the cardinality of the neigh-
borhood. The variance shifted signal s̃1 “ As decreases exponentially when largest is the
neighborhood of a node, reaching an asymptotic value. This occurs due to the adjacency
matrix A used to create the weighted edges of the graph. Once reached a certain number of
neighbors, the network does not make more connections, so the weight of the extra-neighbors
edges are 0.
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The variance of the shifted signal s̃2 “ Bs has a most unpredictable behavior. We can
appreciate two increments in the variance of the shifted signal, caused by relating separated
and uncorrelated nodes. In this case, when reaching the full-neighborhood (full connections)
the variance drops off.

Figure 2.3: Performance of the variance in a nearby sensor network graph.

Figure 2.4 shows the behavior of the variance for the scattered graph G2. Both profiles are
exactly equal to the nearby network scenario, but of a soft spike in the case ofK “ 2 neighbors.
Nodes are highly separated, so the values between them have a low correlation. Increasing the
cardinality of the neighborhood avoids the noise effects introduced by low-correlated neighbors.

Figure 2.4: Performance of the variance in a scattered sensor network graph.
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This experiment demonstrates that shifting a graph signal with an appropriate adjacency
matrix reduces its variance, while keeping the resulting signal quite similar to the original
one.

2.3 Graph filters

Similarly to the operator introduced in section 2.2, we can represent filtering on a graph using
matrix-vector product [2]. Indeed, shifting a signal is a particular case of graph filtering. That
is, in general, for an input signal s filtered by any matrix H P CNˆN yields the filtered graph
signal, so

s̃ “ Hs . (2.12)

Graph filters are linear, that is the output of the linear combination of these systems is
the linear combination of their outputs, so

pαH1 ` βH2qs “ αH1s` βH2s , (2.13)

where H1,H2 P CNˆN are graph filters. Furthermore, another property fulfilled by graph
filters is shift-invariance. Applying the graph filter to the shifted input signal is equivalent to
employ the graph shift to the filtered input signal, so

HpAsq “ ApHsq . (2.14)

A graph filter H is linear (2.13) and shift-invariant (2.14) if and only if H is a polynomial
in the graph shift A [4], that is

H “ hpAq “
L´1
ÿ

`“0

h`A` “ h0I` h1A` ¨ ¨ ¨ ` hL´1AL´1 , (2.15)

where h` P C are the complex filter coefficients, called graph filter taps. From (2.15), there
exist a limited number of taps [5]. Any graph filter has a unique equivalent filter on the
same graph with at most L “ MA, where MA is the degree of the minimal polynomial 1 of
the adjacency matrix A, assuming that its characteristic and minimal polynomials are equal,
pApxq “ mApxq [4].

The inverse of a graph filter, if it exists (the graph filter matrix hpAq is non-singular), is
also a graph filter gpAq “ hpAq´1 on the same graph G “ pV,Aq.

1 The minimal polynomial of A is the unique monic polynomial of the smallest degree that annihilates A,
that is mApAq “ 0.
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2.4 Graph Fourier transform

The Fourier transform is plenty used in discrete signal processing. DSPG defines the Fourier
transform with graph filters. Mathematically, a Fourier transform with respect to a set of
operators is the expansion of a signal into a basis of the operator’s eigenfunctions.

2.4.1 Spectral decomposition

For a graph signal s from a signal subspace S, s P S, the output s̃ “ Hs “ hpAqs of any graph
filter hpAq (accomplishing the properties defined in section 2.3) also belong to the same signal
subspace S.

For the sake of simplicity of the discussion, assume that A is diagonalizable 2. Hence, the
spectral decomposition (SVD) of the adjacency matrix is

A “ VΣQH , (2.16)

where V “ r v0 . . . vR´1 s and Q “ r q0 . . . qR´1 s are unitary by the left P ˆ R

and Q ˆ R matrices respectively. The columns of V and the columns of Q are called
the left-singular vectors and right-singular vectors of A, respectively. The matrix Σ “

diag p r σ0 . . . σR´1 s
T q is a diagonal RˆR matrix that contains the singular values. Since

this decomposition is too generic, and A is a square matrix, we can consider the Eigenvalue
Decomposition (EVD), that is

A “ VΛVH , (2.17)

where the matrix V is a square matrix which contains the eigenvectors vk of A and Λ is the
diagonal matrix that contains its eigenvalues, λk.

From (2.17) we can rewrite the expression of the graph filter as

H “ hpAq “
L´1
ÿ

`“0

h`A` “

L´1
ÿ

`“0

h`pVΛVHq` “ (2.18)

L´1
ÿ

`“0

h`VpΛq`VH “ Vp
L´1
ÿ

`“0

h`Λ`qVH “ VhpΛqVH .

In equation (2.18) it has been applied the functional property for an eigenvalue decompo-
sition, so fpAq “ fpVΛVHq “ VfpΛqVH .

2 In order to simplify the problem, we assume that A is diagonalizable. However, we generally cannot
assume it, which leads us to the Jordan decomposition of A.
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2.4.2 Graph Fourier transform

The spectral decomposition of the signal subspace S expands each signal s P S on the basis
defined by the generalized eigenvectors, s “ V ŝ. Hence, the vector of expansion coefficients
is given by

ŝ “ r ŝ0 ŝ1 . . . ŝN´1 s
T “ V´1s . (2.19)

We call the expression in (2.19) the graph Fourier transform and the coefficients of ŝ the
spectrum of the graph signal s [7]-[8]. We can write the graph Fourier matrix as

F “ V´1 . (2.20)

The inverse of the graph Fourier transform reconstructs the input signal s from its spec-
trum. Moreover, the adjacency matrix – computed as (2.3) – is symmetric, hence is diagonal-
izable. Then, the graph Fourier matrix is orthogonal, that is F´1 “ FH .

Figure 2.5: Frequency content of a graph signal.

Figure 2.5 shows the plot of the spectrum ŝ of a graph signal. From the temperatures
measurements we construct the graph G “ pV,Aq with N “ 200 nodes from the state of
Colorado. Note that low frequencies have higher values, so the main information of the graph
signal is located at these frequencies. This consideration will be useful for the data compression
application developed in section 3.1.
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3 | Applications on Graphs

In this chapter we are going to develop two important data processing applications. The first
one consists on a signal compressor and the second one is a linear predictor. These examples
illustrate the effectiveness of DSPG in front of standard DSP .

3.1 Signal compression

Signal compression is an important tool for reducing both communication costs and storage
sizes. These techniques need efficient signal representation. For instance, JPEG expands
signals into cosine bases applying the discrete cosine transform (DCT) . Hence, it is expected
that most information about the signal is captured with few basis functions.

This expansion of the signal can correspond to a Fourier basis. As we have seen in section
2.4, lower frequencies dominate the spectrum of the graph signal. Hence, we say that a graph
signal is sparse in the frequency domain. This important property makes Fourier bases useful
for efficient graph signal representation, and therefore for compression [3]-[7]-[8].

3.1.1 Compression algorithm

In section 2.2 we have seen the effects of shifting a graph signal. Given a graph G “ pV,Aq,
assuming that the adjacency matrix A is computed as (2.3), the shifted signal s̃ “ Ās – where
Ā is the normalized adjacency matrix (2.8) – is a close approximation of input signal s. Hence,
we can rewrite shifted signal as

s̃ “ r s̃0 s̃1 . . . s̃N´1 s
T “ As “ ρd s , (3.1)

where ρ “ r ρ0 ρ1 . . . ρN´1 s
T is the vector that scales up input graph signal s. As the

shifted signal is a close approximation of s, we can rewrite (3.1) as

s̃ “ As “ ρd s « ρs . (3.2)

As shown in figure 2.2, ρ « 1. This consideration demonstrates that graph signal s can be
expressed as the combination of few eigenvectors of A.
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Consider the large dataset of temperature measurements. We can construct the graph
G “ pV,Aq with N “ 2000 nodes indexed to sensors located around the American territory
and the adjacency matrix is computed as (2.8). We compute the Fourier transform matrix F
(2.20) from the eigenvector matrix of A. From each daily snapshot sm with 0 ă m ď 365, we
compress each signal by keeping only C coefficients of the spectrum signal ŝm “ Fsm,

š “ F´1ŝpCq “ F´1r ŝ0 ŝ1 . . . ŝC´1 0 . . . 0 sT , (3.3)

where ŝpCq is the spectrum signal ŝ keeping only C coefficients. In equation (3.3) it is assumed
that |ŝ0| ě |ŝ1| ě . . . ě |ŝN´1|.

We repeat this procedure for all M “ 365 daily snapshots sm. Then, we calculate the
average approximation error vector φ as

φ pCq “

M´1
ÿ

m“0

||šm,C ´ sm||2

M´1
ÿ

m“0

||sm||2
. (3.4)

In order to demonstrate the validity of signal compression using the Graph Fourier matrix,
we compress the signal using classical Discrete Fourier Transform (DFT ). A DFTN signal is
defined as

ŝ “ DFTNs , (3.5)

where s is the input graph signal and DFTN is the N ˆN DFT matrix. The DFTN matrix
is defined as

DFTN “
1
?
N

»

—

—

—

—

—

—

—

–

1 1 1 . . . 1

1 e´j2π{N e´j4π{N . . . e´j2πpN´1q{N

1 e´j4π{N e´j8π{N . . . e´j4πpN´1q{N

...
...

...
. . .

...
1 e´j2πpN´1q{N e´j4πpN´1q{N . . . e´j2πpN´1q2{N

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.6)

So, from the DFTN signal introduced in (3.5), we compress the signal keeping only C

coefficients. Then, we calculate the average approximation error vector ϕ as described in
(3.4).

3.1.2 Results discussion

Next figures show the performance of the average approximation error in terms of the number
of coefficients used to reconstruct the input signal.

13



Figure 3.1: Average reconstruction errors φ and ϕ.

Figure 3.2: Logarithmic average reconstruction errors φ and ϕ.

From both figures, we can see the improvement introduced by graph technique in front
of the classical DFT compression. Nevertheless, if we reconstruct the signal taking only
one coefficient from the spectrum signal, we get less error with DFT compression technique.
Anyway, this tendency only applies in the case of C “ 1. Note that graph compression error
abruptly decreases, taking an insignificant value with only 10% of the coefficients. This can
be easily seen in figure 3.2. With C “ 200 coefficients, graph compression represents a gain
of more than 10 dB with respect to DFT compression. In addition, with large number of
coefficients used for reconstruction this gain becomes higher.
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Figure 3.3 shows the plot of four recovered graph signals š for different values of C. Assum-
ing the graph defined with N “ 2000 nodes, the number of coefficients used for reconstruction
are: CpAq “ 10, CpBq “ 50, CpCq “ 100 and CpDq “ 200.

Figure 3.3: Recovered graph signal with different values of C.

In this application we have seen the effects of compressing a graph signal with a novel
technique: we have used Graph Fourier transform matrix to expand the signal into the Fourier
basis. The compressed signal is obtained by performing the inverse transformation considering
only some spectrum coefficients. We have seen that compression ratios of 10% from the original
size lead to insignificant errors. This means that the main information of the graph signal is
located in a very few number of eigenvectors, representing the lowest frequencies of the original
signal. In addition, we have compared the technique to classical DFT compression, getting
results significantly better in terms of average reconstruction errors for few coefficients.
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3.2 Linear prediction

Linear prediction (LP ) is a technique used in many applications in discrete signal process-
ing. Mainly, it is applied on highly correlated signals. So, current sample of the signal is
approximated (predicted) by a linear combination of the previous ones.

3.2.1 Problem statement

Linear prediction is based on two components: a forward (prediction) filter and a backward
(recovery) filter. Figure 3.4 shows the implementation of the forward filter. Backward filter is
implemented as the inverse of the forward filter.

Figure 3.4: Forward filter.

The forward filter permits obtaining a residual signal that can be quantized with few bits.
The backward filter recovers an approximation of the original signal from the residual one
[3]-[5].

Consider the graph G “ pV,Aq, where A is the adjacency matrix built as (2.3) and V is
the set of nodes vn indexed to 0 ă n ď 150 sensors located all along the American territory.
Each one of these sensors is making daily temperature measurements, so we get snapshots sm
with 0 ă m ď 365, where m is the daily index. For each snapshot is constructed a prediction
filter hpAq with L taps. The criterion used to construct the filter is to minimize the energy of
the residual output signal r, that is

min
h
||r||2 “ min

h
||s´ hpAqs||2 min

h
||pI´ hpAqqs||2 . (3.7)

To avoid the trivial solution h(A) = I, it has been set h0 “ 0, so

p h1 h1 . . . hL´1 q
T “ pBTBq´1BT s , (3.8)

where B “ p As . . . AL´1s q. For further information about the construction of the pre-
diction filter see appendix B.

Figure 3.5 shows the effects of the forward filter illustrated in figure 3.4, and defined as
r “ s´ hpAqs “ pI´ hpAqqs.

16



Figure 3.5: Input and output signals from forward filter.

We can appreciate that the residual energy ||r||2 is considerably small compared to the
energy of the input graph signal s. The residual signal r is quantized using B bits. Figure
3.6 shows the quantized signal for nodes vn with 100 ď n ď 150 and B “ 2, that is 2B “ 4

quantization levels.

Figure 3.6: Quantization of the residual signal.

Then, the quantized residual signal ř is processed with the backward filter to obtain an
approximation of input graph signal s, that is

š “ pI´ hpAqq´1ř. (3.9)
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Figure 3.7: Original and approximated graph signal s.

Figure 3.7 shows input and output signals. In order to get better predictions to reduce
approximation error, we can change the number of neighbors K considered in the graph, the
number of filter taps L used to predict the signal and the number of bits B used to quantize
residual signal. Combining these three magnitudes lead us to an optimal solution.

3.2.2 Results discussion

From the graph G “ pV,Aq with N “ 150 nodes, we construct subgraphs such as G’K “

pV,AKq with 2 ď K ď 15 neighbors. For each subgraph, we built prediction filters with
2 ď L ď 10 filter taps. So we got finally 126 different scenarios. Considering the average
approximation error as

φ pBq “

M´1
ÿ

m“0

||šm,B ´ sm||2

M´1
ÿ

m“0

||sm||2
, (3.10)

where φ pBq is the average error for each scenario considering a quantization with B bits and
M is the total number of snapshots, that is 365 days.

Figures 3.8 and 3.9 show the performance of the average approximation error defined in
(3.10) for filters with L “ 3 and L “ 8 taps respectively. We can observe that graphs with
a large number of neighbors (9 ď K ď 15) lead to lower errors for prediction filters with few
number of taps (2 ď L ď 5), whereas graphs with few neighbors (2 ď K ď 7) lead to lower
errors for prediction filters with large numbers of taps (4 ď L ď 8). Increasing the number of
neighbors and filter taps lead to large errors, due to overfitting graph signals s.
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Figure 3.8: Average approximation errors for LP coding with L “ 3 taps.

Figure 3.9: Average approximation errors for LP coding with L “ 8 taps.

In this application we have seen the construction of a linear predictor with graph’s tech-
niques. We have exploited the properties of graph filtering such as explained in section 2.3.

We demonstrate that there is a trade-off between graphs and filter parameters. For graphs
with large number of neighbors we got better results in terms of average approximation errors
with prediction filters whose impulse response has few taps. In contrast to classical linear
prediction of DSP , increasing the number of taps lead to large errors for high connected
graphs. This concept is a key issue for data filtering on graphs. Constructing filters with large
impulse responses require high computational costs.
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4 | Adjacency Matrix Identification

Throughout the thesis, we have considered graphs with known structure. So far, we have
assumed a popular adjacency model based on distances between nodes, as studied in (2.3).
Then, we analyzed how transformations in the structure of the graph impact into the signals.
In this chapter we address the problem of identifying the graph structure from the signals on
its nodes. This novel idea is accurately studied by S. Segarra et al. in [9]. It is mainly based
on considering that a specific graph signal may be seen as the output of a filter when the input
is an activation noise. Figure 4.1 shows the concept of identifying the structure of the graph
from a random signal.

Figure 4.1: Concept schema for the identification of the graph structure.

4.1 Problem statement

The main idea is to identify the structure of a random graph signal. This structure encodes
relationships between data related to each node of the graph.

We define the graph signal as s “ r s0 s1 . . . sN´1 s
T , just like in (2.1), where each

element sn P R is related to a node of a general graph. Let us suppose that the graph signal
is generated from a zero-mean white signal ω with covariance matrix Cω “ E tωωH u “ I.
Hence, we can rewrite s as

s “ Hω “ hpSqω “ p
L´1
ÿ

`“0

h`S`qω , (4.1)
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where hpSq is a graph filter obeying the algebra defined in section 2.3 and S is a general shift
matrix. The covariance matrix of the generated graph signal s is

Cs “ E t pHωqpHωqH u “ HE tωωH uHH “ HHH . (4.2)

We can rewrite the graph filter H “ hpSq using the spectral decomposition such as defined
in (2.18). Hence, the covariance matrix is defined as

Cs “ HHH “ Vp
L´1
ÿ

`“0

h`Λ`qVHVp
L´1
ÿ

`“0

h`Λ`qVH “ V
ˇ

ˇ

ˇ

ˇ

L´1
ÿ

`“0

h`Λ`

ˇ

ˇ

ˇ

ˇ

2

VH . (4.3)

Remember that eigenvector matrix V is unitary by the left, so VHV “ I. Equation (4.3)
shows that the only difference between the covariance matrix of the graph signal and the graph
shift matrix is on their eigenvalues. Then, we have demonstrated that the matrices Cs and S
have the same eigenvectors. This concept is the basis on the method developed in this chapter
to find the graph structure.

4.1.1 Algorithm criterion and constraints

The scope of this chapter is to consider the graph shift matrix S as the adjacency matrix A
of the graph. Hence, some considerations have to be taken. One possible criterion to find the
structure is on minimizing the total energy of the edges of the graph.

The criterion used in this chapter to find the structure of the graph consists on finding the
most efficient matrix, i. e., identifying a sparse adjacency matrix by minimizing the `1 norm,
computed as

||S||1 “ max
0ďnďN´1

M´1
ÿ

m“0

|sm,n| , (4.4)

which is simply the maximum absolute column sum of the matrix. A sparse adjacency matrix
denotes a graph with few connections between nodes, that is a reduced neighborhood. Hence,
we avoid redundant connections or connections that could introduce some noise.

The graph shift matrix have some properties to accomplish, which are the constraints of
the algorithm to identify it. First constraint has been developed before. The eigenvectors of
the graph shift matrix are known and are equal to the eigenvectors of the covariance matrix
of the graph signal. Hence, we can write a first version of the criterion, so

Ŝ “ arg min
tS,λu

||S||1 s. t S “ VΛVH “

N´1
ÿ

k“0

λkvkvHk , (4.5)

where λ “ diag pΛ q is the vector containing the eigenvalues λk from S.
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The optimization problem in (4.5) require more constraints in order to consider the graph
shift as the adjacency matrix, i. e., prior knowledge about the structure of the graph. These
constraints are:

1. Absence of self-loops, that is each diagonal entry of the adjacency matrix must be zero,
sii “ 0 @i.

2. Non-negative weights of the edges, sij ě 0 @i ‰ j.

3. The adjacency matrix have to be real and symmetric. Hence, it has to be a square
matrix.

4. In order to avoid trivial solution Ŝ “ 0, we fix the weights of the first node to 1,
ř

j sj1 “ 1.

4.2 Identifying the adjacency matrix

In order to incorporate all the constraints of the adjacency matrix, we need to make some
accommodations in order to apply a well-known sparsity solution (Basis pursuit).

4.2.1 Algorithm accommodation

First requirement is to transform the problem of identifying the matrix into the identification
of a vector. This key step is needed in order to take advantage of `1-norm minimization
algorithms. We can rewrite the graph shift matrix as S “ r s0 . . . sN´1 s. Hence, the
vectorization of the matrix results

s “ vecpSq “ r sT0 sT1 . . . sTN´1 s
T , (4.6)

where s is a column vector with N2 entries . In order to adapt the constraint from (4.5) to
apply into the vector s, we define

W “ V ˛V , (4.7)

where V is the eigenvector matrix from the covariance – or adjacency – matrix and W is a
N2 ˆ N matrix. Note that matrices are related by the Khatri-Rao (column-wise Kronecker)
product [11]. Considering the case N “ 2, the matrix W results

W “ V ˛V “

«

v11 v12

v21 v22

ff

˛

«

v11 v12

v21 v22

ff

“

»

—

—

—

—

–

v11v11 v12v12

v11v21 v12v22

v21v11 v22v12

v21v21 v22v22

fi

ffi

ffi

ffi

ffi

fl

. (4.8)
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Then, we can rewrite the spectral decomposition of the vectorized matrix s as

s “Wλ , (4.9)

and the modified criterion defined in (4.5) as

ŝ “ arg min
ts,λu

||s||1 s. t s “Wλ . (4.10)

Some steps still remain. Note that the criterion depends on two variables, s and λ. More-
over, the constraints are not considered yet. We can solve the dependency problem assuming
λ “W#s, whereW# is the Moore-Penrose pseudoinverse matrix of W. Hence, we can rewrite
the constraint s “Wλ as

s “Wλ “WpW#sq ðñ pI´WW#q s “Ms “ 0 , (4.11)

where M “ I ´WW# is a N2 ˆ N2 projection matrix. Let us define the set of indices D
containing the indices of s corresponding to the diagonal entries from the graph shift matrix
S. From D, denote as Dc the complement of D, containing the indices for the rest of entries.
Taking as an example a graph with N “ 3 nodes, we obtain the sets D “ t1, 5, 9u and
Dc “ t2, 3, 4, 6, 7, 8u. Then, from constraint 1, we can write

sD “ 0 , (4.12)

where sD is the subset of s with pN2 ´Nq entries corresponding to the diagonal values from
the graph shift matrix. From constraint 4 we can rewrite

ř

j sj1 “ 1 as

ÿ

j

sj1 “ 1 ðñ pe1 b 1N qT s “ 1 , (4.13)

where e1 “ r 1 0 . . . 0 sT is the first canonical basis vector, and 1N is a ones vector with
N entries. Note that vectors are related by the Kronecker product [10]-[11]. For two general
matrices XMˆN and YPˆQ, the Kronecker product between them results the MP ˆ NQ

matrix such as

XbY “

»

—

—

–

x11Y ¨ ¨ ¨ x1NY
...

. . .
...

xM1Y ¨ ¨ ¨ xMNY

fi

ffi

ffi

fl

. (4.14)

Hence, pe1 b 1N q “ r 1 . . . 1 0 . . . 0 sT is a N2 vector with ones in the first N
positions and zeros elsewhere.
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We can join both constraints into one. From the set of indiced defined before, the constraint
in (4.11) results

Ms “MT
D sD `MT

Dc sDc “ 0 ðñ MT
Dc sDc “ 0 , (4.15)

whereMT
D sD “ 0 as defined in (4.12) andMDc is a pN2´NqˆN2 matrix. Then, we construct

the matrix

K “ r MDc pe1 b 1N qDc s , (4.16)

where pe1b1N qDc is a pN2´Nq vector. Equivalently, we can define this vector as pe1b1N qDc “

pe1 b 1N´1q. The resulting K is a pN2 ´ Nq ˆ pN2 ` 1q matrix. Finally, we can write the
linear system to be solved by the minimization criterion as

KT sDc “ b , (4.17)

where b “ r 0 . . . 0 1 sT is a pN2 ` 1q vector with null entries except for the last one.
Note that equation (4.17) is the relation of the equivalences in (4.15) and (4.13). As we adapt
the criterion including all the constraints, we can write the optimization problem as

ŝDc “ arg min
sDc

||sDc ||1 s. t KT sDc “ b . (4.18)

We have found the Basis pursuit problem to identify the optimal structure for a graph
with the constraints required for an adjacency matrix. We can rebuild matrix Ŝ reshaping the
vectorized ŝ as an N ˆN matrix,

Ŝ “ r ŝ0 ŝ1 . . . ŝN´1 s
T , (4.19)

where ŝ “ vecpŜq “ r ŝT0 ŝT1 . . . ŝTN´1 s
T such as defined in (4.7), and each ŝn is a subvector

with N entries.

4.2.2 Results discussion

The problem defined in (4.18), which takes into account the constraints, is now affordable and
can be solved by `1-norm algorithms [12] – [13]. However, constraint 2 has not been taken
into account and it is necessary to understand the meaning of negative connections.

In this section we are going to evaluate and compare the identified adjacency matrix with
the one defined in (2.3). Consider the graph G “ pV, Âq where V “ tv0, ..., vN´1u is the set
of N “ 50 nodes indexed to weather stations located around the United States territory. The
weighted adjacency matrix Â is build by solving the problem in (4.18).
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In order to evaluate the behavior of the identified adjacency matrix, we set to null all the
residual connections. The criterion chosen to denote these residual connections is

âm,n “

#

0 if âm,n ă 0.01λmax

âm,n otherwise
, (4.20)

where λmax denotes the maximum eigenvalue of Â. Figure 4.2-(A) depicts the binarized
values of the identified solution Â. Blank entries indicate no connection, while dark-blue
entries indicate connection between the m-th and n-th nodes. We can appreciate that the
criterion used to construct the matrix is not considering distances between nodes. If so, big
blank areas will appear to avoid connections between far sensors.

Figure 4.2: Binarized map from the identified adjacency matrix

In order to make a map more representative, we can sort the graph signal from large
magnitude values (hot weather) to lowest ones (cold weather). The effects of doing this
transformation are shown in 4.2-(B). The graph constructed with this adjacency matrix is
connecting large magnitude nodes, and it disconnects the ones with low energy. Even so,
it is also connecting high correlated nodes, that is in this example that sensors with similar
temperature measurements.

4.2.3 Numerical experiment

In previous section we have seen the behavior of the identified structure, relating nodes with
large energy and isolating low-energy ones. The aim of this section is to exploit this property.
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Consider the graph G “ pV, Âq where V “ tv0, ..., vN´1u is the set of N “ 150 nodes in-
dexed to weather stations located around the United States territory. The weighted adjacency
matrix Â is build by solving the problem in (4.18). Given the graph, the set of nodes forms
the graph signal s. Hence, we can generate shifted signal as

s̃ “ Âs . (4.21)

Shifting by the identified matrix Â expands the dynamic range of the signal. In addition,
most of the energy of the signal is concentrated in large and low values. That is, it transforms
a soft and flat graph signal to an almost binarized one. Then, we define a threshold to binarize
the signal such as

ξ “
1

N
1T s̃ «

1

2
ps̃max ´ s̃minq . (4.22)

We have defined the threshold as the mean of the graph signal, which is quite similar to
the balance point of the signal’s energy.

Figure 4.3: Original and binarized graph signals.

Figure 4.3 shows both original and binarized graph signals. Effectively, it corresponds to
a temperature map of the United States, where the south is hot and the north is cold.
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5 | Conclusions and Future Work

5.1 Conclusions

In this work we have developed a solid background in DSPG, extending fundamental concepts
from classical DSP such as data filtering, spectral decomposition, etc. to large data sets by
indexing signals to the nodes of a graph. We have demonstrated that DSPG is a valid solution
to treat amounts of waste data providing some applications. Finally, we faced the problem of
identifying the structure of a graph.

In chapter 2 we have reviewed important DSP concepts, building an immersive framework
in graph theory. We begin by defining most elemental elements of the graph, such as nodes
and structure. We follow by introducing most important operators from classical DSP on
graphs, such as shifting, filtering, spectral decomposition and Fourier transform. In all these
transformations it is imperative knowing the structure of the graph, hence its adjacency matrix.
The procedure used in this work is a popular choice for construction of similarity graphs based
on distances between nodes.

In chapter 3 we applied the concepts introduced previously two develop two important
applications in DSP . First one consists on signal compression, based on the spectrum signal
manage. Fourier transform matrix takes an important role. Comparing the graph compression
methodology to a classical technique using DFT matrix, we conclude that we get better
compression ratios in relation with the coefficients used to reconstruct original signal. The
other application consists on a linear predictor. We tested the behavior of graph filtering
in a large range of scenarios as a function of the cardinality of the neighborhood and the
coefficients used to build the impulse response of the filter. We realized that increasing the
number of coefficients lead to high errors for high-connected graphs, which contradicts with
classical linear prediction methodologies.

Finally, we abroad the problem of identifying the structure of a graph. During all the
work we have considered a known adjacency matrix build on similarity of the nodes through
distances. But this criterion is not unique. We considered the construction of a representative
graph by minimizing the connections between nodes. The results obtained gave an other per-
spective of graph signals, also useful from other applications. Connections are made depending
on the node’s energy, connecting strongly the highest ones.
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5.2 Future work

This degree thesis has built a solid background in DSP on graphs. This novel technique opens
a large range of disciplines and research problems.

Following the applications developed in this work, we can develop a robust technique to
detect malfunction in sensors networks by band-pass filtering signals. Furthermore, we can
extend the DSPG framework to face problems less common in classical DSP , such as data
classification.

On the other hand, we introduce the problem of constructing graphs. Knowing the optimal
structure is not obvious and requires a deep learning of the original signal. Lot of literature
is developing algorithms and methodologies to face this novel problem, such as the developed
in chapter 4. This issue motivates an important problem on DSPG. We are assisting to the
beginning of an important discipline due to the amounts of waste data and massive data sets,
the big data problem.
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A | Time planning

Figure A.1 shows the Gantt diagram of the Degree’s Thesis. For an accurate explanation of
each work-package, we refer to section 1.1.

Figure A.1: Time planning of the Degree’s Thesis.

Note that during all along the project an autonomous study is needed in order to a suitable
development of the work.
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B | Prediction filter construction for
minimum output energy

Prediction filter is constructed by minimizing the energy of the residual output signal r, that
is

min
h
||r||2 “ min

h
||pI´ hpAqqs||2 (B.1)

First, it is appropriate to rewrite the expression hpAqs because it would be useful in
following steps, such as

hpAqs “ ph0I` h1A` h2A2 ` ¨ ¨ ¨ ` hL´1AL´1qs “ Bh (B.2)

where B “ p A0s A1s . . . AL´1s q and h “ p h0 h1 . . . hL´1 q
T .

In order to solve the expression in (B.1), it is recommended to develop the expression of
the residual output signal energy ||r||2.

||r||2 “ ||pI´ hpAqqs||2 “ ppI´ hpAqqsqHppI´ hpAqqsq “ (B.3)

“ sHs´ sHhpAqs´ sHphpAqqHs` sHphpAqqHhpAqs “

“ sHs´ sHBh´ hHBHs` hHBHBh

In this point, expression (B.1) is easily solvable as follows.

min
h
||r||2 “ min

h
||pI´ hpAqqs||2 “ (B.4)

“ ∇hH ||r||2 “ BHBh´BHs “ 0

By few operations, the graph filter taps vectors results

h “ pBHBq´1BHs (B.5)
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